栈的表示及栈的应用
数据结构-Java语言描述 第三章 栈和队列
System.exit(1);
}
栈顶指针top的初始值决
top=-1;
定了后续其他方法的实现
stackArray=(T[])new Object[n];
}
【算法3-2】入栈
public void push(T obj)
{
if(top==stackArray.length-1){
T []p=(T[])new Object [top*2];
(b)元素a2入栈
an … … a2 a1
(c)元素an入栈
an-1 … a2 a1
(d)元素an出栈
a2 a1
(e)元素a3出栈
a1
(f)元素a2出栈
【例3-1】一个栈的输入序列是1、2、3、4、5,若在 入栈的过程中允许出栈,则栈的输出序列4、3、5、1、 2可能实现吗?1、2、3、4、5的输出呢?
型 正序遍历:依次访问栈中每个元素并输出
3.1.2 顺序栈
顺序栈泛型类的定义如下:
public class sequenceStack<T> {
顺序栈中一维数组 的初始长度
final int MaxSize=10;
private T[] stackArray; 存储元素的数组对象
private int top;
public void nextOrder() {
for(int i=top;i>=0;i--) System.out.println(stackArray[i]);
}
【算法3-8】清空栈操作
public void clear() {
top=-1; }
3.1.3 链栈
栈的链接存储结构称为链栈。结点类的定义,同 第二章Node类。
大学数据结构课件--第3章 栈和队列
栈满 top-base=stacksize
top
F
E
D C B
top top top top top top base
入栈PUSH(s,x):s[top++]=x; top 出栈 POP(s,x):x=s[--top]; top
base
4
A
3.1 栈
例1:一个栈的输入序列为1,2,3,若在入栈的过程中 允许出栈,则可能得到的出栈序列是什么? 答: 可以通过穷举所有可能性来求解:
3.2 栈的应用举例
二、表达式求值
“算符优先法”
一个表达式由操作数、运算符和界限符组成。 # 例如:3*(7-2*3) (1)要正确求值,首先了解算术四则运算的规则 a.从左算到右 b.先乘除后加减 c.先括号内,后括号外 所以,3*(7-2*3)=3*(7-6)=3*1=3
9
3.2 栈的应用举例
InitStack(S); while (!QueueEmpty(Q))
{DeQueue(Q,d);push(S,d);}
while (!StackEmpty(S)) {pop(S,d);EnQueue(Q,d);} }
第3章 栈和队列
教学要求:
1、掌握栈和队列的定义、特性,并能正确应用它们解决实 际问题;
用一组地址连续的存储单元依次存放从队头到队尾的元素, 设指针front和rear分别指示队头元素和队尾元素的位置。
Q.rear 5 4 Q.rear 3 2 3 2 5 4 Q.rear 3 3 5 4 5 4
F E D C
C B A
Q.front
2 1 0
C B
Q.front 2 1 0
栈的基本操作
栈的基本操作栈是一种重要的数据结构,它在计算机科学中有着广泛的应用。
对于栈的基本操作,包括入栈(push)、出栈(pop)、获取栈顶元素,以及查看栈的大小(size)等操作。
1.入栈(push)入栈的操作就是往栈里压栈,把元素压入栈顶,以实现入栈操作。
在把元素压入栈时,栈的元素数量会增加1,压入元素的位置就是栈顶。
2.出栈(pop)出栈的操作是从栈顶弹出元素,以实现出栈操作。
当一个元素从栈顶弹出时,栈的大小就会减少1,弹出元素的位置就是栈顶。
3.获取栈顶元素要获取栈顶元素,我们需要从栈中取出元素,但是这并不会改变栈的大小。
由于栈的特性,我们可以通过取出栈顶的元素来获取它,而不需要从栈的其他位置获取。
4.查看栈的大小(size)查看栈的大小也就是查看栈中有多少元素。
要查看栈的大小,我们只要通过查看栈的长度即可,从而知道栈中有多少元素,从而了解栈的大小。
到此,我们对栈的基本操作基本有了一个概念,包括入栈(push)、出栈(pop)、获取栈顶元素以及查看栈的大小(size)。
栈的操作可以用入栈出栈的方式来表示,也可以用推入和弹出的方式来表示,它们都是栈的基本操作。
栈的操作跟其他的数据结构的操作有所不同,比如要存储数据的时候,需要先进行入栈操作,而当要取出数据的时候,需要先进行出栈操作,而不是像队列里面先进行出队操作,再进行入队操作。
栈也可以用来实现字符串操作、算数表达式求值、函数调用以及实现括号的匹配等等,这些都是栈的基本操作的应用。
总而言之,栈是一种重要的数据结构,其基本操作可以说是它的核心。
因此,学习栈的基本操作非常重要,只有掌握了它的基本操作,才可以正确的使用栈这种数据结构。
《数据结构(C语言)》第3章 栈和队列
栈
❖ 栈的顺序存储与操作 ❖ 1.顺序栈的定义
(1) 栈的静态分配顺序存储结构描述 ② top为整数且指向栈顶元素 当top为整数且指向栈顶元素时,栈空、入栈、栈满 及出栈的情况如图3.2所示。初始化条件为 S.top=-1。
(a) 栈空S.top==-1 (b) 元素入栈S.stack[++S.top]=e (c) 栈满S.top>=StackSize-1 (d) 元素出栈e=S.stack[S.top--]
/*栈顶指针,可以指向栈顶
元素的下一个位置或者指向栈顶元素*/
int StackSize; /*当前分配的栈可使用的以 元素为单位的最大存储容量*/
}SqStack;
/*顺序栈*/
Data structures
栈
❖ 栈的顺序存储与操作 ❖ 1.顺序栈的定义
(2) 栈的动态分配顺序存储结构描述 ① top为指针且指向栈顶元素的下一个位置 当top为指针且指向栈顶元素的下一个位置时,栈空 、入栈、栈满及出栈的情况如图3.3所示。初始化条 件为S.top=S.base。
…,n-1,n≥0} 数据关系:R={< ai-1,ai>| ai-1,ai∈D,i=1,2
,…,n-1 } 约定an-1端为栈顶,a0端为栈底 基本操作:
(1) 初始化操作:InitStack(&S) 需要条件:栈S没有被创建过 操作结果:构建一个空的栈S (2) 销毁栈:DestroyStack(&S) 需要条件:栈S已经被创建 操作结果:清空栈S的所有值,释放栈S占用的内存空间
return 1;
}
Data structures
栈
数据结构第3章栈
13
(4)取栈顶元素操作
Elemtype gettop(sqstack *s) { /*若栈s不为空,则返回栈顶元素*/ If(s->top<0) return NULL; /*栈空*/ return (s->stack[s->top]); }
。
29
算术表达式求值
在计算机中,任何一个表达式都是由: 操作数(operand)、运算符(operator)和 界限符(delimiter)组成的。 其中操作数可以是常数,也可以是变量或常量的 标识符;运算符可以是算术运算体符、关系运算符和 逻辑符;界限符为左右括号和标识表达式结束的结束 符。
30
6
存储结构
栈是一种特殊的线性表,有两种存储方式: 顺序存储结构存储
链式存储结构存储。
7
顺序栈的数组表示
与第二章讨论的一般的顺序存储结构的线性表 一样,利用一组地址连续的存储单元依次存放自 栈底到栈顶的数据元素,这种形式的栈也称为顺 序栈。 使用一维数组来作为栈的顺序存储空间。 设指针top指向栈顶元素的当前位置,以数组 小下标的一端作为栈底。 top=0时为空栈,元素进栈时指针top不断地 加1,当top等于数组的最大下标值时则栈满。
5)假如读出的运算符的优先级不大于运算符栈栈顶运算符
的优先级,则从操作数栈连续退出两个操作数,从运算符栈中 退出一个运算符,然后作相应的运算,并将运算结果压入操作 数栈。此时读出的运算符下次重新考虑(即不读入下一个符号 )。
第三章栈和队列
续8
//循环队列实现方案二 在SqQueue结构体中增设计数变量c,记录队列中当前 元素个数 void clearQueue(SqQueue &q) { q.r=q.f=-1; q.c=0; //r=f=-1~n-1区间任意整数均可 } int empty(SqQueue &q) { return q.c==0; } int full(SqQueue &q) { return q.c==q.n; } //队空、队满时q.f==q.r均为真 //优点:队满时没有空闲元素位置(充分利用了空间)
西南交通大学信息科学与技术学院软件工程系‐赵宏宇 数据结构A 第3章‐19
西南交通大学信息科学与技术学院软件工程系‐赵宏宇
数据结构A 第3章‐20
3.3 栈的应用
续1
3.3 栈的应用
续2
2. 栈与递归 (1) 递归程序的存储空间消耗 由于函数调用的指令返回地址、形式参数以及断 点状态均用系统堆栈实现存储,因此递归调用的层次 数(深度)决定了系统堆栈必须保留的存储空间容量大小。 例1 以下函数用递归法实现n元一维数组元素逆序存储, 试分析所需栈的深度。 void reverse(ElemTp a[], int i, int j) //数组a下标范围i..j实现元素逆序存储 { if(i<j) { a[i]a[j]; reverse(a, i+1, j-1); } }
西南交通大学信息科学与技术学院软件工程系‐赵宏宇 数据结构A 第3章‐7
3. 堆栈习题举例 例1 若元素入栈次序为ABC,写出所有可能的元素出栈 次序。 答: 所有可能的元素出栈次序共5种,即 ABC 操作PXPXPX (P表示入栈,X表示退栈) ACB PXPPXX BAC PPXXPX BCA PPXPXX CBA PPPXXX
栈的应用
栈及其应用第一节栈的基本知识一、栈的基本概念栈(stack,又称为堆栈)是一种特殊的线性表。
作为一个简单的例子,可以把食堂里冼净的一摞碗看作一个栈。
在通常情况下,最先冼净的碗总是放在最底下,后冼净的碗总是摞在最顶上。
而在使用时,却是从顶上拿取,也就是说,后冼的先取用,后摞上的先取用。
如果我们把冼净的碗“摞上”称为进栈(压栈),把“取用碗”称为出栈(弹出),那么上例的特点是:后进栈的先出栈。
然而,摞起来的碗实际上仍然是一个线性表,只不过“进栈”和“出栈”都在最顶上进行,或者说,元素的插入和删除操作都是在线性表的一端进行而已。
一般而言,栈是一个线性表,其所有的插入和删除操作均是限定在线性表的一端进行,允许插入和删除的一端称栈顶(Top),不允许插入和删除的一端称栈底(Bottom)。
若给定一个栈S=(a1, a2,a3,……,a n),则称a1为栈底元素,a n为栈顶元素,元素a i位于元素a i-1之上。
栈中元素按a1, a2,a3,……,a n的次序进栈,如果从这个栈中取出所有的元素,则出栈次序为a n, a n-1,……,a1。
也就是说,栈中元素的进出是按“后进先出”的原则进行,这是栈的重要特征。
因此栈又称为后进先出表(LIFO表—Last In First Out)。
我们常用下图来形象地表示栈:二、栈的存储结构(1)顺序栈栈是一种线性表,在计算机中用一维数组作为栈的存储结构最为简单,操作也最为方便,也是最为常用的。
例如,设一维数组STACK[1..n] 表示一个栈,其中n为栈的容量,即可存放元素的最大个数。
栈的第一个元素,或称栈底元素,是存放在STACK[1]处,第二个元素存放在STACK[2]处,第i个元素存放在STACK[i]处。
另外,由于栈顶元素经常变动,需要设置一个指针变量top,用来指示栈顶当前位置,栈中没有元素即栈空时,令top=0;当top=n时,表示栈满。
如果一个栈已经为空,但用户还继续做出栈(读栈)操作,则会出现栈的“下溢”;如果一个栈已经满了,用户还继续做进栈操作,则会出现栈的“上溢”。
栈的概念理解
栈的概念理解栈是一种数据结构,它是一种特殊的线性表,只能在表的一端进行插入和删除操作,该一端被称为栈顶,另一端被称为栈底。
栈的特点是后进先出(Last In First Out, LIFO)。
在栈中,最后插入的元素最先弹出,而最先插入的元素最后弹出。
这就好像是一堆盘子,你只能在最上面放盘子和拿盘子,不能随意放在下面的盘子上。
栈的这种特性使得它非常适合解决一些具有“倒序”需求的问题。
栈的基本操作包括入栈和出栈。
入栈(Push)是指将元素放入栈顶;出栈(Pop)是指从栈顶弹出元素。
除此之外,还有一些常用的操作,比如获取栈顶元素(Top)、判断栈是否为空(Empty)、获取栈中元素的个数(Size)等。
栈的实现可以用数组或链表来完成。
使用数组实现的栈叫作顺序栈,使用链表实现的栈叫作链式栈。
对于顺序栈,我们需要定义一个数组和一个整数来表示栈。
数组用于存储栈中的元素,整数用于记录栈顶元素的下标。
一开始,栈为空,栈顶下标可以初始化为-1。
插入元素时,需要判断栈是否已满,如果已满则无法插入;如果未满,将元素放入栈顶,同时栈顶下标加1。
删除元素时,需要判断栈是否为空,如果为空则无法删除;如果不为空,将栈顶元素弹出,并将栈顶下标减1。
对于链式栈,我们需要定义一个结构体来表示栈中的节点。
节点包括一个数据域和一个指向下一个节点的指针域。
和顺序栈类似,链式栈也需要一个指针来表示栈顶元素。
插入元素时,需要创建一个新节点,并将栈顶指针指向该节点,新节点的指针域指向原来的栈顶元素。
删除元素时,需要判断栈是否为空,如果为空则无法删除;如果不为空,将栈顶节点删除,并将栈顶指针指向下一个节点。
栈的应用非常广泛。
在计算机科学中,栈是一种重要的数据结构,它被用于实现函数调用、表达式求值、编译器的语法分析、操作系统的进程管理等。
在编程中,我们可以使用栈来解决一些具有“倒序”性质的问题,比如字符串反转、括号匹配、计算逆波兰表达式等。
此外,栈还被用于图的深度优先搜索(DFS)算法中的节点遍历顺序。
C语言数据结构_第04讲 栈
while(n); printf("转换后的二进制数值为:"); while(s.top) // 余数出栈处理 { printf("%d",s.top->data); // 输出栈顶的余数 stacknode* p=s.top; // 修改栈顶指针 s.top=s.top->next; delete p; // 回收一个结点,C语言中用free p } }
3-3-2 表达式求值
表达式是由运算对象、运算符、括号等组成的有意义的式子。 1.中缀表达式(Infix Notation) 一般我们所用表达式是将运算符号放在两运算对象的中 间,比如:a+b,c/d等等,我们把这样的式子称为中缀表达 式。 2.后缀表达式(Postfix Notation) 后缀表达式规定把运算符放在两个运算对象(操作数) 的后面。在后缀表达式中,不存在运算符的优先级问题,也 不存在任何括号,计算的顺序完全按照运算符出现的先后次 次序进行。 3.中缀表达式转换为后缀表达式 其转换方法采用运算符优先算法。转换过程需要两个栈: 一个运算符号栈和一个后缀表达式输出符号栈。
(4)读栈顶元素
datatype ReadTop(SeqStack *s) { if (SEmpty ( s ) ) return 0; // 若栈空,则返回0 else return (s->data[s->top] );
// 否则,读栈顶元素,但指针未移动
}
(5)判栈空
int SEmpty(SeqStack *s) { if (s->top= = –1) return 1; else return 0; }
2.顺序栈运算的基本算法 (1)置空栈 首先建立栈空间,然后初始化栈顶指针。 SeqStack *Snull() { SeqStack *s; s=new (SeqStack);
C++数据结构 第1章 栈(C++版)
case '-':number[p]-=number[p + 1];break; case '*':number[p]*=number[p + 1];break; case '/':number[p]/=number[p + 1];break; } } bool can() //判断运算符的优先级别,建立标志函数 { if ((s[i]=='+'||s[i]=='-')&&symbol[p]!='(') return 1; if ((s[i]=='*'||s[i]=='/')&&(symbol[p]=='*'||symbol[p]=='/'))return 1; return 0; } main() { printf("String :");gets(s); s[strlen(s)]=')';symbol[p]='('; while (i<strlen(s))
main() { ("input a string(@_over):"); gets(s); printf("result=%d",comp(s)); system("pause"); return 0; }
栈的用途极为广泛,在源程序编译中表达式的计算、过程的嵌套调用和递 归调用等都要用到栈,下面以表达式计算为例子加以说明。 源程序编译中,若要把一个含有表达式的赋值语句翻译成正确求值的机器 语言,首先应正确地解释表达式。例如,对赋值语句 X=4+8×2-3; (式 11.1) 其正确的计算结果应该是17,但若在编译程序中简单地按自左向右扫描 的原则进行计算,则为:X=12×2-3=24-3=21 这结果显然是错误的。因此,为了使编译程序能够正确地求值,必须事先 规定求值的顺序和规则。通常采用运算符优先数法。 一般表达式中会遇到操作数、运算符和语句结束符等,以算术运算符为例, 对每种运算赋予一个优先数,如: 运算符:× ÷ + - 优先数:2 2 1 1 (语句结束符“;”的优先数为零) 在运算过程中,优先数高的运算符应先进行运算(但遇到括号时,应另作 处理)。按这样的规定,对式(11.1)自左向右进行运算时,其计算顺序就被 唯一地确定下来了。计算顺序确定后,在对表达式进行编译时,一般设立两个 栈,一个称为运算符栈(OPS),另一个称为操作数栈(OVS),以便分别存 放表达式中的运算符和操作数。编译程序自左向右扫描表达式直至语句结束, 其处理原则是: ①凡遇到操作数,一律进入操作数栈; ②当遇到运算符时,则将运算符的优先数与运算符栈中的栈顶元素的优先
栈的基本知识
栈的基本知识[内容提要]1、栈的概念和特性;2、栈的存储结构:顺序存储和链式存储;3、双栈及操作;4、栈的几种运算(操作)实现;5、栈的简单应用举例;[重点难点]1、栈的特性和应用场合;2、栈的存储结构;3、栈的操作实现;[内容讲授]1.栈的概念和特性栈(stack)是一种特殊的线性表。
作为一个简单的例子,可以把食堂里冼净的一摞碗看作一个栈。
在通常情况下,最先冼净的碗总是放在最底下,后冼净的碗总是摞在最顶上。
而在使用时,却是从顶上拿取,也就是说,后冼的先取用,后摞上的先取用。
如果我们把冼净的碗“摞上”称为进栈(压栈),把“取用碗”称为出栈(弹出),那么上例的特点是:后进栈的先出栈。
然而,摞起来的碗实际上是一个线性表,只不过“进栈”和“出栈”都在最顶上进行,或者说,元素的插入和删除操作都是在线性表的一端进行而已。
一般而言,栈是一个线性表,其所有的插入和删除操作均是限定在线性表的一端进行,允许插入和删除的一端称栈顶(Top),不允许插入和删除的一端称栈底(Bottom)。
若给定一个栈S=(a1,a 2,a3,……,an),则称a1为栈底元素,an为栈顶元素,元素ai位于元素ai-1之上。
栈中元素按a 1, a2,a3,……,an的次序进栈,如果从这个栈中取出所有的元素,则出栈次序为an, an-1,……,a1。
也就是说,栈中元素的进出是按后进先出的原则进行,这是栈结构的重要特征。
因此栈又称为后进先出(LIFO—Last In First Out)表。
我们常用一个图来形象地表示栈,其形式如下图:⑴在使用栈之前,首先需要建立一个空栈,称建栈(栈的初始化);⑵往栈顶加入一个新元素,称进栈(压栈、入栈);⑶删除栈顶元素,称出栈(退栈、弹出);⑷查看当前的栈顶元素,称读栈;{注意与⑶的区别}⑸在使用栈的过程中,还要不断测试栈是否为空或已满,称为测试栈。
2.栈的存储结构(1)顺序栈栈是一种线性表,在计算机中用一维数组作为栈的存储结构最为简单,操作也最为方便。
第3章 限定性线性表——栈和队列
两栈共享技术(双端栈):
主要利用了栈“栈底位置不变,而栈顶位置动态变
化”的特性。首先为两个栈申请一个共享的一维数 组空间S[M],将两个栈的栈底分别放在一维数组的 两端,分别是0,M-1。
共享栈的空间示意为:top[0]和top[1]分别为两个 栈顶指示器 。
Stack:0
M-1
top[0]
top[1]
(1)第i号栈的进栈操作 int pushi(LinkStack top[M], int i, StackElementType x) { /*将元素x进入第i号链栈*/
LinkStackNode *temp; temp=(LinkStackNode * )malloc(sizeof(LinkStackNode)); if(temp==NULL) return(FALSE); /* 申请空间失败 */ temp->data=x; temp->next=top[i]->next; top[i]->next=temp; /* 修改当前栈顶指针 */ return(TRUE); }
case 1:if(S->top[1]==M) return(FALSE);
*x=S->Stack[S->top[1]];S->top[1]++;break;
default: return(FALSE);
}
return(TRUE);
返回主目录
}
【思考题】
说明读栈顶与退栈顶的处理异同,并标明将已知 的退栈顶算法改为读栈顶算法时应做哪些改动。
返回主目录
链栈的进栈操作
int Push(LinkStack top, StackElementType x)
栈的定义
{
SNODE *p; int x; if( top = = NULL ) { cout<<“栈溢出\n”;x=-1; } else { p = top; top = top-> link ; x = p-> data ; free(p) ; } return x }
(1) 队头指针 front = (front+1)% MAXSIZE ;
(2)队尾指针 rear = (rear +1)% MAXSIZE ;
循环队列队空、队满条件
1 2 3
队空条件 front = rear
0
MAXSIZE-1
front
...rΒιβλιοθήκη ar1 2a2 a3
3
0
a1
...
队满条件(剩下一个位置) front=(rear+1)% MAXSIZE
栈操作举例
TOP
a1 a2 …… 栈底 1.
top=0
(空栈)
an
MAXSIZE
栈顶
2. A B C
top=3 (A、B、C进栈)
3.
A B
top=2 (C出栈)
4. A B C D E F
top=MAXSIZE (栈满)
进出栈序列
有三个元素的进栈序列是1,2,3。写出可能的出 栈序列。
出栈序列
a3
a2 a1 ^ 栈底
算法1-8 进栈操作程序
push(SNODE *top , int x) { SNODE *t; t=new SNODE; if(t = = NULL ) { cout<<“内存中已无可用空间\n”; } else { t -> data = x; t -> link = top; top= t; } }
第3章栈和队列
3.1.2 栈的表示和算法实现
1.顺序栈 2.链栈
第3章栈和队列
1. 顺序栈 顺序栈是用顺序存储结构实现的栈,即利 用一组地址连续的存储单元依次存放自栈 底到栈顶的数据元素,同时由于栈的操作 的特殊性,还必须附设一个位置指针top( 栈顶指针)来动态地指示栈顶元素在顺序 栈中的位置。通常以top=-1表示空栈。
第 3 章 栈和队列
3.1 栈 3.2 队列 3.3 栈和队列的应用
第3章栈和队列
3.1 栈
3.1.1 栈的抽象数据类型定义 3.1.2 栈的表示和算法实现
第3章栈和队列
3.1.1 栈的定义
1.栈的定义 栈(stack)是一种只允许在一端进行插入和删除的线 性表,它是一种操作受限的线性表。在表中只允许进
行插入和删除的一端称为栈顶(top),另一端称为 栈 底 (bottom) 。 栈 的 插 入 操 作 通 常 称 为 入 栈 或 进 栈 (push),而栈的删除操作则称为出栈或退栈(pop)。 当栈中无数据元素时,称为空栈。
栈是按照后进先出 (LIFO)的原则组 织数据的,因此, 栈也被称为“后进 先出”的线性表。
第3章栈和队列
(2)入栈操作
Status Push(SqStack &S, Elemtype e)
【算法3.2 栈的入栈操作】
{ /*将元素e插入到栈S中,作为S的新栈顶*/
if (S->top>= Stack_Size -1) return ERROR;
else { S->top++;
S->elem[S->top]=e;
return OK;}
Push(S,’you’)
第4章栈及队列
4.1.5 栈的链式存储结构——链栈 1.链栈结构及数据类型
它是一种限制运算的链表,即规定链表中的扦入和删 除运算只能在链表开头进行。链栈结构见下图。
top 头
an
an-1
……
栈顶
图 3-5 链栈结构示意图
a1 ^
栈底
单链表的数据结构定义为: typedef struct node
{ elemtype data; //数据域 struct node *next; //指针域
3.出栈: POP(&S) 删除栈S中的栈顶元素,也称为”退栈”、 “删除”、 “弹出”。
4.取栈顶元素: GETTOP(S) 取栈S中栈顶元素。 5.判栈空: EMPTY(S) 判断栈S是否为空,若为空,返回值为1,否则返回值为0。
4.1.3 栈的抽象数据类型描述
ADT Stack {
Data: 含有n个元素a1,a2,a4,…,an,按LIFO规则存放,每个元素的类型都为 elemtype。 Operation: Void inistack(&s) //将栈S置为一个空栈(不含任何元素) Void Push(&s,x) //将元素X插入到栈S中,也称为 “入栈”、 “插 入”、 “压入”
{s->top[0]=-1; s->top[1]=m; }
(2)两个栈共享存储单元的进栈算法 int push(duseqstack *s, elemtype x, int i) //将元素x进入到以S为栈空间的第i个栈中 { if (s->top[0] ==s->top[1]-1) { printf(“overflow”); return (0);} if (i!=0 || i!=1) {printf(“栈参数出错“);return (0);} if(i= =0) //对0号栈进行操作 { s->top[0]++;s->stack[s->top[0]]=x;} else {s->top[1]--; s->stack[s->top[1]]=x;} return (1); }}
栈的入队和出队题
栈的入队和出队题一、栈的基本概念:1、栈是一种后进先出(LIFO)的数据结构,而队列是一种先进先出(FIFO)的数据结构。
因此,栈的入队和出队操作并不是栈的常规操作,而是队列的操作。
2、栈(Stack)是一种特殊的线性表,它只允许在表的一端(称为栈顶)进行插入和删除操作。
与线性表和队列不同,栈遵循后进先出(LIFO,Last In First Out)的原则。
也就是说,最后一个进入栈的元素将是第一个出去的元素。
二、栈的特性:1、先进后出(FILO):栈的后入先出原则,即最后进入栈的元素将是第一个出栈的元素。
2、限定插入和删除的位置:只能在栈顶进行插入和删除操作。
3、动态性:栈的大小可以在运行时动态地改变。
三、栈的实现方式:1、数组实现:用数组来实现栈,可以通过固定数组的大小来限制栈的最大容量。
在这种情况下,如果栈满了,就无法再添加新元素,除非重新分配更大的数组。
2、链表实现:用链表来实现栈可以解决数组实现中的问题,因为链表可以在运行时动态地添加或删除节点。
然而,由于链表节点的添加和删除需要更多的内存操作,所以相比之下,数组实现通常更快一些。
四、栈的入队操作:1、入队操作指的是将一个元素添加到栈顶的过程。
在数组实现中,可以通过将新元素添加到数组的末尾来实现入队操作。
2、在链表实现中,可以通过在链表的头部添加新节点来实现入队操作。
3、无论使用哪种实现方式,入队操作的时间复杂度都是O(1)。
五、栈的出队操作:1、出队操作指的是从栈顶删除一个元素的过程。
2、在数组实现中,可以通过删除数组的第一个元素来实现出队操作。
3、在链表实现中,可以通过删除链表的头部节点来实现出队操作。
4、无论使用哪种实现方式,出队操作的时间复杂度都是O(1)。
六、栈的容量限制:1、在许多实现中,栈有一个预定义的容量限制。
一旦栈满了,就无法再添加新的元素,除非重新分配更大的空间。
2、在设计使用栈的应用时,需要考虑这种容量限制,以避免溢出错误。
数据结构实验报告(二)栈的应用
数据结构实验报告(⼆)栈的应⽤实验说明数据结构实验⼆ 栈的实验——栈的简单应⽤⼀、实验⽬的通过本实验使学⽣了解栈的简单应⽤,熟悉栈的特性及栈在顺序存储上的操作特点,深刻理解栈的基本操作与⽤栈解决应⽤问题的关系;特别训练学⽣使⽤栈解决实际问题的能⼒,为今后⽤栈解决相关问题奠定基础。
⼆、实验内容1.编程实现对给定的⼀组括号序列判断其是否匹配正确。
要求:(1)它必须成对出现,如“(”“)”是⼀对,“[”与“]”是⼀对;(2)出现时有严格的左右关系;(3)可以以嵌套的⽅式同时出现多组多括号,但必须是包含式嵌套,不允许交叉式嵌套。
⽐如“( )”、“[([][])]”这样是正确的,“[(])”或“([()))”或 “(()]”是不正确的。
(4)将处理的括号扩展为针对“()”“[]”“{}”三类。
2.编程实现⼀个简单的⾏编辑功能:⽤户可以输⼊⼀⾏内容,并可进⾏简易编辑。
要求:(1)遇到输⼊部分内容有误时操作退格符“#”表⽰前⼀位⽆效;(2)“@”表⽰之前的内容均⽆效。
实验报告1.实现功能描述编程实现对给定的⼀组括号序列判断其是否匹配正确,将处理的括号扩展为针对“()”“[]”“{}”三类,遇到输⼊部分内容有误时操作退格符“#”表⽰前⼀位⽆效;“@”表⽰之前的内容均⽆效。
2.⽅案⽐较与选择(1)可以使⽤栈和队列来实现。
因为栈的功能⾜以完成题⽬要求,所以初步打算使⽤栈来实现。
(2)因为编写⼀个标准的栈⽐较繁琐,⽽且本题中也没有⽤到所有栈的标准操作,所以通过模拟栈来完成本题。
(3)可以使⽤数组或链表来模拟栈。
因为括号匹配只有3对,所需空间不是很⼤,⼜因为特殊操作#、@可以在数组中通过-1和赋0值实现,因此选择了数组法来模拟栈。
3.设计算法描述(1)定义3个变量,分别⽤于记录()、[]、{}的出现次数。
遇到左符号时变量++,遇到右符号时--,变量为0时表⽰空栈。
当读到#时,再往前读⼀个字符,如果是()、[]、{}中的⼀种,则对其进⾏反向运算,即遇到右符号时++,遇到左符号时--。
入栈和出栈的基本操作
入栈和出栈的基本操作栈是一种常见的数据结构,它具有后进先出(LIFO)的特点,即最后进入的元素最先被取出。
在计算机科学中,栈被广泛应用于程序的运行、内存管理等方面。
本文将介绍栈的基本操作——入栈和出栈。
一、入栈入栈是指将一个元素放入栈中的操作。
在栈中,新元素总是被放在栈顶,而原有的元素则依次向下移动。
入栈操作可以用以下伪代码表示:```push(Stack, element)Stack[top] = elementtop = top + 1```其中,Stack表示栈,element表示要入栈的元素,top表示栈顶指针。
入栈操作的实现过程是将元素放入栈顶,然后将栈顶指针向上移动一位。
二、出栈出栈是指将栈顶元素取出的操作。
在栈中,只有栈顶元素可以被取出,而其他元素则不能被访问。
出栈操作可以用以下伪代码表示:```pop(Stack)top = top - 1element = Stack[top]return element```其中,Stack表示栈,top表示栈顶指针,element表示要取出的元素。
出栈操作的实现过程是将栈顶指针向下移动一位,然后将栈顶元素取出并返回。
三、应用栈的入栈和出栈操作在计算机科学中有着广泛的应用。
以下是一些常见的应用场景:1. 程序调用栈在程序运行时,每个函数都会被压入一个调用栈中。
当函数执行完毕后,它会从栈中弹出,控制权会返回到调用该函数的位置。
程序调用栈的实现依赖于栈的入栈和出栈操作。
2. 表达式求值在表达式求值中,栈可以用来存储操作数和运算符。
当遇到运算符时,可以将它入栈,当遇到操作数时,可以将它出栈并进行计算。
表达式求值的实现依赖于栈的入栈和出栈操作。
3. 内存管理在内存管理中,栈可以用来存储函数的局部变量和参数。
当函数被调用时,它的局部变量和参数会被压入栈中,当函数执行完毕后,它们会从栈中弹出。
内存管理的实现依赖于栈的入栈和出栈操作。
四、总结栈是一种常见的数据结构,它具有后进先出的特点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
{
Push(S,N % M);
N=N/M;
}
printf("其对应的%d进制数是",M);
while(!StackEmpty(S)){
Pop(S,e);
printf("%d",e);
}
printf("\n");
}
递归程序
#include<stdio.h>
long Fibonacci(int n);
3.编写程序,实现Hanoi塔问题(课本P55-P58)。
【实验步骤】
1.打开VC++。
2.建立工程:点File->New,选Project标签,在列表中选Win32 Console Application,再在右边的框里为工程起好名字,选好路径,点OK->finish。至此工程建立完毕。
3.创建源文件或头文件:点File->New,选File标签,在列表里选C++ Source File。给文件起好名字,选好路径,点OK。至此一个源文件就被添加到了你刚创建的工程之中。
if (!S.base) exit(OVERFLOW);//存储分配失败
S.top=S.base+S.stacksize;
S.stacksize+=STACKINCREMENT;
}
*S.top++=e;
return OK;
} //PUSH
Status Pop(SqStack &S, SElemType &e)
S.base=(SElemType *)malloc (STACK_INIT_SIZE*sizeof(SElemType));
if (!S.base) exit (OVERFLOW);//存储分配失败
S.top=
S.base;
S.stacksize=STACK_INIT_SIZE;
return OK;
if(n==1)
move(x,1,z);
else
{
hanoi(n-1,x,z,y);
move(x,n,z);
hanoi(n-1,y,x,z);
}
}
void main()
{
int n;
printf("请输入n的值: ");
scanf("%d",&n);
hanoi(n,'a','b','c');
}
【实验心得】
void main()
{
int n;
long L;
printf("请输入n的值:");
scanf("%d",&n);
L=Fibonacci(n);
printf("Fibonacci(%d)=%ld\n",n,L);
}
long Fibonacci(int n)
{
long t=1;
if(n==1||n==0)
{
//若栈不空,则删除S的栈顶元素,用e返回其值,并返回OK;否则返回ERROR
if(S.top==S.base)
return ERROR;
e=*--S.top;
return OK;
} //Pop
Status StackEmpty(SqStack S)
{
//若栈不空,返回ERROR,否则返回OK
if (S.top==S.base)
实验二:栈的表示及栈的应用
【实验目的】
(1)掌握栈的顺序存储结构及其基本操作的实现。
(2)掌握栈后进先出的特点,并利用其特性在解决实际问题中的应用。
(3)掌握用递归算法来解决一些问题。
【实验内容】
1.编写程序,对于输入的任意一个非负十进制整数,输出与其等值的八进制数(课本P48)。
2. 编写递归程序,实现以下函数的求解(课本P54)。
4.写好代码
5.编译->链接->调试
【主要代码】进制转换
#include <stdio.h>
#include <stdlib.h>
#define OK 1
#define ERROR 0
#define OVERFLOW -2
typedef int Status;
typedef int SElemType;
#define STACK_INIT_SIZE 100
#define STACKINCREMENT 10
typedef struct {
SElemType *base;
SElemType *top;
int stacksize;
}SqStack;
Status InitStack(SqStack &S){//构造一个空栈
t=t*n;
if(n>1)
t=Fibonacci(n-1)+Fibonacci(n-2);
return t;
}
汉诺塔
#include<stdio.h>
void move(char a,int n,char b)
{
printf("将编号为%d的盘从移到%c上\n",n,a,b);
}
void hanoi(int n,char x,char y,char z){
通过这次实验课程的学习使我对书本上的知识有了更深的了解,更加明白了深层次含义。也明白了书本的重要性以及对基础知识的掌握的重要性的深刻认识。以后的学习生活中我一定汲取这次得到的教训。实事求是,全力以赴。
return OK;
return ERROR;
} //StackEmpty
void main(){
int N,e,M;
Sቤተ መጻሕፍቲ ባይዱStack S;
InitStack(S);
printf("请入一个数字:");
scanf("%d",&M);
printf("需要转换为几进制:");
scanf("%d",&M);
}//InitStack
Status Push(SqStack &S, SElemType e){
//插入元素e为新的栈顶元素
if (S.top-S.base>=S.stacksize)
{ //栈满,追加存储空间
S.base=(SElemType *)realloc(S.base,(S.stacksize+STACKINCREMENT) *sizeof(SElemType));