三年级奥数和倍、差倍、和差问题

合集下载

【秒懂奥数】3年级和倍,差倍,和差问题详解

【秒懂奥数】3年级和倍,差倍,和差问题详解

【秒懂奥数】3年级和倍,差倍,和差问题详解挑战级数:★★1.小明和小亮玩“石头、剪刀、布”的游戏.两人用同样多的石子做记录,输一次,就给对方一颗石子.他们做了许多次游戏,每次都决出胜负,其中小明胜了3次,小亮增加了9颗石子.那么他们共做了多少次游戏?[分析与解]小亮增加了9颗石子,则小亮比小明多胜9次,小明胜了3次,那么小亮胜了3+9=12次,又因为每次都决出胜负,所以共做了3+12=15次游戏.挑战级数:★★2.用杯子往一个空瓶里倒水,如果倒进6杯水,连瓶共重680克,如果倒进9杯水,连瓶共重920克,求空瓶的重量?[分析与解]第二次多倒入3杯水,瓶子连同水的重量增加了920-680=240克,那么1杯水重240÷3=80克,则6杯水重80×6=480克,所以瓶子重680-480=200克.挑战级数:★★3.某学生到工厂搞勤工俭学,按合同规定,干满30天,工厂将付给他一套工作服和70元钱.但他工作了20天,由于学校另有安排,他便中止了合同,工厂只付给他一套工作服和20元钱.那么,这套工作服值多少元?[分析与解]这名学生少工作10天,工资少了70-20=50元,那么30天的工资应为50×(30÷10)=150元,而实际只是给他一套工作服和70元钱,所以工作服值150-70=80元.挑战级数:★★★4.甲、乙、丙3人同乘长途汽车,3人所带行李都超过免费重量,要另付行李费.甲付2角,乙付4角,丙付6角.3人行李共重150千克,如果一个人带这些行李超过的重量就要付行李费2元4角,问每人可免费带行李多少千克?[分析与解]3人分开携带自己的行李,共花了2+4+6=12角钱,如果一个人携带这些行李则多花24-12=12角钱,这是因为一人携带比三人携带少了2倍的免费行李重量,所以免费的行李重量相当与12÷2=6角钱.把甲超出的行李重量看成1份,那么免费重量为3份,乙超出的行李重量为2份,丙超出的行李重量为3份.有三人行李共1+2+3+3×3=15份,为150千克,所以1份为150÷15=10千克,那么每人可带的免费行李重10×3=30千克.挑战级数:★★5.两组学生参加义务劳动,甲组学生人数是乙组的3倍,而乙组的学生人数比甲组的3倍少40人,求参加义务劳动的学生共有多少人?[分析与解]甲组人数是3倍乙组人数,即3倍乙组人数9倍甲组的人数少40×3=120人,那么8倍甲组的人数等于120人,所以甲组有120÷8=15人,则乙组有15÷3=5人,那么参加义务劳动的学生共有15+5=20人.挑战级数:★★6.某工厂接到制造6000个A种零件和2000个B种零件的订货单.该厂共有210名工人,每人制造5个A种零件和制造3个B种零件所用时间相等.现把全厂工人分成甲、乙两组分别制造A,B两种零件,并同时投入生产,那么当甲、乙两组各分配多少人时,完成订货单所用时间最少?[分析与解]如果生产同样多的A、B两种零件,生产A种零件的人数为3份,生产B 种零件的人数为5份.现在A种零件是B种零件的3倍,所以生产A种零件的人数为9份,生产B 种零件的人数为5份.共有210名工人,那么生产A组零件的甲组应为210÷(9+5)×9=135人,则生产B组零件的乙组应为210-135=75人.此时A、B零件按订单同时完成,所用时间最少.挑战级数:★★7.仓库存有一批钢材,由两个汽车队负责运往工地.已知甲队单独运要20天,乙队每天可运20吨.现在由甲、乙两队同时运输,干了6天之后,甲队汽车坏了一辆,每天少运4吨,结果又运6天才全部运完.那么这批钢材共有多少吨?[分析与解]我们可以把甲队坏的车换到乙队,让甲队的效率不变,则乙队每天少运4吨,即16吨.甲队工作了6+6=12天,剩下的工作都是由乙队来完成的,那么乙队完成的工作相当与甲队20-12=8天完成的工作.乙队完成了6×20+6×16=216吨,则甲队正常的一天运216÷8=27吨,于是这批钢材共有27×20=540吨.挑战级数:★★8.李师傅某天生产了一批零件,他把它们分成了甲、乙两堆.如果从甲堆零件中拿15个放到乙堆中,则两堆零件的个数相等;如果从乙堆零件中拿15个放到甲堆中,则甲堆零件的个数是乙堆的3倍.那么,甲堆原来有零件多少个?李师傅这天共生产零件多少个?[分析与解]显然,甲堆原有的零件比乙堆多30个,而甲队原有的零件又是乙队零件的3倍少15×(3+1)=60个,所以2倍乙堆零件减去60为30.即乙堆原有零件为(60+30)÷2=45个,那么甲堆原有零件45+30=75个,李师傅这天共生产零件45+75=120个.挑战级数:★★★9.箱子里有红、白两种玻璃球,红球数是白球数的3倍多2只.每次从箱里取出7只白球、15只红球,如果经过若干次以后,箱子里剩下3只白球、53只红球,那么,箱子里原有红球数比白球数多多少只?[分析与解]设共取球x次,则取走红球15x,白球5x只.有(15x+53)=3(7x+3)+2,解得x=7.所以原有红球15x+53=158,白球7x+3=52.所以红球比白球多106只.解法二:①剩下的红球数53只减去2只是51只,它恰好是3的倍数,并且有:51-3×3=42只,这说明剩下的红球数减2后是剩下的白球数的3倍多42只;②如果每次取出的红球数都是白球数的3倍,那么每次应该取出3×7=21只;③实际每次取出的红球数比假设的少:21-15=6只;④每次少取6只,总共比假设少取42只,那么取了42÷6=7次;⑤箱子里原有红球比白球多:7×(15-7)+(53-3)=106只.挑战级数:★★★10.有红、白球若干个.若每次拿出1个红球和1个白球,则拿到没有红球时,还剩下50个白球;若每次拿走1个红球和3个白球,则拿到没有白球时,红球还剩下50个.那么这堆红球、白球共有多少个?[分析与解]若每次拿出1个红球和1个白球,则没有红球时,还剩下50个白球即说明白球比红球多50个;若每次拿出1个红球和3个白球,则没有白球时,还剩下50个红球,那么红球还可以拿50次,则白球比红球的3倍少3×50=150个.则红球=(150+50)÷(3-1)=100个,白球=100+50=100×3-150=150个.这堆红球、白球共有100+150=250个.挑战级数:★★★11.某人以分期付款的方式买一台电视机.买时第一个月付款750元,以后每月付150元;或前一半时间付300元,后一半时间付100元.两种付款方式的付款总数及时间都相同.这台电视机的价格是多少元?[分析与解]显然有第二种付款方式相当于每月付(300+100)÷2=200元,则等同变化后第一种付款方式较第二种付款方式的第一个月多支出了750-200=550元.但以后,每月少支出200-150=50元,所以第一种付款方式中付了550÷50=11个月的150元.那么付款的总时间为11+1=12个月,所以这台电视机的价格为200×12=2400元.解法二:设有x个月,那么第一种付钱方式所付的总钱数:750+150×(x-1)元;第二种付钱方式所付的总钱数:(300+100)×x÷2.由于电视机价格不变.所以有:750+150×(x-1)=(300+100)×x÷2解得:600+150x=200x,x=12,电视机的价格为:600+150×12=2400元.挑战级数:★★12.甲班和乙班共83人,乙班和丙班共86人,丙班和丁班共88人.问甲班和丁班共多少人?[分析与解]有甲、乙、丙、丁4个班的人数之和为83+88=171人,除去乙、丙两班,剩下的即为甲、丁两班,所以甲、丁两班有171-86=85人.挑战级数:★★★13.小木、小林、小森3人去看电影.如果用小木带的钱去买3张电影票,还差5角5分;如果用小林带的钱去买3张电影票,还差6角9分;如果用3个人带去的钱去买3张电影票,就多3角.已知小森带了3角7分,那么买一张电影票要用多少钱?[分析与解]如果用小木的钱买3张票,那么差55分;如果用小林带的钱买3张票,那么差69分;如果用三个人带的钱买3张票,那么多30;小森带了37分,所以小木和小林带的钱买6张票差为55+69=114分,而买3张还差37-30=7分.所以一张电影票的价钱为(114-7)÷(6-3)=117÷3=39分.挑战级数:★★14.有3个箱子,如果两箱两箱地称它们的重量,分别是83千克、85千克和86千克.问:其中最轻的箱子重多少千克?[分析与解]这3个箱子的总重量的2倍为83+85+86=254千克,则3个箱子共重254÷2=127千克.当其中的两个箱子的重量和最大时,剩下的第三个箱子最轻,所以最轻的箱子重127-86=41千克.挑战级数:★★★15.三个连续的自然数,后面两个数的积与前面两个数的积之差是114,那么这三个数中最小的数是多少?[分析与解]如果设中间的那个数为1份,有后面两个数的积与前面两个数的积相差2份,为114.所以,中间那个数,即1份为114÷2=57,所以最小的那个数为57-1=56。

三年级奥数二班 差倍 和倍 和差问题

三年级奥数二班 差倍 和倍 和差问题

第5讲和倍问题和倍应用题小学数学中有各种各样的应用题。

根据它们的结构形式和数量关系,形成了一些用特定方法解答的典型应用题。

比如,和倍应用题、差倍应用题、和差应用题等等。

和倍应用题的基本“数学格式”是:已知大、小二数的“和”,又知大数是小数的几倍,求大、小二数各是多少。

上面的问题中有“和”,有“倍数”,所以叫做和倍应用题。

为了清楚地表示和倍问题中大、小二数的数量关系,画出线段图如下:从线段图知,“和”是小数的(倍数+1)倍,所以,小数=和÷(倍数+1)。

上式称为和倍公式。

由此得到大数=和-小数,或大数=小数×倍数。

例如,大、小二数的和是265,大数是小数的4倍,则小数=265÷(4+1)=53,大数=265-53=212或53×4=212。

【典型例题】例1甲、乙两仓库共存粮264吨,甲仓库存粮是乙仓库存粮的10倍。

甲、乙两仓库各存粮多少吨?【巩固练习】1、甲班和乙班共有图书160本.甲班的图书本数是乙班的3倍,甲班和乙班各有图书多少本?例2甲、乙两辆汽车在相距360千米的两地同时出发,相向而行,2时后两车相遇。

已知甲车的速度是乙车速度的2倍。

甲、乙两辆汽车每小时各行多少千米?例3甲队有45人,乙队有75人。

甲队要调入乙队多少人,乙队人数才是甲队人数的3倍?【巩固练习】1、甲班有图书120本,乙班有图书30本,甲班给乙班多少本,甲班的图书是乙班图书的2倍?例4妹妹有书24本,哥哥有书53本。

要使哥哥的书是妹妹的书的6倍,妹妹应给哥哥多少本书?例5大白兔和小灰兔共采摘了蘑菇160个。

后来大白兔把它的蘑菇给了其它白兔20个,而小灰兔自己又采了10个。

这时,大白兔的蘑菇是小灰兔的5倍。

问:原来大白兔和小灰兔各采了多少个蘑菇?例6光明小学有学生760人,其中男生比女生的3倍少40人,男、女生各有多少人?例7果园里有桃树、梨树、苹果树共552棵.桃树比梨树的2倍多12棵,苹果树比梨树少20棵,求桃树、梨树和苹果树各有多少棵?1.小敏与爸爸的年龄之和是64岁,爸爸的年龄是小敏的3倍。

和差和倍差倍问题

和差和倍差倍问题

和差问题、和倍问题、差倍问题一、和差问题:已知两个数的和与差,求出这两个数各是多少的应用题,叫做和差应用题。

基本数量关系是:(和+差)÷2=大数(和-差)÷2=小数解答和差应用题的关键是选择合适的数作为标准,设法把若干个不相等的数变为相等的数,某些复杂的应用题没有直接告诉我们两个数的和与差,可以通过转化求它们的和与差,再按照和差问题的解法来解答。

例1:有甲乙两堆煤,共重52吨,已知甲比乙多4吨,两堆煤各重多少吨?例2:两只笼子里共有15只鸡,从甲笼提出3只后,甲笼比乙笼还多2只,两只笼子原来各有多少只鸡?练习:1、两堆石子共有800吨,第一堆比第二堆多200吨,两堆石子各有多少吨?2、黄茜和胡敏两人今年的年龄和是23岁,4年后,黄茜比胡敏大3岁,问黄茜和胡敏今年各是多少岁?3、把长84厘米的铁丝围成一个使长比宽多6厘米的长方形。

长和宽各是多少厘米?二、和倍问题已知两个数的和,又知两个数的倍数关系,求这两个数分别是多少,这类问题称为和倍问题。

解决和倍问题的基本方法:将小数看成1份,大数是小数的n倍,大数就是n份,两个数一共是n+1份。

基本数量关系:小数=和÷(n+1)大数=小数×倍数或和-小数=大数例1 :甲班和乙班共有图书160本,甲班的图书是乙班的3倍,甲乙两班各有图书多少本?例2:果园里有梨树和桃树共165棵,桃树棵数比梨树棵数的2倍少6棵,梨树和桃树各多少棵?练习:1、果园里一共有桃树和杏树340棵,其中桃树比杏树的3倍多20棵,两种树各种了多少棵?2、甲仓库存粮104吨,乙仓库存粮140吨,要使仓库的存粮是乙仓库的3倍,那么必须从乙仓库运出多少吨放入甲仓库?三、差倍问题已知两个数的差,并且知道两个数倍数关系,求这两个数,这样的问题称为差倍问题。

解决差倍问题的基本方法:设小是1份,如果大数是小数的n倍,根据数量关系知道大数是n份,又知道大数与小数的差,即知道n-1份是几,就可以求出1份是多少。

三年级奥数《差、和倍问题》

三年级奥数《差、和倍问题》

和差倍应用题和差倍问题是由和差问题、和倍问题、差倍问题三类问题组成的。

和倍问题是已知大小两个数的和与它们的倍数关系,求大小两个数的应用题,一般可应用公式:数量和÷对应的倍数和=“1”倍量;差倍问题就是已知大小两个数的差和它们的倍数关系,求大小两个数的应用题,一般可应用公式:数量差÷对应的倍数差=“1”倍量;和差问题是已知大小两个数的和与两个数的差,求大小两个数的应用题一般可应用公式:大数=(数量和+数量差)÷2,小数=(数量和-数量差)÷2。

为了帮助我们理解题意,弄清题目中两种量彼此间的关系,常采用画线段图的方法以线段的相对长度来表示两种量间的关系,以便于找到解题的途径。

差倍练习例题1小明到市场去买水果,他买的苹果个数是梨的3倍,苹果比梨多18个。

小明买苹果和梨各多少个?思路导航:将梨的个数看作1倍数,则苹果的个数是这样的3倍。

如下图从线段图上可以看出,苹果的个数比梨多了3-1=2倍,梨的2倍是18个,所以梨有18÷2=9个,苹果有:9×3=27个。

练习一1,学校合唱组,女同学人数是男同学的4倍,女同学比男同学多42人。

合唱组有男、女同学各多少人?2,一件皮衣价钱是一件羽绒服价钱的5倍,又已知一件皮衣比一件羽绒服贵960元。

皮衣与羽绒服各多少元?例题2被除数比除数大252,商是7,被除数、除数各是多少?思路导航:根据“商是7”可知,被除数是除数的7倍,把除数看作1倍数,被除数就是这样的7份,比除数多6份。

所以除数是:252÷(7-1)=42被除数是:42+252=2941,被除数比除数大168,商是22,被除数、除数各是多少?2,除数比被除数小212,商是5,被除数、除数各是多少?3,被除数比商大144,除数是7,被除数、商各是多少?例题3水果店有两筐橘子,第一筐橘子的重量是第二筐的5倍,如果从第一筐中取出300个放入第二筐,那么第一筐橘子还比第二筐多60个。

三年级奥数和倍问题差倍问题和差问题

三年级奥数和倍问题差倍问题和差问题

和倍问题两数和÷(倍数+1)=大数例题1学校将360本图书分给二、三两个年级,已知三年级所分得的本数是二年级的2倍,问二、三两个年级各分得多少本图书?练习一1,小红和小明共有压岁钱800元,小红的钱数是小明的3倍。

小红和小明各有压岁钱多少元?2,学校将360本图书分给二、三年级,已知三年级所得本数比二年级的2倍还多60本。

二、三年级各得图书多少本?例题2小宁有圆珠笔芯30枝,小青有圆珠笔芯15枝,问小青给小宁多少枝后,小宁的圆珠笔芯枝数是小青的8倍?练习二1,红红有邮票80张,佳佳有邮票60张,要使红红的邮票张数是佳佳的4倍,那么佳佳必须给红红多少张邮票?2,甲水池有水69吨,乙水池有水36吨,如果甲水池中的水以每分钟2吨的速度流入乙水池,那么多少分钟后,乙水池的水是甲水池的2倍?例题3 被除数与除数的和为320,商是7,被除数和除数各是多少?练习三1,被除数和除数和为120,商是7,被除数和除数各是多少?2,被除数、除数、商的和为79,商是4,被除数、除数各是多少?例题4两数相除商为17余6,被除数、除数、商和余数的和是479。

被除数和除数分别为多少?练习四1,两个整数相除商14余2,被除数、除数、商和余数的和是243,被除数比除数大多少?2,在一个减法算式里,被减数、减数与差的和等于240,而减数是差的5倍。

差是多少?例题5 两个数之和是792,其中一个数的最后一位数数字是0,如果把0去掉,就与另一个数相同。

这两个数分别是多少?练习五1,两个数之和是253,其中一个数的最后一位数字是0,如果把0去掉,就与另一个数相同。

这两个数分别是多少?2,师徒两人加工一批零件共693个,师傅加工零件个数的末位数字是0,如果去掉这个0,加工的个数就与徒弟一样多。

师徒二人分别加工零件多少个?差倍问题两数差÷(倍数-1)=较小的数(1倍数)较小的数×倍数=较大的数(几倍数)例题1 小明到市场去买水果,他买的苹果个数是梨的3倍,苹果比梨多18个。

三年级奥数:和倍问题,和差问题,差倍问题,周期问题,时间问题

三年级奥数:和倍问题,和差问题,差倍问题,周期问题,时间问题

三年级奥数:和倍问题,和差问题,差倍问题,周期问题,时间问题和倍问题,就是已知几个数的和与这几个数之间的倍数关系,求这几个数各是多少的应用题。

解和倍问题的关键是要找准“和”与“倍”,并能借助线段图来解决问题。

解和倍问题的一般思路是:(1)读题,找出最小的一个数,把它看成1倍量;(2)画图,用线段图表示出数与数之间的倍数关系;(3)比较,观察图形准确判断“和”里面一共是几倍或几倍多几(几倍少几),即判断“和”相当于几个1倍量,并求出1倍量;(4)代入,根据1倍量与几个数之间的倍数关系求出其他的数。

已知两个数的倍数关系,把较小的数看成1份,较大的数就是较小数的几倍,较大的数就是几份。

下面我们来看例题1。

例题1解决这类和倍问题时,首先根据倍数关系画出线段图,以较小量为一段,先画出较小的的量,然后找到和相当于多少份,求出一份数。

一份的数知道了,其他的问题也就好解决了。

例题2我们知道,平均数(每份数)=总数÷总份数。

师傅和徒弟的总份数根据题意可以看成是和徒弟加工个数一样的4份。

当两个量的和与倍数关系不对应时,先求出与倍数关系对应的和,再画线段图求出两个量。

例题3求三个量的和倍问题时,先比较三个数的大小,再找出1倍量,画出线段图,然后通过“剪尾巴”或“填坑”找到三个数的和相当于多少份,求出1份数。

通过以上的例子,详细大家已经对和倍问题有了一定的了解,下面我就给大家出一些相关的练习1、甲乙两人共有150张画片,甲的张数比乙的2倍多30张。

两人各有多少张画片?2、四、五年级共有165人,四年级学生比五年级学生人数的2倍少6人。

四五年级各有学生多少人?3、小丽有红、黄、白三种颜色的珠子54粒,红珠子是黄珠子的2倍,白珠子是黄珠子的3倍。

三种颜色的珠子各有多少粒?和差问题与和倍问题、差倍问题一起统称“和差倍问题”,是小学阶段尤其是中年级常见的典型应用题。

和差问题的特点是已知几个数的和与这几个数的差,求这几个数各是多少的应用题。

奥数问题(和倍、差倍、和差问题)

奥数问题(和倍、差倍、和差问题)

除法应用姓名:一、和倍问题。

小的数量=和÷(倍数+1)大的数量=小的数量×倍数或大的数量=和—小的数量1、小明家养鸡和兔共有36只,鸡的只数是兔的3倍,小明家的鸡和兔各有多少只?2、学校购进篮球和足球共有56个,其中篮球的个数是足球的3倍,学校购进的篮球和足球各有多少个?3、一支钢笔和一支铅笔共21元,已知钢笔的单价是铅笔的6倍,钢笔和铅笔每支各需要多少元?4、甲、乙两个仓库共有粮食60吨,甲仓库的粮食是乙仓库的4倍。

甲、乙两个仓库各存粮多少吨?5、在一个除法算式中,被除数、除数和商的和是185,若商是5,求被除数和除数各是多少?6、有大、小两个数,它们的和是56,它们的商是7。

则它们的积是多少?7、弟弟有课外书20本,哥哥有25本。

哥哥送给弟弟多少本后,弟弟的书正好是哥哥的2倍?8、有两筐苹果,第一筐有16千克,第二筐有24千克,从第一筐中拿多少千克到第二筐中,第二筐的苹果就会是第一筐的3倍?8、小明有36元钱,小亮有24元钱,小明给小亮多少元后,小亮的钱就是小明的3倍?9、一车间有45名工人,二车间有75名工人,一车间调入二车间多少人后,二车间的人数才是一车间的3倍?10、棋盘上有白棋与黑棋两种棋子,白棋67枚,黑棋有53枚。

从白棋中拿多少枚到黑棋,就能使黑棋是白棋的2倍?例:春风小学共有学生760人,男生比女生的3倍多40人,春风小学的男、女生各有多少人?由上面线段图可知:女生:(760—40)÷(3+1)=720÷4男生:180×3+40=580(人)=180(人)或:760-180=580(人)答:春风小学有男生580人,女生180人。

1、两筐梨共重76千克,其中第一筐比第二筐的2倍少14千克,那么这两筐梨各有多少千克?2、小明的叔叔和小明的年龄之和是38岁,叔叔的年龄是小明的3倍多2岁,叔叔和小明各多少岁?3、果园里有苹果树与桃树一共340棵,桃树的棵数是苹果树的3倍多20棵,果园里这两种树各有多少棵?4、商店里有红花和黄花共123朵,当红花卖出7朵后,红花的朵数就正好是黄花的3倍,那么商店里原有红花与黄花各多少朵?5、学校原有足球和排球共58个,王老师又买来5个足球,这时的足球正好是排球的6倍,求学校现有足球和排球各多少个。

和差,和倍,差倍问题公式

和差,和倍,差倍问题公式

和差,和倍,差倍问题公式
和差问题、和倍问题和差倍问题是指在代数运算中,针对两个或
多个数的和、差、乘积之间的关系进行求解的问题。

1.和差问题公式:
(1)两个数的和:设两个数分别为a和b,那么它们的和为a+b。

(2)两个数的差:设两个数分别为a和b,那么它们的差为a-b。

2.和倍问题公式:
(1)一个数的n倍:将某个数a乘以n,即为a的n倍。

(2)两个数的和的n倍:设两个数分别为a和b,它们的和为a+b,那么它们的和的n倍为n(a+b)。

3.差倍问题公式:
(1)两个数的差的n倍:设两个数分别为a和b,它们的差为a-b,那么它们的差的n倍为n(a-b)。

拓展:
除了上述提到的和差问题、和倍问题和差倍问题,还有其他类似的代数问题,如积问题、商问题等。

这些问题涉及到数之间的乘积和除法运算,可以利用相应的公式来求解。

例如:
1.积问题公式:
(1)两个数的乘积:设两个数分别为a和b,它们的乘积为a*b。

2.商问题公式:
(1)两个数的商:设两个数分别为a和b,它们的商为a/b。

需要注意的是,除数b不能为零。

这些公式和问题常用于求解代数方程和解决实际问题,通过应用适当的公式,我们可以准确地计算出数之间的关系。

三年级奥数和倍、差倍、和差问题

三年级奥数和倍、差倍、和差问题

和倍问题【例题1】学校有科技书和故事书共480本,科技书的本数是故事书的3倍。

两种书各有多少本?【思路导航】为了便于理解题意,我们画图来分析:由图可知,如果把故事书的本数看作一份,那么科技书的本数就是这样的3份,两种书的总本数就是这样的1+3=4份。

把480本书平均分成4份,1份是故事书的本数,3份是科技书的本数。

480÷(1+3)=120(本)120×3=360(本).练习1:1.用锡和铝制成的合金是720千克,其中铝的重量是锡的5倍。

铝和锡各用了多少千克?2.甲、乙两数的和是112.甲数除以乙数的商是6,甲、乙两数各是多少?3.一块长方形黑板的周长是96分米,长是宽的3倍。

这块长方形黑板的长和宽各是多少分米?【例题2】果园里有梨树、桃树和苹果树共1200棵,其中梨树的棵数是苹果树的3倍,桃树的棵数是苹果树的4倍。

求梨树、桃树和苹果树各有多少棵?【思路导航】如果把苹果树的棵数看作1份,三种树的总棵数是这样的1+3+4=8份。

所以,苹果树有1200÷8=150(棵),梨树有150×3=450(棵),桃树有150×4=600(棵).练习2:1.大伯养鸡、鸭、鹅共960只,养鸡的只数是鹅的3倍,养鸭的只数是鹅的4倍。

鸡、鸭、鹅各养了多少只?2.甲、乙、丙三数之和是360,已知甲是乙的3倍,丙是乙的2倍。

求甲、乙、丙各是多少。

3.商店有铅笔、钢笔、圆珠笔共560支,圆珠笔的支数是钢笔的3倍,铅笔的支数与圆珠笔的支数同样多。

铅笔、钢笔和圆珠笔各有多少支?【例题3】有三个书橱共放了330本书,第二个书橱里的书是第一个的2倍,第三个书橱里的书是第二个的4倍。

每个书橱里各放了多少本书?【思路导航】把第一个书橱里的本数看作1份,那么第二个书橱里的本数是这样的2份,第三个就是这样的2×4=8份,三个书橱里的总本数就是这样的1+2+8=11份。

所以,第一个书橱里放了330÷11=30(本),第二个书橱里放了30×2=60(本),第三个书橱里放了60×4=240(本)。

三年级奥数和倍、差倍、和差问题

三年级奥数和倍、差倍、和差问题

和倍問題【例題1】學校有科技書和故事書共480本,科技書の本數是故事書の3倍。

兩種書各有多少本?【思路導航】為了便於理解題意,我們畫圖來分析:由圖可知,如果把故事書の本數看作一份,那麼科技書の本數就是這樣の3份,兩種書の總本數就是這樣の1+3=4份。

把480本書平均分成4份,1份是故事書の本數,3份是科技書の本數。

480÷(1+3)=120(本) 120×3=360(本).練習1:1.用錫和鋁製成の合金是720千克,其中鋁の重量是錫の5倍。

鋁和錫各用了多少千克?2.甲、乙兩數の和是112.甲數除以乙數の商是6,甲、乙兩數各是多少?3.一塊長方形黑板の周長是96分米,長是寬の3倍。

這塊長方形黑板の長和寬各是多少分米?【例題2】果園裏有梨樹、桃樹和蘋果樹共1200棵,其中梨樹の棵數是蘋果樹の3倍,桃樹の棵數是蘋果樹の4倍。

求梨樹、桃樹和蘋果樹各有多少棵?【思路導航】如果把蘋果樹の棵數看作1份,三種樹の總棵數是這樣の1+3+4=8份。

所以,蘋果樹有1200÷8=150(棵),梨樹有150×3=450(棵),桃樹有150×4=600(棵).練習2:1.李大伯養雞、鴨、鵝共960只,養雞の只數是鵝の3倍,養鴨の只數是鵝の4倍。

雞、鴨、鵝各養了多少只?2.甲、乙、丙三數之和是360,已知甲是乙の3倍,丙是乙の2倍。

求甲、乙、丙各是多少。

3.商店有鉛筆、鋼筆、圓珠筆共560支,圓珠筆の支數是鋼筆の3倍,鉛筆の支數與圓珠筆の支數同樣多。

鉛筆、鋼筆和圓珠筆各有多少支?【例題3】有三個書櫥共放了330本書,第二個書櫥裏の書是第一個の2倍,第三個書櫥裏の書是第二個の4倍。

每個書櫥裏各放了多少本書?【思路導航】把第一個書櫥裏の本數看作1份,那麼第二個書櫥裏の本數是這樣の2份,第三個就是這樣の2×4=8份,三個書櫥裏の總本數就是這樣の1+2+8=11份。

所以,第一個書櫥裏放了330÷11=30(本),第二個書櫥裏放了30×2=60(本),第三個書櫥裏放了60×4=240(本)。

(完整)小学数学三年级和差、和倍、差倍问题

(完整)小学数学三年级和差、和倍、差倍问题

(完整)小学数学三年级和差、和倍、差倍问题---------------------------------------和差问题解答方法是:(和+差)÷2=大数(和-差)÷2=小数1.果园里有桃树和梨树共150棵,桃树比梨树多20棵,两种果树各有多少棵?2.甲、乙两桶油共重30千克,如果把甲桶中6千克油倒入乙桶,那么两桶油重量相等,问甲、乙两桶原有多少油?3.用锡和铝制成500千克的合金,铝的重量比锡多100千克,锡和铝各是多少千克?4.某工厂去年与今年的平均产值为96万元,今年比去年多10万元,今年与去年的产值各是多少万元?5.甲、乙两个学校共有学生1245人,如果从甲校调20人去乙校后,甲校比乙校还多5人,两校原有学生各多少人?6.甲、乙两个工程队共有1980人,甲队为了支援乙队,抽出285人加入乙队,这时乙队人数还比甲队少24人,求甲、乙两队原有工人多少人?7. 两筐水果共重150千克,第一筐比第二筐多8千克,两筐水果各多少千克?8.今年小强7岁,爸爸35岁,当两人年龄和是58岁时,两人年龄各多少岁?9.小明期末考试时语文和数学的平均分数是94分,数学比语文多8分,问语文和数学各得了几分?10.甲乙两校共有学生864人,为了照顾学生就近入学,从甲校调入乙校32名同学,这样甲校学生还比乙校多48人,问甲、乙两校原来各有学生多少人?11.姐妹二人将自己平时积蓄的零用钱共450元存入银行。

已知姐姐存款比妹妹多50元,姐妹二人各存款多少元?两数和÷(倍数+1)=小数(1倍数)小数×倍数=大数(几倍数)两数和—小数=大数1、学校将360本书分给二、三两个年级,已知三年级所分得的本数是二年级的2倍,问二、三两年级各分得多少本图书?2、小红和小明共有压岁钱800元,小红的钱数是小明的3倍,小红和小明分别有压岁钱多少元?3、学校将360本图书分给二、三年级,已知三年级所得本数比二年级的2倍还多60本,二、三年级各得图书多少本?4、甲桶有油25千克,乙桶有油17千克,乙桶倒入多少千克油给甲桶后,甲桶油是乙桶的5倍?5、小宁有圆珠笔芯30枝,小青有圆珠笔芯15枝,问小青给多少枝小宁后,小宁的圆珠笔芯枝数是小青的8倍?6、红红有邮票80张,佳佳有邮票60张,要使红红的邮票张数是佳佳的4倍,那么佳佳必须给红红多少张邮票?7、甲水池有水69吨,乙水池有水36吨,如果甲水池中的水以每分钟2吨的速度流入乙水池,那么多少分钟后,乙水池的水是甲水池的2倍?8、甲书架有图书18本,乙书架有图书8本,班级图书管理员又买来图书16本,怎么分配才能使甲书架图书的本数是乙书架的2倍?9、被除数与除数的和为320,商是7,被除数和除数各是几?10、被除数和除数的和为120,商是7,被除数和除数各是几?11、被除数、除数、商的和为79,商是4,被除数、除数各是几?12、两个整数相除商是21,余数为1,已知被除数、除数、商、余数的和一共是441,被除数、除数各是多少?13、与徒弟一样多。

奥数中的和差问题

奥数中的和差问题

和差问题、和倍问题、差倍问题一、和差问题:已知两个数的和与差,求出这两个数各是多少的应用题,叫做和差应用题。

基本数量关系是:(和+差)÷2=大数(和-差)÷2=小数解答和差应用题的关键是选择合适的数作为标准,设法把若干个不相等的数变为相等的数,某些复杂的应用题没有直接告诉我们两个数的和与差,可以通过转化求它们的和与差,再按照和差问题的解法来解答。

例1:有甲乙两堆煤,共重52吨,已知甲比乙多4吨,两堆煤各重多少吨?分析:根据公式,我们要找出两个数的和与差,就能解决问题。

由题意:堆煤共重52吨知:两数和是52;甲比乙多4吨知:两数差是4。

甲的煤多,甲是大数,乙是小数。

故解法如下:甲:(52+4)÷2=28(吨)乙:28-4=24(吨)例2:两只笼子里共有15只鸡,从甲笼提出3只后,甲笼比乙笼还多2只,两只笼子原来各有多少只鸡?分析:从题意知:甲比乙多5只,所以,两数和是15,两数差是5.甲是大数。

甲:(15+5)÷2=10(只)乙: 15-10=5(只)练习:1、两堆石子共有800吨,第一堆比第二堆多200吨,两堆石子各有多少吨?2、黄茜和胡敏两人今年的年龄是23岁,4年后,黄茜比胡敏大3岁,问黄茜和胡敏今年各是多少岁?3、把长84厘米的铁丝围成一个使长比宽多6厘米的长方形。

长和宽各是多少厘米?二、和倍问题已知两个数的和,又知两个数的倍数关系,求这两个数分别是多少,这类问题称为和倍问题。

解决和倍问题的基本方法:将小数看成1份,大数是小数的n倍,大数就是n 份,两个数一共是n+1份。

基本数量关系:小数=和÷(n+1)大数=小数×倍数或和-小数=大数例1 :甲班和乙班共有图书160本,甲班的图书是乙班的3倍,甲乙两班各有图书多少本?分析:从题目中知,乙班的图书数较少,故乙是小数,占1份,甲占(3+1)份。

乙:160÷(3+1)=40(本)甲:160-40=120(本)例2:果园里有梨树和桃树共165棵,桃树棵数比梨树棵数的2倍少6棵,梨树和桃树各多少棵?分析:由题意,桃树增加6棵,桃树正好是梨树的2倍,这时总数就是:165+6=171,这样就转化成标准和倍问题,将梨树看成1份,一共是3份。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

和倍问题【例题1】学校有科技书和故事书共480本,科技书的本数是故事书的3倍。

两种书各有多少本?【思路导航】为了便于理解题意,我们画图来分析:由图可知,如果把故事书的本数看作一份,那么科技书的本数就是这样的3份,两种书的总本数就是这样的1+3=4份。

把480本书平均分成4份,1份是故事书的本数,3份是科技书的本数。

480÷(1+3)=120(本) 120×3=360(本).练习1:1.用锡和铝制成的合金是720千克,其中铝的重量是锡的5倍。

铝和锡各用了多少千克?2.甲、乙两数的和是112.甲数除以乙数的商是6,甲、乙两数各是多少?3.一块长方形黑板的周长是96分米,长是宽的3倍。

这块长方形黑板的长和宽各是多少分米?【例题2】果园里有梨树、桃树和苹果树共1200棵,其中梨树的棵数是苹果树的3倍,桃树的棵数是苹果树的4倍。

求梨树、桃树和苹果树各有多少棵?【思路导航】如果把苹果树的棵数看作1份,三种树的总棵数是这样的1+3+4=8份。

所以,苹果树有1200÷8=150(棵),梨树有150×3=450(棵),桃树有150×4=600(棵).练习2:1.李大伯养鸡、鸭、鹅共960只,养鸡的只数是鹅的3倍,养鸭的只数是鹅的4倍。

鸡、鸭、鹅各养了多少只?2.甲、乙、丙三数之和是360,已知甲是乙的3倍,丙是乙的2倍。

求甲、乙、丙各是多少。

3.商店有铅笔、钢笔、圆珠笔共560支,圆珠笔的支数是钢笔的3倍,铅笔的支数与圆珠笔的支数同样多。

铅笔、钢笔和圆珠笔各有多少支?【例题3】有三个书橱共放了330本书,第二个书橱里的书是第一个的2倍,第三个书橱里的书是第二个的4倍。

每个书橱里各放了多少本书?【思路导航】把第一个书橱里的本数看作1份,那么第二个书橱里的本数是这样的2份,第三个就是这样的2×4=8份,三个书橱里的总本数就是这样的1+2+8=11份。

所以,第一个书橱里放了330÷11=30(本),第二个书橱里放了30×2=60(本),第三个书橱里放了60×4=240(本)。

练习3:1.甲、乙、丙三个数之和是400,已知甲是乙的3倍,丙是甲的4倍。

求甲、乙、丙各是多少。

2.三块钢板共重621千克,第一块的重量是第二块的3倍,第二块的重量是第三块的2倍。

三块钢板各重多少千克?3.甲、乙、丙三个修路队共修路1200米,甲队修的米数是乙队的2倍,乙队修的数数是丙队的3倍。

三个队各修了多少米?【例题4】少先队员种柳树和杨树共216棵,杨树的棵数比柳树的3倍多20棵,两种树各种了多少棵?【思路导航】如果杨树少种20棵,那么柳树和杨树的总棵数是216-20=196(棵),这里杨树的棵数恰好是柳树的3倍。

所以,柳树的棵数是196÷(1+3)=49(棵),杨树的棵数是216-49=167(棵)。

练习4:1.粮站有大米和面粉共6300千克,大米的重量比面粉的4倍还多300千克,大米和面粉各有多少千克?2.小华和小明两人参加数学竞赛,两人共得168分,小华的得分比小明的2倍少42分。

两人各得多少分?3.学校购买了720本图书分给高、中、低三个年级,高年级分得的比低年级的3倍多8本,中年级分得的比低年级的2倍多4本。

高、中、低年级各分得图书多少本?【例题5】三个筑路队共筑路1360米,甲队筑的米数是乙队的2倍,乙队比丙队多240米。

三个队各筑多少米?【思路导航】把乙队的米数看作1份,甲队筑的米数是这样的2份。

假设丙队多筑240米,那么三个队共筑了1360+240=1600米,正好是乙队的2+1+1=4倍。

所以,乙队筑了1600÷4=400米,甲队筑了400×2=800米,丙队筑了400-240=160米。

练习5:1.三个植树队共植树1900棵,甲队植树的棵数是乙队的2倍,乙队比丙队少植300棵。

三个队各植树多少棵?2.三个数的和是1540,甲数是丙数的7倍,乙数比甲数多40。

三个数各是多少?3.城东小学共有篮球、足球和排球共95个,其中足球比排球少5个,排球的个数是篮球个数的2倍。

篮球、足球、排球各有多少个?差倍问题例1:光明小学开展冬季体育比赛,参加跳绳比赛的人数是踺子人数的3倍,比踢踺子的多36人。

参加跳绳和踢踺子比赛的各有多少人?分析与解答:如果把踢踺子的人数看作1份,那么跳绳的人数是这样的3份。

36人是这样的3-1=2份。

这样,把36人平均分成2份,1份就是踢踺子的人数:36÷2=18人,跳绳的有18×3=54人。

练习一1,城南小学三年级的人数是一年级人数的2倍,三年级的人数比一年级多130人。

三年级和一年级各有多少人?2,一种钢笔的价钱是一种圆珠笔的4倍,这种钢笔比圆珠笔贵12元。

这种钢笔和圆珠笔的单价各是多少元?3,农业科技小组有两块小麦试验田,第二块比第一块少6公顷,第一块的面积是第二块的3倍。

两块试验田各是多少公顷?例2:仓库里存放大米和面粉两种粮食,面粉比大米多3900千克,面粉的千克数比大米的2倍还多100千克。

仓库有大米和面粉各多少千克?分析与解答:如果面粉减少100千克,那么面粉的千克数就是大米的2倍,3900-100=3800千克,就是大米的2-1=1倍。

所以,大米有3800÷1=3800千克,面粉有3800+3900=7700千克。

练习二1,三年级学生参加课外活动,做游戏的人数比打球人数的3倍多2人,已知做游戏的比打球的多38人,打球和做游戏的各有多少人?2,学校今年参加科技兴趣小组的人数比去年多41人,今年的人数比去年的3倍少35人。

今年有多少人参加?3,果园里种了一批苹果树和桃树,已知苹果树比桃树多1600棵,苹果树的棵数比桃树的3倍多100棵。

苹果树和桃树各种了多少棵?例3:育红小学买了一些足球、排球和篮球,已知足球比排球多7只,排球比篮球多11只,足球的只数是篮球的3倍。

足球、排球和篮球各买了多少只?分析与解答:由题意可知,足球比篮球多买了7+11=18只,它是篮球的3-1=2倍。

所以,买篮球18÷2=9只,买排球9+11=20只,买足球20+7=27只。

练习三1,玩具厂二月份比一月份多生产玩具2000个,三月份比二月份多生产3000个,三月份生产的玩具个数是一月份的2倍。

每个月各生产多少个?2,某农具厂第三季度比第二季度多生产2800套轴承,第一季度比第二季度少生产1200套。

第三季度生产的是第一季度的3倍。

求每季度各生产多少?3,三个小朋友们折纸飞机,小晶比小亮多折12架,小强比小亮少折8架,小晶折的是小强的3倍。

三个人各折纸飞机多少架?例4:商店运来一批白糖和红糖,红糖的重量是白糖的3倍,卖出红糖380千克,白糖110千克后,红糖和白糖重量相等。

商店原有红糖和白商各多少千克?分析与解答:由“红糖卖出380千克,白糖卖出110千克后,红糖和白糖重量相等”可知原来红糖比白糖多380-110=270千克,它是白糖的3-1=2倍。

所以,白糖原有270÷2=135千克,红糖原有135×3=405千克。

练习四1.甲、乙两个仓库各存一批面粉,甲仓库所存的面粉的袋是乙仓库的3倍,从甲仓库运走720千克,从乙仓库运走120千克后,两个仓库所剩的面粉相等。

两个仓库原来各有面粉多少千克?2.有两筐橘子,第二筐中橘子的个数是第一筐中的2倍。

如果第一筐中再放入48个,第二筐中再放入18个,那么两筐的橘子个数相等。

原来两筐各有橘子多少个?3.甲桶的酒是乙桶的4倍,如果从甲桶中取出15千克倒入乙桶,那么两桶酒的重量相等。

原来两桶酒各有多少千克?例5:甲、乙两个书架原有图书本数相等,如果从甲书架取出2本,从乙书架取出60本后,乙书架的本数是甲书架的3倍。

原来两个书架各有图书多少本?分析与解答:由“甲、乙两个书架原有图书相等,从甲书架取240本,从乙书架取出60本”可知乙书架余下的书比甲书架多240-60=180本,它是甲书架余下的2倍,所以甲书架余下180÷2=90本。

甲书架原有90+240=330本。

练习五1,两筐同样的苹果,甲筐卖出8千克,乙筐卖出20千克以后,甲筐剩下的是乙筐的3倍。

两筐苹果原来各有多少千克?2,甲、乙两个人的存款数相等,甲取出60元,乙存入20元,乙的存款是甲的3倍。

两人原来各有存款多少元?3,甲、乙两个书架原有图书本数相等,如果从甲书架取出120本放到乙书架,乙书架的本数是甲书架的4倍。

原来两个书架各有图书多少本?和差问题例1:三、四年级同学共植树128棵,四年级比三年级多植树20棵,求三、四年级各植树多少棵?分析与解答:假如把三、四年级植的128棵加上20棵,得到的和就是四年级植树的2倍,所以,四年级植树的棵数是(128+20)÷2=74棵,三年级植树的棵数是74-20=54棵。

这道题还可以这样解答:假如从128棵中减去20棵,那么得到的差就是三年级植树棵数的2倍,由出,先求出三年级植树的棵数(128-20)÷2=54棵,再求出四年级植树的棵数:54+20=74棵。

练习一1,两堆石子共有800吨,第一堆比第二堆多200吨。

两堆各有多少吨?2,用锡和铝混合制成600千克的合金,铝的重量比锡多400千克。

锡和铝各是多少千克?3,甲、乙两人年龄的和是35岁,甲比乙小5岁。

甲、乙两人各多少岁?例2:两筐梨子共有120个,如果从第一筐中拿10个放到第二筐中,那么两筐的梨子个数相等。

两筐原来各有多少个梨?分析与解答:根据题意,第一筐减少10个,第二筐增加10个后,则两筐梨子个数相等,可知原来第一筐比第二筐多10×2=20个。

假如从120个中减去20个,那么得到的差就是第二筐梨子个数的2倍,所以,第二筐原来有(120-20)÷2=50个,第一筐原来有50+20=70个。

练习二1,红星小学三(1)班和三(2)班共有学生108人,从三(1)班转3人到三(2)班,则两班人数同样多。

两个班原来各有学生多少人?2,某汽车公司两个车队共有汽车80辆,如果从第一车队调10辆到第二车队,两个车队的汽车辆数就相等。

两个车队原来各有汽车多少辆?3,甲、乙两笨共有水果60千克,如果从甲箱中取出5千克放到乙箱中,则两箱水果一样重。

两箱原来各有水果多少千克?例3:今年小勇和妈妈两人的年龄和是38岁,3年前,小勇比妈妈小26岁。

今年妈妈和小勇各多少岁?分析与解答:3年前,小勇比妈妈小26岁,这个年龄差是不变的,即今年小勇也比妈妈小26岁。

显然,这属于和差问题。

所以妈妈今年(38+26)÷2=32岁,小勇(38-26)÷2=6岁。

练习三1,今年小刚和小强俩人的年龄和是21岁,1年前,小刚比小强小3岁。

相关文档
最新文档