PSA变压吸附分离(Pressure Swing Adsorption

合集下载

变压吸附基本原理

变压吸附基本原理

变压吸附基本原理变压吸附(Pressure Swing Adsorption,PSA)是一种通过在不同压力下吸附和解吸物质来实现分离和纯化的技术。

它在许多工业领域中被广泛应用,如空分、气体纯化、制氧和制氢等。

变压吸附的基本原理是基于吸附剂对不同物质的吸附能力不同。

吸附剂通常是多孔的,具有高度发达的孔隙结构。

物质分子可以在其表面上发生物理吸附或化学吸附,并通过占据吸附剂的孔隙来稳定。

根据物质吸附的选择性,可以通过改变吸附剂中的压力来控制物质的吸附和解吸过程。

变压吸附通常包括吸附、解吸、冲洗和再生四个基本步骤。

首先,在较低压力条件下,吸附物质会向吸附剂表面扩散并发生吸附。

吸附物质沿着固体颗粒上的孔隙流动,直到达到平衡吸附量。

然后,通过增加压力,引起非吸附物质分子的竞争吸附,从而将吸附物质从吸附剂上解吸出来。

解吸过程发生在高压条件下,使物质能够从吸附剂表面多孔孔隙中脱附。

接下来是冲洗步骤,它的目的是去除吸附剂表面残留的吸附物质,并准备吸附剂进行再生。

在冲洗过程中,可以使用较低压力或其他介质来冲洗吸附剂,以清除吸附剂上的吸附物质。

最后,通过通过减少压力或其他的方法来减少吸附剂中的竞争吸附物质,再生吸附剂。

例如,可以利用减压或加热的方法来促进吸附剂中吸附物质的解吸和脱附。

变压吸附技术的性能和效率可以通过多种因素来调节和优化。

首先,合适的吸附剂选择是关键,因为不同的吸附剂对不同的物质具有不同的吸附能力和选择性。

其次,吸附剂的孔径分布和孔隙结构也会影响吸附过程的效果。

特别是,在分离气体混合物时,需要根据吸附物质的分子尺寸和相互作用来选择合适的孔径范围。

此外,变压吸附列的设计和操作条件的选择也会影响分离效果。

通过优化各种参数,如压力、温度、循环时间和冲洗剂浓度等,可以改善吸附和解吸性能。

总之,变压吸附是一种基于吸附剂对物质吸附和解吸能力的分离技术。

通过控制压力和操作条件,可以实现对物质的选择性吸附和解吸,从而实现分离和纯化的目的。

PSA VPSA 变压吸附

PSA VPSA 变压吸附

工业上吸附分离过程中使用的吸附剂通常都是循环使用的,为了使吸附分离法经济有效的实现,除了吸附剂要具有良好的吸附性能以外,吸附剂的再生方法也具有关键意义。

吸附剂的再生程度决定了产品的纯度,也影响吸附剂的吸附能力;吸附剂的再生时间决定了吸附循环周期的长短,也决定了吸附剂用量的多少。

因此选择合适的再生方法,对吸附分离法工业化起着重要作用。

从描述吸附平衡的吸附等温曲线可以看出,在同一温度下,吸附质在吸附剂上的吸附量随吸附质的分压(浓度)的上升而增大;在同一吸附质分压(浓度)下,吸附质在吸附剂上的吸附量随吸附温度的升高而减少。

也就是是说加压降温有利于吸附质的吸附,降压加温有利于吸附质的解吸或吸附剂的再生。

按照吸附剂的再生方法,通常将吸附分离循环过程分为两类:变温吸附和变压吸附变温吸附.(Temperature Swing Adsorption缩写为TSA)就是在较低温度(常温或更低)下进行吸附,在较高温度下使吸附的组分解吸出来,使吸附剂再生,循环使用,即变温吸附是在两条不同的等温吸附线之间上下移动进行着吸附和解吸过程。

变温吸附通常适用于原料气中杂质组分含量低、产品回收率要求较高或难解吸杂质组分的分离过程。

变压吸附(Pressure Swing Adsorption缩写为PSA)就是在较高压力下进行吸附,在较低压力(甚至真空状态)下使吸附的组分解吸出来,使吸附剂再生,得以循环使用。

由于变压吸附循环周期一般较短,吸附热来不及散失可供解吸用,吸附热和解吸热引起的床层温度变化很小,可以近似看作等温过程。

工业变压吸附分离过程中,采用哪种再生方法是根据被分离气体混合物中各组分的性质、产品纯度和收率要求、吸附剂的特性以及操作条件等来选择的,通常是几种再生方法配合实施。

无论采用何种方法再生,再生结束时吸附床内吸附质的残留量不会等于零,即吸附床内吸附剂不可能彻底再生,而只能将吸附床内吸附质的残留量降低至最小。

2.1 吸附的概念变压吸附(PSA)技术是近30 多年来发展起来的一项新型气体分离与净化技术。

PSA变压吸附制氮原理资料

PSA变压吸附制氮原理资料

PSA变压吸附制氮原理资料变压吸附制氮(Pressure Swing Adsorption,简称PSA)是一种常用的气体分离技术,广泛应用于工业、医疗和食品加工等领域。

下面是有关PSA变压吸附制氮原理的详细资料。

PSA变压吸附制氮的过程通常分为吸附和解吸两个阶段。

在吸附阶段,混合气体通过吸附装置,其中的氮气分子被分子筛吸附,而其他组分如氧气、二氧化碳、水蒸气等则通过。

这样,从进料气体中分离出富含氮气的吸附床。

吸附床在饱和后,需要进行解吸以获取纯度较高的氮气。

在解吸阶段,通过降低吸附装置内部的压力,降低分子筛对氮气的吸附力,使其再次释放出来。

释放的氮气通过排气阀进入氮气储存罐中,供应给用户使用。

PSA变压吸附制氮的关键在于通过不同操作压力的切换,利用分子筛对氮气的吸附选择性,实现对混合气体的有效分离。

一般来说,较高的压力有利于较大程度地吸附氮气,较低的压力则有利于分子筛对氮气的解吸。

因此,在制氮过程中需要进行周期性的压力切换。

PSA变压吸附制氮在工业上有广泛的应用。

其中,最常见的应用是空分行业,用于分离空气中的氧气和氮气。

通过调节操作条件和吸附床的设计,可以根据需求获得不同纯度的氮气。

例如,在医疗领域,需要高纯度的氮气用于气体中和和手术过程中的辅助气体。

在食品加工中,氮气常用于包装和保存食品,以延长货物的保质期。

总结起来,PSA变压吸附制氮利用吸附介质对混合气体中氮气的选择性吸附特性,通过周期性的压力切换实现对气体的分离。

这种技术广泛应用于空分、医疗和食品加工等行业,为各个领域提供了高纯度的氮气。

变压吸附法

变压吸附法

变压吸附法
变压吸附法(Pressure Swing Adsorption, PSA)是催化过程中比较常用的一种技术,是气体分离技术中非常重要的一部分,把混合气体分解成单个成分,在原料供应、化学反应、制造过程、产品分离中都有重要作用。

它主要通过装有三歉分吸收塔的真空系统,利用能够与不同组分吸附有不同程度的物质进行立体分离,主要用来分离含氮气体和氮质混合气中的二氧化碳以及其它重要的物质,如氨气和氢气。

变压吸附的原理是将需要分离的混合气体进入到吸附塔内,在此过程中通过塔内不断变化的压力和吸附剂的选择性吸附作用,从而达到将混合气体中的几种成分分离的目的。

一般来说,变压吸附的装置一般以三支吸附塔组成,包括预吸附塔、释放附塔和回收附塔。

在变压吸附装置运行过程中,三支吸附塔不断进行着换气、反渗、吸附、释放等步骤,来实现不同组成成分的分离,将吸附在固体表面上的分子再释放出来,从而实现对原混合气体的分离。

由于仅靠压力的变化就能实现混合气体的分离,可大大降低油压、气体流量和电力消耗,使变压吸附技术有着广泛应用。

目前变压吸附技术已经应用于化学、电子、能源、食品、制药等诸多行业,广泛用于空气净化、污染控制等技术领域。

变压吸附技术在空气净化时不仅可以将可怕的有毒气体吸附,而且还有一定的多功能性,可以将空气中的各种微生物、挥发性有机化合物以及悬浮粒等全部净化。

变压吸附技术还可以用于污染控制,其最基本的作用就是吸附多种有机物或挥发性有机气体,从而减少污染物对环境的污染。

变压吸附制氢原理

变压吸附制氢原理

变压吸附制氢原理
变压吸附制氢(Pressure Swing Adsorption, PSA)是一种常用的制氢技术,它基于吸附材料对气体的选择性吸附特性。

该技术通过多个吸附塔和周期性变压操作,将空气中的氢气与其他气体分离出来,实现高纯度氢气的产生。

在变压吸附制氢系统中,通常采用炭分子筛(Carbon Molecular Sieve, CMS)作为吸附剂。

CMS具有较高的表面积和孔径分布,可以吸附气体,特别是较小分子的气体,如氮气和氧气。

在制氢过程中,气体通过一个压缩机将空气压缩至一定压力,然后进入吸附塔。

吸附塔内部通常填充了大量的CMS颗粒。

当气体进入吸附塔时,氮气和氧气被CMS吸附,而氢气则逃逸出塔。

这样,吸附塔内的气体变为富氢气体,也称为富集气。

富集气被收集并逐渐脱压,压力降低至一个较低的值。

在此压力下,CMS释放吸附的氮气和氧气,恢复吸附塔吸附能力。

此时,吸附塔被认为是再生的。

接下来,另一个吸附塔开始吸附空气中的氮气和氧气。

通过轮流工作的两个吸附塔,可以实现连续的制氢过程。

制氢过程中,氢气的纯度随着循环次数的增加而提高,达到所需纯度后,氢气被输出。

变压吸附制氢技术的优势在于操作简单、设备紧凑、能耗低。

然而,制氢过程中会产生大量的废气,如氮气和氧气,需要进行处理。

同时,制氢过程也受到一定程度的压损,需要定期更换吸附剂。

总而言之,变压吸附制氢技术通过吸附材料对气体的选择性吸附特性,实现了空气中氢气的分离和富集。

该技术在制氢领域具有广泛应用前景。

psa变压吸附制氢原理

psa变压吸附制氢原理

psa变压吸附制氢原理变压吸附制氢(Pressure Swing Adsorption,PSA)是一种常见的氢气分离和纯化技术,用于从混合气体中提纯氢气。

该技术的原理是利用吸附剂对气体分子的吸附和解吸特性,在不同压力下实现对氢气的分离和纯化。

本文将重点介绍PSA制氢的原理、设备和应用,以及相关的优缺点和发展趋势。

一、PSA制氢的原理PSA制氢的原理基于吸附剂对气体分子的吸附和解吸特性。

通常情况下,PSA系统包括两个吸附塔或更多,并在一定的压力下进行交替工作。

工作过程主要包括吸附、脱附、再生和压力升降四个步骤。

1.吸附PSA系统的吸附塔含有一种或多种高效的吸附剂,如活性炭、分子筛等。

当混合气体进入吸附塔时,氢气分子由于具有较高的吸附性能,会被吸附剂吸附,而其它气体分子则较少被吸附。

2.脱附随着吸附塔中氢气的逐渐吸附,吸附塔内的压力逐渐上升。

当压力上升到一定程度时,吸附剂对氢气的吸附能力会降低,从而使已吸附的氢气分子开始脱附。

此时,吸附塔内的氢气会随着逆流的惰性气体流动而脱附出来。

3.再生当吸附塔内的吸附剂饱和吸附后,需要对吸附塔进行再生,使吸附剂重新具备吸附性能。

通常采用减压或加热等方法来实现吸附剂的再生,从而使吸附塔恢复到初始状态。

4.压力升降PSA系统需要在不同的压力下进行吸附、脱附和再生,通过控制阀门和压缩机等设备来实现吸附塔的压力升降。

通常情况下,一个吸附塔进行吸附操作,而另一个吸附塔进行再生操作,随后通过压力升降的方式进行切换工作。

综上所述,PSA制氢的原理是利用吸附剂对气体分子的吸附和解吸特性,在不同压力下实现对氢气的分离和纯化。

通过交替操作不同的吸附塔,实现了对混合气体中氢气的分离和纯化。

二、PSA制氢的设备PSA制氢的主要设备包括吸附塔、气体压缩机、阀门、控制系统等。

下面将分别介绍吸附塔和气体压缩机等设备的主要特点和作用。

1.吸附塔吸附塔是PSA制氢的核心设备,用于进行气体的吸附、脱附和再生操作。

变压吸附三个基本步骤

变压吸附三个基本步骤

变压吸附三个基本步骤
变压吸附(Pressure Swing Adsorption, PSA)是一种用于分离气体混合物中组分的工艺。

PSA主要包括以下三个基本步骤:
1.吸附:
•混合气体通过吸附器(adsorber)床时,其中的特定组分会被吸附到吸附剂上。

吸附剂通常是多孔性的固体物质,
例如活性炭、分子筛等。

在吸附阶段,吸附剂选择性地吸
附其中的某一种或几种气体成分,而其余成分通过吸附床,
形成富集的气体。

2.脱附(Desorption):
•当吸附床达到饱和,需要进行脱附操作。

这时,通过减压或改变吸附床的操作条件,降低系统的压力,从而使吸附
剂释放之前吸附的气体成分。

这个步骤通常涉及到减压和
/或升温,以推动被吸附的气体从吸附剂表面脱附出来。

3.再生和压力平衡:
•脱附后的吸附床被认为是再生的,可以重新投入使用。

为了保证PSA系统的连续运行,通常使用两个或多个吸附
床,交替进行吸附和脱附。

在这个步骤中,通常通过调整
压力平衡,将另一个床投入吸附阶段,而将先前用于吸附
的床进行脱附和再生。

总体来说,PSA是一种通过周期性地调整压力来实现气体分离的方法。

它在吸附和脱附阶段的交替操作中,实现了对气体混合物中特
定成分的高效分离。

这种技术广泛应用于气体纯化、气体分离和气体富集等工业和实验室领域。

psa气体变压吸附分离技术

psa气体变压吸附分离技术

psa气体变压吸附分离技术PSA气体变压吸附分离技术: 从简到繁,由浅入深导语:气体分离和纯化是工业领域的一个关键过程,而PSA (Pressure Swing Adsorption)气体变压吸附分离技术,作为一种高效、经济、灵活的分离技术方案,日益受到广泛关注和应用。

本文将从深度和广度的角度,全面评估PSA气体变压吸附分离技术,并通过多个层面的探讨,帮助读者更好地理解这一重要的技术。

一、基础概念1.1 PSA气体变压吸附分离技术的定义和原理PSA气体变压吸附分离技术是一种基于吸附剂对气体成分具有不同的吸附亲和力的原理上所实现的分离技术。

该技术通过高压吸附和低压解吸的循环操作,利用吸附剂对气体成分的选择性吸附特性,实现对混合气体分离和纯化的目的。

该技术主要应用于各类气体的纯化、富集、去除杂质等过程,可以高效、经济地达到对目标成分的高纯度分离。

1.2 PSA气体变压吸附分离技术的发展历程PSA技术的发展可以追溯到上世纪50年代早期,最早用于氢气的分离和纯化。

随着科学技术的不断进步和工业需求的增长,PSA技术逐渐应用于多个领域,涉及的气体种类也从氢气扩展到氧气、氮气、甲烷等多种气体。

近年来,PSA技术在能源、化工、环保等行业得到广泛应用,成为气体处理领域的一项重要技术工艺。

二、关键工艺与技术参数2.1 吸附剂的选择和设计吸附剂是PSA技术中的核心元素,其选择和设计直接影响系统的性能和效率。

根据不同的气体吸附特性,需要选择适合的吸附剂,并根据工艺要求进行载气和吸附剂的匹配。

常用的吸附剂有活性炭、分子筛、硅胶等。

吸附剂的选择应综合考虑吸附容量、吸附速度和再生能力等因素,以达到对目标成分高效吸附与解吸的要求。

2.2 PSA循环过程参数的优化PSA循环过程包括吸附、解吸、排附和再生等多个阶段,其中各阶段的参数优化对系统的性能至关重要。

如吸附时间和解吸时间的选择、吸附和解吸压力的调节、再生步骤的优化等,都需要综合考虑吸附剂的性能和工艺的经济性,以实现气体分离的高效率和低能耗。

psa变压吸附制氢原理

psa变压吸附制氢原理

psa变压吸附制氢原理变压吸附制氢技术(Pressure Swing Adsorption, PSA)是一种用于制备高纯度氢气的先进技术,具有广泛的应用前景。

PSA技术通过在不同压力下利用吸附剂对氢气和其他气体进行分离,从而获得高纯度的氢气。

本文将重点介绍PSA技术的原理、工艺流程和优缺点,并探讨其在制氢领域的应用前景。

一、PSA技术的原理PSA技术是基于吸附剂对气体分子的选择性吸附特性而实现气体混合物的分离。

在PSA装置中,吸附剂通常是一种多孔材料,例如沸石、活性碳等,其内部结构具有较大的表面积和一定的孔径尺寸。

这些特性使得吸附剂能够选择性地吸附某种气体分子,而对其他气体分子具有较低的吸附能力。

PSA技术的分离原理基于吸附剂对氢气和其他气体的吸附选择性差异。

当混合气体通过PSA装置时,吸附剂将选择性地吸附其中的一种气体分子,而不同的气体分子将在吸附剂表面上形成不同的吸附层。

通过改变装置中的压力,可以实现吸附剂对已吸附气体的脱附和再生,从而实现气体的分离和纯化。

PSA技术的原理基于一系列的吸附、脱附和再生操作。

在PSA装置中,通常包括两个或多个吸附塔,每个吸附塔都装有吸附剂。

在每个吸附塔中,气体混合物首先经过吸附剂,其中一种气体分子被选择性地吸附,从而达到气体混合物的分离。

随后,改变装置中的压力,吸附剂对吸附的气体进行脱附,再经过再生操作得到高纯度氢气。

通过交替运行两个吸附塔,可以实现持续地生产高纯度氢气。

二、PSA技术的工艺流程PSA技术的工艺流程通常包括吸附、脱附和再生三个主要操作。

下面将分别介绍这三个操作的具体内容:1.吸附操作:气体混合物首先进入吸附塔,其中的氢气被选择性地吸附在吸附剂表面上,而其他气体则通过吸附塔,实现气体混合物的分离。

在吸附操作中,需要控制适当的温度和压力,以保证吸附剂对氢气有较高的吸附选择性。

2.脱附操作:一旦吸附剂达到饱和吸附,需要通过降低压力来实现对吸附的氢气的脱附。

psa气体变压吸附分离技术

psa气体变压吸附分离技术

psa气体变压吸附分离技术
PSA(Pressure Swing Adsorption)气体变压吸附分离技术是一
种常用的气体分离和纯化技术。

它利用不同气体在不同压力下吸附性能不同的特点,通过循环变压吸附来实现气体的分离和纯化。

该技术主要包括以下步骤:
1. 压缩:将原料气体进行预处理,提高其压力。

2. 吸附:将压缩的原料气体注入到吸附剂床中,通过吸附剂的表面特性和压力差,将目标气体吸附在吸附剂上,而不吸附其他杂质气体。

3. 分离:将未被吸附的剩余气体从床上排出,同时降低床的压力。

4. 再生:对吸附剂床进行再生,即对吸附剂上的目标气体进行脱附,一般通过降低温度或减压实现。

通过周期性的吸附、分离和再生操作,PSA技术可以实现对
混合气体中目标气体的高效分离和纯化。

它被广泛应用于石油化工、环保、能源等领域,常见的应用包括氧气和氮气的制备、天然气纯化、乙烯脱水等。

PSA气体变压吸附分离技术具有操作简便、工艺流程短、能
源消耗低等优点,因此在工业上得到了广泛应用。

psa变压吸附

psa变压吸附

变压吸附(PSA)技术是近3多年来发展起来的一项新型气体分离与净化技术。

变压吸附(PSA)气体分离装置中的吸附主要为物理吸附。

变压吸附气体分离工艺过程的实现主要是依靠吸附剂在吸附过程中所具有的两个基本性质:一是对不同组分的吸附能力不同,而是吸附质在吸附剂上的吸附容量随吸附质的分压上升而增加,随吸附温度的上升而下降。

利用吸附剂的第一个特性,实现了对混合气体中某些组分的分离、提纯;利用吸附剂的第二个性质,实现吸附剂在低温高压下吸附、在高温低压下解吸再生。

一.基本原理任何一种吸附对于同一被吸附气体(吸附质)来说,在吸附平衡情况下,温度越低,压力越高,吸附量越大。

反之,温度越高,压力越低,则吸附量越小。

因此,气体的吸附分离方法,通常采用变温吸附或变压吸附两种循环过程。

如果压力不变,在常温或低温的情况下吸附,用高温解吸的方法,称为变温吸附(简称TSA)。

显然,变温吸附是通过改变温度来进行吸附和解吸的。

变温吸附操作是在低温(常温)吸附等温线和高温吸附等温线之间的垂线进行,由于吸附剂的比热容较大,热导率(导热系数)较小,升温和降温都需要较长的时间,操作上比较麻烦,因此变温吸附主要用于含吸附质较少的气体净化方面。

如果温度不变,在加压的情况下吸附,用减压(抽真空)或常压解吸的方法,称为变压吸附。

变压吸附操作由于吸附剂的热导率较小,吸附热和解吸热所引起的吸附剂床层温度变化不大,故可将其看成等温过程,它的工况近似地沿着常温吸附等温线进行,在较高压力下吸附,在较低压力下解吸。

变压吸附既然沿着吸附等温线进行,从静态吸附平衡来看,吸附等温线的斜率对它的是影响很大的。

吸附常常是在压力环境下进行的,变压吸附提出了加压和减压相结合的方法,它通常是由加压吸附、减压再组成的吸附一解吸系统。

在等温的情况下,利用加压吸附和减压解吸组合成吸附操作循环过程。

吸附剂对吸附质的吸附量随着压力的升高而增加,并随着压力的降低而减少,同时在减压(降至常压或抽真空)过程中,放出被吸附的气体,使吸附剂再生,外界不需要供给热量便可进行吸附剂的再生。

变压吸附制氧一般性技术原理

变压吸附制氧一般性技术原理

变压吸附制氧一般性技术原理变压吸附制氧(Pressure Swing Adsorption, PSA)是一种常见的制氧技术,用于从空气中分离氧气和氮气。

其原理主要基于吸附剂与气体分子之间相互作用的差异,通过不同压力下的吸附和解吸过程来实现氧气和氮气的分离。

1.吸附过程:原始空气在吸附塔中通过吸附剂床层时,氮气(主要成分)较氧气被吸附剂强烈吸附,导致气流中的氮气浓度增加,而氧气浓度减少。

此时,吸附剂床层逐渐富集了氮气。

2.增压脱附过程:当吸附剂床层饱和时,需要增加压力来脱附已吸附的气体。

通过增加压力,可以减小氮气与吸附剂的吸附力,从而使其脱附。

氮气被排出吸附塔,并收集在增压脱附后的低压部分。

3.气体解吸过程:在增压脱附之后,吸附塔的压力降至较低的水平。

这会导致吸附剂上的氧气分子释放出来。

氧气在此阶段被解吸,并与其它气体一起进入氧气收集部分。

4.减压脱附过程:在吸附塔中的气体解吸结束后,需要进一步降低压力,以便从吸附剂中深度去除残余氮气。

减压脱附过程是通过降低压力使吸附剂达到低压下的最低吸附能力,从而脱附残余的氮气,以准备下一循环。

5.再生过程:吸附剂在其中一时间点上的吸附效果会随着时间的推移而降低。

为了维持长期的持续工作,需要定期进行再生。

再生过程包括两个步骤:减压脱附和吸附剂的再生。

通过减压脱附,将吸附塔中的残余气体除去,然后通过对吸附剂进行加热或抽真空等方式来去除吸附剂上吸附的气体,使其恢复吸附性能。

总结起来,变压吸附制氧的技术原理是通过调整吸附剂床层的压力,利用不同气体分子与吸附剂之间吸附力的差异来实现氧气和氮气的分离。

吸附过程中,氮气被吸附剂吸附,而氧气则解吸出来。

通过增压脱附、气体解吸、减压脱附和再生等步骤,实现对氧气和氮气的交替分离和收集。

变压吸附气体分离

变压吸附气体分离

变压吸附气体分离概述变压吸附(Pressure Swing Adsorption)分离技术最广泛的应用是工业气体的分离提纯。

在分离过程中,气体组份在升压时吸附,降压时解吸,不同组份由于其吸附和解吸特性不同,在压力周期性的变化过程中实现分离,这一过程称之为变压吸附分离过程(简称PSA)。

变压吸附分离过程一般在中等的压力(低于6.0MPa)下进行,操作简单,自动化程度高,设备不需要特殊材料等优点。

原料气中的杂质组份如H2O,NH3,硫化物等工业上常见的有害组份可同时除去,预处理和分离过程同时进行,省去了繁琐的预处理装置,简化流程,操作费用低。

变压吸附(PSA)分离技术主要应用于以下领域:1.变压吸附法(PSA)提纯氢气(H2)2.变压吸附法(PSA)提纯一氧化碳(CO)3.变换气脱除二氧化碳(CO2)4.变压吸附法(PSA)回收二氧化碳(CO2)5.变压吸附法(PSA)提纯一氧化碳(CO2)6.变压吸附法(PSA)空气分离制氧(O2)7.变压吸附法(PSA)空气分离制氮(N2)8.变压吸附法(PSA)回收乙烯(C2H4)9.变压吸附法(PSA)聚丙烯尾气回收丙烯(C3H6)10.变压吸附法(PSA)天然气回收轻烃11.变压吸附法(PSA)回收聚氯乙烯尾气技术特点1.变压吸附(PSA)技术是一种低能耗的气体分离技术。

PSA工艺所要求的压力一般在0.1~2.5MPa,允许压力变化范围较宽,一些有压力的气源,如氨厂弛放气、变换气等,本身的压力可满足变压吸附(PSA)工艺的要求,可省去再次加压的能耗。

对于处理这类气源,PSA制氢装置的消耗仅是照明、仪表用电及仪表空气的消耗,能耗很低;PSA装置压力损失很小,一般不超过0.05MPa。

2.变压吸附(PSA)装置可获得高纯度的产品气,如PSA制氢装置,可得到98.0~99.999%的产品氢气;3.变压吸附(PSA)工艺流程简单,无需复杂的预处理系统,一步或两步可实现多种气体的分离,可处理各种组成复杂的气源,对水、硫化物、氨、烃类等杂质有较强的承受能力,4.变压吸附(PSA)装置的运行由计算机自动控制,装置自动化程度高,操作方便,装置启动后短时间内即可投入正常运行,输出合格产品。

psa变压吸附制氢原理

psa变压吸附制氢原理

psa变压吸附制氢原理变压吸附(Pressure Swing Adsorption, PSA)制氢技术是一种利用吸附剂对气体进行分离的方法,通过适当的压力调节和吸附剂的选择,可以实现将氢气从混合气体中分离出来。

PSA制氢技术已经被广泛应用于工业生产中,包括氢气的制备、精制及补充。

一、PSA制氢原理在PSA制氢过程中,主要有吸附、脱附、减压和再生等四个步骤,下面将详细介绍PSA制氢的工作原理。

1.吸附阶段在吸附阶段,混合气体首先被送入吸附塔中,吸附剂吸附出其中的氢气。

吸附剂通常为有机或无机多孔质材料,如活性炭、分子筛等。

由于氢气具有较高的亲和力,因此会优先被吸附在吸附剂的表面上,而其他气体如氮气、二氧化碳等则较难被吸附。

2.压缩阶段当吸附剂吸附满氢气后,压缩机开始工作,将吸附塔内的压力升高,从而促使未被吸附的气体分子迅速通过吸附剂层,进入下一个吸附塔。

3.脱附阶段在高压下,吸附剂开始释放吸附的氢气。

由于吸附剂的选择和操作条件的不同,吸附剂对不同气体的吸附性能存在差异,使得各种气体在释放时需要不同的时间。

因此,需要设计适当的程序和控制系统来确保吸附剂能够释放出大部分已吸附的氢气。

4.减压阶段当吸附塔内的压力降至一定程度时,需要进行减压,以便将脱附后的吸附剂中残留的氢气全部抽出。

此外,减压还可以促进吸附剂的再生过程。

5.再生阶段在吸附完成后,吸附塔需要进行再生,以恢复吸附剂的吸附性能。

通常采用气流对吸附剂进行再生,将残余的氢气和其他杂质从吸附剂表面排出,使吸附剂恢复到适合再次吸附的状态。

以上四个步骤便构成了PSA制氢的工作过程。

在整个过程中,通过适当的压力和吸附剂的选择,可以实现氢气的高效分离和纯度的提高。

二、PSA制氢的应用PSA制氢技术在工业生产中有着广泛的应用。

以下将列举一些PSA 制氢技术的应用领域:1.氢气制备PSA制氢技术可应用于氢气的工业制备。

在工业上,通常采用甲烷蒸汽重整或石油加氢等方法生产氢气,而这些方法会产生含有氮气、二氧化碳等其他杂质的混合气体。

psa变压吸附制氧原理

psa变压吸附制氧原理

PSA(Pressure Swing Adsorption,变压吸附)制氧是一种常用的气体分离技术,它通过吸附剂对气体的选择性吸附能力实现对氧气的富集。

下面是PSA 制氧的基本原理:
1. 吸附剂选择:通常采用的吸附剂是具有特定孔径和表面化学性质的固体颗粒,如铝基分子筛或硅胶。

这些吸附剂具有对空气中的氮气、水汽等成分有较强的吸附能力,而对氧气有较弱的吸附能力。

2. 吸附-脱附循环:PSA 制氧设备包括多个吸附罐,在吸附罐内,通过增加压力使空气中的氮气、水汽等成分被吸附到吸附剂表面,同时将富含氧气的气流抽出。

当吸附罐达到饱和后,通过减压来减小吸附剂上的压力,从而释放吸附剂上的氮气等成分,再次实现对氧气的富集。

3. 压力摆动:PSA 制氧设备中的吸附罐会进行交替的吸附和脱附操作。

当一个吸附罐处于吸附状态时,其他吸附罐则处于脱附状态,通过压力的交替变化,实现对氧气的连续富集和产氧。

4. 溶解气体的去除:在PSA 制氧过程中,通常还需要设置适当的装置来去除空气中的水汽和二氧化碳等溶解气体,以
确保生产的氧气纯度。

总的来说,PSA 制氧利用吸附剂对气体的选择性吸附特性,通过周期性的压力摆动操作,将空气中的氮气等成分吸附到吸附剂上,从而实现对氧气的富集,最终产生高纯度的氧气。

这种技术在工业生产和医疗领域广泛应用,能够提供可靠的氧气供应。

变压吸附理论学习

变压吸附理论学习
3/27/2019
变压吸附工作基本步骤
对于变压吸附循环过程,有三个基本工作步骤: 1.压力下吸附 吸附床在过程的最高压力下通入被分离的气体混合物,其中 强吸附组分被吸附剂选择性吸收,弱吸附组分从吸附床的另一 端流出。 2.减压解吸 根据被吸附组分的性能,选用前述的降压、抽真空、冲洗和 置换中的几种方法使吸附剂获得再生。一般减压解吸,先是降 压到大气压力,然后再用冲洗、抽真空或置换。 3.升压 吸附剂再生完成后,用弱吸附组分对吸附床进行充压 ,直 到吸附压力为止。接着又在压力下进行吸附。
变压吸附分离气体混合物所采用的常用吸附剂
分离对象 从气体混合物除去水分 天然气净化 空气净化 空气分离制取氧和氮 从氢中除去二氧化碳 从氢中除甲烷、一氧化 碳、氨 从氢中除去烃类 √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ 硅胶 √ √ √ 活性炭 分子筛 √ √ √

合成气净化
从甲烷中除去其它烃 类 从瓦斯气中回收甲烷 从石灰窑气中分离二氧 化碳 从炼钢转炉煤气中分离 一氧化碳
变压吸附学习 PSA
3/27/2019
1 概况:变压吸附(Pressure Swing Adsorption.简称PSA)是一种新型气体吸附分离技 术,它有如下优点: ⑴产品纯度高。⑵一般可在室温和不高的压力下 工作,床层再生时不用加热,节能经济。⑶设备简 单,操作、维护简便。⑷连续循环操作,可完全达 到自动化。 正是因为这样的优点,PSA技术发展到现 在,技术发展迅速并相当成熟。 变压吸附发展史 变压吸附空分制氧始创于20世纪60年代初,并于70年 代实现工业化生产。在此之前,传统的工业空分装置大部 分采用深冷精馏法(简称深冷法) 。
不同的气 体,要选择 合适的吸附 剂。
吸附剂的再生方法

6-2-2psa变压吸附步序

6-2-2psa变压吸附步序

6-2-2psa变压吸附步序
6-2-2PSA(Pressure Swing Adsorption)是一种气体分离技术,常用于分离气体混合物中的氧气和氮气。

下面是其基本的操作步骤:
1. 压缩空气进入预处理部分:将空气通过过滤器去除悬浮颗粒物和水分,以保护吸附剂的性能。

2. 进入变压吸附器:将压缩空气通过变压吸附器(PSA),吸附器内装有特定类型的吸附剂。

吸附剂通常为活性碳或分子筛,能够选择性地吸附氧气。

3. 吸附剂吸附氧气:在变压吸附器中,氧气会被吸附剂捕获,而氮气则通过吸附剂进入下一步。

4. 减压脱附:当压缩空气中的氧气被吸附剂捕获后,降低吸附器的压力,氮气从吸附剂中解吸出来,并排出到环境中。

5. 再生吸附剂:吸附剂不断地在吸附和脱附之间循环使用。

为了再生吸附剂,需要通过另一个吸附器,提供高纯度的氮气来脱附牢牢地吸附在吸附剂上的氧气。

脱附的氧气与环境中的氮气混合后排放。

6. 周期切换:为了保持连续的气流供应,两个吸附器交替操作,一个吸附氧气,另一个则再生吸附剂。

周期时间可根据需要进行调整。

需要注意的是,具体的操作步骤和顺序可能会根据设备和工艺的不同而有所变化。

以上步骤仅为一般的操作流程。

在实际操作中,还需要根据具体情况进行调整和优化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

变压吸附技术是利用不同组分在固体吸附剂上的吸附量、吸附速度、吸附力等方面
的差异,以及吸附量随压力的变化而变化的特性,加压条件下完成吸附过程,减压脱附被吸附的组分,以实现气体
分离或提纯和吸附剂循环使用的目的。

PSA技术于1962年实现工业规模的制氢。

进入70年代,PSA技术
获得了快速发展,工艺越来越完善,成本不断降低,使用范围越来越广泛,成为近几十年来发展最快的
化工分离技术之一。

与其它气体分离技术相比,PSA 技术具有以下优点:
(1)低能耗,PSA 工艺适应的压力范围广,对于有压力的气源可以省去加压的能耗。

PSA 过程是在
常温下操作,省去了加热或冷却的能耗。

(2)产品纯度高,并且可以根据产品需要或工艺条件的变化,在较大范围内灵活调节产品的纯度(3)工艺流程简单,可实现多种气体的分离,对硫化物、水、烃类、氨等杂质有较强的承受能力,
无需预处理。

(4)装置由计算机控制,操作方便,装置可以实现全自动化操作。

(5)装置操作弹性大,调节能力强,只要稍加调节就可以改变生产负荷,并且在不同负荷下生产时
产品的质量可以保持不变,仅回收率会稍有变化。

装置对原料气中杂质的含量和压力等条件的改变也有很强的适应能力,且调节范围很宽。

(6)投资少,操作费用低,维护维修简单。

(7)吸附剂寿命长。

一般可使用十年以上。

(8)装置可靠性高。

PSA 装置一般只有程序控制阀是运动部件,而目前国内外的程序控制阀的使用
寿命都很长,故障率极低,所以装置的可靠性很高。

如今计算机专家开发的诊断系统,具有故障自动诊
断、吸附塔自动切换等功能,进一步提高了装置的可靠性。

(9)环境效益好。

PSA 装置的运行不会造成新的环境污染,几乎不产生“三废”。

变压吸附技术以其独特的优势成为分离提浓甲烷的研究热点,但是由于缺乏令人满意的吸附剂,
而使该技术在甲烷提纯中面临困难。

因此,选择合适的吸附剂是变压吸附技术的关键。

相关文档
最新文档