(完整版),热力学与统计物理复习总结级相关试题(1),推荐文档
热力学与统计物理复习总结级相关试题 (1)
《热力学与统计物理》考试大纲第一章 热力学的基本定律基本概念:平衡态、热力学参量、热平衡定律温度,三个实验系数(α,β,)转换关系,物态方程、功及其计算,热力学第一定律(数学表述式)热容量(C,C V,C p的概念及定义),理想气体的内能,焦耳定律,绝热过程及特性,热力学第二定律(文字表述、数学表述),可逆过程克劳修斯不等式,热力学基本微分方程表述式,理想气体的熵、熵增加原理及应用。
综合计算:利用实验系数的任意二个求物态方程,熵增(ΔS)的计算。
第二章 均匀物质的热力学性质基本概念:焓(H),自由能F,吉布斯函数G的定义,全微公式,麦克斯韦关系(四个)及应用、能态公式、焓态公式,节流过程的物理性质,焦汤系数定义及热容量(Cp)的关系,绝热膨胀过程及性质,特性函数F、G,空窖辐射场的物态方程,内能、熵,吉布函数的性质。
综合运用:重要热力学关系式的证明,由特性函数F、G求其它热力学函数(如S、U、物态方程)第三章、第四章 单元及多元系的相变理论该两章主要是掌握物理基本概念:热动平衡判据(S、F、G判据),单元复相系的平衡条件,多元复相系的平衡条件,多元系的热力学函数及热力学方程,一级相变的特点,吉布斯相律,单相化学反应的化学平衡条件,热力学第三定律标准表述,绝对熵的概念。
统计物理部分第六章 近独立粒子的最概然分布基本概念:能级的简并度,空间,运动状态,代表点,三维自由粒子的空间,德布罗意关系(),相格,量子态数。
等概率原理,对应于某种分布的玻尔兹曼系统、玻色系统、费米系统的微观态数的计算公式,最概然分布,玻尔兹曼分布律()配分函数(),用配分函数表示的玻尔兹曼分布(),f s,P l,P s的概念,经典配分函数()麦态斯韦速度分布律。
综合运用:能计算在体积V内,在动量范围P→P+dP内,或能量范围ε→ε+dε内,粒子的量子态数;了解运用最可几方法推导三种分布。
第七章 玻尔兹曼统计基本概念:熟悉U、广义力、物态方程、熵S的统计公式,乘子α、β的意义,玻尔兹曼关系(S=KlnΩ),最可几率V m,平均速度,方均根速度,能量均分定理。
(完整word版)热力学与统计物理期末复习题
热力学统计物理1、请给出熵、焓、自由能和吉布斯函数的定义和物理意义解:熵的定义:S B−S A=∫dQT ⟹B A dS=dQT沿可逆过程的热温比的积分,只取决于始、末状态,而与过程无关,与保守力作功类似。
因而可认为存在一个态函数,定义为熵。
焓的定义:H=U+pV焓的变化是系统在等压可逆过程中所吸收的热量的度量。
自由能的定义:F=U−TS自由能的减小是在等温过程中从系统所获得的最大功。
吉布斯函数的定义:G =F+pV= U – TS + pV在等温等压过程中,系统的吉布斯函数永不增加。
也就是说,在等温等压条件下,系统中发生的不可逆过程总是朝着吉布斯函数减少的方向进行的。
2、请给出热力学第零、第一、第二、第三定律的完整表述解:热力学第零定律:如果两个热力学系统中的每一个都与第三个热力学系统处于热平衡(温度相同),则它们彼此也必定处于热平衡。
热力学第一定律:自然界一切物体都具有能量,能量有各种不同形式,它能从一种形式转化为另一种形式,从一个物体传递给另一个物体,在转化和传递过程中能量的总和不变。
热力学第二定律:克氏表述:不可能把热量从低温物体传到高温物体而不引起其他变化;开氏表述:不可能从单一热源吸热使之完全变成有用的功而不引起其他变化。
热力学第三定律:能氏定理:凝聚系的熵在等温过程中的改变随热力学温度趋于零,即limT→0(∆S)T=0绝对零度不能达到原理:不肯能通过有限的步骤使一个物体冷却到热力学温度的零度。
通常认为,能氏定理和绝对零度不能达到原理是热力学第三定律的两种表述。
3、请给出定压热容与定容热容的定义,并推导出理想气体的定压热容与定容热容关系式:C p−C V=nR解:定容热容: C V=(ðUðT )V表示在体积不变的条件下内能随温度的变化率;定压热容:C p=(ðUðT )p−p(ðVðT)P=(ðHðT)P表示在压强不变的情况下的熵增;对于理想气体,定容热容C V的偏导数可以写为导数,即C V=dUdT(1)定压热容C p的偏导数可以写为导数,即C P=dHdT(2)理想气体的熵为 H=U+pV=U+nRT(3)由(1)(2)(3)式可得理想气体的定压热容与定容热容关系式:C p−C V=nR4、分别给出体涨系数α,压强系数β和等温压缩系数κT的定义,并证明三者之间的关系:α=κTβp解:体涨系数:α=1V (ðVðT)P,α 给出在压强不变的条件下,温度升高1 K所引起的物体的体积的相对变化;压强系数:β=1p (ðp ðT )v ,β 给出在体积不变的条件下,温度升高1 K 所引起的物体的体积的相对变化;等温压缩系数:κT =−1V (ðV ðp )T ,κT 给出在温度不变的条件下,增加单位压强所引起的物体的体积的相对变化;由于p 、V 、T 三个变量之间存在函数关系f (p ,T ,V )=0,其偏导数存在以下关系:(ðV ðp )T (ðp ðT )v (ðT ðV )P =−1 因此α, β, κT 满足α=κT βp5、分别给出内能,焓,自由能,吉布斯函数四个热力学基本方程及其对应的麦克斯韦关系式解:内能的热力学基本方程:dU =TdS −pdV对应的麦克斯韦关系式:(ðT ðV )S =−(ðp ðS )V 焓的热力学基本方程:dH =TdS +Vdp对应的麦克斯韦关系式:(ðT ðp )s =(ðV ðS )p 自由能的热力学基本方程:dF =−SdT +Vdp对应的麦克斯韦关系式:(ðS ðV )T =(ðp ðT )V 吉布斯函数的热力学基本方程:dG =−SdT −pdV对应的麦克斯韦关系式: (ðS ðp )T =−(ðV ðT )p 6、选择T ,V 为独立变量,证明:C V =T (ðS ðT )V ,(ðU ðV )T = T (ðp ðT )V −p 证明:选择T ,V 为独立变量,内能U 的全微分为dU =(ðU ðT )V dT +(ðU ðV )T dV (1) 又已知内能的热力学基本方程 dU =TdS −pdV (2)以T ,V 为自变量时,熵S 的全微分为dS =(ðS ðT )V dT +(ðS ðV )T dV (3) 将(3)式代入(2)式可得dU =T (ðS ðT )V dT +[T (ðS ðV )T −P]dV (4) 将(4)式与(1)式比较可得C V =(ðU ðT )V =T (ðS ðT )V (5) (ðU ðV )T = T (ðp ðT )V −p (6) 7、简述节流过程制冷,气体绝热膨胀制冷,磁致冷却法的原理和优缺点解:节流过程制冷:原理:让被压缩的气体通过一绝热管,管子的中间放置一多孔塞或颈缩管。
(完整版)热力学与统计物理_试题及答案
6! 1 4!1!1!
30;
6!
C
1 3! 3!
20
所有分布总的微观态数为: A B C 6 30 20 56
pA A / 6 / 56 0.107; 各分布对应的概率为: pB B / 30 / 56 0.536;
pC C / 20 / 56 0.357;
;
处于激发态的粒子数为: N2
N Z1
e2
N
e0 e0 e0
;
温度为 T 时处于激发态的粒子数与处于基态的粒子数之为:
N2 N1
e0 e0
0
e kT 0
e kT
极端高温时:ε0《kT, N2 1 , 即处于激发态的粒子数与处于基 N1
态的粒子数基本相同;
极端低温时:ε0》kT, N2 0 , 即粒子几乎全部处于基态。 N1
5.
l
l
给出内能变化的两个原因,其中( ldal )
l
项描述传热,( aldl )项描述做功。
l
6.对粒子数守恒的玻色系统,温度下降会使粒子的化学势( 升高 ); 如果温度足够低,则会发生( 玻色——爱因斯坦凝聚 )。这时系统的 能量 U0=(0),压强 p0=(0),熵 S0=(0)。
7.已知粒子遵从经典玻尔兹曼分布,其能量表达式为
4.对弱简并的非相对论费米气体,求:
(1)粒子数分布的零级近似 f0 与一级修正项Δf1;
(2)证明:与零级近似相比,粒子数的相对修正量和内能的相对修正量 均正比于 e 。
解:费米气体分布函数为:
f
1 e
1
(1)
f
e
1
1 e
e (1 e ) e
e2 2
热力学与统计物理期末复习..
E
期末复习
12
9、简述能量均分定理;用能均分定理求自由电子的内能 和定容热容量;结果与实验结果有何差异?量子统计的 结果如何解释这些差异? 10、简述能量均分定理;用能均分定理求辐射场内能U 和定容热容量CV的结果与实验有何差异?量子统计的结 果如何解释这些差异?
p p V ( ) 0 T T
若pα > pβ ,则有δ V α >0。 这时不可逆过程导致压强大的相将膨胀,压强 小的相将被压缩,即压强差异将导致物质流动。
第三章 期末复习 单元系的相变
7
若热平衡已满足,但相平衡未能满足,熵增 加原理要求
n (
T
SC 2 Nk ln T Nk ln V 2 Nk[1 ln( h
2 0
)]
3 V 3 5 2m k SQ Nk ln T Nk ln Nk[ ln( 2 )] 2 N 2 3 h
试讨论这两个熵的性质。(P212~213)
期末复习 3
3、简述熵判据;写出单元两相系的热学平衡条件、力学 平衡条件和相变平衡条件。如果在一个孤立系统内部引入 内能、体积和摩尔数的虚变动 δ Uα 、 δVα 和 δnα 所引起 的熵变为
期末复习
期末复习
1
一 期末考试题型
1 判断题(每小题2分,共20分)
2 填空题(每空2分,共20分)
3 简述题(每小题8分,共16分) 4 计算与证明题(5个小题,共44分)
热力学及统计物理试题及答案
4.对弱简并的非相对论费米气体,求:
(1)粒子数分布的零级近似f0与一级修正项Δf1;
(2)证明:与零级近似相比,粒子数的相对修正量和内能的相对修正量均正比于 。
解:费米气体分布函数为:
(1)
,
(2)
5.金属中的电子可以视为自由电子气体,电子数密度n,
(1)简述:T=0K时电子气体分布的特点,并说明此时化学势μ0的意义;
解:(1)单粒子的配分函数为:
处于基态的粒子数为:
处于激发态的粒子数为:
温度为T时处于激发态的粒子数与处于基态的粒子数之为:
极端高温时:ε0《kT, , 即处于激发态的粒子数与处于基态的粒子数基本相同;
极端低温时:ε0》kT, , 即粒子几乎全部处于基态。
(2)系统的内能:
热容量:
(3)极端高温时系统的熵:
( klnΩ)。
3.玻色统计与费米统计的区别在于系统中的粒子是否遵从(泡利不相容原理 )原理,其中(费米)系统的分布必须满足0 ≤ fs ≤ 1。
4.玻色系统和费米系统在满足( 经典极限条件(或e-α<<1) 或eα>>1)条件时,可以使用玻尔兹曼统计。
5. 给出内能变化的两个原因,其中( )项描述传热,( )项描述做功。
9.如果系统的分布函数为ρs,系统在量子态s的能量为Es,用ρs和Es表示:系统的平均能量为( ),能量涨落为( )(如写成 也得分)。
10.与宏观平衡态对应的是稳定系综,稳定系综的分布函数ρs具有特点( dρs/ dt=0 或与时间无关等同样的意思也得分 ),同时ρs也满足归一化条件。
二.计算证明题(每题10分,共60分)
能量值: 0,ω,2ω,3ω,…
大学热力学与统计物理期末复习笔记1
《热力学统计物理》期末复习一、简答题1、写出焓、自由能、吉布斯函数的定义式及微分表达式(只考虑体积变化功)答:焓的定义H=U+PV,焓的全微分dH=TdS+VdP;自由能的定义F=U-TS,自由能的全微分dF=-SdT-PdV;吉布斯函数的定义G=U-TS+PV,吉布斯函数的全微分dG=-SdT+VdP。
2、什么是近独立粒子和全同粒子?描写近独立子系统平衡态分布有哪几种?答:近独立子系统指的是粒子之间的相互作用很弱,相互作用的平均能量远小于单个粒子的平均能量,因而可以忽略粒子之间的相互作用。
全同粒子组成的系统就是由具有完全相同的属性(相同的质量、电荷、自旋等)的同类粒子组成的系统。
描写近独立子系统平衡态分布有费米-狄拉克分布、玻色-爱因斯坦分布、玻耳兹曼分布。
3、简述平衡态统计物理的基本假设。
答:平衡态统计物理的基本假设是等概率原理。
等概率原理认为,对于处于平衡状态的孤立系统,系统各个可能的微观状态出现的概率是相等的。
它是统计物理的基本假设,它的正确性由它的种种推论都与客观实际相符而得到肯定。
4、什么叫特性函数?请写出简单系统的特性函数。
答:马休在1869年证明,如果适当选择独立变量(称为自然变量),只要知道一个热力学函数,就可以通过求偏导数而求得均匀系统的全部热力学函数,从而把均匀系统的平衡性质完全确定。
这个热力学函数称为特性函数。
简单系统的特性函数有内能U=U (S 、V ),焓H=H (S 、P ),自由能F=F (T 、V ),吉布斯函数G=G (T 、P )。
5、什么是μ空间?并简单介绍粒子运动状态的经典描述。
答:为了形象的描述粒子的运动状态,用r r p p q q ,,,,11 ;共2r 个变量为直角坐标,构成一个2r 维空间,称为μ空间。
粒子在某一时刻的力学运动状态()r r p p q q ,,,,11 ;可用μ空间的一个点表示。
6、试说明应用经典能量均分定理求得的理想气体的内能和热容量中哪些结论与实验不符(至少例举三项)。
(完整版)热力学与统计复习题
复习提纲一、填空题:1.特性函数是指在________选择自变量的情况下,能够表达系统_________的函数。
2.能量均分定理说:对于处在温度为T 的平衡状态的经典系统,粒子能量函数中的每一个________的平均值等于___________。
3.自然界的一切实际宏观过程都是_________过程,无摩擦的准静态过程是______ _过程。
4.熵增加原理是说,对于绝热过程,系统的熵_____________。
5.卡诺定理指出:工作于相同的高温热源和相同的低温热源之间的一切可逆机,其效率都____________, 与______________无关。
6.绝对零度时电子的最大能量称为___________________。
7.孤立系统经过足够长时间,其 不随时间改变,其所处的状态为热力学平衡态。
8.内能是 函数。
9.一般工作于两个一定温度热源之间的热机效率不大于 。
10.TH V P ∂⎛⎫= ⎪∂⎝⎭ 。
11.三维自由粒子的μ空间是 维空间。
12.体积V 内,能量在d εεε-+范围内自由粒子的可能状态数为 。
13.多元单相系的化学反应平衡条件是 。
14.克拉伯龙方程的表达式为 。
15.玻色系统中粒子的最概然分布为 。
二、选择题:1. 假设全同近独立子系统只有2个粒子,3个个体量子态。
那么下面说法错误的是:( )A. 如果该系统是玻尔兹曼系统,那么该系统共有9个系统微观状态。
B. 如果该系统是费米系统,那么该系统共有6个系统微观状态。
C. 如果该系统是费米系统,那么该系统共有3个系统微观状态。
D. 如果该系统是玻色系统,那么该系统共有6个系统微观状态。
2.关于热力学和统计物理平衡态说法错误的是: ( )A. 一个宏观的平衡状态包含了大量的系统的微观状态。
B. 它是一个动态的平衡,宏观量存在涨落,但是热力学理论不能够考虑涨落。
C. 宏观量都有对应的微观量。
D. 虽然系统的宏观量不随时间发生变化,但是它不一定就是一个平衡态。
热力学与统计物理_试题
热⼒学与统计物理_试题热⼒学部分第⼀章热⼒学的基本规律1、热⼒学与统计物理学所研究的对象:由⼤量微观粒⼦组成的宏观物质系统其中所要研究的系统可分为三类孤⽴系:与其他物体既没有物质交换也没有能量交换的系统;闭系:与外界有能量交换但没有物质交换的系统;开系:与外界既有能量交换⼜有物质交换的系统。
2、热⼒学系统平衡状态的四种参量:⼏何参量、⼒学参量、化学参量和电磁参量。
3、⼀个物理性质均匀的热⼒学系统称为⼀个相;根据相的数量,可以分为单相系和复相系。
4、热平衡定律(热⼒学第零定律):如果两个物体各⾃与第三个物体达到热平衡,它们彼此也处在热平衡.5、符合玻意⽿定律、阿⽒定律和理想⽓体温标的⽓体称为理想⽓体。
6、范德⽡尔斯⽅程是考虑了⽓体分⼦之间的相互作⽤⼒(排斥⼒和吸引⼒),对理想⽓体状态⽅程作了修正之后的实际⽓体的物态⽅程。
7、准静态过程:过程由⽆限靠近的平衡态组成,过程进⾏的每⼀步,系统都处于平衡态。
8、准静态过程外界对⽓体所作的功:,外界对⽓体所作的功是个过程量。
9、绝热过程:系统状态的变化完全是机械作⽤或电磁作⽤的结果⽽没有受到其他影响。
绝热过程中内能U 是⼀个态函数:A B U U W -= 10、热⼒学第⼀定律(即能量守恒定律)表述:任何形式的能量,既不能消灭也不能创造,只能从⼀种形式转换成另⼀种形式,在转换过程中能量的总量保持恒定;热⼒学表达式:Q W U U A B +=-;微分形式:W Q U d d d +=11、态函数焓H :pV U H +=,等压过程:V p U H ?+?=?,与热⼒学第⼀定律的公式⼀⽐较即得:等压过程系统从外界吸收的热量等于态函数焓的增加量。
12、焦⽿定律:⽓体的内能只是温度的函数,与体积⽆关,即)(T U U =。
13.定压热容⽐:p p T H C=;定容热容⽐:V V T U C= 迈耶公式:nR C C V p =- 14、绝热过程的状态⽅程:const =γpV ;const =γTV ;const 1=-γγTp 。
热力学与统计物理试题
热力学与统计物理试题一、选择题1. 热力学第一定律表明,一个系统内能的微小改变等于它与周围环境交换的热量与它做的功之和。
若一个气体绝热膨胀,其内能的变化量为:A. 正值B. 负值C. 零D. 无法确定2. 理想气体状态方程为 \( pV = nRT \),其中 \( p \) 代表压力,\( V \) 代表体积,\( n \) 代表物质的量,\( R \) 是气体常数,\( T \) 代表温度。
若温度和物质的量保持不变,而压力增加,则体积的变化为:A. 增加B. 减小C. 不变D. 先增加后减小3. 熵是热力学中用来描述系统无序度的物理量。
在一个孤立系统中,熵的变化趋势是:A. 持续增加B. 持续减少C. 保持不变D. 在特定条件下增加或减少4. 麦克斯韦关系是热力学中描述状态函数之间关系的一组方程。
对于一个理想气体,其等体过程中的温度与熵的关系是:A. 正比B. 反比C. 无关D. 非线性关系5. 统计物理中,微观状态与宏观状态之间的关系是通过什么原理来描述的?A. 能量均分原理B. 等概率原理C. 熵最大原理D. 能量最小原理二、填空题1. 热力学第二定律可以表述为,在一个自发的过程中,熵总是倾向于增加,这个过程是________的。
2. 理想气体的内能只与温度有关,与体积和压力________。
3. 在热力学循环中,卡诺循环的效率是由两个热库的温度决定的,其效率公式为 \( \eta = 1 - \frac{T_{c}}{T_{h}} \),其中 \( T_{c} \) 是________的温度,\( T_{h} \) 是________的温度。
4. 统计物理中,一个系统的宏观状态可以通过多个不同的________来实现。
5. 按照玻尔兹曼熵的定义,一个系统的熵与它的微观状态数目的对数成正比,数学表达式为 \( S = k_B \ln W \),其中 \( k_B \) 是________常数。
热力学统计物理
《热力学统计物理》复习资料热力学部分第一章 热力学的基本定律基本概念:平衡态,热力学参量,热平衡定律,温度,三个实验系数(、、),转换关系,物态方程,功及其计算,热力学第一定律(数学表述式),热容量(C 、C V 、C P 的概念及定义),理想气体的内能,焦耳定律,绝热过程特征,热力学第二定律(文学表述、数学表述),克劳修斯不等式,热力学基本微分方程表述式,理想气体的熵,熵增加原理及应用。
综合计算:利用实验系数的任意二个求物态方程,熵增(S )计算。
第二章 均匀物质的热力学性质基本概念:焓H ,自由能F ,吉布斯函数(自由焓)G 的定义,全微分式,热力学函数的偏导数关系、麦克斯韦关系及应用,能态公式,焓态公式,节流过程的物理性质,焦汤系数定义及热容量(C P )的关系,绝热膨胀过程及性质、特性函数F 、G ,辐射场的物态方程,内能、熵,吉布函数的性质、辐射通量密度的概念。
综合运用:重要热力学关系式的证明,由特性函数F 、G 求其它热力学函数(如S 、U 、物态方程)。
第三章、第四章 单元及多元系的相变理论该两章主要是掌握物理基本概念:热动平衡判据(S 、F 、G 判据),单元复相系平衡条件,复相多元系的平衡条件,多元系的热力学函数及热力学方程,相变的分类、一级与二级相变的特点及相平衡曲线斜率的推导、吉布斯相律,单相化学反应的化学平衡条件,热力学第三定律的标准表述,绝对熵的概念。
统计物理部分第六章 近独立粒子的最概然分布基本概念:能级的简并度,μ空间,运动状态代表点,三维自由粒子的μ空间,德布罗意关系(=,=),相格,量子态数、等概率原理,对应于某种分布的玻尔兹曼系统,玻色系统,费米系统的微观态数(热力学概率)的计算公式,最概然分布,玻尔兹曼分布律(),配分函数(),用配分函数表示的玻尔兹曼分布(),f s ,P λ, P s的概念,经典配分函数(),麦克斯韦速度分布律。
综合运用:能计算在体积V 内,在动量范围p —p+dp 内,或能量范围+d ε内,粒子的量子态数;了解运用最可几方法推导三种分布。
热力学与统计物理期末复习题
热⼒学与统计物理期末复习题热⼒学与统计物理期末复习题热⼒学统计物理1、请给出熵、焓、⾃由能和吉布斯函数的定义和物理意义解:熵的定义:沿可逆过程的热温⽐的积分,只取决于始、末状态,⽽与过程⽆关,与保守⼒作功类似。
因⽽可认为存在⼀个态函数,定义为熵。
焓的定义:焓的变化是系统在等压可逆过程中所吸收的热量的度量。
⾃由能的定义:⾃由能的减⼩是在等温过程中从系统所获得的最⼤功。
吉布斯函数的定义:在等温等压过程中,系统的吉布斯函数永不增加。
也就是说,在等温等压条件下,系统中发⽣的不可逆过程总是朝着吉布斯函数减少的⽅向进⾏的。
2、请给出热⼒学第零、第⼀、第⼆、第三定律的完整表述解:热⼒学第零定律:如果两个热⼒学系统中的每⼀个都与第三个热⼒学系统处于热平衡(温度相同),则它们彼此也必定处于热平衡。
热⼒学第⼀定律:⾃然界⼀切物体都具有能量,能量有各种不同形式,它能从⼀种形式转化为另⼀种形式,从⼀个物体传递给另⼀个物体,在转化和传递过程中能量的总和不变。
热⼒学第⼆定律:克⽒表述:不可能把热量从低温物体传到⾼温物体⽽不引起其他变化;开⽒表述:不可能从单⼀热源吸热使之完全变成有⽤的功⽽不引起其他变化。
热⼒学第三定律:能⽒定理:凝聚系的熵在等温过程中的改变随热⼒学温度趋于零,即绝对零度不能达到原理:不肯能通过有限的步骤使⼀个物体冷却到热⼒学温度的零度。
通常认为,能⽒定理和绝对零度不能达到原理是热⼒学第三定律的两种表述。
3、请给出定压热容与定容热容的定义,并推导出理想⽓体的定压热容与定容热容关系式:解:定容热容:表⽰在体积不变的条件下内能随温度的变化率;定压热容:表⽰在压强不变的情况下的熵增;对于理想⽓体,定容热容的偏导数可以写为导数,即(1)定压热容的偏导数可以写为导数,即(2)理想⽓体的熵为(3)由(1)(2)(3)式可得理想⽓体的定压热容与定容热容关系式:4、分别给出体涨系数,压强系数和等温压缩系数的定义,并证明三者之间的关系:解:体涨系数:,给出在压强不变的条件下,温度升⾼1 K所引起的物体的体积的相对变化;压强系数:,给出在体积不变的条件下,温度升⾼1 K所引起的物体的体积的相对变化;等温压缩系数:,给出在温度不变的条件下,增加单位压强所引起的物体的体积的相对变化;由于p、V、T三个变量之间存在函数关系f(p,T,V)=0,其偏导数存在以下关系:因此,,满⾜5、分别给出内能,焓,⾃由能,吉布斯函数四个热⼒学基本⽅程及其对应的麦克斯韦关系式解:内能的热⼒学基本⽅程:对应的麦克斯韦关系式:焓的热⼒学基本⽅程:对应的麦克斯韦关系式:⾃由能的热⼒学基本⽅程:对应的麦克斯韦关系式:吉布斯函数的热⼒学基本⽅程:对应的麦克斯韦关系式:6、选择T,V为独⽴变量,证明:,证明:选择T,V为独⽴变量,内能U的全微分为(1)⼜已知内能的热⼒学基本⽅程(2)以T,V为⾃变量时,熵S的全微分为(3)将(3)式代⼊(2)式可得(4)将(4)式与(1)式⽐较可得(5)(6)7、简述节流过程制冷,⽓体绝热膨胀制冷,磁致冷却法的原理和优缺点解:节流过程制冷:原理:让被压缩的⽓体通过⼀绝热管,管⼦的中间放置⼀多孔塞或颈缩管。
01热力学与统计物理大总结
01热力学与统计物理大总结热力学与统计物理总复习一、填空题1、理想气体满足的条件:①玻意耳定律?温度不变时,PV?C? ②焦耳定律?理想气体温标的定义P?T? ?在相同的温度和压强下③阿伏伽德罗定律,相等体积所含各种气体的物质的量相等,即n?V11等于kT ,即:axi2?kT22? 2、能量均分定理:对于处在温度为T的平衡状态的经典系统,粒子能量中每一个平方项的平均值???????kT。
广义能量均分定理:xi???x?ij?j?。
3、吉布斯相律:f?k?2??其中k是组元数量,?是相的数量。
4、相空间是2Nr 维空间,研究的是:一个系统里的N个粒子;?空间是2r 维空间,研究的是:1个粒子。
二、简答题1、特性函数的定义。
答:适当选择独立变量,只要知道一个热力学函数,就可以通过求偏导数而求得均匀系统的全部热力学函数,从而把均匀系统的平衡性质完全确定。
这个热力学函数即称为特性函数。
2、相空间的概念。
答:为了形象地描述粒子的力学运动状态,用q1,?,qr;p1,?,pr 共2r个变量为直角坐标,构成一个2r 维空间,称为?空间。
根据经典力学,系统在任一时刻的微观运动状态f 个广义坐标q1,q2,?,qf及与其共轭的f个广义动量p1,p2,?,pf在该时刻的数值确定。
以q1,?,qf;p1,?,pf共2f个变量为直角坐标构成一个2f维空间,称为相空间或?空间。
3、写出热力学三大定律的表达和公式,分别引出了什么概念?答:热力学第零定律:如果物体A和物体B各自与处在同一状态的物体C达到热平衡,若令A与B- 1 - 进行热接触,它们也将处在热平衡,这个经验事实称为热平衡定律。
即gA(PA,V A)?gB(PB,VB),并引出了“温度T”这概念。
热力学第一定律:自然界一切物质都具有能量,能量有各种不同形式,可以从一种形式转化为另一种形式,从一个物体传递到另一个物体,在传递与转化中能量的数量不变。
即dU?dQ?dW,并引出了“内能U”的概念。
《热力学与统计物理》知识30道选择题
《热力学与统计物理》知识30道选择题1. 热力学过程中,系统内能变化的度量是(B )。
A. 压强B. 热量C. 温度D. 熵2. 下列物理量中,与物质的微观粒子状态有关的是(D )。
A. 内能B. 热容C. 压强D. 熵3. 理想气体的内能只与(A )有关。
A. 温度B. 压强C. 体积D. 物质的量4. 在热力学中,熵增加原理适用于(A )。
A. 孤立系统B. 开放系统C. 封闭系统D. 任意系统5. 热力学第二定律表明(C )。
A. 能量可以全部转化为功B. 热可以全部转化为功C. 自发过程总是朝着熵增加的方向进行D. 以上都不对6. 对于一个孤立系统,其熵(A )。
A. 总是增加的B. 总是减少的C. 保持不变D. 无法确定7. 下列哪个过程是不可逆的?(A )A. 热从高温物体流向低温物体B. 气体自由膨胀C. 理想气体等温膨胀D. 以上都不是8. 统计物理中,最基本的概率分布是(B )。
A. 正态分布B. 麦克斯韦-玻尔兹曼分布C. 均匀分布D. 指数分布9. 玻尔兹曼常数的符号是(B )。
A. kB. k B.C. RD. γ10. 在平衡态下,系统的微观状态数最(D )。
A. 多B. 少C. 不确定D. 大11. 热力学温度的单位是(K )。
A. ℃B. FC. JD. K12. 分子的平均动能与(A )成正比。
A. 温度B. 压强C. 体积D. 熵13. 熵的单位是(J/K )。
A. JB. J/KC. KD. 无单位14. 理想气体状态方程的表达式是(pV = nRT )。
A. pV = nRTB. p = nRT/VC. V = nRT/pD. 以上都不是15. 下列哪种物质的热容较大?(A )A. 水B. 铁C. 铜D. 以上都不是16. 统计物理中,粒子的能量是(B )。
A. 连续的B. 分立的C. 以上都不是D. 不确定17. 分子的动能取决于(A )。
A. 温度B. 压强C. 体积D. 以上都不是18. 热力学第一定律可以表示为(ΔU = Q + W )。
热力学统计物理练习试题和答案
热力学统计物理练习试题和答案WORD 格式整理热力学·统计物理练习题一、填空题 . 本大题 70 个小题,把答案写在横线上。
1. 当热力学系统与外界无相互作用时 , 经过足够长时间 , 其宏观性质时间改变,其所处的为热力学平衡态。
2.系统,经过足够长时间,其不随时间改变,其所处的状态为热力学平衡态。
3.均匀物质系统的热力学平衡态可由力学参量、电磁参量、几何参量、化学参量等四类参量描述,但有是独立的。
4.对于非孤立系统,当其与外界作为一个整体处于热力学平衡态时,此时的系统所处的状态是。
5.欲描述非平衡系统的状态,需要将系统分成若干个小部分,使每小部分具有小,但微观上又包含大量粒子,则每小部分都可视为。
6.描述热力学系统平衡态的独立参量和之间关系的方程式叫物态方程,其一般表达式为。
7.均匀物质系统的独立参量有个,而过程方程独立参量只有个。
8.定压膨胀系数的意义是在不变的条件下系统体积随的相对变化。
9.定容压力系数的意义是在不变条件下系统的压强随的相对变化。
10.等温压缩系数的意义是在不变条件下系统的体积随的相对变化。
11.循环关系的表达式为。
12.在无摩擦准静态过程中存在着几种不同形式的功,则系统对外界作的功 W Y i dy i ,其中 y i 是, Y i 是与 y i 相应的。
13. U B U A Q W ,其中是作的功。
W14. dUQW0 ,-W 是作的功,且 -W 等于。
22(、均为热力学平衡态1、L2 为15.Q W QW ,L 1L 1 1 2 1L 2准静态过程)。
16.第一类永动机是指的永动机。
17.内能是函数,内能的改变决定于和。
18.焓是函数,在等压过程中,焓的变化等于的热量。
19.理想气体内能温度有关,而与体积。
学习参考资料分享WORD 格式整理20.理想气体的焓温度的函数与无关。
21.热力学第二定律指明了一切与热现象有关的实际过程进行的。
22.为了判断不可逆过程自发进行的方向只须研究和的相互关系就够了。
(完整版)热力学统计物理练习的题目及答案详解
热力学·统计物理练习题一、填空题. 本大题70个小题,把答案写在横线上。
1.当热力学系统与外界无相互作用时,经过足够长时间,其宏观性质 时间改变,其所处的 为热力学平衡态。
2. 系统,经过足够长时间,其 不随时间改变,其所处的状态为热力学平衡态。
3.均匀物质系统的热力学平衡态可由力学参量、电磁参量、几何参量、化学参量等四类参量描述,但有 是独立的。
4.对于非孤立系统,当其与外界作为一个整体处于热力学平衡态时,此时的系统所处的状态是 。
5.欲描述非平衡系统的状态,需要将系统分成若干个小部分,使每小部分具有 小,但微观上又包含大量粒子,则每小部分都可视为 。
6.描述热力学系统平衡态的独立参量和 之间关系的方程式叫物态方程,其一般表达式为 。
7.均匀物质系统的独立参量有 个,而过程方程独立参量只有 个。
8.定压膨胀系数的意义是在 不变的条件下系统体积随 的相对变化。
9.定容压力系数的意义是在 不变条件下系统的压强随 的相对变化。
10.等温压缩系数的意义是在 不变条件下系统的体积随 的相对变化。
11.循环关系的表达式为 。
12.在无摩擦准静态过程中存在着几种不同形式的功,则系统对外界作的功∑-=δi i dy Y W ,其中i y 是 ,i Y 是与i y 相应的 。
13.W Q U U A B +=-,其中W 是 作的功。
14.⎰=+=0W Q dU ,-W 是 作的功,且-W 等于 。
15.⎰δ+δ2L 11W Q ⎰δ+δ2L 12W Q (1、2均为热力学平衡态,L 1、L 2为准静态过程)。
16.第一类永动机是指 的永动机。
17.内能是 函数,内能的改变决定于 和 。
18.焓是 函数,在等压过程中,焓的变化等于 的热量。
19.理想气体内能 温度有关,而与体积 。
20.理想气体的焓 温度的函数与 无关。
21.热力学第二定律指明了一切与热现象有关的实际过程进行的 。
22.为了判断不可逆过程自发进行的方向只须研究 和 的相互关系就够了。
热力学统计物理复习总结
热力学统计物理复习总结首先,我们来回顾一下热力学的基本概念。
热力学是研究能量转化和宏观物质性质的学科,通过引入一些基本宏观物理量,如温度、压强、体积等,建立了一套描述系统性质的定律。
其中,最重要的是热力学第一定律和第二定律。
热力学第一定律表达了能量守恒的原理,即能量既不能被创造也不能被破坏,只能从一个物体传递到另一个物体或在物体内部转化。
热力学第二定律则规定了自然界的一些不可逆过程不能自发地逆转,即熵的增加原理。
熵是描述系统的无序程度的物理量,它的增加是热力学过程不可逆的本质原因。
接下来,我们来看一下统计物理的基本概念。
统计物理是研究微观粒子的统计规律和宏观物质性质的学科。
它基于统计学的方法,通过对大量微观粒子的集体行为进行平均和统计,推导出一些宏观物理量的统计规律。
统计物理中最重要的概念是微观状态、宏观状态和分布函数。
微观状态是指系统中每个粒子的具体状态,包括位置、动量等信息;宏观状态则是指宏观物理量的取值,如温度、压强等;分布函数则是描述系统微观状态的概率分布函数,可以通过对分布函数的积分平均得到宏观物理量。
在统计物理中,最基本的理论是正则系综理论。
正则系综理论通过引入系统的配分函数和Boltzmann分布来描述系统的统计行为。
配分函数是描述系统所有可能微观状态的重要物理量,它的对数称为Helmholtz自由能,与热力学中的自由能概念相对应。
Boltzmann分布则给出了系统处于一些微观状态的概率与该状态的能量有关。
通过对配分函数和Boltzmann分布的计算和分析,我们可以得到系统的各种宏观物理量的表达式,如平均能量、熵、温度等。
除了正则系综理论,还有其他一些重要的统计物理理论,如巨正则系综理论和配分函数的统计定义。
巨正则系综理论是用来描述开放系统的统计行为的理论,其中引入了化学势和粒子数的概念。
配分函数的统计定义是一种基于信息论的方法,通过量子力学的观点重新定义了配分函数和微观状态的概念,对于处理量子系统和非平衡态问题非常有用。
(完整word版)热力学统计物理复习
热力学统计物理复习一、简答题(每小题4分,共20分)二、填空题(每空2分,共36分)三、证明和计算题(10+12+10+12=44分)第一部分1.熵增原理2.特性函数3.热力学第二定律的两种表述及其本质4.熵判据5.单元系、单元复相系6.单元复相系平衡条件包括哪些?7.等几率原理8. 空间9.近独立粒子系统10.全同性粒子系统11.玻色子、费米子12.热力学第一定律数学表达, 包括积分与微分表达; 热力学基本方程13.统计物理学的最根本观点是什么?14.玻耳兹曼分布、玻色分布和费米分布的数学表达式15.简并条件(经典极限条件)、弱简并条件、强简并条件16.微正则分布、正则分布和巨正则分布分别适用于什么样的系统17 系统微观运动状态的描述第一部分1.(P42)在绝热过程中,系统的熵永不减少,对于可逆绝热过程,系统的熵不变;对于不可逆绝热过程,系统的熵总是增加,这个结论叫做熵增加原理。
2.(P63)如果适当选择独立变量(称为自然变量),只要知道一个热力学函数,就可以通过求偏导数而求得均匀系统的全部热力学函数,从而把均匀系统的平衡性质完全确定。
这样的热力学函数称为特性函数。
以S、V为变量的特征函数是内能U。
3.(P30)热力学第二定律的克氏表述:不可能把热量从低温物体传到高温物体而不引起其他变化;开氏表述:不可能从单一热源吸热使之完全变成有用功而不引起其他变化。
4.(P76)如果孤立系统已经达到了熵为极大的状态,就不可能在发生任何宏观变化,系统就达到了平衡态。
我们可以利用熵函数这一性质来判定孤立系统的平衡态,这称为熵判据。
5.(P80)单元系是指化学上纯的物质系统,它只含一种化学组分(一个组元)。
如果一个单元系不是均匀的,但可以分为若干个均匀的部分,该系统称为单元复相系。
比如水和水蒸汽共存构成一个单元两相系。
6.(P82)单元复相系达到平衡条件必须同时满足热学平衡条件、力学平衡条件和相平衡条件。
7. (P178)对于处在平衡状态的孤立系统,系统各个可能的微观态出现的几率是相等的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
11、态函数焓 H: H U pV ,等压过程: H U pV ,与热力学第一定律的公
式一比较即得:等压过程系统从外界吸收的热量等于态函数焓的增加量。
2
12、焦耳定律:理想气体的内能只是温度的函数,与体积无关,即U U (T ) 。
第七章 玻尔兹曼统计
基本概念:熟悉 U、广义力、物态方程、熵 S 的统计公式,乘子 α、β 的意义,玻尔
兹曼关系(S=KlnΩ),最可几率 Vm,平均速度V ,方均根速度Vs ,能量均分定理。
综合运用:
能运用玻尔兹曼经典分布计算理想气体的配分函数内能、物态方程和熵;能运用玻尔
1 兹曼分布计算谐振子系统(已知能量 ε=(n+ 2 ) )的配分函数内能和热容量。
数 2、从四角关系,横不加负(都向左或向右),竖加负(都向上或向下),容易导出麦氏关系:
T p V S S V
;
T p
S
V S
p
S p V T T V
;
V T
p
S p
T
3,热力学证明题,还常用到所谓的“三角关系或循环关系”,若某个函数是三个独立变量
的函数,既有 f ( X ,Y , Z ) 0 ,则
30%。
热力学•统计物理 (汪志诚) 概念部分汇总复习 热力学部分(研究热现象的宏观理论) 第一章 热力学的基本规律 1、热力学与统计物理学所研究的对象:由大量微观粒子组成的宏观物质系统 其中所要研究的系统可分为三类 孤立系:与其他物体既没有物质交换也没有能量交换的系统; 闭系:与外界有能量交换但没有物质交换的系统; 开系:与外界既有能量交换又有物质交换的系统。 2、热力学系统平衡态:系统的宏观性质不随时间发生变化的状态。描述热力学系统平衡状 态的四种参量:几何参量、力学参量、化学参量和电磁参量。 3、一个物理性质均匀的热力学系统称为一个相;根据相的数量,可以分为单相系和复相系。
二级相变的特征是:化学势连续,化学势对压强或温度的一阶导数连续,但化学势对压强
或温度的二阶导数不连续
N 级相变的特征是:化学势连续,化学势对压强或温度的 N-1 阶导数连续,但化学势对压
强或温度的 N 阶导数不连续
第四章 多元系的复相平衡和化学平衡
1、多元系是由含有两种或两种以上化学组分组成的系统,在多元系既可以发生相变,也可
19、热机的效率: 1 Q2 ,Q1 为热机从高温热源吸收的热量,Q2 为热机在低温热源放 Q1
出的热量。
20、克劳修斯等式与不等式: Q1 Q2 0 。 T1 T2
21、可逆热力学过程 dQ 0 ,不可逆热力学过程 dQ 0 。
T
T
可逆过程:过程发生后,能通过各种手段完全消除该过程产生的一切影响,并使系统
流过程前后温度不变。
4、受热的物体会辐射电磁波,叫做热辐射;热平衡辐射体对电磁波的吸收和辐射达到平衡,
热辐射的特性只取决于辐射体的温度,与辐射体的其他性质无关,所以说平衡辐射下,辐
射体具有固定的温度。
第三章 单元系的相变
1、孤立系统达到平衡态的时候,系统的熵处于极大值状态,这是孤立系统平衡态的判据;
第八章 玻色统计和费米统计
基本概念:
fs
1
T=0光k 时子,气自体由的电玻子色的分费布米,分分布布性在质能(量f为s=1ε),s 的费量米子能态量s的(0平),均费光米子动数量(
e KT 1 ),
PF,T=0k 时电
1
子的平均能量,维恩位移定律。
综合运用:掌握普朗克公式的推导;T=0k 时,电子气体的费米能量 (0)计算,T=0k 时,电子的平均速率V 的计算,电子的平均能量 的计算。
第二章 均匀物质的热力学性质 基本概念:焓(H),自由能 F,吉布斯函数 G 的定义,全微公式,麦克斯韦关系(四 个)及应用、能态公式、焓态公式,节流过程的物理性质,焦汤系数定义及热容量(Cp) 的关系,绝热膨胀过程及性质,特性函数 F、G,空窖辐射场的物态方程,内能、熵,吉布 函数的性质。 综合运用:重要热力学关系式的证明,由特性函数 F、G 求其它热力学函数(如 S、U、物态方程) 第三章、第四章 单元及多元系的相变理论 该两章主要是掌握物理基本概念: 热动平衡判据(S、F、G 判据),单元复相系的平衡条件,多元复相系的平衡条件,多 元系的热力学函数及热力学方程,一级相变的特点,吉布斯相律,单相化学反应的化学平 衡条件,热力学第三定律标准表述,绝对熵的概念。
28.
熵变的计算:由于熵是态函数,原则上能找到一可逆路径, dS
dQ T
或 S
i
Qi 来 Ti
计算,注意,当吸热时 Qi 取正,放热时取负。
29、在等温等容过程中,系统的自由能( F U TS )永不增加,系统发生的不可逆过
程总是朝着自由能减少的方向进行;在等温等压过程中,吉布斯函数
( G U TS pV )永不增加,系统发生的不可逆过程总是朝着吉布斯函数减少的方向
7、两相平衡曲线的斜率满足:
dP dT
S
m
Vm
S
m
Vm
L T (Vm Vm
)
,即克拉伯龙方程
T
7、单元系三相共存时,
p
T p
T p
T0; p0;
即三相(α β γ)的温度、
(T , p) (T , p) (T , p)
压强和化学势必须相等。
8 一级相变的特征是:化学势连续,但化学势对压强或温度的一阶导数不连续,
第九章 系综理论 基本概念:
空间的概念,微正则分布的经典表达式、量子表达式,正则分布的表达式,正则配
分函数的表达式。 经典正则配分函数。 不作综合运用要求。 四、考试题型与分值分配 1、题型采用单选题、判断题、填空题、简答题、证明题及计算题六种形式。 2、单选题占 20%,判断题 10%、填空题占 15%,简答题 10%,证明题 15%,计算题占
8、准静态过程外界对气体所作的功: dW pdV ,外界对气体所作的功是个过程量。
9、绝热过程:系统状态的变化完全是机械作用或电磁作用的结果而没有受到其他影响。绝
热过程中内能 U 是一个态函数:W U B U A
10、热力学第一定律(即能量守恒定律)表述:任何形式的能量,既不能消灭也不能创造, 只能从一种形式转换成另一种形式,在转换过程中能量的总量保持恒定;热力学表达式:
k 2 个相 (自由度为零)
1 T1 ,逆循环为卡诺制冷机,效率为 T1 (只能用于卡诺热机)。
T2
T1 T2
16、热力学第二定律:克劳修斯表述:不可能把热量从低温物体传到高温物体 而不引起其他变化(表明热传导过程是不可逆的);
开尔文(汤姆孙)表述:不可能从单一热源吸收热量使之完全变成有用的功而不引起 其他变化(表明功变热的过程是不可逆的);
如果极大值不止一个,则当系统处于较小的极大值的时候,系统处于亚稳平衡态。
2.孤立系统处在稳定平衡态的充要条件是(稳定态熵最大,发生虚变动后熵减少):
S 0 ;等温等容系统处在稳定平衡态的充要条件是(自由能最小): F 0 ;等温等
压系统处在稳定平衡态的充要条件是(吉普斯
Y X Y Z ( Y )Z ( Z ) X ( X )Y
1
4
3、获得低温的方法主要有节流过程和绝热膨胀过程及绝热去磁过程;节流过程前后,压强
降低,焓不变,但气体的温度随压强的降低发生了变化,这个效应称之为:焦耳-汤姆孙
效应;焦汤系数
T ( P ) H
为正时降温,为负时升温。对于理想气体,焦汤系数为零,节
《热力学与统计物理》考试大纲
第一章 热力学的基本定律 基本概念:平衡态、热力学参量、热平衡定律
温度,三个实验系数(α,β, T )转换关系,物态方程、功及其计算,热力学第一
定律(数学表述式)热容量(C,CV,Cp 的概念及定义),理想气体的内能,焦耳定律,绝 热过程及特性,热力学第二定律(文字表述、数学表述),可逆过程克劳修斯不等式,热力 学基本微分方程表述式,理想气体的熵、熵增加原理及应用。 综合计算:利用实验系数的任意二个求物态方程,熵增(ΔS)的计算。
25、熵增加原理:系统经过可逆绝热过程后熵不变,经过不可逆绝热过程后熵增加,在绝 热条件下熵减少的过程是不可能实现的。熵增加原理用来判断绝热过程进行的方向和限度。
3
26、孤立系统内所自发发生的过程的方向就是熵增加的方向,若系统经绝热过程后熵不变, 则此过程是可逆的;若熵增加,则此过程是不可逆的。 27、熵是系统中微观粒子作无规则运动的混乱程度的量度(玻尔兹曼关系)。
4、热平衡定律(热力学第零定律):如果两个物体各自与第三个物体达到热平衡,它们彼 此也处在热平衡。从该定律可导出温度是态函数的严格定义。 5、符合玻意耳定律、阿氏定律和理想气体温标的气体称为理想气体。 6、范德瓦尔斯方程是考虑了气体分子之间的相互作用力(排斥力和吸引力),对理想气体 状态方程作了修正之后的实际气体的物态方程。 7、准静态过程:过程由无限靠近的平衡态组成,过程进行的每一步,系统都处于平衡态。
的状态完全复原。反之,则为不可逆过程。
22、热力学基本方程: dU TdS pdV 。
23、熵函数是一个广延量,具有可加性;熵 S 是一个态函数,对于可逆过程,积分与路径 无关;对于绝热过程中,熵永不减少。
24、理想气体的熵函数 S: S nCV lnT nR lnV S0 ; S nCp lnT nR ln p S0 。
统计物理部分
第六章 近独立粒子的最概然分布
基本概念:能级的简并度, 空间,运动状态,代表点,三维自由粒子的 空间,德 布罗意关系( =,P k ),相格,量子态数。
等概率原理,对应于某种分布的玻尔兹曼系统、玻色系统、费米系统的微观态数的计
算公式,最概然分布,玻尔兹曼分布律( al l e l )配分函数(