Crijle高考数学难点突破 难点02 充要条件

合集下载

高考数学复习点拨 充要条件相关知识梳理

高考数学复习点拨 充要条件相关知识梳理

充要条件相关知识梳理一、重、难点透视正确理解和判断充分条件、必要条件、充要条件和非充分非必要以及原命题、逆命题否命题、逆否命题的概念是本节的重点;掌握逻辑推理能力和语言互译能力,对充要条件概念本质的把握是本节的难点.二、知识网络构建三、知识要点梳理1.对概念的理解:充分条件:对于命题“若p 则q”为真时,即如果p 成立,那么q 一定成立,记作“p q ⇒”,称p 为q 的充分条件.意义是说条件p 充分保证了结论q 的成立,换句话说要使结论q 成立,具备条件p 就够了当然q 成立还有其他充分条件.如:6;:2p x q x ≥>,p 是q 成立的充分条件,而:3r x >也是q 成立的充分条件.必要条件:如果q 成立,那么p 成立,即“q p ⇒”,或者如果p 不成立,那么q 一定不成立,也就是“若非p 则非q”,记作 “p q ⌝⇒⌝”,这是就说条件p 是q 的必要条件,意思是说条件p 是q 成立的必须具备的条件.充要条件:如果既有“p q ⇒”,又有“q p ⇒”,则称条件p 是q 成立的充要条件,或称条件q 是p 成立的充要条件,记作“p q ⇔”.2.从集合角度看概念:如果条件p 和结论q 的结果分别可用集合P 、Q 表示,那么①“p q ⇒”,相当于“P Q ⊆”,即 P Q 或 P 、Q即:要使x ∈Q 成立,只要x ∈P 就足够了——有它就行.②“q p ⇒”,相当于“Q P ⊆”,即 Q P 或 P 、Q即:为使x ∈Q 成立,必须要使x ∈P ——缺它不行.③“p q ⇔”,相当于“P Q =”,即 P 、Q即:互为充要的两个条件刻画的是同一事物.3. 当命题“若p 则q”为真时,可表示为p q ⇒,则我们称p 为q 的充分条件,q 是p 的必要条件.这里由p q ⇒,得出p 为q 的充分条件是容易理解的.但为什么说q 是p 的必要条件呢?事实上,与“p q ⇒”等价的逆否命题是“q p ⌝⇒⌝”.它的意义是:若q 不成立,则p 一定不成立.这就是说,q 对于p 是必不可少的,所以说q 是p 的必要条件.4.“充要条件”的含义,实际上与初中所学的“等价于”的含义完全相同.也就是说,如果命题p 等价于命题q ,那么我们说命题p 成立的充要条件是命题q 成立;同时有命题q 成立的充要条件是命题p 成立.5. 对于多个条件的关系判定,可先译出各个条件的相互转化关系的结构图,再作判定.如,“q 是r 的必要条件,p 是q 的必要条件,p 是r 的什么条件?”就可用结构图示法表示为“,p r p q ⇐⇐”即“r p q ⇒⇒”.四、方法点拨1.借助于集合知识加以判断,若P Q ⊆,则P 是Q 的充分条件,Q 是的P 的必要条件;若P Q =,则P 与Q 互为充要条件.2.等价法:“p q ⇒”⇔“q p ⌝⇒⌝”,即原命题和逆否命题是等价的;原命题的逆命题和原命题的否命题是等价的.3.对于充要条件的证明,一般有两种方法:其一,是用分类思想从充分性、必要性两种情况分别加以证明;其二,是逐步找出其成立的充要条件用“⇔”联结.五、特别提醒1.要注意充分条件和充分非必要条件的区别与联系,只要满足p q ⇒,就可以断定p 是q 的充分条件;若有p q ⇒,同时 ,才能说p 是q 的充分条件非必要条件.也就是说,充分非必要条件是充分条件的一种特殊情形.同样地,必要条件和必要条件非充分条件亦有类似的关系.2. “充要条件”有时还可以改用“当且仅当”来表示,其中“当”表示“充分”,“仅当”表示“必要”.如“一元二次方程20ax bx c ++=有实数解的充要条件是240b ac -≥”也可说为“一元二次方程20ax bx c ++=有实数解,当且仅当240b ac -≥”.3.要灵活应用原命题与原命题的逆否命题是等价的,即“p q ⇒”⇔“q p ⌝⇒⌝”,来判断和证明问题,当直接直接判断或证明一个命题(特别是否定形式的命题)较为复杂时,我们应退一步考虑其逆否命题,常常可以收到意想不到的效果,如判断“12x y ≠≠或是3x y +≠的什么条件?”,就应考虑其逆否命题“3x y +=是12x y ==且的什么条件?”,显然是必要不充分条件.六、高考透视充要条件主要是研究命题的条件与结论之间的逻辑关系,它是中学数学最重要的数学概念之一,它是今后的高中乃至大学数学推理学习的基础.在每年的高考中,都会考查此类问题.。

专题02 充要条件问题(解析版)

专题02 充要条件问题(解析版)

专题02 充要条件问题【热点聚焦与扩展】高考对命题及其关系和充分条件、必要条件的考查主要是以小题的形式来考查,由于知识载体丰富,因此题目有一定综合性,属于中、低档题.命题重点主要有三个:一是以函数、方程、三角函数、数列、不等式、立体几何线面关系、平面解析几何等为背景的充分条件和必要条件的判定与探求;二是考查等价转化与化归思想;三是由充分条件和必要条件探求参数的取值范围. 1、定义:(1)对于两个条件,p q ,如果命题“若p 则q ”是真命题,则称条件p 能够推出条件q ,记为p q ⇒,(2)充分条件与必要条件:如果条件,p q 满足p q ⇒,则称条件p 是条件q 的充分条件;称条件q 是条件p 的必要条件2、对于两个条件而言,往往以其中一个条件为主角,考虑另一个条件与它的关系,这种关系既包含充分方面,也包含必要方面.所以在判断时既要判断“若p 则q ”的真假,也要判断“若q 则p ”真假3、两个条件之间可能的充分必要关系:(1)p 能推出q ,但q 推不出p ,则称p 是q 的充分不必要条件 (2)p 推不出q ,但q 能推出p ,则称p 是q 的必要不充分条件(3)p 能推出q ,且q 能推出p ,记为p q ⇔,则称p 是q 的充要条件,也称,p q 等价 (4)p 推不出q ,且q 推不出p ,则称p 是q 的既不充分也不必要条件 4、如何判断两个条件的充分必要关系(1)定义法:若 错误!未找到引用源。

,则错误!未找到引用源。

是错误!未找到引用源。

的充分而不必要条件;若错误!未找到引用源。

,则错误!未找到引用源。

是错误!未找到引用源。

的必要而不充分条件;若错误!未找到引用源。

,则错误!未找到引用源。

是错误!未找到引用源。

的充要条件; 若错误!未找到引用源。

,则错误!未找到引用源。

是错误!未找到引用源。

的既不充分也不必要条件.(2)等价法:即利用p q ⇒与q p ⌝⌝⇒;q p ⇒与p q ⌝⌝⇒;p q ⇔与q p ⌝⌝⇔的等价关系,对于条件或结论是否定形式的命题,一般运用等价法.(3) 充要关系可以从集合的观点理解,即若满足命题p 的集合为M ,满足命题q 的集合为N ,则M 是N 的真子集等价于p 是q 的充分不必要条件,N 是M 的真子集等价于p 是q 的必要不充分条件,M =N 等价于p 和q 互为充要条件,M ,N 不存在相互包含关系等价于p 既不是q 的充分条件也不是q 的必要条件.4、充分条件、必要条件的应用,一般表现在参数问题的求解上.解题时需注意: (1)把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(或不等式组)求解. (2)要注意区间端点值的检验.5、对于充要条件的证明问题,可用直接证法,即分别证明充分性与必要性.此时应注意分清楚哪是条件,哪是结论,充分性即由条件证明结论;而必要性则是由结论成立来证明条件也成立,千万不要张冠李戴;也可用等价法,即进行等价转化,此时应注意的是所得出的必须是前后能互相推出,而不仅仅是“推出”一方面(即由前者可推出后者,但后者不能推出前者).【经典例题】例1【2020年高考浙江卷】已知空间中不过同一点的三条直线m ,n ,l ,则“m ,n ,l 在同一平面”是“m ,n ,l 两两相交”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 【答案】B【解析】由已知,,m n l 不过同一点,当,,m n l 两两相交时,,,m n l 在同一平面内;但当m //n ,l 与它们相交时,,,m n l 也在同一平面内,故选B .例2【2020年高考上海卷】【答案】A【解析】1:q 当0a >,()0f a >,因为函数()f x 单调递减,所以()()()()f x a f x f x f a +<<+,即()()()f x a f x f a +<+,存在0a >,当满足命题1q 时,使命题p 成立,2:q 当00a x =<时,()0f a = ,因为函数()f x 单调递增,所以()()()()f x a f x f x f a +<=+,即()()()f x a f x f a +<+,存在0a <,当满足命题2q 时,命题p 成立,综上可知命题1q 、2q 都是命题p 的充分条件,故选A .例3.(2020·黑龙江萨尔图大庆实验中学高三三模)已知命题:11p x ->,命题:1ln q x ≥,则p 是q 成立的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】B【解析】由–11x >可得,0x <或2x >﹔由ln 1x ≥可得,x e ≥.所以p 是q 成立的必要不充分条件.故选:B.例4.(2020·北京市第五中学高三三模)已知定义域为R 的偶函数f (x )在[0,+∞)上是增函数,且f (12)=0,则“不等式f (log 4x )>0的解集”是“{x |0<x <12}”的( ) A .充分不必要条件 B .充分且必要条件 C .必要不充分条件 D .既不充分也不必要条件【答案】C【解析】因为定义域为R 的偶函数()f x 在[0,)+∞上是增函数,且1()02f =,4(log )0f x ∴>,即41(log )()2f x f >,即41(|log |)()2f x f >,即41|log |2x >,即41log 2x >,或41log 2x <-, 解之得2x >或102x <<,{|2x x ∴>或10}2x <<是1{|0}2x x <<的必要不充分条件,故选:C .例5.(2020·山东潍坊高三三模)设i 为虚数单位,a R ∈,“复数22020i 21ia z =--是纯虚数“是“1a =”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】B【解析】复数()()22020222i 11i 11i 21i 21i 21i 1i 222a a a a z +=-=-=-=-----+是纯虚数, 则21a =,1a =±,1a =±是1a =的必要不充分条件,故选:B.例6.(2020·广州大学附属中学高三三模)已知实数0x >,0y >,则“224x y +≤”是“1xy ≤”的( ) A .充要条件 B .必要不充分条件 C .充分不必要条件 D .既不充分也不必要条件【答案】C【解析】22x y +≥ 且224x y+≤ ,422x y ∴≤≤⇒+≤ ,等号成立的条件是x y =,又x y +≥,0,0x y >>21xy ∴≤⇒≤ ,等号成立的条件是x y =,2241x y xy ∴+≤⇒≤,反过来,当12,3x y ==时,此时1xy ≤,但224x y +> ,不成立, ∴ “224x y +≤”是“1xy ≤”的充分不必要条件.故选:C例7.(2020·宝鸡中学高三三模)已知条件:p k =q :直线2y kx =+与圆221x y +=相切,则q 是p 的( )A .充分必要条件B .必要不充分条件C .充分不必要条件D .既不充分也不必要条件【答案】B【解析】若直线2y kx =+与圆221x y +=相切,则圆心(0,0)到直线20kx y -+=的距离1d ==,即214k +=,23k ∴=,即k =∴q 推不出p ,而p 而以推出q ,q ∴是p 的必要不充分条件.故选:B .例8.(2020·河北新华石家庄二中高三三模)使不等式2x ≤成立的一个必要不充分条件是( ) A .13x +≤ B .12x +≤C .2log (1)1x +≤D .11||2x ≥ 【答案】A【解析】因为||2x ≤22x ⇔-≤≤,|1|342x x +≤⇔-≤≤, |1|231x x +≤⇔-≤≤,2log (1)111x x +≤⇔-<≤,11||2||2x x ≥⇔≤且0x ≠20x ⇔-≤<或02x <≤, 因为{|22}x x -≤≤ 2{|}4x x -≤≤,所以使不等式||2x ≤成立的一个必要不充分条件是42x -≤≤,故选:A .例9.(2020·四川绵阳高三三模)已知数列{}n a 的前n 项和21nn S p =⨯+,则{}n a 为等比数列的充要条件是( ) A .01p << B .1p =-C .2p =-D .1p >【答案】B 【解析】21n n S p =⨯+,当1n =时,112+1a S p ==,当2n 时,()11121212nn n n n n a S S p p p ---=-=⨯+-⨯+=⨯,{}n a 为等比数列,21p p ∴+=1p ∴=-当1p =-时,21nn S =-+, 可得12n n a -=-,由12(2)nn a n a -=≥知{}n a 为等比数列, 故{}n a 为等比数列的充要条件是1p =-,故选:B例10.(2020·天津南开高三三模)已知命题2:230p x x +->,命题:q x a >,且q 的一个必要不充分条件是p ,则实数a 的取值范围是( )A .[)1,+∞B .(],1-∞C .[)1,-+∞D .(],3-∞-【答案】A【解析】命题2:230p x x +->,解之得:3x <-或1x >, 命题:q x a >,且q 的一个必要不充分条件是p , 则:1a ≥,即a 的取值范围是[)1,+∞.故选:A .【精选精练】1.(2020·浙江省兰溪市第三中学高三三模)设0a >,0b >,则“lg()0ab >”是“lg()0a b +>”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】A【解析】因为lg()0ab >,所以1ab >,0a >,0b >,显然,a b 中至少有一个大于1,如果都小于等于1,根据不等式的性质可知:乘积也小于等于1,与乘积大于1不符. 由lg()0a b +>,可得1a b +>,,a b 与1的关系不确定,显然由“lg()0ab >”可以推出lg()0a b +>,但是由lg()0a b +>推不出lg()0ab >,当然可以举特例:如23a b ==,符合1a b +>,但是不符合1ab >,因此“lg()0ab >”是“lg()0a b +>”的充分不必要条件,故本题选A.2.(2020·山东高三三模)“直线l 与平面α内的无数条直线垂直”是“直线l 与平面α垂直”的( ) A .充分条件 B .必要条件C .充要条件D .既非充分条件又非必要条件【答案】B【解析】因为直线l 在平面α内,也可以与平面α内的无数条直线垂直,所以,“直线l 与平面α内的无数条直线垂直”不是“直线l 与平面α垂直”的充分条件;若直线l 与平面α垂直,则直线l 与平面α内的所有直线都垂直。

高考数学难点突破难点(集合思想及应用-充要条件)

高考数学难点突破难点(集合思想及应用-充要条件)

目录高考数学难点突破_难点01__集合思想及应用2高考数学难点突破_难点02__充要条件7难点1集合思想及应用集合是高中数学的基本知识,为历年必考内容之一,主要考查对集合基本概念的认识和理解,以及作为工具,考查集合语言和集合思想的运用.本节主要是帮助考生运用集合的观点,不断加深对集合概念、集合语言、集合思想的理解与应用.●难点磁场(★★★★★)已知集合A ={(x ,y )|x 2+mx -y +2=0},B ={(x ,y )|x -y +1=0,且0≤x ≤2},如果A ∩B ≠∅,求实数m 的取值范围.●案例探究[例1]设A ={(x ,y )|y 2-x -1=0},B ={(x ,y )|4x 2+2x -2y +5=0},C ={(x ,y )|y =kx +b },是否存在k 、b ∈N ,使得(A ∪B )∩C =∅,证明此结论.命题意图:本题主要考查考生对集合及其符号的分析转化能力,即能从集合符号上分辨出所考查的知识点,进而解决问题.属★★★★★级题目.知识依托:解决此题的闪光点是将条件(A ∪B )∩C =∅转化为A ∩C =∅且B ∩C =∅,这样难度就降低了.错解分析:此题难点在于考生对符号的不理解,对题目所给出的条件不能认清其实质内涵,因而可能感觉无从下手.技巧与方法:由集合A 与集合B 中的方程联立构成方程组,用判别式对根的情况进行限制,可得到b 、k 的范围,又因b 、k ∈N ,进而可得值.解:∵(A ∪B )∩C =∅,∴A ∩C =∅且B ∩C =∅∵⎩⎨⎧+=+=bkx y x y 12∴k 2x 2+(2bk -1)x +b 2-1=0∵A ∩C =∅∴Δ1=(2bk -1)2-4k 2(b 2-1)<0∴4k 2-4bk +1<0,此不等式有解,其充要条件是16b 2-16>0,即b 2>1①∵⎩⎨⎧+==+-+bkx y y x x 052242∴4x 2+(2-2k )x +(5+2b )=0∵B ∩C =∅,∴Δ2=(1-k )2-4(5-2b )<0∴k 2-2k +8b -19<0,从而8b <20,即b <2.5②由①②及b ∈N ,得b =2代入由Δ1<0和Δ2<0组成的不等式组,得⎪⎩⎪⎨⎧<--<+-032,018422k k k k ∴k =1,故存在自然数k =1,b =2,使得(A ∪B )∩C =∅.[例2]向50名学生调查对A 、B 两事件的态度,有如下结果:赞成A 的人数是全体的五分之三,其余的不赞成,赞成B 的比赞成A 的多3人,其余的不赞成;另外,对A 、B 都不赞成的学生数比对A 、B 都赞成的学生数的三分之一多1人.问对A 、B 都赞成的学生和都不赞成的学生各有多少人?命题意图:在集合问题中,有一些常用的方法如数轴法取交并集,韦恩图法等,需要考生切实掌握.本题主要强化学生的这种能力.属★★★★级题目.知识依托:解答本题的闪光点是考生能由题目中的条件,想到用韦恩图直观地表示出来.错解分析:本题难点在于所给的数量关系比较错综复杂,一时理不清头绪,不好找线索.技巧与方法:画出韦恩图,形象地表示出各数量关系间的联系.解:赞成A 的人数为50×53=30,赞成B 的人数为30+3=33,如上图,记50名学生组成的集合为U ,赞成事件A 的学生全体为集合A ;赞成事件B 的学生全体为集合B .设对事件A 、B 都赞成的学生人数为x ,则对A 、B 都不赞成的学生人数为3x+1,赞成A 而不赞成B 的人数为30-x ,赞成B 而不赞成A 的人数为33-x .依题意(30-x )+(33-x )+x +(3x+1)=50,解得x =21.所以对A 、B 都赞成的同学有21人,都不赞成的有8人.●锦囊妙计1.解答集合问题,首先要正确理解集合有关概念,特别是集合中元素的三要素;对于用描述法给出的集合{x |x ∈P },要紧紧抓住竖线前面的代表元素x 以及它所具有的性质P ;要重视发挥图示法的作用,通过数形结合直观地解决问题.2.注意空集∅的特殊性,在解题中,若未能指明集合非空时,要考虑到空集的可能性,如A ⊆B ,则有A =∅或A ≠∅两种可能,此时应分类讨论.●歼灭难点训练一、选择题1.(★★★★)集合M ={x |x =42π+kx ,k ∈Z },N ={x |x =22ππ+k ,k ∈Z },则()A.M =N B.M N C.M N D.M ∩N =∅2.(★★★★)已知集合A ={x |-2≤x ≤7},B ={x |m +1<x <2m -1}且B ≠∅,若A ∪B =A ,则()A.-3≤m ≤4B.-3<m <4C.2<m <4D.2<m ≤4二、填空题3.(★★★★)已知集合A ={x ∈R |a x 2-3x +2=0,a ∈R },若A 中元素至多有1个,则a 的取值范围是_________.4.(★★★★)x 、y ∈R ,A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|bya x -=1,a >0,b >0},当A ∩B 只有一个元素时,a ,b 的关系式是_________.三、解答题5.(★★★★★)集合A ={x |x 2-ax +a 2-19=0},B ={x |log 2(x 2-5x +8)=1},C ={x |x 2+2x -8=0},求当a 取什么实数时,A ∩B ∅和A ∩C =∅同时成立.6.(★★★★★)已知{a n }是等差数列,d 为公差且不为0,a 1和d 均为实数,它的前n 项和记作S n ,设集合A ={(a n ,n S n )|n ∈N *},B ={(x ,y )|41x 2-y 2=1,x ,y ∈R }.试问下列结论是否正确,如果正确,请给予证明;如果不正确,请举例说明.(1)若以集合A 中的元素作为点的坐标,则这些点都在同一条直线上;(2)A ∩B 至多有一个元素;(3)当a 1≠0时,一定有A ∩B ≠∅.7.(★★★★)已知集合A ={z ||z -2|≤2,z ∈C },集合B ={w |w =21zi +b ,b ∈R },当A ∩B =B 时,求b 的值.8.(★★★★)设f (x )=x 2+px +q ,A ={x |x =f (x )},B ={x |f [f (x )]=x }.(1)求证:A ⊆B ;(2)如果A ={-1,3},求B .参考答案难点磁场解:由⎩⎨⎧≤≤=+-=+-+)20(01022x y x y mx x 得x 2+(m -1)x +1=0①∵A ∩B ≠∅∴方程①在区间[0,2]上至少有一个实数解.首先,由Δ=(m -1)2-4≥0,得m ≥3或m ≤-1,当m ≥3时,由x 1+x 2=-(m -1)<0及x 1x 2=1>0知,方程①只有负根,不符合要求.当m ≤-1时,由x 1+x 2=-(m -1)>0及x 1x 2=1>0知,方程①只有正根,且必有一根在区间(0,1]内,从而方程①至少有一个根在区间[0,2]内.故所求m 的取值范围是m ≤-1.歼灭难点训练一、1.解析:对M 将k 分成两类:k =2n 或k =2n +1(n ∈Z ),M ={x |x =n π+4π,n ∈Z }∪{x |x =n π+43π,n ∈Z },对N 将k 分成四类,k =4n 或k =4n +1,k =4n +2,k =4n +3(n ∈Z ),N ={x |x =n π+2π,n∈Z }∪{x |x =n π+43π,n ∈Z }∪{x |x =n π+π,n ∈Z }∪{x |x =n π+45π,n ∈Z }.答案:C2.解析:∵A ∪B =A ,∴B ⊆A,又B ≠∅,∴⎪⎩⎪⎨⎧-<+≤--≥+12171221m m m m 即2<m ≤4.答案:D 二、3.a =0或a ≥894.解析:由A ∩B 只有1个交点知,圆x 2+y 2=1与直线b ya x -=1相切,则1=22ba ab +,即ab =22b a +.答案:ab =22b a +三、5.解:log 2(x 2-5x +8)=1,由此得x 2-5x +8=2,∴B ={2,3}.由x 2+2x -8=0,∴C ={2,-4},又A ∩C =∅,∴2和-4都不是关于x 的方程x 2-ax +a 2-19=0的解,而A ∩B ∅,即A ∩B ≠∅,∴3是关于x 的方程x 2-ax +a 2-19=0的解,∴可得a =5或a =-2.当a =5时,得A ={2,3},∴A ∩C ={2},这与A ∩C =∅不符合,所以a =5(舍去);当a =-2时,可以求得A ={3,-5},符合A ∩C =∅,A ∩B ∅,∴a =-2.6.解:(1)正确.在等差数列{a n }中,S n =2)(1n a a n +,则21=n S n (a 1+a n ),这表明点(a n ,nS n )的坐标适合方程y 21=(x +a 1),于是点(a n ,n S n )均在直线y =21x +21a 1上.(2)正确.设(x ,y )∈A ∩B ,则(x ,y )中的坐标x ,y 应是方程组⎪⎪⎩⎪⎪⎨⎧=-+=1412121221y x a x y 的解,由方程组消去y 得:2a 1x +a 12=-4(*),当a 1=0时,方程(*)无解,此时A ∩B =∅;当a 1≠0时,方程(*)只有一个解x =12124a a --,此时,方程组也只有一解⎪⎪⎩⎪⎪⎨⎧-=--=1211214424a a y a a y ,故上述方程组至多有一解.∴A ∩B 至多有一个元素.(3)不正确.取a 1=1,d =1,对一切的x ∈N *,有a n =a 1+(n -1)d =n >0,nS n>0,这时集合A 中的元素作为点的坐标,其横、纵坐标均为正,另外,由于a 1=1≠0.如果A ∩B ≠∅,那么据(2)的结论,A ∩B 中至多有一个元素(x 0,y 0),而x 0=5224121-=--a a <0,y 0=43201=+x a <0,这样的(x 0,y 0)∉A ,产生矛盾,故a 1=1,d =1时A ∩B =∅,所以a 1≠0时,一定有A ∩B ≠∅是不正确的.7.解:由w =21zi +b 得z =ib w 22-,∵z ∈A ,∴|z -2|≤2,代入得|ibw 22--2|≤2,化简得|w -(b +i )|≤1.∴集合A 、B 在复平面内对应的点的集合是两个圆面,集合A 表示以点(2,0)为圆心,半径为2的圆面,集合B 表示以点(b ,1)为圆心,半径为1的圆面.又A ∩B =B ,即B ⊆A ,∴两圆内含.因此22)01()2(-+-b ≤2-1,即(b -2)2≤0,∴b =2.8.(1)证明:设x 0是集合A 中的任一元素,即有x 0∈A .∵A ={x |x =f (x )},∴x 0=f (x 0).即有f [f (x 0)]=f (x 0)=x 0,∴x 0∈B ,故A ⊆B .(2)证明:∵A ={-1,3}={x |x 2+px +q =x },∴方程x 2+(p -1)x +q =0有两根-1和3,应用韦达定理,得⎩⎨⎧-=-=⇒⎩⎨⎧=⨯---=+-313)1(),1(31q p q p ∴f (x )=x 2-x -3.于是集合B 的元素是方程f [f (x )]=x ,也即(x 2-x -3)2-(x 2-x -3)-3=x (*)的根.将方程(*)变形,得(x 2-x -3)2-x 2=0解得x =1,3,3,-3.故B ={-3,-1,3,3}.难点2充要条件的判定充分条件、必要条件和充要条件是重要的数学概念,主要用来区分命题的条件p 和结论q 之间的关系.本节主要是通过不同的知识点来剖析充分必要条件的意义,让考生能准确判定给定的两个命题的充要关系.●难点磁场(★★★★★)已知关于x 的实系数二次方程x 2+ax +b =0有两个实数根α、β,证明:|α|<2且|β|<2是2|a |<4+b 且|b |<4的充要条件.●案例探究[例1]已知p :|1-31-x |≤2,q :x 2-2x +1-m 2≤0(m >0),若⌐p 是⌐q 的必要而不充分条件,求实数m 的取值范围.命题意图:本题以含绝对值的不等式及一元二次不等式的解法为考查对象,同时考查了充分必要条件及四种命题中等价命题的应用,强调了知识点的灵活性.知识依托:本题解题的闪光点是利用等价命题对题目的文字表述方式进行转化,使考生对充要条件的难理解变得简单明了.错解分析:对四种命题以及充要条件的定义实质理解不清晰是解此题的难点,对否命题,学生本身存在着语言理解上的困难.技巧与方法:利用等价命题先进行命题的等价转化,搞清晰命题中条件与结论的关系,再去解不等式,找解集间的包含关系,进而使问题解决.解:由题意知:命题:若⌐p 是⌐q 的必要而不充分条件的等价命题即逆否命题为:p 是q 的充分不必要条件.p :|1-31-x |≤2⇒-2≤31-x -1≤2⇒-1≤31-x ≤3⇒-2≤x ≤10q :x 2-2x +1-m 2≤0⇒[x -(1-m )][x -(1+m )]≤0*∵p 是q 的充分不必要条件,∴不等式|1-31-x |≤2的解集是x 2-2x +1-m 2≤0(m >0)解集的子集.又∵m >0∴不等式*的解集为1-m ≤x ≤1+m∴⎩⎨⎧≥≥⇒⎩⎨⎧≥+-≤-9110121m m m m ,∴m ≥9,∴实数m 的取值范围是[9,+∞).[例2]已知数列{a n }的前n 项S n =p n +q (p ≠0,p ≠1),求数列{a n }是等比数列的充要条件.命题意图:本题重点考查充要条件的概念及考生解答充要条件命题时的思维的严谨性.知识依托:以等比数列的判定为主线,使本题的闪光点在于抓住数列前n 项和与通项之间的递推关系,严格利用定义去判定.错解分析:因为题目是求的充要条件,即有充分性和必要性两层含义,考生很容易忽视充分性的证明.技巧与方法:由a n =⎩⎨⎧≥-=-)2()1(11n S S n S n n关系式去寻找a n 与a n +1的比值,但同时要注意充分性的证明.解:a 1=S 1=p +q .当n ≥2时,a n =S n -S n -1=p n -1(p -1)∵p ≠0,p ≠1,∴)1()1(1---p p p p n n =p若{a n }为等比数列,则nn a a a a 112+==p ∴qp p p +-)1(=p ,∵p ≠0,∴p -1=p +q ,∴q =-1这是{a n }为等比数列的必要条件.下面证明q =-1是{a n }为等比数列的充分条件.当q =-1时,∴S n =p n -1(p ≠0,p ≠1),a 1=S 1=p -1当n ≥2时,a n =S n -S n -1=p n -p n -1=p n -1(p -1)∴a n =(p -1)p n -1(p ≠0,p ≠1)211)1()1(-----=n n n n p p p p a a =p 为常数∴q =-1时,数列{a n }为等比数列.即数列{a n }是等比数列的充要条件为q =-1.●锦囊妙计本难点所涉及的问题及解决方法主要有:(1)要理解“充分条件”“必要条件”的概念:当“若p 则q ”形式的命题为真时,就记作p ⇒q ,称p 是q 的充分条件,同时称q 是p 的必要条件,因此判断充分条件或必要条件就归结为判断命题的真假.(2)要理解“充要条件”的概念,对于符号“⇔”要熟悉它的各种同义词语:“等价于”,“当且仅当”,“必须并且只需”,“……,反之也真”等.(3)数学概念的定义具有相称性,即数学概念的定义都可以看成是充要条件,既是概念的判断依据,又是概念所具有的性质.(4)从集合观点看,若A ⊆B ,则A 是B 的充分条件,B 是A 的必要条件;若A =B ,则A 、B 互为充要条件.(5)证明命题条件的充要性时,既要证明原命题成立(即条件的充分性),又要证明它的逆命题成立(即条件的必要性).●歼灭难点训练一、选择题1.(★★★★)函数f (x )=x |x +a |+b 是奇函数的充要条件是()A.ab =0 B.a +b =0 C.a =b D.a 2+b 2=02.(★★★★)“a =1”是函数y =cos 2ax -sin 2ax 的最小正周期为“π”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既非充分条件也不是必要条件二、填空题3.(★★★★)a =3是直线ax +2y +3a =0和直线3x +(a -1)y =a -7平行且不重合的_________.4.(★★★★)命题A :两曲线F (x ,y )=0和G (x ,y )=0相交于点P (x 0,y 0),命题B :曲线F (x ,y )+λG (x ,y )=0(λ为常数)过点P (x 0,y 0),则A 是B 的__________条件.三、解答题5.(★★★★★)设α,β是方程x 2-ax +b =0的两个实根,试分析a >2且b >1是两根α、β均大于1的什么条件?6.(★★★★★)已知数列{a n }、{b n }满足:b n =nna a a n+++++++ 321221,求证:数列{a n }成等差数列的充要条件是数列{b n }也是等差数列.7.(★★★★★)已知抛物线C :y =-x 2+mx -1和点A (3,0),B (0,3),求抛物线C 与线段AB 有两个不同交点的充要条件.8.(★★★★★)p :-2<m <0,0<n <1;q :关于x 的方程x 2+mx +n =0有2个小于1的正根,试分析p 是q 的什么条件.(充要条件)参考答案难点磁场证明:(1)充分性:由韦达定理,得|b |=|α·β|=|α|·|β|<2×2=4.设f (x )=x 2+ax +b ,则f (x )的图象是开口向上的抛物线.又|α|<2,|β|<2,∴f (±2)>0.即有⇒⎩⎨⎧>+->++024024b a b a 4+b >2a >-(4+b )又|b |<4⇒4+b >0⇒2|a |<4+b (2)必要性:由2|a |<4+b ⇒f (±2)>0且f (x )的图象是开口向上的抛物线.∴方程f (x )=0的两根α,β同在(-2,2)内或无实根.∵α,β是方程f (x )=0的实根,∴α,β同在(-2,2)内,即|α|<2且|β|<2.歼灭难点训练一、1.解析:若a 2+b 2=0,即a =b =0,此时f (-x )=(-x )|x +0|+0=-x ·|x |=-(x |x +0|+b )=-(x |x +a |+b )=-f (x ).∴a 2+b 2=0是f (x )为奇函数的充分条件,又若f (x )=x |x +a |+b 是奇函数,即f (-x )=(-x )|(-x )+a |+b =-f (x ),则必有a =b =0,即a 2+b 2=0.∴a 2+b 2=0是f (x )为奇函数的必要条件.答案:D2.解析:若a =1,则y =cos 2x -sin 2x =cos2x ,此时y 的最小正周期为π.故a =1是充分条件,反过来,由y =cos 2ax -sin 2ax =cos2ax .故函数y 的最小正周期为π,则a =±1,故a =1不是必要条件.答案:A二、3.解析:当a =3时,直线l 1:3x +2y +9=0;直线l 2:3x +2y +4=0.∵l 1与l 2的A 1∶A 2=B 1∶B 2=1∶1,而C 1∶C 2=9∶4≠1,即C 1≠C 2,∴a =3⇔l 1∥l 2.答案:充要条件4.解析:若P (x 0,y 0)是F (x ,y )=0和G (x ,y )=0的交点,则F (x 0,y 0)+λG (x 0,y 0)=0,即F (x ,y )+λG (x ,y )=0,过P (x 0,y 0);反之不成立.答案:充分不必要三、5.解:根据韦达定理得a =α+β,b =αβ.判定的条件是p :⎩⎨⎧>>12b a 结论是q :⎩⎨⎧>>11βα(注意p 中a 、b 满足的前提是Δ=a 2-4b ≥0)(1)由⎩⎨⎧>>11βα,得a =α+β>2,b =αβ>1,∴q ⇒p(2)为证明pq ,可以举出反例:取α=4,β=21,它满足a =α+β=4+21>2,b =αβ=4×21=2>1,但q 不成立.综上讨论可知a >2,b >1是α>1,β>1的必要但不充分条件.6.证明:①必要性:设{a n }成等差数列,公差为d ,∵{a n }成等差数列.dn a n n n n d n a n na a a b n n 32)1(1])1(3221[)21(32121121⋅-+=+++-++⋅+⋅++++=+++++++=∴ 从而b n +1-b n =a 1+n ·32d -a 1-(n -1)32d =32d 为常数.故{b n }是等差数列,公差为32d .②充分性:设{b n }是等差数列,公差为d ′,则b n =(n -1)d ′∵b n (1+2+…+n )=a 1+2a 2+…+na n ①b n -1(1+2+…+n -1)=a 1+2a 2+…+(n -1)a n ②①-②得:na n =2)1(2)1(--+n n b n n n b n -1∴a n =d n b d n b n d n b n b n b n n n '⋅-+='-+--'-++=--+-23)1(])2([21])1([2121211111,从而得a n +1-a n =23d ′为常数,故{a n }是等差数列.综上所述,数列{a n }成等差数列的充要条件是数列{b n }也是等差数列.7.解:①必要性:由已知得,线段AB 的方程为y =-x +3(0≤x ≤3)由于抛物线C 和线段AB 有两个不同的交点,所以方程组⎩⎨⎧≤≤+-=-+-=)30(312x x y mx x y *有两个不同的实数解.消元得:x 2-(m +1)x +4=0(0≤x ≤3)设f (x )=x 2-(m +1)x +4,则有⎪⎪⎪⎩⎪⎪⎪⎨⎧<+<≤<⇒≥++-=≥=>⨯-+=∆3210310304)1(39)3(04)0(044)1(2m m m f f m ②充分性:当3<x ≤310时,x 1=2)1(1216)1(122+-+>-+-+m m m m >03216)1310(1310216)1(1222=-+++≤-+-+=m m x ∴方程x 2-(m +1)x +4=0有两个不等的实根x 1,x 2,且0<x 1<x 2≤3,方程组*有两组不同的实数解.因此,抛物线y =-x 2+mx -1和线段AB 有两个不同交点的充要条件3<m ≤310.8.解:若关于x 的方程x 2+mx +n =0有2个小于1的正根,设为x 1,x 2.则0<x 1<1,0<x 2<1,有0<x 1+x 2<2且0<x 1x 2<1,根据韦达定理:⎩⎨⎧<<<-<⎩⎨⎧=-=+10202121n m n x x m x x 得有-2<m <0;0<n <1即有q ⇒p .反之,取m =-21491,02131,21,312⨯-=∆=+-=x x n <0方程x 2+mx +n =0无实根,所以p q综上所述,p 是q 的必要不充分条件.。

高三数学充分必要条件的知识点

高三数学充分必要条件的知识点

高三数学充分必要条件的知识点高三数学充分必要条件的知识点几年前我在联合国总部看到这么一句宣传语:“未来的文盲就是那些没有学会怎样学习的人”。

这是联合国教科文组织提出的一句口号,它的含义就是要未来人关注学习方法,掌握学习策略。

今天,我们在座的高三学生,在最后阶段的高考复习中,又该如何把握复习导向,掌握复习策略呢?一、百米冲刺阶段,学好高中数学的几个充分条件与必要条件1、一个充分条件——浓厚的兴趣与动力数学是如此的重要,生活中的股票、存款利率、增长率、几个百分点、最少用料、最大利润、风险决策……哪一样不与数学有关。

就高考而言,数学占150分,特殊的地位决定了应有特殊的驱动力,尤其要培养对数学的兴趣与感觉,要创造一个一个小小的成功,因为兴趣总是与成功联系在一起的,如听懂课,掌握一种好的解题方法,解出一道道数学难题等。

可是有的同学因基础不扎实,就是对数学没感觉,怎么办?我的建议是,假喜真干,就是假装喜欢并且付出实际行动。

美国著名教育家戴尔·卡耐基提出:“假如你‘假装’对工作、对学习感兴趣,这态度往往就使你的兴趣变成真的,这种态度还能减少疲劳、紧张和忧虑。

”所以,心态的改变所产生的`力量,神妙无比。

2、几个必要条件——“双基”,努力,熟练必须扎实基础,一个“双基”很差的学生,数学能力无从谈起,对这部分基础欠缺的同学就要降低复习重心。

现在的高考容易题、中等题、难题的比例为4:5:1,也表明了基础知识的重要性,这就要努力,要求知识点到边到角。

大量的调查分析表明,数学高考中,考生用于思考的时间最多只有85分钟,此等情势逼迫你必须熟练。

二、解读考纲变化高考大纲是高考命题的依据,它反映当年高考考什么、怎么考、考多难。

与2005年考纲比较可以看出,2006年数学高考大体应与2005年持平。

在高考要求上基本相同,只是在具体表述上略有调整。

可以预见,今年的高考在难度上一般不会超过去年,总体上应保持稳定。

在考试要求上的几处变化理科:将2005年的了解“正弦函数,余弦函数,正切函数的图像和性质”改为理解“正弦函数,余弦函数,正切函数的图像和性质”。

高三数学充要条件2

高三数学充要条件2
复习提问:
1.如何理解: (1) p是q的充分条件 (2) p是q的必要条件 由条件p 结论q, 则条件p是结论q成立的充分条件; 由结论q 条件p,
则条件p是结论成立的必要条件
2.指出下列各命题中,p是q的什么条件? (1) p:两个角是对顶角,
(2) p: xy=0, q: x=0
必要条件
q:两个角相等
充分条件
(3) p:内错角相等, (4) p:偶数,
q:两直线平行
充分、必要条件
q:能被,q:整数a是2和3 的倍数. 请问:p是q的什么条件? q是p的什么条件? 既充分又必要条件
一.定义: 若p q, 则条件p是结论q成立的 充分必要条件(简称充要条件) 说明( : 1)若p (2)符号“ “p (或p等价于q) 二.如何判断命题中的条件是结论的充要条件 q,则p与q互为充要条件 ”称为等价符号, q且p q”
q”表示:“p
例1 指出下列各组命题中,p是q的什么条件 (在“充分而不必要”、“必要而不充分”、 “充要”、“既不充分也不必要”中选一种) (1)p:(x-2)(x-3)=0; q:x-2=0 必要不充分 (2)P :同位角相等; q:两直线平行 充要 (3)p:x=3; q:x2=9 充分不必要 (4)p:四边形的对角线相等; q:四边形是平 行四边形 既不充分又不必要
么重要的场合,不习惯也必须要习惯。待主仆三人急匆匆地收拾妥当出了院门,全都直接傻眼了!院外三条路,哪壹条路是通 向福晋的院子?另外,爷还回不回来这里?是自己单独过去,还是等爷回来壹起去福晋那里?本来就心急火撩地,又有这么壹 堆的问题,三个人顿时觉得叫天天不应,叫地地不灵。正在焦急之际,冰凝只听身后壹个声音响起:“侧福晋吉祥!”三个人 回头壹看,只见壹个太监模样的男子,正单腿跪地,俯首叩安呢。冰凝壹阵诧异,搞不清这个太监是从哪里来的,只好强压下 慌乱的心情,故装镇静地答道:“公公请起,您……”“回禀侧福晋,奴才是您的院子--怡然居的总管事,奴才名叫方小柱, 主子们壹般管奴才就叫小柱子。”“噢,是方公公。”“侧福晋客气了。本来是正要给您去请安的,可是见您这么急着出门, 怕是有什么事情需要奴才伺候,这就赶快追出来了。”“噢,是啊,我们这是要给福晋去敬茶,不知道福晋的院子在哪里,另 外,是不是要等爷回来?”冰凝的说话声音越来越小,到最后,“是不是要等爷回来”这几个字几乎要听不到了。小柱子确实 是要给新来的侧福晋请安,却见三个人着急忙慌地从他面前走过,根本就没有注意到他。他当时就猜测,估计她们三个人这是 要给福晋去敬茶,果不其然,还真就是这么回事儿。看着眼前这个年龄还没有自己大的小主子,而且爷过来的时候可是都后半 夜了,早晨又壹个人先走了,明摆着这又是壹个不得宠的侧福晋。想到这里,他不由自主地就动了恻隐之心,于是上前壹步说 道:“福晋在霞光苑,奴才这就带侧福晋过去,另外,爷如果回了朗吟阁的话,应该是直接去福晋那里了。还有,恕奴才多嘴, 您带壹个丫环过去就可以。”“多谢方公公提点,冰凝感激不尽。”“侧福晋您千万不要这么客气,时间不早了,咱们还是赶 快先走吧。”“那好,就由吟雪跟我同去,月影你先回去收拾收拾屋子。”第壹卷 第六十五章 敬茶 望着门口出现的年妹妹, 众人都全都惊呆了,宋格格甚至情不自禁地脱口而出:“太美了!”冰凝确实是太美了,美得就像是从画卷上走下来,而不应 该在凡尘中,活生生地出现在众人的眼前。大家也就明白了,为什么王爷巴巴地向皇上讨来做了第壹侧福晋。那种美,如同出 污泥而不染的荷花,是不容亵渎脱俗之美;如同雪域天山上的雪莲,是不染尘埃的圣洁之美。就连这府中最美的李淑清,也不 得不暗自感慨,如果自己是百里挑壹,这年氏绝对就是万里挑壹了。在这里,只有嫡福晋的位份比冰凝大,因此,她只需向雅 思琦敬茶即可。敬茶的规矩,冰凝早就烂熟于心,全套程序做下来,有板有眼,丝毫不差,却是把王爷小小地震惊了壹下。他 是最讲规矩的人,整个

黄冈中学高考数学典型例题目2充要条件的判定

黄冈中学高考数学典型例题目2充要条件的判定

黄冈中学高考数学典型例题目2充要条件的判定黄冈中学高考数学典型例题详解充要条件的判定每临大事,必有静气;静则神明,疑难冰释;积极准备,坦然面对;最佳发挥,舍我其谁?体会绝妙解题思路建立强大数学模型感受数学思想魅力品味学习数学快乐充分条件、必要条件和充要条件是重要的数学概念,主要用来区分命题的条件p和结论q之间的关系.本节主要是通过不同的知识点来剖析充分必要条件的意义,让考生能准确判定给定的两个命题的充要关系.●难点磁场(★★★★★)已知关于x的实系数二次方程x2+ax+b=0有两个实数根α、β,证明:|α|<2且|β|<2是2|a|<4+b且|b|<4的充要条件.●案例探究[例1]已知p:|1-31x|≤2,q:x2-2x+1-m2≤0(m>0),若⌐p是⌐q的必要而不充分条件,求实数m的取值范围.命题意图:本题以含绝对值的不等式及一元二次不等式的解法为考查对象,同时考查了充分必要条件及四种命题中等价命题的应用,强调了知识点的灵活性.知识依托:本题解题的闪光点是利用等价命题对题目的文字表述方式进行转化,使考生对充要条件的难理解变得简单明了.错解分析:对四种命题以及充要条件的定义实质理解不清晰是解此题的难点,对否命题,学生本身存在着语言理解上的困难.技巧与方法:利用等价命题先进行命题的等价转化,搞清晰命题中条件与结论的关系,再去解不等式,找解集间的包含关系,进而使问题解决.解:由题意知:命题:若⌐p 是⌐q 的必要而不充分条件的等价命题即逆否命题为:p 是q 的充分不必要条件.p :|1-31-x|≤2⇒-2≤31-x-1≤2⇒-1≤31-x ≤3⇒-2≤x ≤10q :x 2-2x +1-m 2≤0⇒[x -(1-m )][x-(1+m )]≤0 *∵p 是q 的充分不必要条件,∴不等式|1-31-x |≤2的解集是x 2-2x +1-m 2≤0(m >0)解集的子集.又∵m >0∴不等式*的解集为1-m ≤x ≤1+m∴⎩⎨⎧≥≥⇒⎩⎨⎧≥+-≤-9110121m m m m ,∴m ≥9, ∴实数m 的取值范围是[9,+∞).[例2]已知数列{a n }的前n 项S n =p n +q (p≠0,p ≠1),求数列{a n }是等比数列的充要条件.命题意图:本题重点考查充要条件的概念及考生解答充要条件命题时的思维的严谨性.知识依托:以等比数列的判定为主线,使本题的闪光点在于抓住数列前n 项和与通项之间的递推关系,严格利用定义去判定.错解分析:因为题目是求的充要条件,即有充分性和必要性两层含义,考生很容易忽视充分性的证明.技巧与方法:由a n =⎩⎨⎧≥-=-)2()1(11n S S n S n n 关系式去寻找a n 与a n +1的比值,但同时要注意充分性的证明.解:a 1=S 1=p +q .当n ≥2时,a n =S n -S n -1=p n -1(p -1)∵p ≠0,p ≠1,∴)1()1(1---p p p p n n =p若{a n }为等比数列,则n n a a aa112+==p ∴q p p p +-)1(=p , ∵p ≠0,∴p -1=p +q ,∴q =-1这是{a n }为等比数列的必要条件.下面证明q =-1是{a n }为等比数列的充分条件.当q =-1时,∴S n =p n -1(p ≠0,p ≠1),a 1=S 1=p -1当n ≥2时,a n =S n -S n -1=p n -p n -1=p n -1(p-1)∴a n =(p -1)p n -1 (p ≠0,p ≠1)211)1()1(-----=n n n n p p p p a a =p 为常数∴q =-1时,数列{a n }为等比数列.即数列{a n }是等比数列的充要条件为q =-1.●锦囊妙计本难点所涉及的问题及解决方法主要有:(1)要理解“充分条件”“必要条件”的概念:当“若p 则q ”形式的命题为真时,就记作p ⇒q ,称p 是q 的充分条件,同时称q 是p 的必要条件,因此判断充分条件或必要条件就归结为判断命题的真假.(2)要理解“充要条件”的概念,对于符号“⇔”要熟悉它的各种同义词语:“等价于”,“当且仅当”,“必须并且只需”,“……,反之也真”等.(3)数学概念的定义具有相称性,即数学概念的定义都可以看成是充要条件,既是概念的判断依据,又是概念所具有的性质.(4)从集合观点看,若A B,则A是B 的充分条件,B是A的必要条件;若A=B,则A、B互为充要条件.(5)证明命题条件的充要性时,既要证明原命题成立(即条件的充分性),又要证明它的逆命题成立(即条件的必要性).●歼灭难点训练一、选择题1.(★★★★)函数f(x)=x|x+a|+b是奇函数的充要条件是( )A.ab=0B.a+b=0C.a=bD.a2+b2=02.(★★★★)“a=1”是函数y=cos2ax -sin2ax的最小正周期为“π”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既非充分条件也不是必要条件二、填空题3.(★★★★)a =3是直线ax +2y +3a =0和直线3x +(a -1)y =a -7平行且不重合的_________.4.(★★★★)命题A :两曲线F (x ,y )=0和G (x ,y )=0相交于点P (x 0,y 0),命题B :曲线F (x ,y )+λG (x ,y )=0(λ为常数)过点P (x 0,y 0),则A 是B 的__________条件.三、解答题5.(★★★★★)设α,β是方程x 2-ax +b =0的两个实根,试分析a >2且b >1是两根α、β均大于1的什么条件?6.(★★★★★)已知数列{a n }、{b n }满足:b n =n na a an+++++++ 321221,求证:数列{a n }成等差数列的充要条件是数列{b n }也是等差数列.7.(★★★★★)已知抛物线C :y =-x 2+mx -1和点A (3,0),B (0,3),求抛物线C 与线段AB 有两个不同交点的充要条件.8.(★★★★★)p :-2<m <0,0<n <1;q :关于x 的方程x 2+mx +n =0有2个小于1的正根,试分析p 是q 的什么条件.(充要条件)参考答案难点磁场证明:(1)充分性:由韦达定理,得|b |=|α·β|=|α|·|β|<2×2=4.设f (x )=x 2+ax +b ,则f (x )的图象是开口向上的抛物线.又|α|<2,|β|<2,∴f (±2)>0.即有⇒⎩⎨⎧>+->++024024b a b a 4+b >2a >-(4+b ) 又|b |<4⇒4+b >0⇒2|a |<4+b(2)必要性:由2|a |<4+b ⇒f (±2)>0且f (x )的图象是开口向上的抛物线.∴方程f (x )=0的两根α,β同在(-2,2)内或无实根.∵α,β是方程f(x)=0的实根,∴α,β同在(-2,2)内,即|α|<2且|β|<2.歼灭难点训练一、1.解析:若a2+b2=0,即a=b=0,此时f(-x)=(-x)|x+0|+0=-x·|x|=-(x|x+0|+b)=-(x|x+a|+b)=-f(x).∴a2+b2=0是f(x)为奇函数的充分条件,又若f(x)=x|x+a|+b是奇函数,即f(-x)= (-x)|(-x)+a|+b=-f(x),则必有a=b=0,即a2+b2=0.∴a2+b2=0是f(x)为奇函数的必要条件.答案:D2.解析:若a=1,则y=cos2x-sin2x=cos2x,此时y的最小正周期为π.故a=1是充分条件,反过来,由y=cos2ax-sin2ax=cos2ax.故函数y的最小正周期为π,则a=±1,故a=1不是必要条件.答案:A二、3.解析:当a =3时,直线l 1:3x +2y +9=0;直线l 2:3x +2y +4=0.∵l 1与l 2的A 1∶A 2=B 1∶B 2=1∶1,而C 1∶C 2=9∶4≠1,即C 1≠C 2,∴a =3⇔l 1∥l 2.答案:充要条件4.解析:若P (x 0,y 0)是F (x ,y )=0和G (x ,y )=0的交点,则F (x 0,y 0)+λG (x 0,y 0)=0,即F (x ,y )+λG (x ,y )=0,过P (x 0,y 0);反之不成立.答案:充分不必要 三、5.解:根据韦达定理得a =α+β,b =αβ.判定的条件是p :⎩⎨⎧>>12b a 结论是q :⎩⎨⎧>>11βα(注意p 中a 、b 满足的前提是Δ=a 2-4b ≥0)(1)由⎩⎨⎧>>11βα,得a =α+β>2,b =αβ>1,∴q ⇒p(2)为证明p q ,可以举出反例:取α=4,β=21,它满足a =α+β=4+21>2,b =αβ=4×21=2>1,但q 不成立.综上讨论可知a >2,b >1是α>1,β>1的必要但不充分条件.6.证明:①必要性:设{a n }成等差数列,公差为d ,∵{a n }成等差数列.dn a n n n n d n a n na a a b n n 32)1(1])1(3221[)21(32121121⋅-+=+++-++⋅+⋅++++=+++++++=∴ 从而b n +1-b n =a 1+n ·32d -a 1-(n -1) 32d =32d 为常数. 故{b n }是等差数列,公差为32d . ②充分性:设{b n }是等差数列,公差为d ′,则b n =(n -1)d ′∵b n (1+2+…+n )=a 1+2a 2+…+na n①b n -1(1+2+…+n -1)=a 1+2a 2+…+(n -1)a n②①-②得:na n =2)1(2)1(--+n n b n n nb n -1∴a n =d n b d n b n d n b n b n b n n n '⋅-+='-+--'-++=--+-23)1(])2([21])1([2121211111,从而得a n +1-a n =23d ′为常数,故{a n }是等差数列.综上所述,数列{a n }成等差数列的充要条件是数列{b n }也是等差数列.7.解:①必要性: 由已知得,线段AB 的方程为y =-x +3(0≤x ≤3)由于抛物线C 和线段AB 有两个不同的交点,所以方程组⎩⎨⎧≤≤+-=-+-=)30(312x x y mx x y *有两个不同的实数解.消元得:x 2-(m +1)x +4=0(0≤x ≤3)设f (x )=x 2-(m +1)x +4,则有⎪⎪⎪⎩⎪⎪⎪⎨⎧<+<≤<⇒≥++-=≥=>⨯-+=∆3210310304)1(39)3(04)0(044)1(2m m m f f m②充分性: 当3<x ≤310时, x 1=2)1(1216)1(122+-+>-+-+m m m m >03216)1310(1310216)1(1222=-+++≤-+-+=m m x∴方程x 2-(m +1)x +4=0有两个不等的实根x 1,x 2,且0<x 1<x 2≤3,方程组*有两组不同的实数解.因此,抛物线y =-x 2+mx -1和线段AB 有两个不同交点的充要条件3<m ≤310. 8.解:若关于x 的方程x 2+mx +n =0有2个小于1的正根,设为x 1,x 2.则0<x 1<1,0<x 2<1,有0<x 1+x 2<2且0<x 1x 2<1,根据韦达定理:⎩⎨⎧<<<-<⎩⎨⎧=-=+10202121n m n x x m x x 得 有-2<m <0;0<n <1即有q ⇒p .反之,取m =-21491,02131,21,312⨯-=∆=+-=x xn <0方程x 2+mx +n =0无实根,所以p q综上所述,p 是q 的必要不充分条件.再三体会下解题思路哈。

高中数学关于充要条件的概念

高中数学关于充要条件的概念

高中数学关于充要条件的概念高二数学中学到的充要条件是证明题的一种常考类型,下面店铺的小编将为大家带来高中数学关于充要条件的概念的介绍,希望能够帮助到大家。

高中数学关于充要条件的概念介绍(1)先看“充分条件和必要条件”当命题“若p则q”为真时,可表示为p => q,则我们称p为q 的充分条件,q是p的必要条件。

这里由p => q,得出p为q的充分条件是容易理解的。

但为什么说q是p的必要条件呢?事实上,与“p => q”等价的逆否命题是“非q => 非p”。

它的意思是:若q不成立,则p一定不成立。

这就是说,q对于p是必不可少的,因而是必要的。

(2)再看“充要条件”若有p =>q,同时q => p,则p既是q的充分条件,又是必要条件。

简称为p是q的充要条件。

记作p<=>q回忆一下初中学过的“等价于”这一概念;如果从命题A成立可以推出命题B成立,反过来,从命题B成立也可以推出命题A成立,那么称A等价于B,记作A<=>B。

“充要条件”的含义,实际上与“等价于”的含义完全相同。

也就是说,如果命题A等价于命题B,那么我们说命题A成立的充要条件是命题B成立;同时有命题B成立的充要条件是命题A成立。

(3)定义与充要条件数学中,只有A是B的充要条件时,才用A去定义B,因此每个定义中都包含一个充要条件。

如“两组对边分别平行的四边形叫做平行四边形”这一定义就是说,一个四边形为平行四边形的充要条件是它的两组对边分别平行。

显然,一个定理如果有逆定理,那么定理、逆定理合在一起,可以用一个含有充要条件的语句来表示。

“充要条件”有时还可以改用“当且仅当”来表示,其中“当”表示“充分”。

“仅当”表示“必要”。

(4)一般地,定义中的条件都是充要条件,判定定理中的条件都是充分条件,性质定理中的“结论”都可作为必要条件。

高中数学数列的概念知识点1.数列的定义按一定次序排列的一列数叫做数列,数列中的每一个数都叫做数列的项.(1)从数列定义可以看出,数列的数是按一定次序排列的,如果组成数列的数相同而排列次序不同,那么它们就不是同一数列,例如数列1,2,3,4,5与数列5,4,3,2,1是不同的数列.(2)在数列的定义中并没有规定数列中的数必须不同,因此,在同一数列中可以出现多个相同的数字,如:-1的1次幂,2次幂,3次幂,4次幂,…构成数列:-1,1,-1,1,….(4)数列的项与它的项数是不同的,数列的项是指这个数列中的某一个确定的数,是一个函数值,也就是相当于f(n),而项数是指这个数在数列中的位置序号,它是自变量的值,相当于f(n)中的n.(5)次序对于数列来讲是十分重要的,有几个相同的数,由于它们的排列次序不同,构成的数列就不是一个相同的数列,显然数列与数集有本质的区别.如:2,3,4,5,6这5个数按不同的次序排列时,就会得到不同的数列,而{2,3,4,5,6}中元素不论按怎样的次序排列都是同一个集合.2.数列的分类(1)根据数列的项数多少可以对数列进行分类,分为有穷数列和无穷数列.在写数列时,对于有穷数列,要把末项写出,例如数列1,3,5,7,9,…,2n-1表示有穷数列,如果把数列写成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示无穷数列.(2)按照项与项之间的大小关系或数列的增减性可以分为以下几类:递增数列、递减数列、摆动数列、常数列.3.数列的通项公式数列是按一定次序排列的一列数,其内涵的本质属性是确定这一列数的规律,这个规律通常是用式子f(n)来表示的,这两个通项公式形式上虽然不同,但表示同一个数列,正像每个函数关系不都能用解析式表达出来一样,也不是每个数列都能写出它的通项公式;有的数列虽然有通项公式,但在形式上,又不一定是唯一的,仅仅知道一个数列前面的有限项,无其他说明,数列是不能确定的,通项公式更非唯一.如:数列1,2,3,4,…,由公式写出的后续项就不一样了,因此,通项公式的归纳不仅要看它的前几项,更要依据数列的构成规律,多观察分析,真正找到数列的内在规律,由数列前几项写出其通项公式,没有通用的方法可循.再强调对于数列通项公式的理解注意以下几点:(1)数列的通项公式实际上是一个以正整数集N*或它的有限子集{1,2,…,n}为定义域的函数的表达式.(2)如果知道了数列的通项公式,那么依次用1,2,3,…去替代公式中的n就可以求出这个数列的各项;同时,用数列的通项公式也可判断某数是否是某数列中的一项,如果是的话,是第几项.(3)如所有的函数关系不一定都有解析式一样,并不是所有的数列都有通项公式.如2的不足近似值,精确到1,0.1,0.01,0.001,0.000 1,…所构成的数列1,1.4,1.41,1.414,1.414 2,…就没有通项公式.(4)有的数列的通项公式,形式上不一定是唯一的,正如举例中的:(5)有些数列,只给出它的前几项,并没有给出它的构成规律,那么仅由前面几项归纳出的数列通项公式并不唯一.4.数列的图象对于数列4,5,6,7,8,9,10每一项的序号与这一项有下面的对应关系:序号:1 2 3 4 5 6 7项: 4 5 6 7 8 9 10这就是说,上面可以看成是一个序号集合到另一个数的集合的映射.因此,从映射、函数的观点看,数列可以看作是一个定义域为正整集N*(或它的有限子集{1,2,3,…,n})的函数,当自变量从小到大依次取值时,对应的一列函数值.这里的函数是一种特殊的函数,它的自变量只能取正整数.由于数列的项是函数值,序号是自变量,数列的通项公式也就是相应函数和解析式.数列是一种特殊的函数,数列是可以用图象直观地表示的.数列用图象来表示,可以以序号为横坐标,相应的项为纵坐标,描点画图来表示一个数列,在画图时,为方便起见,在平面直角坐标系两条坐标轴上取的单位长度可以不同,从数列的图象表示可以直观地看出数列的变化情况,但不精确.把数列与函数比较,数列是特殊的函数,特殊在定义域是正整数集或由以1为首的有限连续正整数组成的集合,其图象是无限个或有限个孤立的点.5.递推数列一堆钢管,共堆放了七层,自上而下各层的钢管数构成一个数列:4,5,6,7,8,9,10.①数列①还可以用如下方法给出:自上而下第一层的钢管数是4,以下每一层的钢管数都比上层的钢管数多1,。

高中数学充要条件知识点总结

高中数学充要条件知识点总结

稿子一嘿,亲爱的小伙伴们!今天咱们来聊聊高中数学里的充要条件,这可是个挺重要的知识点哟!啥是充要条件呢?简单说就是如果能从 A 推出 B,又能从 B 推出 A,那 A 和 B 之间的关系就是充要条件啦。

比如说,一个三角形是等边三角形,那它的三个角一定都相等;反过来,如果一个三角形的三个角都相等,那它肯定是等边三角形。

这里边等边三角形和三个角相等就是充要条件。

充要条件在解题的时候可有用啦!有时候题目会让咱们判断两个条件之间是不是充要的,这就得仔细分析啦。

像判断函数的奇偶性,就会用到充要条件的知识。

如果一个函数满足 f(x) = f(x) ,那它就是偶函数;反过来,如果一个函数是偶函数,那一定满足 f(x) = f(x) ,这就是充要条件哟。

还有不等式的证明里,也常常会出现充要条件的影子。

总之呀,充要条件这个知识点虽然有点绕,但只要咱们多做几道题,多琢磨琢磨,就一定能掌握好哒!加油哦小伙伴们!稿子二嗨喽,同学们!今天咱们一起唠唠高中数学的充要条件哈。

充要条件呢,就像是一对好兄弟,谁也离不开谁。

比如说,直线垂直于平面的充要条件是直线垂直于平面内的两条相交直线。

再举个例子,两个三角形全等的充要条件是它们的三条边和三个角都对应相等。

是不是还挺好理解的?在做题的时候,一定要分清楚啥是充分条件,啥是必要条件,啥又是充要条件。

可别弄混了哟!有的题目会故意设陷阱,就看咱们能不能识破啦。

比如说,给咱们一个条件,让咱们判断是不是能推出另一个条件,这时候就得小心谨慎。

还有哦,充要条件在方程、几何这些地方都经常出现。

像判断两个圆的位置关系,也会用到相关的充要条件呢。

充要条件的知识点新高考

充要条件的知识点新高考

充要条件的知识点新高考充要条件的知识点新高考随着中国教育改革的推进,高考制度也在不断进行调整和更新。

其中,最受关注的就是新高考改革。

作为一名理科生,我对新高考中的数学知识点特别感兴趣,尤其是充要条件的概念。

在这篇文章中,我将为读者介绍充要条件的相关知识,探讨其在新高考中的应用。

首先,我们来了解一下什么是充要条件。

在数学中,充要条件是指一个命题成立的必要和充分条件。

换句话说,满足该条件的条件下,命题是真实的,并且如果满足其他任何条件,该命题仍然是真实的。

在解决数学问题中,掌握充要条件是非常重要的,尤其是对于考试来说。

在新高考中,充要条件的运用尤为重要。

一方面,新高考的数学考试注重考察学生的综合能力,让学生在问题解决中灵活运用所学知识。

而充要条件正是解决问题时不可或缺的工具。

通过了解充要条件,学生能够更好地理解问题的内涵和规律,从而采取正确的解决方法。

例如,在解决集合问题时,若能运用充要条件,能够简化问题的处理过程,提高解题效率。

另一方面,新高考注重培养学生的创新思维和问题解决能力,而这些能力的培养需要充分挖掘问题的本质和规律。

而充要条件的运用正是提醒学生要关注问题的本质,通过找到问题的特定条件,进而进行分析和推导。

在新高考物理试题中,许多问题需要学生从多个角度思考和分析,通过充要条件的运用,可以迅速找出问题的关键点,提高解题的准确性。

此外,在数学中,充要条件的运用还可以帮助学生理解和掌握其他概念和定理。

例如,在学习三角函数的定义和性质时,能够理解和运用充要条件,就可以更好地掌握三角函数的特性和应用。

通过充要条件的学习,学生能够更深入地理解数学的逻辑和推理,培养出良好的数学思维习惯。

然而,要在新高考中灵活运用充要条件,并不是一件容易的事。

对于一些学生来说,充要条件的理解和应用依然存在困难。

为了取得更好的成绩,学生们应该加强充要条件的学习和反复练习。

可以通过做题集或参加辅导班来提高自己的技巧和能力。

同时,学校和老师也应该创造良好的学习环境,通过启发性的教学和互动式学习,激发学生的学习兴趣和热情。

高考数学复习点拨判定充要条件的四法

高考数学复习点拨判定充要条件的四法

判定充要条件的四法充要条件是数学中的一个重要概念,是正确进行逻辑理必不可少的基础知识.高考对充要条件的考查主要以其他知识为载体进行两类问题的考查:一类是充要条件的判别;一类是有关充要性命题的证明,尤以考查充要条件的判别为主.要正确判断“充分且不必要条件”、“必要且不充分条件”、“充要条件”、“非充分非不必要条件”应该明确:①确定条件是什么,结论是什么;②尝试从条件推导结论,从结论推导条件;③确定条件是结论的什么条件.下面就介绍几种充要条件的判定方法.方法一、定义法能够保证一个事件一定发生的条件,叫做这个事件发生的充分条件;一个事件要发生必须具备的条件叫做这个事件发生的必要条件;一个条件既能保证某个事件发生,同时又是这个事件发生必须具备的条件,就叫做这个事件发生的充要条件.在实际应用中,体现充要条件的文字还有“当且仅当”、“有且仅有”、“必需且只需”等语句.用逻辑符号表示为:(1)若P Q,且Q/P,则P是Q的充分且不必要条件,Q是P的必要且不充分条件;(2)若Q P,且P/Q,则P是Q的必要且不充分条件,Q是P的充分且不必要条件;(3)若P Q,且Q P(或P Q),则P是Q的充要条件(此时Q也是P的充要条件);(4)若P/Q,且Q/P,则P是Q的非充分非不必要条件.例1一元二次方程Ax2+2x+1=0(A≠0)有一个正根和一个负根的充分不必要条件是()A.A<0B.A>0C.A<﹣1D.A>1解析:如果一元二次方程Ax2+2x+1=0(A≠0)有一个正根和一个负根,则两个根的积为负数,即﹣1a<0,所以A<0,由此可知“一元二次方程Ax2+2x+1=0有一个正根和一个负根”/“A<﹣1”,但“A<﹣1”一元二次方程Ax2+2x+1=0(A≠0)有一个正根和一个负根”.故选C.二、命题法(1)如果原命题成立,逆命题不成立,则原命题的条件是充分非必要的;(2)如果原命题不成立,逆命题成立,则原命题的条件是必要非充分的;(3)如果原命题和它的逆命题都成立,则原命题的条件充要的;(4)如果原命题和它的逆命题都不成立,则原命题的条件是非充分非必要的.例2若非空集合M≠N,则“A∈M或A∈N”是“A∈M∩N”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件解析:因为命题“若A∈M或A∈N,则A∈M∩N”为假,它的逆命题:“若A∈M∩N,则A∈M或A∈N”为真,故“A∈M或A∈N”是“A∈M∩N”的必要非充分条件,故选B.三、双箭头表示法由于逻辑联结符号“”、“”、“”具有传递性,因此可根据几个条件的关系,经过若干次的传递,判断所要判断的两个条件之间的依存关系.例3已知P是R的充分不必要条件,S是R的必要条件,Q是S的必要条件.那么P是Q成立的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件解析:画出用双箭头符号表示表示P、Q、R、S的关系:P R,S R,Q S,即P R,S R,Q S,∴P R S Q,即P Q,又R/P,则Q/P,故P是Q的充分非必要条件.故选A.四、集合法(1)若A__B,就是x∈A则x∈B,则A是B的充分条件,B是A的必要条件;(2)若A≠B,就是x∈A则x∈B,且A中至少有一个元素不在B中,则A是B的充分非必要条件,B是A的必要非充分条件.(3)若A=B,就是A__B且A__B,则A是B的充分条件,同时A是B的必要条件,即A是B的充要条件.(4)若A B,A/B,则A是B的既不充分也不必要条件.例2也可这样解:由于M≠N,所以M∪N=N,M∩N=M,又由并集的定义知:A∈M或A∈N A∈M∪N A∈N,A∈M∩N=N A∈M,而M≠N,所以“A∈M或A∈N”“A∈M∩N”,所以“A∈M或A∈N”是“A∈M∩N”的必要非充分条件,故选B.例3也可这样解:设条件P、Q、R、S相对应的集合为A、B、C、D,则根据题设条件知:A≠C,C D,D B,又由子集的传递性知A≠B,所以P是Q成立充分不必要条件,故选A.。

高考数学复习点拨:充要条件的四种解释

高考数学复习点拨:充要条件的四种解释

高考数学复习点拨:充要条件的四种解释
充要条件的四种解释
重庆慕泽刚
充要条件是简易逻辑中的重要概念,高考的要求是要弄清充要条件的意义,会判断两个命题间的充要关系.因此必须对充要条件深刻的理解和认识. 本文将对充要条件进行多角度的解释.
一、用集合解释
若p 为条件,q 为结论,且设P 所对应的集合为A={x|p},q 所对应的集合为B={x|q},则
①若AB,就是x∈A 则x∈B,则A 是B 的充分条件,B 是A 的必要
条件.
②若A\s\up7(((()B,就是x∈A 则x∈B,且A 中至少有一个元素不在
B 中,则A 是B 的充分非必要条件,B 是A 的必要非充分条件.
③若A=B,就是AB 且AB,则A 是B 的充分条件,同时A 是B 的必要条件,即A 是B 的充要条件.
④若A?B,A\s\up1(((()B,则A 是B 的既不充分也不必要条件.
二、用四种命题解释
若p 为条件,q 为结论,由此构造一个命题:若p 则q,则
(1)如果原命题成立,逆命题不成立,则原命题的条件是充分非必要的;
(2)如果原命题不成立,逆命题成立,则原命题的条件是必要非充分的;
(3)如果原命题和它的逆命题都成立,则原命题的条件充要的;。

高考数学知识点:充要条件知识点

高考数学知识点:充要条件知识点

高考数学知识点:充要条件知识点
高考数学知识点:充要条件知识点
学会一套学习方法,成绩才会有所提高。

以下是为大家分享的高考数学知识点:充要条件知识点,供大家参考借鉴,欢迎浏览!
(1)先看“充分条件和必要条件”
当命题“若p则q”为真时,可表示为p=>q,则我们称p为q 的充分条件,q是p的必要条件。

这里由p=>q,得出p为q的充分条件是容易理解的。

但为什么说q是p的必要条件呢?
事实上,与“p=>q”等价的逆否命题是“非q=>非p”。

它的意思是:若q不成立,则p一定不成立。

这就是说,q对于p是必不可少的,因而是必要的。

(2)再看“充要条件”
若有p=>q,同时q=>p,则p既是q的`充分条件,又是必要条件。

简称为p是q的充要条件。

记作p<=>q
(3)定义与充要条件
数学中,只有A是B的充要条件时,才用A去定义B,因此每个定义中都包含一个充要条件。

如“两组对边分别平行的四边形叫做平行四边形”这一定义就是说,一个四边形为平行四边形的充要条件是它的两组对边分别平行。

显然,一个定理如果有逆定理,那么定理、逆定理合在一起,可以用一个含有充要条件的语句来表示。

“充要条件”有时还可以改用“当且仅当”来表示,其中“当”表示“充分”。

“仅当”表示“必要”。

(4)一般地,定义中的条件都是充要条件,判定定理中的条件都是充分条件,性质定理中的“结论”都可作为必要条件。

高考数学复习点拨 谈谈“充要条件”问题的证明

高考数学复习点拨 谈谈“充要条件”问题的证明

1 / 1谈谈“充要条件”问题的证明在期末复习时,出现这样一道练习题: 已知y x ,都是非零实数,且y x >,求证:yx 11<的充要条件是0>xy . 学生在证明过程中暴露出许多意想不到的错误,总结一下大概有这么三个问题:(1)解题很不规范,因为有关充要条件的证明通常要分两个方面(最好标明①必要性.②充分性)来书写过程,最后还应该有一个“综上所述”来肯定一下所证的问题.然而有不少学生没有这样分步表达,而是眉毛胡子一把抓,凌乱不堪.(2)这道题本身就可看作是不等式的一个性质,有些学生用这性质来证这个性质,出现循环论证,以致过程太简洁,只写了几个式子.(3)有些学生试图想通过等价性来证明问题,然而也由于心有想而没说出或说不出,没有使用“⇔”符号来叙述证题过程,而只证了一个方面就结束了.出现上面这些问题的原因是:书上没有相关例题示范,教师在课堂上也很少讲(不是没讲过,而是讲得少)相关例题.此处为弥补证明“充要条件”这一不足,特举几例细说之.上面练习题的解答:证明:(1)必要性.由y x 11< 得 011<-y x 即 0<-xyxy 又由y x >得0<-x y , 所以 0>xy . (2)充分性.由0>xy 及y x >得xyyxy x > 即y x 11<.综上所述:yx 11<的充要条件是0>xy . 评注:(1)要证明命题的条件是充要的,必须要证两个方面,即既证明原命题成立,也证它的逆命题成立,证明原命题成立即证明条件的充分性,证明逆命题成立即证明条件的必要性.(2) 区分“充分性”与“必要性”的方法:利用“A的充要条件是B”与“A的充分(不必要)条件是B”中“B是A的充分条件”的一致性,可以断定:由B证出A是“充分性”,通俗地说“后推出前”是“充分性”.(3) 如果分不清两方面中哪方面是充分性还是必要性,那么不写出“充分性”与“必要性”等文字也可以,但要标注(1),(2).当然如果采用“⇔”符号来叙述证题过程,就不好再分两个方面了.(4)对于充要条件,要熟悉它的同义词语:“当且仅当”, “等价于”, “…反之也成立”“需且只需”“原命题成立,逆命题也成立” , 立几中的“确定”等等。

高中数学关于充要条件的概念

高中数学关于充要条件的概念

高中数学关于充要条件的概念高二数学中学到的充要条件是证明题的一种常考类型,下面店铺的小编将为大家带来高中数学关于充要条件的概念的介绍,希望能够帮助到大家。

高中数学关于充要条件的概念介绍(1)先看“充分条件和必要条件”当命题“若p则q”为真时,可表示为p => q,则我们称p为q 的充分条件,q是p的必要条件。

这里由p => q,得出p为q的充分条件是容易理解的。

但为什么说q是p的必要条件呢?事实上,与“p => q”等价的逆否命题是“非q => 非p”。

它的意思是:若q不成立,则p一定不成立。

这就是说,q对于p是必不可少的,因而是必要的。

(2)再看“充要条件”若有p =>q,同时q => p,则p既是q的充分条件,又是必要条件。

简称为p是q的充要条件。

记作p<=>q回忆一下初中学过的“等价于”这一概念;如果从命题A成立可以推出命题B成立,反过来,从命题B成立也可以推出命题A成立,那么称A等价于B,记作A<=>B。

“充要条件”的含义,实际上与“等价于”的含义完全相同。

也就是说,如果命题A等价于命题B,那么我们说命题A成立的充要条件是命题B成立;同时有命题B成立的充要条件是命题A成立。

(3)定义与充要条件数学中,只有A是B的充要条件时,才用A去定义B,因此每个定义中都包含一个充要条件。

如“两组对边分别平行的四边形叫做平行四边形”这一定义就是说,一个四边形为平行四边形的充要条件是它的两组对边分别平行。

显然,一个定理如果有逆定理,那么定理、逆定理合在一起,可以用一个含有充要条件的语句来表示。

“充要条件”有时还可以改用“当且仅当”来表示,其中“当”表示“充分”。

“仅当”表示“必要”。

(4)一般地,定义中的条件都是充要条件,判定定理中的条件都是充分条件,性质定理中的“结论”都可作为必要条件。

高中数学数列的概念知识点1.数列的定义按一定次序排列的一列数叫做数列,数列中的每一个数都叫做数列的项.(1)从数列定义可以看出,数列的数是按一定次序排列的,如果组成数列的数相同而排列次序不同,那么它们就不是同一数列,例如数列1,2,3,4,5与数列5,4,3,2,1是不同的数列.(2)在数列的定义中并没有规定数列中的数必须不同,因此,在同一数列中可以出现多个相同的数字,如:-1的1次幂,2次幂,3次幂,4次幂,…构成数列:-1,1,-1,1,….(4)数列的项与它的项数是不同的,数列的项是指这个数列中的某一个确定的数,是一个函数值,也就是相当于f(n),而项数是指这个数在数列中的位置序号,它是自变量的值,相当于f(n)中的n.(5)次序对于数列来讲是十分重要的,有几个相同的数,由于它们的排列次序不同,构成的数列就不是一个相同的数列,显然数列与数集有本质的区别.如:2,3,4,5,6这5个数按不同的次序排列时,就会得到不同的数列,而{2,3,4,5,6}中元素不论按怎样的次序排列都是同一个集合.2.数列的分类(1)根据数列的项数多少可以对数列进行分类,分为有穷数列和无穷数列.在写数列时,对于有穷数列,要把末项写出,例如数列1,3,5,7,9,…,2n-1表示有穷数列,如果把数列写成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示无穷数列.(2)按照项与项之间的大小关系或数列的增减性可以分为以下几类:递增数列、递减数列、摆动数列、常数列.3.数列的通项公式数列是按一定次序排列的一列数,其内涵的本质属性是确定这一列数的规律,这个规律通常是用式子f(n)来表示的,这两个通项公式形式上虽然不同,但表示同一个数列,正像每个函数关系不都能用解析式表达出来一样,也不是每个数列都能写出它的通项公式;有的数列虽然有通项公式,但在形式上,又不一定是唯一的,仅仅知道一个数列前面的有限项,无其他说明,数列是不能确定的,通项公式更非唯一.如:数列1,2,3,4,…,由公式写出的后续项就不一样了,因此,通项公式的归纳不仅要看它的前几项,更要依据数列的构成规律,多观察分析,真正找到数列的内在规律,由数列前几项写出其通项公式,没有通用的方法可循.再强调对于数列通项公式的理解注意以下几点:(1)数列的通项公式实际上是一个以正整数集N*或它的有限子集{1,2,…,n}为定义域的函数的表达式.(2)如果知道了数列的通项公式,那么依次用1,2,3,…去替代公式中的n就可以求出这个数列的各项;同时,用数列的通项公式也可判断某数是否是某数列中的一项,如果是的话,是第几项.(3)如所有的函数关系不一定都有解析式一样,并不是所有的数列都有通项公式.如2的不足近似值,精确到1,0.1,0.01,0.001,0.000 1,…所构成的数列1,1.4,1.41,1.414,1.414 2,…就没有通项公式.(4)有的数列的通项公式,形式上不一定是唯一的,正如举例中的:(5)有些数列,只给出它的前几项,并没有给出它的构成规律,那么仅由前面几项归纳出的数列通项公式并不唯一.4.数列的图象对于数列4,5,6,7,8,9,10每一项的序号与这一项有下面的对应关系:序号:1 2 3 4 5 6 7项: 4 5 6 7 8 9 10这就是说,上面可以看成是一个序号集合到另一个数的集合的映射.因此,从映射、函数的观点看,数列可以看作是一个定义域为正整集N*(或它的有限子集{1,2,3,…,n})的函数,当自变量从小到大依次取值时,对应的一列函数值.这里的函数是一种特殊的函数,它的自变量只能取正整数.由于数列的项是函数值,序号是自变量,数列的通项公式也就是相应函数和解析式.数列是一种特殊的函数,数列是可以用图象直观地表示的.数列用图象来表示,可以以序号为横坐标,相应的项为纵坐标,描点画图来表示一个数列,在画图时,为方便起见,在平面直角坐标系两条坐标轴上取的单位长度可以不同,从数列的图象表示可以直观地看出数列的变化情况,但不精确.把数列与函数比较,数列是特殊的函数,特殊在定义域是正整数集或由以1为首的有限连续正整数组成的集合,其图象是无限个或有限个孤立的点.5.递推数列一堆钢管,共堆放了七层,自上而下各层的钢管数构成一个数列:4,5,6,7,8,9,10.①数列①还可以用如下方法给出:自上而下第一层的钢管数是4,以下每一层的钢管数都比上层的钢管数多1,。

充要条件讲义

充要条件讲义

充要条件讲义
充要条件是数学中的一个重要概念,也应用于逻辑学和其他领域。

它指的是一个条件语句中的两个条件,互相依赖,并且同时满足时,该条件语句才成立。

下面将介绍充要条件的定义和应用。

充要条件的定义
设 A 和 B 是两个陈述,A -> B 是一个条件语句。

如果 A 是 B 的充分条件且 B 是 A 的必要条件,我们可以说 A <-> B 是一个充要条件。

要满足充要条件,必须同时满足两个条件:
1. 当 A 成立时,B 也一定成立;
2. 当 B 成立时,A 也一定成立。

这意味着 A 和 B 是相互依赖的,没有其中一个条件的成立,整个充要条件都不成立。

充要条件的应用
充要条件在数学推理和逻辑推理中有着重要的应用。

它能够帮
助我们推断出各种陈述之间的关系,并且在证明中起到关键作用。

充要条件的应用可以归纳如下:
1. 判定两个数(对象)是否等价。

如果两个数(对象)之间满
足充要条件,那么它们可以被视为等价的。

2. 在构建证明时,可以通过确定充要条件的成立来推断出结论。

3. 在逻辑推理中,可以使用充要条件来分析陈述之间的关系。

充要条件在数学和逻辑中具有广泛的应用,它可以帮助我们理
解和解决各种问题。

通过掌握充要条件的概念和应用,我们可以更
好地进行推理和分析。

以上是充要条件的讲义,希望对您有所帮助。

高考数学的充要知识点

高考数学的充要知识点

高考数学的充要知识点
高考数学充要条件知识点
一、充分条件和必要条件
当命题A为真时,那么B称为B的充分条件,B称为A的必要条件。

二、常用判断方法的充分条件和必要条件
1.定义方法:判断B是否是A的条件,其实就是判断B=A还是A=B为真。

只需根据标题中给出的条件的逻辑关系画一个箭头图,然后用定义来判断。

2.变换法:当给定命题的充要条件不容易判断时,可以将该命题等价替换,例如可以用它的逆no命题来判断。

3.永久变形测定法
当难以判断命题的条件与结论的关系时,可以从集合的角度考虑,记住条件P与Q对应。

分别设置为甲和乙,然后:
如果AB,那么p是q的充分条件。

如果AB,那么p是q的必要条件。

如果A=B,那么p是q的充要条件。

如果AB和BA,那么p对于q既不充分也不必要。

第三,知识扩展
1.这四个命题反映了命题之间的内在联系。

要注意结合实际问题理解它们关系(尤其是两个等价关系)的生成过程。

反命题、无命题和无命题也可以描述为:
(1)交换命题的条件和结论,得到的xx命题是原命题的逆命题;
(2)同时否定命题的条件和结论,得到的xx命题是原无命题;
(3)交换命题的条件和结论,同时否定它,得到的xx命题是原命题的逆命题。

2.因为充分条件和必要条件是四个命题之间关系的深化,它们之间有着密切的联系。

因此,在判断一个命题的充要条件时,可以考虑正反两方面的原则,即当肯定判断有困难时,可以转化为该命题的否定或否定命题进行判断。

结论成立的充分条件和必要条件可以不止一个。

1。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

|||生活|一个人总要走陌生的路,看陌生的风景,听陌生的歌,然后在某个不经意的瞬间,你会发现,原本费尽心机想要忘记的事情真的就这么忘记了.. |-----郭敬明难点2 充要条件的判定充分条件、必要条件和充要条件是重要的数学概念,主要用来区分命题的条件p 和结论q 之间的关系.本节主要是通过不同的知识点来剖析充分必要条件的意义,让考生能准确判定给定的两个命题的充要关系.●难点磁场(★★★★★)已知关于x 的实系数二次方程x 2+ax +b =0有两个实数根α、β,证明:|α|<2且|β|<2是2|a |<4+b 且|b |<4的充要条件.●案例探究[例1]已知p :|1-31-x |≤2,q :x 2-2x +1-m 2≤0(m >0),若⌐p 是⌐q 的必要而不充分条件,求实数m 的取值范围.命题意图:本题以含绝对值的不等式及一元二次不等式的解法为考查对象,同时考查了充分必要条件及四种命题中等价命题的应用,强调了知识点的灵活性.知识依托:本题解题的闪光点是利用等价命题对题目的文字表述方式进行转化,使考生对充要条件的难理解变得简单明了.错解分析:对四种命题以及充要条件的定义实质理解不清晰是解此题的难点,对否命题,学生本身存在着语言理解上的困难.技巧与方法:利用等价命题先进行命题的等价转化,搞清晰命题中条件与结论的关系,再去解不等式,找解集间的包含关系,进而使问题解决.解:由题意知:命题:若⌐p 是⌐q 的必要而不充分条件的等价命题即逆否命题为:p 是q 的充分不必要条件.p :|1-31-x |≤2⇒-2≤31-x -1≤2⇒-1≤31-x ≤3⇒-2≤x ≤10 q :x 2-2x +1-m 2≤0⇒[x -(1-m )][x -(1+m )]≤0 *∵p 是q 的充分不必要条件, ∴不等式|1-31-x |≤2的解集是x 2-2x +1-m 2≤0(m >0)解集的子集. 又∵m >0∴不等式*的解集为1-m ≤x ≤1+m∴⎩⎨⎧≥≥⇒⎩⎨⎧≥+-≤-9110121m m m m ,∴m ≥9, ∴实数m 的取值范围是[9,+∞).[例2]已知数列{a n }的前n 项S n =p n +q (p ≠0,p ≠1),求数列{a n }是等比数列的充要条件. 命题意图:本题重点考查充要条件的概念及考生解答充要条件命题时的思维的严谨性. 知识依托:以等比数列的判定为主线,使本题的闪光点在于抓住数列前n 项和与通项之间的递推关系,严格利用定义去判定.错解分析:因为题目是求的充要条件,即有充分性和必要性两层含义,考生很容易忽视充分性的证明.技巧与方法:由a n =⎩⎨⎧≥-=-)2()1(11n S S n S n n关系式去寻找a n 与a n +1的比值,但同时要注意充分性的证明.解:a 1=S 1=p +q .当n ≥2时,a n =S n -S n -1=p n -1(p -1)∵p ≠0,p ≠1,∴)1()1(1---p p p p n n =p若{a n }为等比数列,则nn a a a a 112+==p ∴qp p p +-)1(=p , ∵p ≠0,∴p -1=p +q ,∴q =-1 这是{a n }为等比数列的必要条件.下面证明q =-1是{a n }为等比数列的充分条件. 当q =-1时,∴S n =p n -1(p ≠0,p ≠1),a 1=S 1=p -1当n ≥2时,a n =S n -S n -1=p n -p n -1=p n -1(p -1)∴a n =(p -1)p n -1 (p ≠0,p ≠1)211)1()1(-----=n n n n p p p p a a =p 为常数 ∴q =-1时,数列{a n }为等比数列.即数列{a n }是等比数列的充要条件为q =-1. ●锦囊妙计本难点所涉及的问题及解决方法主要有: (1)要理解“充分条件”“必要条件”的概念:当“若p 则q ”形式的命题为真时,就记作p ⇒q ,称p 是q 的充分条件,同时称q 是p 的必要条件,因此判断充分条件或必要条件就归结为判断命题的真假.(2)要理解“充要条件”的概念,对于符号“⇔”要熟悉它的各种同义词语:“等价于”,“当且仅当”,“必须并且只需”,“……,反之也真”等.(3)数学概念的定义具有相称性,即数学概念的定义都可以看成是充要条件,既是概念的判断依据,又是概念所具有的性质.(4)从集合观点看,若A ⊆B ,则A 是B 的充分条件,B 是A 的必要条件;若A =B ,则A 、B 互为充要条件.(5)证明命题条件的充要性时,既要证明原命题成立(即条件的充分性),又要证明它的逆命题成立(即条件的必要性).●歼灭难点训练 一、选择题1.(★★★★)函数f (x )=x |x +a |+b 是奇函数的充要条件是( ) A.ab =0 B.a +b =0 C.a =b D.a 2+b 2=02.(★★★★)“a =1”是函数y =cos 2ax -sin 2ax 的最小正周期为“π”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既非充分条件也不是必要条件 二、填空题3.(★★★★)a =3是直线ax +2y +3a =0和直线3x +(a -1)y =a -7平行且不重合的_________.4.(★★★★)命题A :两曲线F (x ,y )=0和G (x ,y )=0相交于点P (x 0,y 0),命题B :曲线F (x ,y )+λG (x ,y )=0(λ为常数)过点P (x 0,y 0),则A 是B 的__________条件.三、解答题5.(★★★★★)设α,β是方程x 2-ax +b =0的两个实根,试分析a >2且b >1是两根α、β均大于1的什么条件?6.(★★★★★)已知数列{a n }、{b n }满足:b n =nna a a n+++++++ 321221,求证:数列{a n }成等差数列的充要条件是数列{b n }也是等差数列.7.(★★★★★)已知抛物线C :y =-x 2+mx -1和点A (3,0),B (0,3),求抛物线C 与线段AB 有两个不同交点的充要条件.8.(★★★★★)p :-2<m <0,0<n <1;q :关于x 的方程x 2+mx +n =0有2个小于1的正根,试分析p 是q 的什么条件.(充要条件)参考答案难点磁场证明:(1)充分性:由韦达定理,得|b |=|α·β|=|α|·|β|<2×2=4. 设f (x )=x 2+ax +b ,则f (x )的图象是开口向上的抛物线. 又|α|<2,|β|<2,∴f (±2)>0.即有⇒⎩⎨⎧>+->++024024b a b a 4+b >2a >-(4+b )又|b |<4⇒4+b >0⇒2|a |<4+b (2)必要性:由2|a |<4+b ⇒f (±2)>0且f (x )的图象是开口向上的抛物线. ∴方程f (x )=0的两根α,β同在(-2,2)内或无实根. ∵α,β是方程f (x )=0的实根,∴α,β同在(-2,2)内,即|α|<2且|β|<2. 歼灭难点训练一、1.解析:若a 2+b 2=0,即a =b =0,此时f (-x )=(-x )|x +0|+0=-x ·|x |=-(x |x +0|+b ) =-(x |x +a |+b )=-f (x ).∴a 2+b 2=0是f (x )为奇函数的充分条件,又若f (x )=x |x +a |+b 是奇函数,即f (-x )= (-x )|(-x )+a |+b =-f (x ),则必有a =b =0,即a 2+b 2=0.∴a 2+b 2=0是f (x )为奇函数的必要条件. 答案:D2.解析:若a =1,则y =cos 2x -sin 2x =cos2x ,此时y 的最小正周期为π.故a =1是充分条件,反过来,由y =cos 2ax -sin 2ax =cos2ax .故函数y 的最小正周期为π,则a =±1,故a =1不是必要条件.答案:A二、3.解析:当a =3时,直线l 1:3x +2y +9=0;直线l 2:3x +2y +4=0.∵l 1与l 2的A 1∶A 2=B 1∶B 2=1∶1,而C 1∶C 2=9∶4≠1,即C 1≠C 2,∴a =3⇔l 1∥l 2.答案:充要条件4.解析:若P (x 0,y 0)是F (x ,y )=0和G (x ,y )=0的交点,则F (x 0,y 0)+λG (x 0,y 0)=0,即F (x ,y )+λG (x ,y )=0,过P (x 0,y 0);反之不成立.答案:充分不必要三、5.解:根据韦达定理得a =α+β,b =αβ.判定的条件是p :⎩⎨⎧>>12b a 结论是q :⎩⎨⎧>>11βα(注意p 中a 、b 满足的前提是Δ=a 2-4b ≥0)(1)由⎩⎨⎧>>11βα,得a =α+β>2,b =αβ>1,∴q ⇒p(2)为证明pq ,可以举出反例:取α=4,β=21,它满足a =α+β=4+21>2,b =αβ=4×21=2>1,但q 不成立. 综上讨论可知a >2,b >1是α>1,β>1的必要但不充分条件. 6.证明:①必要性:设{a n }成等差数列,公差为d ,∵{a n }成等差数列.dn a n n n n d n a n na a a b n n 32)1(1])1(3221[)21(32121121⋅-+=+++-++⋅+⋅++++=+++++++=∴ 从而b n +1-b n =a 1+n ·32d -a 1-(n -1) 32d =32d 为常数.故{b n }是等差数列,公差为32d .②充分性:设{b n }是等差数列,公差为d ′,则b n =(n -1)d ′ ∵b n (1+2+…+n )=a 1+2a 2+…+na n ①b n -1(1+2+…+n -1)=a 1+2a 2+…+(n -1)a n②①-②得:na n =2)1(2)1(--+n n b n n n b n -1 ∴a n =d n b d n b n d n b n b n b n n n '⋅-+='-+--'-++=--+-23)1(])2([21])1([2121211111,从而得a n +1-a n =23d ′为常数,故{a n }是等差数列.综上所述,数列{a n }成等差数列的充要条件是数列{b n }也是等差数列. 7.解:①必要性:由已知得,线段AB 的方程为y =-x +3(0≤x ≤3) 由于抛物线C 和线段AB 有两个不同的交点,所以方程组⎩⎨⎧≤≤+-=-+-=)30(312x x y mx x y *有两个不同的实数解.消元得:x 2-(m +1)x +4=0(0≤x ≤3)设f (x )=x 2-(m +1)x +4,则有⎪⎪⎪⎩⎪⎪⎪⎨⎧<+<≤<⇒≥++-=≥=>⨯-+=∆3210310304)1(39)3(04)0(044)1(2m m m f f m ②充分性: 当3<x ≤310时, x 1=2)1(1216)1(122+-+>-+-+m m m m >0 3216)1310(1310216)1(1222=-+++≤-+-+=m m x∴方程x 2-(m +1)x +4=0有两个不等的实根x 1,x 2,且0<x 1<x 2≤3,方程组*有两组不同的实数解.因此,抛物线y =-x 2+mx -1和线段AB 有两个不同交点的充要条件3<m ≤310.8.解:若关于x 的方程x 2+mx +n =0有2个小于1的正根,设为x 1,x 2. 则0<x 1<1,0<x 2<1,有0<x 1+x 2<2且0<x 1x 2<1,根据韦达定理:⎩⎨⎧<<<-<⎩⎨⎧=-=+10202121n m n x x m x x 得 有-2<m <0;0<n <1即有q ⇒p . 反之,取m =-21491,02131,21,312⨯-=∆=+-=x x n <0 方程x 2+mx +n =0无实根,所以p q综上所述,p 是q 的必要不充分条件.。

相关文档
最新文档