金属学课后习题答案

合集下载

《金属学原理》各章习题及解答(第一章晶体题解)汇编

《金属学原理》各章习题及解答(第一章晶体题解)汇编

立方体有 4 个 3 次轴,它们是 4 个体对角线,即过立方体中心的 3 个<111>方向;有 3 个 4 次轴,它们是立方体三对平行面的中点连线,即过立方体中心的 3 个<100>方向;有 6 个 2 次轴,它们是过立方体中心的 6 个<110>方向;有 9 个镜面,即过立方体中心的 3 个 {100}面和过立方体中心的 6 个{110}面;有一个对称中心,它就是立方体的中心。 立方体顶面和底面中心与过立方体中心并平行于顶面(和底面)的四边形四个顶点连接起 来就是一个八面体,所以八面体的对称性质与立方体的相同。它有 4 个 3 次轴,3 个 4 次 轴,见上图右 2 图;有 6 个 2 次轴,见上图的右 3 图;有 9 个镜面,上面最右边的图只画 出了四个镜面,它们是过 E、F 点与 ABCD 四边形的两条中线连成的两个面以及 EAFC 面 和 EBFC 面,按同样方法以 A、C 顶点和 B、D 顶点也可各得四个镜面,但是其中有三个 是重复的,所以共有 9 个镜面;八面体中心是对称中心。 下右图是六面柱体和四面体的对称元素的示意图。六面柱体有 1 个 6 次轴,它是过六面柱 体中心并垂直顶面和底面的轴;有 6 个 2 次轴,它们是过六面柱体中心的六边形的三个对 角线和这个六边形对边中点连线;有 7 个镜面,它们是是过六面柱体中心的六边形面、六
3. 在图 1-57 的平面点阵中,指出哪些矢量对是初基矢量对。请在它上面再画出三个不同的 初基矢量对。 解:根据初基矢量的定义,由它们组成的平面 初基单胞只含一个阵点,右图(图 1-57)中的① 和②是初基矢量对,③不是初基矢量对。右图 的黑粗线矢量对,即④、⑤和⑥是新加的初基 矢量对。
4. 用图 1-58a 中所标的 a1 和 a2 初基矢量来写出 r1,r2,r3 和 r4 的平移矢量的矢量式。用图 1-58b 中所标的初基矢量 a1,a2 和 a3 来写出图中的 r 矢量的矢量式。 解:右图(图 1-58)a 中的 a1 和 a2 表 示图中的各矢量:

金属工艺学部分课后习题解答

金属工艺学部分课后习题解答

补充习题
下列铸件在大批量生产时,以什么铸造措施 为宜? 铝活塞金属型铸造、汽轮机叶片熔模铸造、 汽缸套离心铸造、车床床身砂型铸造、摩托车 气缸体压力铸造、汽车喇叭压力铸造、大口径 污水管离心铸造、大模数齿轮滚刀熔模铸造
压力加工:第二章 铸造
7 图示零件采用锤上模锻制造,请选择最合适旳分模面
位置? p127
I
铸造:第三章 砂型铸造
5.图示铸件在单件生产条件下该选用哪种造型措施?
方案I: 分型面为曲
面,不利于分型。
I
方案II:分型面在最
II
大截面处,且为平面,
方案可行。
铸造:第三章 砂型铸造
5.图示铸件在单件生产条件下该选用哪种造型措施?
I II
两方案均可, 但型芯头形状 不同。
铸造:第三章 砂型铸造
铸造:第一章 铸造工艺基础
8.试用下面异形梁铸钢件分析其热应力旳形成原 因,并用虚线表达出铸件旳变形方向。p49
形成原因:壁厚不均匀。
铸造:第三章 砂型铸造
5.图示铸件在单件生产条件下该选用哪种造型措施?
p73
I方案存在错箱可能。 该零件不算太高,故 方案II稍好,从冒口
II
安放来看,II方案轻 易安放。
焊接措施: 手工电弧焊、二氧化碳气体保护焊
端面车刀
6.图示铸件有几种分型方案?在大批量生产中应选择 哪种方案? p73
应采用方案I,方案II
I
型芯稳定,但φ40凸台
阻碍拔模。
II
铸造:第三章 砂型铸造
6.图示铸件有几种分型方案?在大批量生产中应选择 哪种方案? p73
I
III II
应采用方案III,方案I需要活块,且下面活 块难以取出;方案II需要挖砂。

金属学第四章习题答案

金属学第四章习题答案

思考题与习题答案4-1工程塑料是指可用作工程结构或机械零件的一类塑料,它们一般有较好的稳定的力学性能,耐热耐蚀性较好,且尺寸稳定性好,如ABS、尼龙、聚甲醛等。

4-2橡胶按原料来源分为天然橡胶和合成橡胶。

(1)天然橡胶天然橡胶是橡胶树流出的胶乳,经凝固、干燥等工序制成的弹性固状物,其单体为异戊二烯高分子化合物。

它具有很好的弹性,但强度、硬度不高。

为提高强度并硬化,需进行硫化处理。

天然橡胶是良好的绝缘体,但耐热老化和耐大气老化性较差,不耐臭氧、油和有机溶剂,且易燃。

天然橡胶属通用橡胶,广泛应用于制造轮胎、胶带等。

(2)合成橡胶在生胶中加入硫化剂、硫化促进剂、活性剂、软化剂、填充剂、防老剂、着色剂等配合剂生产的橡胶叫做合成橡胶。

天然橡胶数量少、性能也无法满足工业需要。

以石油、天然气、煤和农副产品为原料制成的合成橡胶,它的种类很多,有丁苯橡胶(SBR)、顺丁橡胶(BR)和氯丁橡胶(CR)等,其应用广泛。

4-3特种陶瓷是以人工化合物为原料制成的,如氧化物、氮化物、碳化物、硅化物、硼化物和氟化物陶瓷以及石英质、刚玉质、碳化硅质过滤陶瓷等。

(1)氧化铝陶瓷是以Al2O3为主要成分的陶瓷。

它的熔点很高,可作高级耐火材料,如坩埚、高温炉管等。

(2)氮化硅陶瓷它极耐高温、强度很高、耐化学腐蚀性好,可做燃气轮机的燃烧室、输送铝液的电磁泵的管道及阀门、钢水分离环等。

(3)碳化硅陶瓷碳化硅具有高硬度、高熔点、高稳定性和半导体性质。

碳化硅作为一种新型耐热材料,近年来被广泛用于冶炼炉窑和锅炉燃烧系统的衬板、炉拱等高温区域,利用它的高硬度和耐磨性可制造砂轮、磨料等。

(4)氮化硼陶瓷是优良的耐磨材料,常用于制作刀具。

4-4复合材料是两种或两种以上的化学本质不同的组成成分经人工合成的材料。

其结构为多相,一类组成(或相)为基体,起粘结作用,另一类为增强相。

目前常用的复合材料是以聚合物、金属、陶瓷为基体,加入各种增强纤维或增强颗粒而形成的。

金属学材料学课后习题答案全

金属学材料学课后习题答案全

1-1. 为什么说钢中的S、P杂质元素在一般情况下是有害的答:S容易和Fe结合形成熔点为989℃的FeS相,会使钢在热加工过程中产生热脆性;P与Fe结合形成硬脆的Fe3P相,使钢在冷变形加工过程中产生冷脆性。

1-2. 钢中的碳化物按点阵结构分为哪两大类各有什么特点答:可以分为简单点阵结构和复杂点阵结构,简单点阵结构的特点:硬度较高、熔点较高、稳定性较好;复杂点阵结构的特点:硬度较低、熔点较低、稳定性较差。

1-3. 简述合金钢中碳化物形成规律。

答:①当r C/r M>时,形成复杂点阵结构;当r C/r M<时,形成简单点阵结构;②相似者相溶:完全互溶:原子尺寸、电化学因素均相似;有限溶解:一般K都能溶解其它元素,形成复合碳化物。

③强碳化合物形成元素优先与碳结合形成碳化物。

④N M/N C比值决定了碳化物类型⑤碳化物稳定性越好,溶解越难,析出难越,聚集长大也越难。

1-4. 合金元素对Fe –Fe3C 相图的S、E 点有什么影响这种影响意味着什么答:凡是扩大γ相区的元素均使 S、E点向左下方移动;凡是封闭γ相区的元素均使S、E 点向左上方移动。

S点左移,意味着共析碳量减少; E点左移,意味着出现莱氏体的碳含量减少。

1-19. 试解释40Cr13已属于过共析钢,而Cr12钢中已经出现共晶组织,属于莱氏体钢。

答:①因为Cr属于封闭y相区的元素,使S点左移,意味着共析碳量减小,所以钢中含有Cr12%时,共析碳量小于%,所以含%C、13%Cr 的40Cr13不锈钢就属于过共析钢。

②Cr使E点左移,意味着出现莱氏体的碳含量减小。

在Fe-C相图中,E点是钢和铁的分界线,在碳钢中是不存在莱氏体组织的。

但是如果加入了12%的Cr,尽管含碳量只有2%左右,钢中却已经出现了莱氏体组织。

1-21. 什么叫钢的内吸附现象其机理和主要影响因素是什么答:合金元素溶入基体后,与晶体缺陷产生交互作用,使这些合金元素发生偏聚或内吸附,使偏聚元素在缺陷处的浓度大于基体中的平均浓度,这种现象称为内吸附现象。

金属学课后习题答案

金属学课后习题答案

第一章1.作图表示出立方晶系(1 2 3)、(0 -1 -2)、(4 2 1)等晶面和[-1 0 2]、[-2 1 1]、[3 4 6] 等晶向3.某晶体的原子位于正方晶格的节点上,其晶格常数a=b≠c,c=2/3a。

今有一晶面在X、Y、Z坐标轴上的截距分别是5个原子间距,2个原子间距和3个原子间距,求该晶面的晶面参数。

解:设X方向的截距为5a,Y方向的截距为2a,则Z方向截距为3c=3X2a/3=2a,取截距的倒数,分别为1/5a,1/2a,1/2a化为最小简单整数分别为2,5,5故该晶面的晶面指数为(2 5 5)4.体心立方晶格的晶格常数为a,试求出(1 0 0)、(1 1 0)、(1 1 1)晶面的晶面间距,并指出面间距最大的晶面解:(1 0 0)面间距为a/2,(1 1 0)面间距为√2a/2,(1 1 1)面间距为√3a/3三个晶面晶面中面间距最大的晶面为(1 1 0)7.证明理想密排六方晶胞中的轴比c/a=1.633证明:理想密排六方晶格配位数为12,即晶胞上底面中心原子与其下面的3个位于晶胞内的原子相切,成正四面体,如图所示则OD=c/2,AB=BC=CA=CD=a因△ABC是等边三角形,所以有OC=2/3CE由于(BC)2=(CE)2+(BE)2则有(CD)2=(OC)2+(1/2c)2,即因此c/a=√8/3=1.6338.试证明面心立方晶格的八面体间隙半径为r=0.414R解:面心立方八面体间隙半径r=a/2-√2a/4=0.146a面心立方原子半径R=√2a/4,则a=4R/√2,代入上式有R=0.146X4R/√2=0.414R9.a)设有一刚球模型,球的直径不变,当由面心立方晶格转变为体心立方晶格时,试计算其体积膨胀。

b)经X射线测定,在912℃时γ-Fe的晶格常数为0.3633nm,α-Fe的晶格常数为0.2892nm,当由γ-Fe转化为α-Fe时,求其体积膨胀,并与a)比较,说明其差别的原因。

金属学及热处理课后习题答案解析第六章

金属学及热处理课后习题答案解析第六章

第六章金属及合金的塑性变形和断裂2)求出屈服载荷下的取向因子,作出取向因子和屈服应力的关系曲线,说明取向因子对屈服应力的影响。

答:1)需临界临界分切应力的计算公式:τk=σs cosφcosλ,σs为屈服强度=屈服载荷/截面积需要注意的是:在拉伸试验时,滑移面受大小相等,方向相反的一对轴向力的作用。

当载荷与法线夹角φ为钝角时,则按φ的补角做余弦计算。

2)c osφcosλ称作取向因子,由表中σs和cosφcosλ的数值可以看出,随着取向因子的增大,屈服应力逐渐减小。

cosφcosλ的最大值是φ、λ均为45度时,数值为0.5,此时σs为最小值,金属最易发生滑移,这种取向称为软取向。

当外力与滑移面平行(φ=90°)或垂直(λ=90°)时,cosφcosλ为0,则无论τk数值如何,σs均为无穷大,表示晶体在此情况下根本无法滑移,这种取向称为硬取向。

6-2 画出铜晶体的一个晶胞,在晶胞上指出:1)发生滑移的一个滑移面2)在这一晶面上发生滑移的一个方向3)滑移面上的原子密度与{001}等其他晶面相比有何差别4)沿滑移方向的原子间距与其他方向有何差别。

答:解答此题首先要知道铜在室温时的晶体结构是面心立方。

1)发生滑移的滑移面通常是晶体的密排面,也就是原子密度最大的晶面。

在面心立方晶格中的密排面是{111}晶面。

2)发生滑移的滑移方向通常是晶体的密排方向,也就是原子密度最大的晶向,在{111}晶面中的密排方向<110>晶向。

3){111}晶面的原子密度为原子密度最大的晶面,其值为2.3/a2,{001}晶面的原子密度为1.5/a24)滑移方向通常是晶体的密排方向,也就是原子密度高于其他晶向,原子排列紧密,原子间距小于其他晶向,其值为1.414/a。

6-3 假定有一铜单晶体,其表面恰好平行于晶体的(001)晶面,若在[001]晶向施加应力,使该晶体在所有可能的滑移面上滑移,并在上述晶面上产生相应的滑移线,试预计在表面上可能看到的滑移线形貌。

《金属学原理》各章习题及解答(第一章晶体题解)

《金属学原理》各章习题及解答(第一章晶体题解)

11.某正交晶系单胞中,在如下位置有单原子存在:①(0, 1/2, 0),(1/2, 0, 1/2)两种位置都是同 类原子;②([1/2, 0,0]),(0, 1/2, 1/2)上是 A 原子,(0, 0, 1/2),(1/2, 1/2, 0)是 B 原子。问上两 种晶胞各属于哪一种布喇菲点阵? 解:①右图 a 中黑实线是一个正交单 胞,a 和 b 分别是两个晶轴,两个带影 线的圆代表给定的原子位置,应该注 意到在与此等效的所有位置都有原 子。根据题意,一个单胞含两个原子, 如果把黑线所定的晶轴向-b 平移 b/2, 把现在的 ABCDD'A'B'C'六面体看成 是单胞,可以知道这是 I 点阵。 ②右图 b 中黑实线是一个正交单胞,a 和 b 分别是两个晶轴,两个带影线的圆代表 A 原子 位置,两个黑色的圆代表 B 原子位置,应该注意到在与这些位置等效的所有位置都有相应 的各类原子。如果把黑线所定的晶轴向-a 平移 a/2,把现在的 CDEFF'C'D'E'六面体看成是 单胞,看出这是 I 单胞,其中结构基元由一个 A 原子和一个 B 原子构成。
8. 画出图 1-60 中四种平面点阵(它是无限大的)除平移外的所有对称元素及其所在位置(在 有限个阵点画出就可以了)。 解:把对称元素直接画在图 1-60 中,如下图所示。图 a 中过每个阵点并垂直纸面的轴都 是 2 次轴;根据上题的结果,在平行的 2 次轴中间又有 2 次轴,所以在四个相邻阵点中间 出现新的 2 次轴;因为α=90°,所以过 a1 以及过 a2 轴并垂直纸面的面是镜面,根据上题的 结果,在平行的 2 个镜面中间应是镜面,故在那里又出现新的镜面。图 c 中过每个阵点并 垂直纸面的轴都是 2 次轴;因在平行的 2 次轴中间应是 2 次轴,所以在阵点中间出现新的 2 次轴,在这些新的 2 次轴之间又出现新的 2 次轴;在图中看到一个复式单胞的轴之间夹 角是 90°,所以过复式单胞两根轴并垂直纸面的两个面是镜面,同样在每一组平行镜面之 间又应是新的镜面。图 b 中 a1=a2,并且α=90°,所以过每个阵点并垂直纸面的轴都是 4 次 轴,4 次轴隐含 2 次轴,因在平行的 2 次轴中间应是 2 次轴,故在两个 4 次轴的中间出现

金属学原理习题及答案

金属学原理习题及答案

金属学原理习题库第一章1. 原子中一个电子的空间位置和能量可用哪四个量子数来决定?2. 在多电子的原子中,核外电子的排布应遵循哪些个原则?3. 铬的原子序数为24,共有四种同位数:4.31%的Cr 原子含有26 个中子,83.76%含有28 个中子,9.55%含有29 个中子,且2.38%含有30 个中子。

试求铬的原子量。

4. 铜的原子序数为29,原子量为63.54,它共有两种同位素Cu63 和Cu65,试求两种铜的同位素之含量百分比。

5. 已知Si 的原子量为28.09,若100g 的Si 中有5×1010 个电子能自由运动,试计算:(a)能自由运动的电子占价电子总数的比例为多少?(b)必须破坏的共价键之比例为多少?6. 何谓同位素?为什么元素的相对原子质量不总为正整数?7. 已知Si 的相对原子质量为28.09,若100g 的Si 中有5×1010 个电子能自由运动,试计算:(a)能自由运动的电子占价电子总数的比例为多少?(b)必须破坏的共价键之比例为多少?第二章1. 试证明四方晶系中只有简单立方和体心立方两种点阵类型。

2. 为什么密排六方结构不能称作为一种空间点阵?3. 标出面心立方晶胞中(111)面上各点的坐标。

4. 标出具有下列密勒指数的晶面和晶向:a)立方晶系(421),(-123),(130),[2-1-1],[311];b)六方晶系(2-1-11),(1-101),(3-2-12),[2-1-11],[1-213]。

5. 试计算面心立方晶体的(100),(110),(111),等晶面的面间距和面致密度,并指出面间距最大的面。

6. 平面A 在极射赤平面投影图中为通过NS 及核电0°N,20°E 的大圆,平面B的极点在30°N,50°W 处,a)求极射投影图上两极点A、B 间的夹角;b)求出A 绕B 顺时针转过40°的位置。

金属学第1章答案

金属学第1章答案

第一章思考题与习题及答案1-1 注释下列力学性能指标。

σb、δ、ψ、HBW、HRC、HV、αk、KⅠC答:σb——抗拉强度指标。

反映零件在外力作用下抵抗断裂的能力。

δ——断后伸长率。

表示试样被拉断后,伸长的长度同试样原始长度之比的百分率。

ψ——断面收缩率。

表示试样被拉断后,断面缩小的面积与原始截面积之比的百分率。

HBW——硬度指标。

是由布氏硬度试验测定的。

HRC——硬度指标。

是由洛氏硬度试验测定的。

HV——硬度指标。

是由维氏硬度试验测定的。

αk——冲击韧度指标。

反映材料在冲击载荷作用下抵抗破坏的能力。

KⅠC——断裂韧度指标。

反映材料抵抗脆性断裂的能力。

1-2 何为金属的强度、塑性、硬度、冲击韧度、断裂韧度?答:强度——是指材料在静载荷作用下抵抗塑性变形和断裂的能力。

塑性——是指金属材料产生塑性变形而不破坏的能力。

硬度——表示金属局部表面抵抗更应物体压入的能力。

冲击韧度——反映材料在冲击载荷作用下抵抗破坏的能力。

断裂韧度——反映材料抵抗脆性断裂的能力。

1-3 为什么机械零件大多以σs为设计依据?答:由于大多数机械零件在设计时都以不发生塑性变形为原则,σs反映了材料抵抗塑性变形的能力,因此,机械零件大多以σs为设计依据。

1-4 什么叫屈强比?它有何实际意义?答:在工程上使用的金属材料,不仅要求高的屈服强度σs ,同时还要求具有一定的屈强比,即σs/σb。

屈强比愈小,零件的可靠性愈高。

在超载的情况下,由于塑性变形使材料的强度提高而不至立刻断裂,但屈强比太小,材料的强度利用率太低,造成浪费。

对于弹簧钢来说,要求高的屈强比。

1-5 什么是疲劳破坏?如何提高零件的疲劳抗力?答:金属材料在远低于其屈服强度的交变应力的长期作用下,发生的断裂现象,称为金属的疲劳。

绝大多数机械零件的破坏主要是疲劳破坏。

影响材料疲劳强度的因素很多,除了材料本身的成分、组织结构和材质等内因外,还与零件的几何形状、表面质量和工作环境等外因有关。

金属学及热处理课后习题答案解析第六章

金属学及热处理课后习题答案解析第六章

⾦属学及热处理课后习题答案解析第六章第六章⾦属及合⾦的塑性变形和断裂2)求出屈服载荷下的取向因⼦,作出取向因⼦和屈服应⼒的关系曲线,说明取向因⼦对屈服应⼒的影响。

答:1)需临界临界分切应⼒的计算公式:τk=σs cosφcosλ,σs为屈服强度=屈服载荷/截⾯积需要注意的是:在拉伸试验时,滑移⾯受⼤⼩相等,⽅向相反的⼀对轴向⼒的作⽤。

当载荷与法线夹⾓φ为钝⾓时,则按φ的补⾓做余弦计算。

2)c osφcosλ称作取向因⼦,由表中σs和cosφcosλ的数值可以看出,随着取向因⼦的增⼤,屈服应⼒逐渐减⼩。

cosφcosλ的最⼤值是φ、λ均为45度时,数值为0.5,此时σs为最⼩值,⾦属最易发⽣滑移,这种取向称为软取向。

当外⼒与滑移⾯平⾏(φ=90°)或垂直(λ=90°)时,cosφcosλ为0,则⽆论τk数值如何,σs均为⽆穷⼤,表⽰晶体在此情况下根本⽆法滑移,这种取向称为硬取向。

6-2 画出铜晶体的⼀个晶胞,在晶胞上指出:1)发⽣滑移的⼀个滑移⾯2)在这⼀晶⾯上发⽣滑移的⼀个⽅向3)滑移⾯上的原⼦密度与{001}等其他晶⾯相⽐有何差别4)沿滑移⽅向的原⼦间距与其他⽅向有何差别。

答:解答此题⾸先要知道铜在室温时的晶体结构是⾯⼼⽴⽅。

1)发⽣滑移的滑移⾯通常是晶体的密排⾯,也就是原⼦密度最⼤的晶⾯。

在⾯⼼⽴⽅晶格中的密排⾯是{111}晶⾯。

2)发⽣滑移的滑移⽅向通常是晶体的密排⽅向,也就是原⼦密度最⼤的晶向,在{111}晶⾯中的密排⽅向<110>晶向。

3){111}晶⾯的原⼦密度为原⼦密度最⼤的晶⾯,其值为2.3/a2,{001}晶⾯的原⼦密度为1.5/a24)滑移⽅向通常是晶体的密排⽅向,也就是原⼦密度⾼于其他晶向,原⼦排列紧密,原⼦间距⼩于其他晶向,其值为1.414/a。

6-3 假定有⼀铜单晶体,其表⾯恰好平⾏于晶体的(001)晶⾯,若在[001]晶向施加应⼒,使该晶体在所有可能的滑移⾯上滑移,并在上述晶⾯上产⽣相应的滑移线,试预计在表⾯上可能看到的滑移线形貌。

(完整版)金属学及热处理习题参考答案(1-9章)

(完整版)金属学及热处理习题参考答案(1-9章)

第一章金属及合金的晶体结构一、名词解释:1 •晶体:原子(分子、离子或原子集团)在三维空间做有规则的周期性重复排列的物质。

2•非晶体:指原子呈不规则排列的固态物质。

3 •晶格:一个能反映原子排列规律的空间格架。

4•晶胞:构成晶格的最基本单元。

5. 单晶体:只有一个晶粒组成的晶体。

6•多晶体:由许多取向不同,形状和大小甚至成分不同的单晶体(晶粒)通过晶界结合在一起的聚合体。

7•晶界:晶粒和晶粒之间的界面。

8. 合金:是以一种金属为基础,加入其他金属或非金属,经过熔合而获得的具有金属特性的材料。

9. 组元:组成合金最基本的、独立的物质称为组元。

10. 相:金属中具有同一化学成分、同一晶格形式并以界面分开的各个均匀组成部分称为相。

11. 组织:用肉眼观察到或借助于放大镜、显微镜观察到的相的形态及分布的图象统称为组织。

12. 固溶体:合金组元通过溶解形成成分和性能均匀的、结构上与组元之一相同的固相二、填空题:1 .晶体与非晶体的根本区别在于原子(分子、离子或原子集团)是否在三维空间做有规则的周期性重复排列。

2•常见金属的晶体结构有体心立方晶格、面心立方晶格、密排六方晶格三种。

3•实际金属的晶体缺陷有点缺陷、线缺陷、面缺陷、体缺陷。

4•根据溶质原子在溶剂晶格中占据的位置不同,固溶体可分为置换固溶体和间隙固溶体两种。

5•置换固溶体按照溶解度不同,又分为无限固溶体和有限固溶体。

6 •合金相的种类繁多,根据相的晶体结构特点可将其分为固溶体和金属化合物两种。

7. 同非金属相比,金属的主要特征是良好的导电性、导热性,良好的塑性,不透明,有光—泽,正的电阻温度系数。

8. 金属晶体中最主要的面缺陷是晶界和亚晶界。

9. 位错两种基本类型是刃型位错和螺型位错,多余半原子面是刃型位错所特有的。

10. 在立方晶系中,{120}晶面族包括(120)、(120)、(102)、(102)、(210)、(210)> (201)、(201)、(012)、(012)、(021)、(021)、等晶面。

(完整版)金属学材料学课后习题答案全

(完整版)金属学材料学课后习题答案全

1-1. 为什么说钢中的S、P 杂质元素在一般情况下是有害的?答:S容易和Fe结合形成熔点为989C的FeS相,会使钢在热加工过程中产生热脆性;P与Fe 结合形成硬脆的F&P相,使钢在冷变形加工过程中产生冷脆性。

1-2. 钢中的碳化物按点阵结构分为哪两大类?各有什么特点?答:可以分为简单点阵结构和复杂点阵结构,简单点阵结构的特点:硬度较高、熔点较高、稳定性较好;复杂点阵结构的特点:硬度较低、熔点较低、稳定性较差。

1-3. 简述合金钢中碳化物形成规律。

答:①当r C r M>0.59时,形成复杂点阵结构;当r C r x0.59时,形成简单点阵结构;② 相似者相溶:完全互溶:原子尺寸、电化学因素均相似;有限溶解:一般K 都能溶解其它元素,形成复合碳化物。

③强碳化合物形成元素优先与碳结合形成碳化物。

④N M N C 比值决定了碳化物类型⑤碳化物稳定性越好,溶解越难,析出难越,聚集长大也越难。

1-4.合金元素对Fe - F&C相图的S、E点有什么影响?这种影响意味着什么?答:凡是扩大Y 相区的元素均使S、E点向左下方移动;凡是封闭丫相区的元素均使S E 点向左上方移动。

S 点左移,意味着共析碳量减少; E 点左移,意味着出现莱氏体的碳含量减少。

1-19. 试解释40Cr13 已属于过共析钢,而Cr12 钢中已经出现共晶组织,属于莱氏体钢。

答:①因为Cr属于封闭y相区的元素,使S点左移,意味着共析碳量减小,所以钢中含有Cr12%寸,共析碳量小于0.4%,所以含0.4%C 13%Cr的40Cr13不锈钢就属于过共析钢。

②Cr使E点左移,意味着出现莱氏体的碳含量减小。

在Fe-C相图中,E点是钢和铁的分界线,在碳钢中是不存在莱氏体组织的。

但是如果加入了12%的Cr,尽管含碳量只有2%左右,钢中却已经出现了莱氏体组织。

1-21. 什么叫钢的内吸附现象?其机理和主要影响因素是什么?答:合金元素溶入基体后,与晶体缺陷产生交互作用,使这些合金元素发生偏聚或内吸附,使偏聚元素在缺陷处的浓度大于基体中的平均浓度,这种现象称为内吸附现象。

北科大余永宁金属学原理课后解答

北科大余永宁金属学原理课后解答

2-1第2章 晶体结构习 题 题 解1.计算面心立方、体心立方结构的(100)、(110)、(111)等晶面的面密度,计算密排六方结构的(0001)、(0110)晶面的面密度。

(面密度定义为原子数/单位面积)解:体心立方、面心立方和密排六方结构的晶胞分别如下图(a)、(b)和(c)。

设立方结构的晶胞棱长为a 。

对于体心立方结构,在一个晶胞中的(001)面的面积是a 2,在这个面积上有1个原子,所以其面密度为1/a 2;在一个晶胞中的(110)面的面积是2a 2,在这个面 积上有2个原子,所以其面密度为2/a 2;在一个晶胞中的(111)面的面积是3a 2/2,在这个面积上有两个原子,所以其面密度为3/2a 2。

对于面心立方结构,在一个晶胞中的(001)面的面积是a 2,在这个面积上有2个原子,所以其面密度为2/a 2;在一个晶胞中的(110)面的面积是2a 2,在这个面积上有2个原子,所以其面密度为2/a 2;在一个晶胞中的(111)面的面积是3a 2/2,在这个面积上有1.5个原子,所以其面密度为3/a 2。

对于密排六方结构,设晶胞的轴长为a 和c ,在一个晶胞中的(0001)面的面积是3a 2/2,在这个面积上有1个原子,所以其面密度为23/3a 2;在一个晶胞中的(0110)面的面积是a 2c ,在这个面积上有次个原子,所以其面密度为1/a 2c 。

2. 钛具有hcp 结构,在20°C 时单胞体积为0.106nm 3,c /a =1.59,求a 和c 。

求在基面上的原子半径。

解:因为密排六方单胞的体积是a 2c sin60°=0.106nm 3,而c /a =1.59,把它代入体积的式子,得1.59a 3sin60°=0.106nm 3,故a =(0.106/1.59sin60°)1/3nm=0.4254nm ;c=1.59a=1.59×0.4254nm =0.6764nm 。

金属学课后习题答案完整版

金属学课后习题答案完整版

金属学课后答案第一章1.为什么说钢中的S、P杂质元素在一般情况下总是有害的?答:S、P会导致钢的热脆和冷脆,并且容易在晶界偏聚,导致合金钢的第二类高温回火脆性,高温蠕变时的晶界脆断。

S能形成FeS,其熔点为989℃,钢件在大于1000℃的热加工温度时FeS会熔化,所以易产生热脆;P能形成Fe3P,性质硬而脆,在冷加工时产生应力集中,易产生裂纹而形成冷脆。

2.钢中的碳化物按点阵结构分为哪两大类?各有什么特点?答:简单点阵结构和复杂点阵结构简单点阵结构的特点:硬度较高、熔点较高、稳定性较好;复杂点阵结构的特点:硬度较低、熔点较低、稳定性较差。

3.简述合金钢中碳化物形成规律。

答:①当rC/rM>0.59时,形成复杂点阵结构;当rC/rM<0.59时,形成简单点阵结构;②相似者相溶:完全互溶:原子尺寸、电化学因素均相似;有限溶解:一般K都能溶解其它元素,形成复合碳化物。

③NM/NC比值决定了碳化物类型④碳化物稳定性越好,溶解越难,析出难越,聚集长大也越难;⑤强碳化物形成元素优先与碳结合形成碳化物。

4.合金元素对Fe-C相图的S、E点有什么影响?这种影响意味着什么?答:A形成元素均使S、E点向_____移动,F形成元素使S、E点向_____移动。

S点左移意味着_____减小,E点左移意味着出现_______降低。

(左下方;左上方)(共析碳量;莱氏体的C量)5.试述钢在退火态、淬火态及淬火-回火态下,不同合金元素的分布状况。

答:退火态:非碳化物形成元素绝大多数固溶于基体中,而碳化物形成元素视C和本身量多少而定。

优先形成碳化物,余量溶入基体。

淬火态:合金元素的分布与淬火工艺有关。

溶入A体的因素淬火后存在于M、B中或残余A中,未溶者仍在K中。

回火态:低温回火,置换式合金元素基本上不发生重新分布;>400℃,Me开始重新分布。

非K形成元素仍在基体中,K形成元素逐步进入析出的K中,其程度取决于回火温度和时间。

金属学与热处理课后习题第十一章-参考答案

金属学与热处理课后习题第十一章-参考答案

第十一章参考答案11-1试述影响材料强度的因素及提高强度的方法答:(1)影响材料强度的因素:化学成分、组织织构、加工工艺、形变温度、应变速率等。

以钢为例,合金元素的加入可能产生固溶强化、沉淀强化、细晶强化,对提高钢材的强度有利。

对于同一化学成分的合金而言,组织结构不同,其力学性能也不相同。

为了提高其强度,可通过改变热处理工艺或加工工艺来实现。

一般情况下,降低形变温度或提高应变速率,合金的强度会增大。

(2)提高材料强度的途径:加工硬化/形变强化、固溶强化、第二相强化(沉淀强化和弥散强化)、细晶强化/晶界强度(较低温度)。

11-2试述影响材料塑性的因素及提高塑性的方法答:(1)影响材料塑性的因素:化学成分、组织织构、加工工艺、形变温度、应变速率等。

杂质元素通常对塑性不利,合金元素的加入一般对提高材料的强度有贡献,在等强温度下,只有晶界强化可以提高强度的同时,提高其韧性,使材料获得细晶组织结构可提高其塑性。

一般而言,形变温度的降低或应变速率的提高对强度有利,而对提高塑性不利。

(2)提高材料塑性的途径:降低材料中杂质的含量、细化晶粒、加入韧化元素、加入细化晶粒元素、提高变形温度、降低应变速率。

11-4试就合金元素与碳的相互作用进行分类,指出1)哪些元素不形成碳化物?2)哪些元素为弱碳化物形成元素,性能特点如何?3)哪些元素为强碳化物形成元素,性能特点如何?4)何谓合金渗碳体,与渗碳体相比,其性能如何?答:1)非碳化物形成元素:Ni、Si、Co、Al、Cu等。

2)Mn为弱碳化物形成元素,除少量可溶于渗碳体中形成合金渗碳体外,几乎都溶于铁素体和奥氏体中。

3)Zr、Nb、V、Ti为强碳化物形成元素,与碳具有极强的亲和力,只要有足够的碳,就形成碳化物,仅在缺少碳的情况下,才以原子状态融入固溶体中。

4)合金元素溶入渗碳体中即为合金渗碳体,它是合金元素溶入渗碳体中并置换部分铁原子而形成的碳化物,合金渗碳体比一般渗碳体稳定,硬度高,可以提高耐磨性。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章1.作图表示出立方晶系(1 2 3)、(0 -1 -2)、(4 2 1)等晶面和[-1 0 2]、[-2 1 1]、[3 4 6] 等晶向3.某晶体的原子位于正方晶格的节点上,其晶格常数a=b≠c,c=2/3a。

今有一晶面在X、Y、Z坐标轴上的截距分别是5个原子间距,2个原子间距和3个原子间距,求该晶面的晶面参数。

解:设X方向的截距为5a,Y方向的截距为2a,则Z方向截距为3c=3X2a/3=2a,取截距的倒数,分别为1/5a,1/2a,1/2a化为最小简单整数分别为2,5,5故该晶面的晶面指数为(2 5 5)4.体心立方晶格的晶格常数为a,试求出(1 0 0)、(1 1 0)、(1 1 1)晶面的晶面间距,并指出面间距最大的晶面解:(1 0 0)面间距为a/2,(1 1 0)面间距为√2a/2,(1 1 1)面间距为√3a/3三个晶面晶面中面间距最大的晶面为(1 1 0)7.证明理想密排六方晶胞中的轴比c/a=证明:理想密排六方晶格配位数为12,即晶胞上底面中心原子与其下面的3个位于晶胞内的原子相切,成正四面体,如图所示则OD=c/2,AB=BC=CA=CD=a因△ABC是等边三角形,所以有OC=2/3CE由于(BC)2=(CE)2+(BE)2则有(CD)2=(OC)2+(1/2c)2,即因此c/a=√8/3=8.试证明面心立方晶格的八面体间隙半径为r=解:面心立方八面体间隙半径r=a/2-√2a/4=面心立方原子半径R=√2a/4,则a=4R/√2,代入上式有R=√2=)设有一刚球模型,球的直径不变,当由面心立方晶格转变为体心立方晶格时,试计算其体积膨胀。

b)经X射线测定,在912℃时γ-Fe 的晶格常数为,α-Fe的晶格常数为,当由γ-Fe转化为α-Fe时,求其体积膨胀,并与a)比较,说明其差别的原因。

解:a)令面心立方晶格与体心立方晶格的体积及晶格常数分别为V面、V踢与a面、a体,钢球的半径为r,由晶体结构可知,对于面心晶胞有4r=√2a面,a面=2√2/2r,V面=(a面)3=(2√2r)3对于体心晶胞有4r=√3a体,a体=4√3/3r,V体=(a体)3=(4√3/3r)3则由面心立方晶胞转变为体心立方晶胞的体积膨胀△V为△V=2×V体-V面=B)按照晶格常数计算实际转变体积膨胀△V实,有△V实=2△V体-V面=2x3-3=实际体积膨胀小于理论体积膨胀的原因在于由γ-Fe转化为α-Fe 时,Fe原子的半径发生了变化,原子半径减小了。

10.已知铁和铜在室温下的晶格常数分别为和,求1cm3中铁和铜的原子数。

解:室温下Fe为体心立方晶体结构,一个晶胞中含2个Fe原子,Cu 为面心立方晶体结构,一个晶胞中含有4个Cu原子1cm3=1021nm3令1cm3中含Fe的原子数为N Fe,含Cu的原子数为N Cu,室温下一个Fe的晶胞体积为V Fe,一个Cu晶胞的体积为V Cu,则N Fe=1021/V Fe=1021/3=N Cu=1021/V Cu=1021/3=11.一个位错环能不能各个部分都是螺型位错或者刃型位错,试说明之。

解:不能,看混合型位错13.试计算{110}晶面的原子密度和[111]晶向原子密度。

解:以体心立方{110}晶面为例{110}晶面的面积S=a x √2a{110}晶面上计算面积S内的原子数N=2则{110}晶面的原子密度为ρ=N/S= √2a-2[111]晶向的原子密度ρ=2/√3a15.有一正方形位错线,其柏式矢量如图所示,试指出图中各段线的性能,并指出任性位错额外串排原子面所在的位置。

D CbA BAD、BC段为刃型位错;DC、AB段为螺型位错AD段额外半原子面垂直直面向里BC段额外半原子面垂直直面向外第二章1.证明均匀形核时,形成临界晶粒的ΔGk 与其体积V 之间的关系为ΔG k = V/2△G v证明:由均匀形核体系自由能的变化(1)可知,形成半径为r k的球状临界晶粒,自由度变化为(2)对(2)进行微分处理,有(3)将(3)带入(1),有(4)由于,即3V=r k S (5)将(5)带入(4)中,则有2.如果临界晶核是边长为a 的正方形,试求其△Gk 和a 的关系。

为什么形成立方晶核的△G k比球形晶核要大3.为什么金属结晶时一定要有过冷度,影响过冷度的因素是什么,固态金属融化时是否会出现过热,为什么答:由热力学可知,在某种条件下,结晶能否发生,取决于固相的自由度是否低于液相的自由度,即G =GS-GL<0;只有当温度低于理论结晶温度Tm 时,固态金属的自由能才低于液态金属的自由能,液态金属才能自发地转变为固态金属,因此金属结晶时一定要有过冷度。

影响过冷度的因素:影响过冷度的因素:1)金属的本性,金属不同,过冷度大小不同;2)金属的纯度,金属的纯度越高,过冷度越大;3)冷却速度,冷却速度越大,过冷度越大。

固态金属熔化时会出现过热度。

原因:由热力学可知,在某种条件下,熔化能否发生,取决于液相自固态金属熔化时会出现过热度。

原因:由度是否低于固相的自由度,即G = GL-GS<0;只有当温度高于理论结晶温度Tm 时,液态金属的自由能才低于固态金属的自由能,固态金属才能自发转变为液态金属,因此金属熔化时一定要有过热度。

4.试比较均匀形核和非均匀形核的异同点。

相同点:均匀形核与非均匀形核具有相同的临界晶核半径,非均匀形核的临界形核功也等于三分之一.不同点:非均匀形核要克服的位垒比均匀形核的小得多,在相变的形核过程通常都是非均匀形核优先进行。

核心总是倾向于以使其总的表面能和应变能最小的方式形成,因而析出物的形状是总应变能和总表面能综合影响的结果。

5.说明晶体成长形状与温度梯度的关系(1)、在正的温度梯度下生长的界面形态:光滑界面结晶的晶体,若无其它因素干扰,大多可以成长为以密排晶面为表面的晶体,具有规则的几何外形。

粗糙界面结构的晶体,在正的温度梯度下成长时,其界面为平行于熔点等温面的平直界面,与散热方向垂直,从而使之具有平面状的长大形态,可将这种长大方式叫做平面长大方式。

(2)、在负的温度梯度下生长的界面形态粗糙界面的晶体在负的温度梯度下生长成树枝晶体。

主干叫一次晶轴或一次晶枝。

其它的叫二次晶或三次晶。

对于光滑界面的物质在负的温度梯度下长大时,如果杰克逊因子α不太大时可能生长为树枝晶,如果杰克逊因子α很大时,即使在负的温度梯度下,仍有可能形成规则形状的晶体。

6.简述三晶区形成的原因及每个晶区的性能特点形成原因:1)表层细晶区:低温模壁强烈地吸热和散热,使靠近模壁的薄层液体产生极大地过冷,形成原因形成原模壁又可作为非均匀形核的基底,在此一薄层液体中立即产生大量的晶核,并同时向各个方向生长。

晶核数目多,晶核很快彼此相遇,不能继续生长,在靠近模壁处形成薄层很细的等轴晶粒区。

2)柱状晶区:模壁温度升高导致温度梯度变得平缓;过冷度小,不能生成新晶核,但利于细晶区靠近液相的某些小晶粒长大;远离界面的液态金属过热,不能形核;垂直于模壁方向散热最快,晶体择优生长。

3)中心等轴晶区:柱状晶长到一定程度后,铸锭中部开始形核长大---中部液体温度大致是均匀的,每个晶粒的成长在各方向上接近一致,形成等轴晶。

性能特点:1)表层细晶区:组织致密,力学性能好;2)柱状晶区:组织较致密,存在弱面,力学性能有方向性;3)中心等轴晶区:各晶粒枝杈搭接牢固,无弱面,力学性能无方向性。

7.为了得到发达的柱状晶区应采用什么措施,为了得到发达的等轴晶区应采取什么措施其基本原理如何答:为了得到发达的柱状晶区应采取的措施:1)控制铸型的冷却能力,采用导热性好与热容量大的铸型为了得到发达的柱状晶区应采取的措施:材料,增大铸型的厚度,降低铸型的温度。

2)提高浇注温度或浇注速度。

3)提高熔化温度。

基本原理:基本原理:1)铸型冷却能力越大,越有利于柱状晶的生长。

2)提高浇注温度或浇注速度,使温度梯度增大,有利于柱状晶的生长。

3)熔化温度越高,液态金属的过热度越大,非金属夹杂物溶解得越多,非均匀形核数目越少,减少了柱状晶前沿液体中的形核的可能,有利于柱状晶的生长。

为了得到发达的等轴晶区应采取的措施:为了得到发达的等轴晶区应采取的措施:1)控制铸型的冷却能力,采用导热性差与热容量小的铸型材等轴晶区应采取的措施料,增大铸型的厚度,提高铸型的温度。

2)降低浇注温度或浇注速度。

3)降低熔化温度。

基本原理:基本原理:1)铸型冷却能力越小,越有利于中心等轴晶的生长。

2)降低浇注温度或浇注速度,使温度梯度减小,有利于等轴晶的生长。

3)熔化温度越低,液态金属的过热度越小,非金属夹杂物溶解得越少,非均匀形核数目越多,增加了柱状晶前沿液体中的形核的可能,有利于等轴晶的生长。

第三章1.在正温度梯度下,为什么纯金属凝固时不能呈树枝状生长,而固溶体合金却能呈树枝状成长纯金属凝固时,要获得树枝状晶体,必需在负的温度梯度下;在正的温度梯度下,只能以平面状长大。

而固溶体实际凝固时,往往会产生成分过冷,当成分过冷区足够大时,固溶体就会以树枝状长大。

2.何谓合金平衡相图,相图能给出任一条件下的合金显微组织吗合金平衡相图是研究合金的工具,是研究合金中成分、温度、组织和性能之间关系的理论基础,也是制定各种热加工工艺的依据。

其中二元合金相图表示二元合金相图表示在平衡状态下,合金的组成相或组织状态与温度、成分、压力之间关系的简明图解。

平衡状态:合金的成分、质量份数不再随时间而变化的一种状态。

合金的极缓慢冷却可近似认为是平衡状态。

三元合金相图是指独立组分数为3的体系,该体系最多可能有四个自由度,即温度、压力和两个浓度项,用三维空间的立体模型已不足以表示这种相图。

若维持压力不变,则自由度最多等于3,其相图可用立体模型表示。

若压力、温度同时固定,则自由度最多为2,可用平面图来表示。

通常在平面图上用等边三角形(有时也有用直角坐标表示的)来表示各组分的浓度。

不能,相图只能给出合金在平衡条件下存在的合金显微组织4.何谓成分过冷成分过冷对固溶体结晶时晶体长大方式和铸锭组织有何影响在固溶体合金凝固时,在正的温度梯度下,由于固液界面前沿液相中的成分有所差别,导致固液界面前沿的熔体的温度低于实际液相线温度,从而产生的过冷称为成分过冷。

这种过冷完全是由于界面前沿液相中的成分差别所引起的。

温度梯度增大,成分过冷减小。

成分过冷必须具备两个条件:第一是固~液界面前沿溶质的富集而引起成分再分配;第二是固~液界面前方液相的实际温度分布,或温度分布梯度必须达到一定的值。

对合金而言,其凝固过程同时伴随着溶质再分配,液体的成分始终处于变化当中,液体中的溶质成分的重新分配改变了相应的固液平衡温度,这种关系有合金的平衡相图所规定。

相关文档
最新文档