高中数学1.2独立性检验的基本思想及其初步应用学情分析新人教A版选修1-2
新课标人教a版选修1-2教案
1.1回归分析的基本思想及其初步应用(一)教学要求:通过典型案例的探究,进一步了解回归分析的基本思想、方法及初步应用.教学重点:了解线性回归模型与函数模型的差异,了解判断刻画模型拟合效果的方法-相关指数和残差分析.教学难点:解释残差变量的含义,了解偏差平方和分解的思想.教学过程:一、复习准备:1. 提问:“名师出高徒”这句彦语的意思是什么?有名气的老师就一定能教出厉害的学生吗?这两者之间是否有关?2. 复习:函数关系是一种确定性关系,而相关关系是一种非确定性关系. 回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法,其步骤:收集数据→作散点图→求回归直线方程→利用方程进行预报.二、讲授新课:1. 教学例题:体重.(分析思路→教师演示→学生整理)第一步:作散点图第二步:求回归方程 第三步:代值计算 ② 提问:身高为172cm 的女大学生的体重一定是60.316kg 吗?不一定,但一般可以认为她的体重在60.316kg 左右.③ 解释线性回归模型与一次函数的不同事实上,观察上述散点图,我们可以发现女大学生的体重y 和身高x 之间的关系并不能用一次函数y bx a =+来严格刻画(因为所有的样本点不共线,所以线性模型只能近似地刻画身高和体重的关系). 在数据表中身高为165cm 的3名女大学生的体重分别为48kg 、57kg 和61kg ,如果能用一次函数来描述体重与身高的关系,那么身高为165cm 的3名女在学生的体重应相同. 这就说明体重不仅受身高的影响还受其他因素的影响,把这种影响的结果e (即残差变量或随机变量)引入到线性函数模型中,得到线性回归模型y bx a e =++,其中残差变量e 中包含体重不能由身高的线性函数解释的所有部分. 当残差变量恒等于0时,线性回归模型就变成一次函数模型. 因此,一次函数模型是线性回归模型的特殊形式,线性回归模型是一次函数模型的一般形式.2. 相关系数:相关系数的绝对值越接近于1,两个变量的线性相关关系越强,它们的散点图越接近一条直线,这时用线性回归模型拟合这组数据就越好,此时建立的线性回归模型是有意义.3. 小结:求线性回归方程的步骤、线性回归模型与一次函数的不同.1.1回归分析的基本思想及其初步应用(二)教学要求:通过典型案例的探究,进一步了解回归分析的基本思想、方法及初步应用. 教学重点:了解评价回归效果的三个统计量:总偏差平方和、残差平方和、回归平方和. 教学难点:了解评价回归效果的三个统计量:总偏差平方和、残差平方和、回归平方和. 教学过程:一、复习准备:1.由例1知,预报变量(体重)的值受解释变量(身高)或随机误差的影响.2.为了刻画预报变量(体重)的变化在多大程度上与解释变量(身高)有关?在多大程度上与随机误差有关?我们引入了评价回归效果的三个统计量:总偏差平方和、残差平方和、回归平方和.二、讲授新课:1. 教学总偏差平方和、残差平方和、回归平方和:(1)总偏差平方和:所有单个样本值与样本均值差的平方和,即21()ni i SST y y ==-∑.残差平方和:回归值与样本值差的平方和,即21()ni i i SSE y y ==-∑. 回归平方和:相应回归值与样本均值差的平方和,即21()ni i SSR y y ==-∑. (2)学习要领:①注意i y 、 i y 、y 的区别;②预报变量的变化程度可以分解为由解释变量引起的变化程度与残差变量的变化程度之和,即 222111()()()n n ni i i i i i i y y y y y y ===-=-+-∑∑∑;③当总偏差平方和相对固定时,残差平方和越小,则回归平方和越大,此时模型的拟合效果越好;④对于多个不同的模型,我们还可以引入相关指数 22121()1()n i i i ni i y y R yy ==-=--∑∑来刻画回归的效果,它表示解释变量对预报变量变化的贡献率. 2R 的值越大,说明残差平方和越小,也就是说模型拟合的效果越好.2. 教学例题:为了对x 、Y 两个变量进行统计分析,现有以下两种线性模型: 6.517.5y x =+,717y x =+,试比较哪一个模型拟合的效果更好.分析:既可分别求出两种模型下的总偏差平方和、残差平方和、回归平方和,也可分别求出两种模型下的相关指数,然后再进行比较,从而得出结论.(答案: 52211521()155110.8451000()i i i ii y y R y y ==-=-=-=-∑∑,221R =- 521521()18010.821000()i i i i i y y y y ==-=-=-∑∑,84.5%>82%,所以甲选用的模型拟合效果较好.)3. 小结:分清总偏差平方和、残差平方和、回归平方和,初步了解如何评价两个不同模型拟合效果的好坏.1.1回归分析的基本思想及其初步应用(三)教学要求:通过典型案例的探究,进一步了解回归分析的基本思想、方法及初步应用.教学重点:通过探究使学生体会有些非线性模型通过变换可以转化为线性回归模型,了解在解决实际问题的过程中寻找更好的模型的方法.教学难点:了解常用函数的图象特点,选择不同的模型建模,并通过比较相关指数对不同的模型进行比较.教学过程:一、复习准备:1. 给出例3:一只红铃虫的产卵数y 和温度x 有关,现收集了7组观测数据列于下表中,试建立y 与x 之间的回归方程.2. 讨论:观察右图中的散点图,发现样本点并没有分布在某个带状区域内,即两个变量不呈线性相关关系,所以不能直接用线性回归方程来建立两个变量之间的关系. 二、讲授新课: 1. 探究非线性回归方程的确定: ① 如果散点图中的点分布在一个直线状带形区域,可以选线性回归模型来建模;如果散点图中的点分布在一个曲线状带形区域,就需选择非线性回归模型来建模.② 根据已有的函数知识,可以发现样本点分布在某一条指数函数曲线y =2C 1e x C 的周围(其中12,c c 是待定的参数),故可用指数函数模型来拟合这两个变量.③ 在上式两边取对数,得21ln ln y c x c =+,再令ln z y =,则21ln z c x c =+,而z 与x 间的关系线的附近,因此可以用线性回归方程来拟合. ④ 利用计算器算得 3.843,0.272a b =-=,z 与x 间的线性回归方程为0.272 3.843z x =- ,因此红铃虫的产卵数对温度的非线性回归方程为 0.272 3.843x y e -=.⑤ 利用回归方程探究非线性回归问题,可按“作散点图→建模→确定方程”这三个步骤进行.其关键在于如何通过适当的变换,将非线性回归问题转化成线性回归问题.2. 小结:用回归方程探究非线性回归问题的方法、步骤.三、巩固练习:(1(2)试求出预报变量对解释变量的回归方程.(答案:所求非线性回归方程为0.69 1.112ˆy=e x +.)1.1回归分析的基本思想及其初步应用(四)教学要求:通过典型案例的探究,进一步了解回归分析的基本思想、方法及初步应用.教学重点:通过探究使学生体会有些非线性模型通过变换可以转化为线性回归模型,了解在解决实际问题的过程中寻找更好的模型的方法,了解可用残差分析的方法,比较两种模型的拟合效果.教学难点:了解常用函数的图象特点,选择不同的模型建模,并通过比较相关指数对不同的模型进行比较.教学过程:一、复习准备:1. 提问:在例3中,观察散点图,我们选择用指数函数模型来拟合红铃虫的产卵数y 和温度x 间的关系,还可用其它函数模型来拟合吗?2. 讨论:能用二次函数模型234y c x c =+来拟合上述两个变量间的关系吗?(令2t x =,则34y c t c =+,此时y 与t 间的关系如下:直线的周围,因此不宜用线性回归方程来拟合它,即不宜用二次曲线234y c x c =+来拟合y 与x 之间的关系. )小结:也就是说,我们可以通过观察变换后的散点图来判断能否用此种模型来拟合. 事实上,除了观察散点图以外,我们也可先求出函数模型,然后利用残差分析的方法来比较模型的好坏.二、讲授新课:1. 教学残差分析:① 残差:样本值与回归值的差叫残差,即 i ii e y y=-. ② 残差分析:通过残差来判断模型拟合的效果,判断原始数据中是否存在可疑数据,这方面的分析工作称为残差分析.③ 残差图:以残差为横坐标,以样本编号,或身高数据,或体重估计值等为横坐标,作出的图形称为残差图. 观察残差图,如果残差点比较均匀地落在水平的带状区域中,说明选用的模型比较合适,这样的带状区域的宽度越窄,模型拟合精度越高,回归方程的预报精度越高.2. 例3中的残差分析:计算两种模型下的残差一般情况下,比较两个模型的残差比较困难(某些样本点上一个模型的残差的绝对值比另一个模型的小,而另一些样本点的情况则相反),故通过比较两个模型的残差的平方和的大小来判断模型的拟合效果. 残差平方和越小的模型,拟合的效果越好.由于两种模型下的残差平方和分别为1450.673和15448.432,故选用指数函数模型的拟合效果远远优于选用二次函数模型. (当然,还可用相关指数刻画回归效果)3. 小结:残差分析的步骤、作用三、巩固练习:练习:教材P13第1题1.2独立性检验的基本思想及其初步应用(一)教学要求:通过探究“吸烟是否与患肺癌有关系”引出独立性检验的问题,并借助样本数据的列联表、柱形图和条形图展示在吸烟者中患肺癌的比例比不吸烟者中患肺癌的比例高,让学生亲身体验独立性检验的实施步骤与必要性.教学重点:理解独立性检验的基本思想及实施步骤.K的含义.教学难点:了解独立性检验的基本思想、了解随机变量2教学过程:一、复习准备:回归分析的方法、步骤,刻画模型拟合效果的方法(相关指数、残差分析)、步骤.二、讲授新课:1. 教学与列联表相关的概念:①分类变量:变量的不同“值”表示个体所属的不同类别的变量称为分类变量. 分类变量的取值一定是离散的,而且不同的取值仅表示个体所属的类别,如性别变量,只取男、女两个值,商品的等级变量只取一级、二级、三级,等等. 分类变量的取值有时可用数字来表示,但这时的数字除了分类以外没有其他的含义. 如用“0”表示“男”,用“1”表示“女”.②列联表:分类变量的汇总统计表(频数表). 一般. 如吸烟与患肺癌的列联表:称为222. 教学三维柱形图和二维条形图的概念:由列联表可以粗略估计出吸烟者和不吸烟者患肺癌的可能性存在差异.(教师在课堂上用EXCEL软件演示三维柱形图和二维条形图,引导学生观察这两类图形的特征,并分析由图形得出的结论)3. 独立性检验的基本思想:①独立性检验的必要性(为什么中能只凭列联表的数据和图形下结论?):列联表中的数据是样本数据,它只是总体的代表,具有随机性,故需要用列联表检验的方法确认所得结论在多大程度上适用于总体.第一步:提出假设检验问题H0:吸烟与患肺癌没有关系↔H1:吸烟与患肺癌有关系第二步:选择检验的指标22()K()()()()n ad bca b c d a c b d-=++++(它越小,原假设“H:吸烟与患肺癌没有关系”成立的可能性越大;它越大,备择假设“H1:吸烟与患肺癌有关系”成立的可能性越大.1.2独立性检验的基本思想及其初步应用(二)教学要求:通过探究“吸烟是否与患肺癌有关系”引出独立性检验的问题,并借助样本数据的列联表、柱形图和条形图展示在吸烟者中患肺癌的比例比不吸烟者中患肺癌的比例高,让学生亲身体验独立性检验的实施步骤与必要性.教学重点:理解独立性检验的基本思想及实施步骤.教学难点:了解独立性检验的基本思想、了解随机变量2K的含义.教学过程:教学过程:一、复习准备:独立性检验的基本步骤、思想二、讲授新课:1. 教学例1:例1 在某医院,因为患心脏病而住院的665名男性病人中,有214人秃顶;而另外772名不是因为患心脏病而住院的男性病人中有175名秃顶. 分别利用图形和独立性检验方法判断秃顶与患心脏病是否有关系?你所得的结论在什么范围内有效?①第一步:教师引导学生作出列联表,并分析列联表,引导学生得出“秃顶与患心脏病有关”的结论;第二步:教师演示三维柱形图和二维条形图,进一步向学生解释所得到的统计结果;第三步:由学生计算出2K的值;第四步:解释结果的含义.②通过第2个问题,向学生强调“样本只能代表相应总体”,这里的数据来自于医院的住院病人,因此题目中的结论能够很好地适用于住院的病人群体,而把这个结论推广到其他群体则可能会出现错误,除非有其它的证据表明可以进行这种推广.2. 教学例2:例2 为考察高中生的性别与是否喜欢数学课程之间的关系,在某城市的某校高中生中随机抽取300名学生,得到如下列联表:由表中数据计算得到的观察值. 在多大程度上可以认为高中生的性别与是否数学课程之间有关系?为什么?(学生自练,教师总结)强调:①使得2( 3.841)0.05P K ≥≈成立的前提是假设“性别与是否喜欢数学课程之间没有关系”.如果这个前提不成立,上面的概率估计式就不一定正确;②结论有95%的把握认为“性别与喜欢数学课程之间有关系”的含义;③在熟练掌握了两个分类变量的独立性检验方法之后,可直接计算2K 的值解决实际问题,而没有必要画相应的图形,但是图形的直观性也不可忽视.3. 小结:独立性检验的方法、原理、步骤 三、巩固练习: 某市为调查全市高中生学习状况是否对生理健康有影响,随机进行调查并得到如下的列联表:请问有多大把握认为“高中生学习状况与生理健康有关”?2.1.1 合情推理(一)教学要求:结合已学过的数学实例,了解归纳推理的含义,能利用归纳进行简单的推理,体会并认识归纳推理在数学发现中的作用.教学重点:能利用归纳进行简单的推理.教学难点:用归纳进行推理,作出猜想.教学过程:一、新课引入:1. 哥德巴赫猜想:观察4=2+2, 6=3+3, 8=5+3, 10=5+5, 12=5+7, 12=7+7, 16=13+3, 18=11+7, 20=13+7, ……, 50=13+37, ……, 100=3+97,猜测:任一偶数(除去2,它本身是一素数)可以表示成两个素数之和. 1742年写信提出,欧拉及以后的数学家无人能解,成为数学史上举世闻名的猜想. 1973年,我国数学家陈景润,证明了充分大的偶数可表示为一个素数与至多两个素数乘积之和,数学上把它称为“1+2”.2. 费马猜想:法国业余数学家之王—费马(1601-1665)在1640年通过对020213F =+=,121215F =+=,2222117F =+=,32321257F =+=,4242165537F =+=的观察,发现其结果都是素数,于是提出猜想:对所有的自然数n ,任何形如221n n F =+的数都是素数. 后来瑞士数学家欧拉,发现5252142949672976416700417F =+==⨯不是素数,推翻费马猜想.3. 四色猜想:1852年,毕业于英国伦敦大学的弗南西斯.格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“每幅地图都可以用四种颜色着色,使得有共同边界的国家着上不同的颜色.”,四色猜想成了世界数学界关注的问题.1976年,美国数学家阿佩尔与哈肯在美国伊利诺斯大学的两台不同的电子计算机上,用1200个小时,作了100亿逻辑判断,完成证明.二、讲授新课:1. 教学概念:① 概念:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理,称为归纳推理. 简言之,归纳推理是由部分到整体、由个别到一般的推理.② 归纳练习:(i )由铜、铁、铝、金、银能导电,能归纳出什么结论?(ii )由直角三角形、等腰三角形、等边三角形内角和180度,能归纳出什么结论?(iii )观察等式:2221342,13593,13579164+==++==++++==,能得出怎样的结论? ③ 讨论:(i )统计学中,从总体中抽取样本,然后用样本估计总体,是否属归纳推理? (ii )归纳推理有何作用? (发现新事实,获得新结论,是做出科学发现的重要手段)(iii )归纳推理的结果是否正确?(不一定)2. 教学例题:① 出示例题:已知数列{}n a 的第1项12a =,且1(1,2,)1n n na a n a +==+ ,试归纳出通项公式. (分析思路:试值n =1,2,3,4 → 猜想n a →如何证明:将递推公式变形,再构造新数列)② 思考:证得某命题在n =n 0时成立;又假设在n =k 时命题成立,再证明n =k +1时命题也成立. 由这两步,可以归纳出什么结论? (目的:渗透数学归纳法原理,即基础、递推关系) ③ 练习:已知(1)0,()(1)1,f af n bf n ==-= 2,0,0n a b ≥>>,推测()f n 的表达式.3. 小结:①归纳推理的药店:由部分到整体、由个别到一般;②典型例子:哥德巴赫猜想的提出;数列通项公式的归纳.三、巩固练习:1. 练习:教材P 38 1、2题.2. 作业:教材P 44 习题A 组 1、2、3题.2.1.1合情推理(二)教学要求:结合已学过的数学实例,了解合情推理的含义,能利用归纳和类比等进行简单的推理,体会并认识合情推理在数学发现中的作用.教学重点:了解合情推理的含义,能利用归纳和类比等进行简单的推理.教学难点:用归纳和类比进行推理,作出猜想.教学过程:一、复习准备:1. 练习:已知 0(1,2,,)i a i n >= ,考察下列式子:111()1i a a ⋅≥;121211()()()4ii a a a a ++≥;123123111()()()9iii a a a a a a ++++≥. 我们可以归纳出,对12,,,n a a a 也成立的类似不等式为 . 2. 猜想数列1111,,,,13355779--⨯⨯⨯⨯ 的通项公式是 . 3. 导入:鲁班由带齿的草发明锯;人类仿照鱼类外形及沉浮原理,发明潜水艇;地球上有生命,火星与地球有许多相似点,如都是绕太阳运行、扰轴自转的行星,有大气层,也有季节变更,温度也适合生物生存,科学家猜测:火星上有生命存在. 以上都是类比思维,即类比推理.二、讲授新课:1. 教学概念:① 概念:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理. 简言之,类比推理是由特殊到特殊的推理.② 类比练习:(i )圆有切线,切线与圆只交于一点,切点到圆心的距离等于半径. 由此结论如何类比到球体? (ii )平面内不共线的三点确定一个圆,由此结论如何类比得到空间的结论?(iii )由圆的一些特征,类比得到球体的相应特征. (教材P81 探究 填表)小结:平面→空间,圆→球,线→面.③ 讨论:以平面向量为基础学习空间向量,试举例其中的一些类比思维.2. 教学例题:思维:直角三角形中,090C ∠=,3条边的长度,,a b c ,2条直角边,a b 和1条斜边c ; →3个面两两垂直的四面体中,090PDF PDE EDF ∠=∠=∠=,4个面的面积123,,S S S 和S 3个“直角面”123,,S S S 和1个“斜面”S . → 拓展:三角形到四面体的类比. 3. 小结:归纳推理和类比推理都是根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理,统称为合情推理.三、巩固练习:1. 练习:教材P 38 3题. 2. 探究:教材P 35 例5 3.作业:P 44 5、6题.2.1.2 演绎推理教学要求:结合已学过的数学实例和生活中的实例,体会演绎推理的重要性,掌握演绎推理的基本方法,并能运用它们进行一些简单的推理。
高中数学人教a版选修1-2课时检测(二) 独立性检验的基本思想及其初步应用 含解析
课时跟踪检测(二) 独立性检验的基本思想及其初步应用一、选择题1.判断两个分类变量是彼此相关还是相互独立的常用的方法中,最为精确的是( )A.2×2列联表B.独立性检验C.等高条形图D.其他解析:选B A、C只能直观地看出两个分类变量x与y是否相关,但看不出相关的程度.独立性检验通过计算得出相关的可能性,较为准确.2.对于分类变量X与Y的随机变量K2的观测值k,下列说法正确的是( ) A.k越大,“X与Y有关系”的可信程度越小B.k越小,“X与Y有关系”的可信程度越小C.k越接近于0,“X与Y没有关系”的可信程度越小D.k越大,“X与Y没有关系”的可信程度越大解析:选B k越大,“X与Y没有关系”的可信程度越小,则“X与Y有关系”的可信程度越大.即k越小,“X与Y有关系”的可信程度越小.故选B.3.利用独立性检验对两个分类变量是否有关系进行研究时,若在犯错误的概率不超过0.005的前提下认为事件A和B有关系,则具体计算出的数据应该是( )A.k≥6.635 B.k<6.635C.k≥7.879 D.k<7.879解析:选C 犯错误的概率为0.5%,对应的k0的值为7.879,由独立性检验的思想可知应为k≥7.879.4.(江西高考)某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量的关系,随机抽查了52名中学生,得到统计数据如表1至表4,则与性别有关联的可能性最大的变量是( )表1表2表3表4A.成绩B.视力C.智商D.阅读量解析:选D 因为k1=52×(6×22-14×10)2 16×36×32×20=52×8216×36×32×20,k2=52×(4×20-16×12)2 16×36×32×20=52×112216×36×32×20,k3=52×(8×24-12×8)2 16×36×32×20=52×96216×36×32×20,。
【全程复习14-2015学年高中数学 1.2 独立性检验的基本思想及其初步应用课堂达标效果检测 新人教A版选修1-2
"【全程复习方略】2014-2015学年高中数学 1.2 独立性检验的基本思想及其初步应用课堂达标效果检测新人教A版选修1-2 "1.在研究两个分类变量之间是否有关时,可以粗略地判断两个分类变量是否有关的是( )A.散点图B.等高条形图C.2×2列联表D.以上均不对【解析】选B.等高条形图可以粗略地判断两个分类变量之间是否有关.2.对于分类变量A与B的随机变量K2,下列说法正确的是( )A.K2越大,说明“A与B有关系”的可信度越小B.K2越大,说明“A与B无关”的程度越大C.K2越小,说明“A与B有关系”的可信度越小D.K2接近于0,说明“A与B无关”的程度越小【解析】选C.由独立性检验的定义及K2的意义可知C正确.3.想要检测天气阴晴与人心情好坏是否相关,应该检测()A.H0:晴天心情好B.H0:阴天心情好C.H0:天气与心情有关系D.H0:天气与心情无关【解析】选D.根据假设检验的意义,要先假设两个分类变量之间没有关系.4.若由一个2×2列联表中的数据计算得K2的观测值k为7.22,那么在犯错误的概率不超过的前提下认为两个变量有关系.【解析】因为K2的观测值k=7.22>6.635,故在犯错误的概率不超过0.01的前提下认为两个变量有关系. 答案:0.015.某校文理合卷期中考试后,按照学生的数学考试成绩优秀和不优秀统计,得到如下的列联表:(1)画出列联表的等高条形图,并通过图形判断数学成绩与文理分科是否有关.(2)利用独立性检验,分析文理分科对学生的数学成绩是否有影响.【解析】(1)等高条形图如图所示.(2)由列联表中的数据得到K2的观测值k==科对学生的数学成绩有影响.。
高中数学1.2独立性检验的基本思想及其初步应用学情分析新人教A版选修1-2
高中数学 1.2独立性检验的基本思想及其初步应用学情分析新人教A版选修1-2学情分析:1、学生具备的知识基础:回归分析的基本思想;假设检验思想;课前自主学习,明确列联表以及分类变量;2、学生具备的能力基础:收集整理数据,看图识图能力;简单的excel制表作图能力;3、学生接触统计和分布较少,引起的思维跳跃和冲突案例操作→获得图表和图形语言定量描述→K2的突然引入效果分析:1、课堂教学课堂气氛融洽,学生思维积极,小组讨论热烈,敢于表达自己想法,教学效果明显,学生对于整个独立性检验的基本思想以及由来可以形成自己的体系。
2、课堂评测●课堂练习题目第1题和第2题属于常规题(要求准确规范),学生反映较快,做得很好;●第3题属于逆向思维问题,多数同学转化到位;●第4题主要是强调独立性检验的思想和步骤,要求学生规范答题。
(因时间关系第4题未在课堂完成,转为课下完成)●第4题的课后反馈统计:全班51人,全对的40人;下结论出问题的5人;计算出错3人;规范性较差3人。
1、课堂随机变量的引入最好只出现2个变量取值的,再最后课堂生成后可以举出多个取值的,把知识拓展的不是2×2列联表的分类变量的处理中,提升学生对于此类问题更深层次的探究和学习。
2、现实中的例子阐述的还是较少,只体现了疫苗和甲流,心脏病和秃头,性别和选修专业三个方面,其实这一章节对于数学来源生活并服务于生活是很好的阐释,建议多加一些和生活相关的例子,最好是需要决策的例子。
比如喝酒与肝癌,吸烟与肺癌等,这样还可以达到教育学生注重健康的目的。
3、统计案例和概率等部分的知识处理时,可以更多的借鉴生活中热点,最好能通过一个或几个题目涵盖整个知识。
1。
人教A版 选修1-2 1.2 独立性检验的基本思想及初步应用 教案
[核心必知]1.预习教材,问题导入根据以下提纲,预习教材P 10~P 15的内容,回答下列问题. 阅读教材P 10“探究”的内容,思考: (1)是否吸烟、是否患肺癌是什么变量? 提示:分类变量.(2)吸烟与患肺癌之间的关系还是前面我们研究的线性相关关系吗? 提示:不是.(3)如何研究吸烟是否对患肺癌有影响? 提示:独立性检验. 2.归纳总结,核心必记 (1)分类变量变量的不同“值”表示个体所属的不同类别,像这样的变量称为分类变量. (2)列联表①定义:列出的两个分类变量的频数表称为列联表. ②2×2列联表一般地,假设有两个分类变量X 和Y ,它们的取值分别为{x 1,x 2}和{y 1,y 2},其样本频数列联表(称为2×2列联表)为(3)等高条形图①图形与表格相比,更能直观地反映出两个分类变量间是否相互影响,常用等高条形图展示列联表数据的频率特征.②通过直接计算或观察等高条形图发现a +b a 和c +d c相差很大,就判断两个分类变量之间有关系.(4)独立性检验(1)有人说:“在犯错误的概率不超过0.01的前提下认为吸烟和患肺癌有关,是指每100个吸烟者中就会有99个患肺癌的.”你认为这种观点正确吗?为什么?提示:观点不正确.犯错误的概率不超过0.01说明的是吸烟与患肺癌有关的程度,不是患肺癌的百分数.(2)应用独立性检验的基本思想对两个变量间的关系作出的推断一定是正确的吗? 提示:不一定.所有的推断只代表一种可能性,不代表具体情况. (3)下面是2×2列联表.则表中a ,b 提示:a =46-13=33,b =33+a =33+33=66.[课前反思](1)分类变量的定义是什么?(2)列联表的定义是什么?2×2列联表中的各个数据有什么意义?(3)什么是等高条形图,有什么作用?(4)独立性检验的内容是什么?讲一讲1.在对人们饮食习惯的一次调查中,共调查了124人,其中六十岁以上的70人,六十岁以下的54人.六十岁以上的人中有43人的饮食以蔬菜为主,另外27人则以肉类为主;六十岁以下的人中有21人饮食以蔬菜为主,另外33人则以肉类为主.请根据以上数据作出饮食习惯与年龄的列联表,并利用a +b a 与c +d c判断二者是否有关系.[尝试解答] 2×2列联表如下:年龄在六 十岁以上 年龄在六 十岁以下 总计 饮食以蔬菜为主 43 21 64 饮食以肉类为主27 33 60 总计7054124a +b a =6443=0.671 875.c +d c =6027=0.45.显然二者数据具有较为明显的差距,据此可以在某种程度上认为饮食习惯与年龄有关系.(1)作2×2列联表时,关键是对涉及的变量分清类别.计算时要准确无误.(2)利用2×2列联表分析两个分类变量间的关系时,首先要根据题中数据获得2×2列联表,然后根据频率特征,即将a +b a 与c +d c c +d d的值相比,直观地反映出两个分类变量间是否相互影响,但方法较粗劣.练一练1.假设有两个分类变量X 与Y ,它们的可能取值分别为{x 1,x 2}和{y 1,y 2},其2×2列联表为:y 1y 2x 1 1018 x 2m26则当m 取下面何值时,X 与Y A .8 B .9 C .14 D .19解析:选C 由10×26≈18m ,解得m ≈14.4,所以当m =14时,X 与Y 的关系最弱.讲一讲2.某学校对高三学生作了一项调查发现:在平时的模拟考试中,性格内向的学生426人中有332人在考前心情紧张,性格外向的学生594人中有213人在考前心情紧张,作出等高条形图,利用图形判断考前心情紧张与性格类型是否有关系.[尝试解答] 作列联表如下:性格内向 性格外向 总计 考前心情紧张 332 213 545 考前心情不紧张94 381 475 总计4265941 020图中阴影部分表示考前心情紧张与考前心情不紧张中性格内向的人数的比例,从图中可以看出考前心情紧张的样本中性格内向的人数占的比例比考前心情不紧张样本中性格内向的人数占的比例高,可以认为考前紧张与性格类型有关.利用等高条形图判断两个分类变量是否相关的步骤:练一练2.在调查的480名男人中有38人患色盲,520名女人中有6名患色盲,试利用图形来判断色盲与性别是否有关?解:根据题目给出的数据作出如下的列联表:色盲不色盲总计男38442480女6514520总计449561000从等高条形图来看,在男人中患色盲的比例要比在女人中患色盲的比例大得多,因此,我们认为患色盲与性别是有关系的.讲一讲3.研究人员选取170名青年男女大学生为样本,对他们进行一种心理测验.发现有60名女生对该心理测验中的最后一个题目的反应是:作肯定的有22名,否定的有38名;110名男生在相同的项目上作肯定的有22名,否定的有88名.问:性别与态度之间是否存在某种关系?用独立性检验的方法判断.(链接教材P 13-例1)附:P (K 2≥k 0)0.10 0.05 0.025 k 02.7063.8415.024[尝试解答]肯定 否定 总计 男生 22 88 110 女生 22 38 60 总计44126170根据2×2k =110×60×44×126170×(22×38-22×88≈5.622>5.024.所以在犯错误的概率不超过0.025的前提下,认为“性别与态度有关系”.根据题意列出2×2列联表,计算K 2的观测值,如果K 2的观测值很大,说明两个分类变量有关系的可能性很大;如果K 2的观测值比较小,则认为没有充分的证据显示两个分类变量有关系.练一练3.在一次天气恶劣的飞机航程中,调查了男女乘客在飞机上晕机的情况:男乘客晕机的有24人,不晕机的有31人;女乘客晕机的有8人,不晕机的有26人.请你根据所给数据判定:在天气恶劣的飞机航程中,男乘客是否比女乘客更容易晕机?附:P (K 2≥k 0)0.10 0.05 k 02.7063.848解:根据题意,列出 晕机 不晕机 总计由公式可得K 2的观测值k =(a +b n(ad -bc=55×34×32×5789(24×26-31×8≈3.689>2.706,故在犯错误的概率不超过0.10的前提下,认为“在天气恶劣的飞机航程中男乘客比女乘客更容易晕机”.——————————————[课堂归纳·感悟提升]——————————1.本节课的重点是用2×2列联表、等高条形图分析两个分类变量间的关系以及独立性检验.2.本节课要重点掌握的规律方法(1)用2×2列联表分析两分类变量间的关系,见讲1; (2)用等高条形图分析两分类变量间的关系,见讲2; (3)独立性检验,见讲3.3.解决一般的独立性检验问题的步骤:(1)通过列联表确定a ,b ,c ,d ,n 的值,根据实际问题需要的可信程度确定临界值k 0; (2)利用K 2=(a +b n(ad -bc 求出K 2的观测值k ;(3)如果k ≥k 0,就推断“两个分类变量有关系”,这种推断犯错误的概率不超过α,否则就认为在犯错误的概率不超过α的前提下不能推断“两个分类变量有关系”.其中第(2)步易算错K 2的值,是本节课的易错点.课下能力提升(二) [学业水平达标练]题组1 用2×2列联表分析两分类变量间的关系 1.分类变量X 和Y 的列联表如下:A .ad -bc 越小,说明X 与Y 关系越弱B .ad -bc 越大,说明X 与Y 关系越强C .(ad -bc )2越大,说明X 与Y 关系越强 D .(ad -bc )2越接近于0,说明X 与Y 关系越强解析:选C |ad -bc |越小,说明X 与Y 关系越弱,|ad -bc |越大,说明X 与Y 关系越强.2.假设有两个变量X 与Y ,它们的取值分别为x 1,x 2和y 1,y 2,其列联表为:( ) A .a =50,b =40,c =30,d =20 B .a =50,b =30,c =40,d =20 C .a =20,b =30,c =40,d =50 D .a =20,b =30,c =50,d =40解析:选D 当(ad -bc )2的值越大,随机变量K 2=(a +b n(ad -bc的值越大,可知X 与Y 有关系的可能性就越大.显然选项D 中,(ad -bc )2的值最大.3.某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如下表所示:填“是”或“否”).解析:因为在20至40岁的58名观众中有18名观众收看新闻节目,而大于40岁的42名观众中有27名观众收看新闻节目,即a +b b =5818,c +d d =4227,两者相差较大,所以经直观分析,收看新闻节目的观众与年龄是有关的.答案:是题组2 用等高条形图分析两分类变量间的关系4.如图是调查某地区男女中学生喜欢理科的等高条形图,阴影部分表示喜欢理科的百分比,从图中可以看出( )A .性别与喜欢理科无关B .女生中喜欢理科的百分比为80%C .男生比女生喜欢理科的可能性大些D .男生不喜欢理科的比为60%解析:选C 从图中可以分析,男生喜欢理科的可能性比女生大一些. 5.观察下列各图,其中两个分类变量x ,y 之间关系最强的是( )解析:选D 在四幅图中,D 图中两个深色条的高相差最明显,说明两个分类变量之间关系最强.6.为了研究子女吸烟与父母吸烟的关系,调查了一千多名青少年及其家长,数据如下:解:等高条形图如图所示:由图形观察可以看出父母吸烟者中子女吸烟的比例要比父母不吸烟者中子女吸烟的比例高,因此可以在某种程度上认为“子女吸烟与父母吸烟有关系”.题组3 独立性检验7.在一项中学生近视情况的调查中,某校男生150名中有80名近视,女生140名中有70名近视,在检验这些中学生眼睛近视是否与性别有关时用什么方法最有说服力( ) A.平均数与方差 B.回归分析C.独立性检验 D.概率解析:选C 判断两个分类变量是否有关的最有效方法是进行独立性检验.8.对于分类变量X与Y的随机变量K2的观测值k,下列说法正确的是( )A.k越大,“X与Y有关系”的可信程度越小B.k越小,“X与Y有关系”的可信程度越小C.k越接近于0,“X与Y没有关系”的可信程度越小D.k越大,“X与Y没有关系”的可信程度越大解析:选B k越大,“X与Y没有关系”的可信程度越小,则“X与Y有关系”的可信程度越大,即k越小,“X与Y有关系”的可信程度越小.9.在吸烟与患肺病是否相关的判断中,有下面的说法:①若K2的观测值k>6.635,则在犯错误的概率不超过0.01的前提下,认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病;②从独立性检验可知在犯错误的概率不超过0.01的前提下,认为吸烟与患肺病有关系时,若某人吸烟,则他有99%的可能患有肺病;③从独立性检验可知在犯错误的概率不超过0.05的前提下,认为吸烟与患肺病有关系时,是指有5%的可能性使得推断错误.其中说法正确的是________.解析:K2是检验吸烟与患肺病相关程度的量,是相关关系,而不是确定关系,是反映有关和无关的概率,故说法①不正确;说法②中对“确定容许推断犯错误概率的上界”理解错误;说法③正确.答案:③10.为了解决高二年级统计案例入门难的问题,某校在高一年级的数学教学中设有试验班,着重加强统计思想的渗透,下面是高二年级统计案例的测验成绩统计表(单位:分)的一部分,试分析试验效果.附:k =(a +b n(ad -bc=50×50×44×56100(32×38-18×12≈16.234. 因为16.234>6.635,所以,在犯错误的概率不超过0.01的前提下认为高二年级统计案例的测试成绩与高一年级数学教学中增加统计思想的渗透有联系.[能力提升综合练]1.利用独立性检验对两个分类变量是否有关系进行研究时,若有99.5%的把握认为事件A 和B 有关系,则具体计算出的数据应该是( )A .k ≥6.635B .k <6.635C .k ≥7.879D .k <7.879解析:选C 有99.5%的把握认为事件A 和B 有关系,即犯错误的概率为0.5%,对应的k 0的值为7.879,由独立性检验的思想可知应为k ≥7.879.2.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:由K 2=(a +b n(ad -bc 算得,观测值k =60×50×60×50≈7.8. 附表:A .有99%以上的把握认为“爱好该项运动与性别有关”B .有99%以上的把握认为“爱好该项运动与性别无关”C .在犯错误的概率不超过0.1% 的前提下,认为“爱好该项运动与性别有关”D .在犯错误的概率不超过0.1% 的前提下,认为“爱好该项运动与性别无关” 解析:选A 由k ≈7.8及P (K 2≥6.635)=0.010可知,在犯错误的概率不超过1%的前提下认为“爱好该项运动与性别有关”,也就是有99%以上的把握认为“爱好该项运动与性别有关”.3.某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量的关系,随机抽查了52名中学生,得到统计数据如表1至表4,则与性别有关联的可能性最大的变量是( )表1表3A .成绩B .视力C .智商D .阅读量解析:选D 因为K 12=16×36×32×2052×(6×22-14×10=16×36×32×2052×82,K 22=16×36×32×2052×(4×20-16×12=16×36×32×2052×1122,k 32=16×36×32×2052×(8×24-12×8=16×36×32×2052×962, K 42=16×36×32×2052×(14×30-6×2=16×36×32×2052×4082,则有K 42>K 22>K 32>K 12,所以阅读量与性别有关联的可能性最大. 4.下列关于K 2的说法中,正确的有________. ①K 2的值越大,两个分类变量的相关性越大; ②K 2的计算公式是K 2=(a +b n(ad -bc ;③若求出K 2=4>3.841,则有95%的把握认为两个分类变量有关系,即有5%的可能性使得“两个分类变量有关系”的推断出现错误;④独立性检验就是选取一个假设H 0条件下的小概率事件,若在一次试验中该事件发生了,这是与实际推断相抵触的“不合理”现象,则作出拒绝H 0的推断.解析:对于①,K 2的值越大,只能说明我们有更大的把握认为二者有关系,却不能判断相关性大小,故①错;对于②,(ad -bc )应为(ad -bc )2,故②错;③④对.答案:③④5.某班主任对全班50名学生作了一次调查,所得数据如表:)在犯错误的概率不超过0.01的前提下认为喜欢玩电脑游戏与认为作业多有关.解析:查表知若要在犯错误的概率不超过0.01的前提下认为喜欢玩电脑游戏与认为作业多有关,则临界值k 0=6.635,本题中,k ≈5.059<6.635,所以不能在犯错误的概率不超过0.01的前提下认为喜欢玩电脑游戏与认为作业多有关.答案:不能6.随着生活水平的提高,人们患肝病的越来越多,为了解中年人患肝病与经常饮酒是否有关,现对30名中年人进行了问卷调查得到如下列联表:已知在全部30人中随机抽取1人,抽到肝病患者的概率为15.(1)请将上面的列联表补充完整,并判断是否有99.5%的把握认为患肝病与常饮酒有关?说明你的理由;(2)现从常饮酒且患肝病的中年人(恰有2名女性)中,抽取2人参加电视节目,则正好抽到一男一女的概率是多少?参考数据:解:(1)设患肝病中常饮酒的人有x 人,30=15,x =6.由已知数据可求得K 2=10×20×8×22≈8.523>7.879,因此有99.5%的把握认为患肝病与常饮酒有关.(2)设常饮酒且患肝病的男性为A ,B ,C ,D ,女性为E ,F ,则任取两人有AB ,AC ,AD ,AE ,AF ,BC ,BD ,BE ,BF ,CD ,CE ,CF ,DE ,DF ,EF ,共15种.其中一男一女有AE ,AF ,BE ,BF ,CE ,CF ,DE ,DF ,共8种.故抽出一男一女的概率是P =158.7.某食品厂为了检查甲乙两条自动包装流水线的生产情况,随机在这两条流水线上各抽取40件产品作为样本称出它们的质量(单位:克),质量值落在(495,510]的产品为合格品,否则为不合格品.表1是甲流水线样本频数分布表,图1是乙流水线样本频率分布直方图.表1 甲流水线样本频数分布表(1)根据上表数据作出甲流水线样本频率分布直方图;(2)若以频率作为概率,试估计从两条流水线分别任取1件产品,该产品恰好是合格品的概率分别是多少;(3)由以上统计数据作出2×2列联表,并回答在犯错误的概率不超过多少的前提下认为“产品的包装质量与两条要自动包装流水线的选择有关”.解:(1)甲流水线样本频率分布直方图如下:(2)由表1知甲样本合格品数为8+14+8=30,由图1知乙样本中合格品数为(0.06+0.09+0.03)×5×40=36, 故甲样本合格品的频率为4030=0.75, 乙样本合格品的频率为4036=0.9, 据此可估计从甲流水线任取1件产品, 该产品恰好是合格品的概率为0.75. 从乙流水线任取1件产品, 该产品恰好是合格品的概率为0.9. (3)2×2列联表如下:因为K2的观测值k=(a+b=66×14×40×40≈3.117>2.706,所以在犯错误的概率不超过0.1的前提下认为产品的包装质量与两条自动包装流水线的选择有关.。
高中数学《1.2 独立性检验的基本思想及其初步应用》评估训练 新人教A版选修1-2
1.2 独立性检验的基本思想及其初步应用双基达标限时20分钟1.下面是一个2×2列联表:则表中a、b( ).A.94、96 B.52、50 C.52、60 D.54、52解析∵a+21=73,∴a=52.又b=a+8=52+8=60.答案 C2.下列关于等高条形图的叙述正确的是( ).A.从等高条形图中可以精确地判断两个分类变量是否有关系B.从等高条形图中可以看出两个变量频数的相对大小C.从等高条形图可以粗略地看出两个分类变量是否有关系D.以上说法都不对解析在等高条形图中仅能粗略判断两个分类变量的关系,故A错.在等高条形图中仅能够找出频率,无法找出频数,故B错.答案 C3.关于分类变量x与y的随机变量K2的观测值k,下列说法正确的是( ).A.k的值越大,“X和Y有关系”可信程度越小B.k的值越小,“X和Y有关系”可信程度越小C.k的值越接近于0,“X和Y无关”程度越小D.k的值越大,“X和Y无关”程度越大解析k的值越大,X和Y有关系的可能性就越大,也就意味着X与Y无关系的可能性就越小.答案 B4.若由一个2×2列联表中的数据计算得k=4.013,那么在犯错误的概率不超过________的前提下认为两个变量之间有关系.解析因随机变量K2的观测值k=4.013>3.841,因此,在犯错误的概率不超过0.05的前提下,认为两个变量之间有关系.答案0.055.为了判断高中三年级学生是否选修文科与性别的关系,现随机抽取50名学生,得到如下2×2列联表:已知P(K2中数据,得到k=50×13×20-10×7223×27×20×30≈4.844.则认为选修文科与性别有关系出错的可能性约为________.解析k≈4.844>3.841,故判断出错的概率为0.05.答案0.056.高中流行这样一句话“文科就怕数学不好,理科就怕英语不好”.下表是一次针对高三文科学生的调查所得的数据,试问:文科学生总成绩不好与数学成绩不好有关系吗?解k=913×478×24-399×122490×423×877×36≈6.233>5.024.所以在犯错误的概率不超过0.025的前提下,认为“文科学生总成绩不好与数学成绩不好有关系”.综合提高限时25分钟7.某班主任对全班50名学生进行了作业量的调查,数据如表( ).A.0.01 B.0.005 C.0.025 D.0.001解析k=50×18×15-8×9226×24×27×23≈5.059>5.024.∵P(K2≥5.024)=0.025,∴犯错误的概率不超过0.025.答案 C8.利用独立性检验来考察两个分类变量X和Y是否有关系时,通过查阅下表来确定“X与Y 有关系”的可信程度.如果k≥5.024,那么就有把握认为“X与Y有关系”的百分比为( ).解析k=5.024对应的0.025是“X和Y有关系”不合理的程度,因此两个分类变量有关系的可信程度约为97.5%.答案 D9.某卫生机构对366人进行健康体检,有阳性家族史者糖尿病发病的有16例,不发病的有93例,有阴性家族史者糖尿病发病的有17例,不发病的有240例,认为糖尿病患者与遗传有关系的概率为________.解析列出2×2列联表:k=366×16×240-17×932109×257×33×333≈6.067>5.024,所以在犯错误的概率不超过0.025的前提下,认为糖尿病患者与遗传有关.答案0.97510.某医疗研究所为了检验某种血清预防感冒的作用,把500名使用血清的人与另外500名未用血清的人一年中的感冒记录作比较,提出假设H0:“这种血清不能起到预防感冒的作用”,利用2×2列联表计算得k≈3.918,经查对临界值表知P(K2≥3.841)≈0.05.对此,四名同学作出了以下的判断:p:有95%的把握认为“这种血清能起到预防感冒的作用”;q:若某人未使用该血清,那么他在一年中有95%的可能性得感冒;r:这种血清预防感冒的有效率为95%;s:这种血清预防感冒的有效率为5%.则下列结论中,正确结论的序号是________(把你认为正确的命题序号都填上).①p∧綈q;②綈p∧q;③(綈p∧綈q)∧(r∨s);④(p∨綈r)∧(綈q∨s).解析根据题中叙述可知p真,q假,因为95%是两者有关系的概率,不是患病的概率,r为真,s为假,故①④为真.答案①④11.高二(1)班班主任对全班50名学生进行了有关作业量多少的调查,得到如下列联表:解由表中数据计算K2的观测值为k=50×18×15-8×9227×23×26×24≈5.059>5.024.所以在犯错误的概率不超过0.025的前提下认为“喜欢玩电脑游戏与认为作业多有关”,其有关的概率为0.975.12.(创新拓展)第16届亚运会于2010年11月12日至27日在中国广州进行,为了搞好接待工作,组委会招幕了16名男志愿者和14名女志愿者,调查发现,男、女志愿者中分别有10人和6人喜爱运动,其余人不喜爱运动.(1)根据以上数据完成以下2×2列联表:(2)爱运动有关?解(1)(2)k=30×10×8-6×6210+66+810+66+8≈1.157 5<2.706,因此,在犯错误的概率不超过0.10的前提下不能判断喜爱运动与性别有关.。
人教A版高中数学选修1-2《一章 统计案例 1.2 独立性检验的基本思想及其初步应用》精品课件_33
解:根据题目所给数据得到如下列联表:
患心脏病 不患心脏病 总计
秃顶
214
ቤተ መጻሕፍቲ ባይዱ不秃顶
451
总计
665
175
389
597
1048
772
1437
根据列联表中的数据,得到
K 2 1437 (214597 175 451)2 16.373 6.635. 3891048 665 772
案 例:某医疗机构为了了解呼吸道疾病与吸 烟是否有关,进行了一次抽样调查,共调查了 515个成年人,其中吸烟者220人,不吸烟者 295人。
调查结果:吸烟的220人中有37人患呼吸道疾 病,183人未患呼吸道疾病;不吸烟的295人中 有21人患病,274人未患病。
根据这些数据,能否断定:患呼吸道疾 病与吸烟有关?
(2)求k值 (3)下结论
5
8
3
2
6
1
4
5
9
8
(1)如果k 10.828,就有99.9%的把握认为" X 与Y有关系" (2)如果k 7.879,就有99.5%的把握认为" X 与Y有关系"
(3)如果k 6.635,就有99%的把握认为" X 与Y有关系"
(4)如果k 5.024,就有97.5%的把握认为" X 与Y有关系"
练习3:为了调查胃病是否与生活规律有关,在某地对540名40岁以上 的人进行了调查,结果是:患胃病者生活不规律的共60人,患胃病者 生活规律的共20人,未患胃病者生活不规律的共260人,未患胃病者生 活规律的共200人. (1)根据以上数据列出2×2列联表; (2)能够以99%的把握认为40岁以上的人患胃病与否和生活规律有关 系吗?为什么?
高中数学《1.2 独立性检验的基本思想及其初步应用》导学案2 新人教A版选修1-2
独立性检验的基本思想及其初步应用通过探究“秃顶是否与患心脏病有关系”引出独立性检验的问题,并借助样本数据的列联表、柱形图和条形图展示患心脏病的秃顶比例比患其它病的秃顶比例高,让学生亲身体验独立性1416 复习1:统计量2K :复习2:独立性检验的必要性:二、新课导学 ※ 学习探究新知1:独立性检验的基本思想: 1、 独立性检验的必要性:探究任务:吸烟与患肺癌的关系第一步:提出假设检验问题 H 0:第二步:根据公式求2K 观测值k =(它越小,原假设“H 0:吸烟与患肺癌没有关系”成立的可能性越 ;它越大,备择假设“H 1: ” 成立的可能性越大.)第三步:查表得出结论※典型例题例1 在某医院,因为患心脏病而住院的665名男性病人中,有214人秃顶;而另外772名不是因为患心脏病而住院的男性病人中有175名秃顶. 分别利用图形和独立性检验方法判断秃顶与患心脏病是否有关系?你所得的结论在什么范围内有效?小结:用独立性检验的思想解决问题:第一步:第二步:第三步:例2为考察高中生的性别与是否喜欢数学课程之间的关系,在某城市的某校高中生中随机抽k . 在多大程度上可以认为高中生的性别与是否由表中数据计算得到K的观察值 4.513数学课程之间有关系?为什么?※动手试试练1. 某市为调查全市高中生学习状况是否对生理健康有影响,随机进行调查并得到如下的列联表:请问有多大把握认为“高中生学习状况Array与生理健康有关”?三、总结提升※学习小结1. 独立性检验的原理:2. 独立性检验的步骤:※知识拓展. Array※自我评价你完成本节导学案的情况为().A. 很好B. 较好C. 一般D. 较差※当堂检测(时量:5分钟满分:10分)计分:1. 在吸烟与患肺病这两个分类变量的计算中,下列说法正确的是()A. 若k=6.635,则有99%的把握认为吸烟与患肺病有关,那么100名吸烟者中,有99个患肺病.B. 从独立性检验可知,有99%的把握认为吸烟与患肺病有关时,可以说某人吸烟,那么他有99%的可能性患肺病.C. 若从统计量中求出有95%的把握认为吸烟与患肺病有关,是指有5%的可能性使推断出现错误.D. 以上三种说法都不对.2. 下面是一个22⨯列联表则表中a,b 的之分别是( )D. 54,52 3.某班主任对全班50名学生进行了作业量多少的调查,数据如下表:则认为喜欢玩游戏与认为作业量多少有关系的把握大约为( )A. 99%B. 95%C. 90%D.无充分依据4. 在独立性检验中,当统计量2K 满足时,我们有99%的把握认为这两个分类变量有关系. 5. 在22⨯列联表中,统计量2K = . 为考察某种药物预防疾病的效果,进行动物试验,得到如下列联表 能以97.5%的把握认为药物有效吗?为什么?。
高中数学1-2独立性检验的基本思想及其初步应用同步课件新人教A版选修1-2.ppt
与性别是有关的.
根据列联表中所给的数据,有 a=38,b=442,c=6,
d=514,a+b=480,c+d=520,a+c=44,b+d=956,n
=1000,得 K2 的观测值
k=(a+b)(cn+(add-)(ab+c)c2)(b+d)
=
1000×(38×514-442×6)2 480×520×44×956
第一种剂量 第二种剂量
合计
死亡 14 6 20
存活 11 19 30
合计 25 25 50
三、解答题
7.在500个人身上试验某种血清预防感冒的作用,把一年中的记录与另外500个未用血 清的人作比较,结果如下表所示.
试画出列表的条形图,并通过图形判断这种血清能否起到预防感冒的作用?并进行独立
性检验.
[答案] 0.005
[解析] k=8.654>7.879,就推断“X与Y有关”犯错误的 概率不超过0.005.
6.为了探究电离辐射的剂量与人体的受损程度是否有关,用两种不同剂量的电离辐射 照射小白鼠.在照射后14天内的结果如下表所示:
进行统计分析时的统计假设是__________________. [答案] 假设电离辐射的剂量与人体受损程度无关.
≈27.1.
由
于
k≈27.1>10.828,所以我们有 99.9%的把握认为色盲与性
别有关系.这个结论只对所调查的 480 名男人和 520 名
女人有效.
[点评] 本题应首先作出调查数据的列联表,再根据列联 表画出二维条形图或三维柱形图,并进行分析,最后利用 独立性检验作出判断.
1.利用图形来判断两个分类变量是否有关系,可以画出三 维柱形图,也可以画出二维条形图,仅从图形上只可以粗 略地判断两个分类变量是否有关系,可以结合所给的数值 来进行比较.作图应注意单位统一,图形准确,但它不能 给我们两个分类变量有关或无关的精确的可信程度,若要 作出精确的判断,可以作独立性检验的有关计算.
1.2.2独立性检验的基本思想及其初步应用习题及答案
数学·选修1-2(人教A版)独立性检验的基本思想及其初步应用►达标训练1.在研究两个分类变量之间是否有关时,可以粗略地判断两个分类变量是否有关的是()A.散点图B.等高条形图C.2×2列联表D.以上均不对,答案:B2.在等高条形图形图中,下列哪两个比值相差越大,要推断的论述成立的可能性就越大()与dc+d与ac+d与cc+d与cb+c答案:C3.对分类变量X与Y的随机变量K2的观测值k,说法正确的是()A.k越大,“ X与Y有关系”可信程度越小【B.k越小,“ X与Y有关系”可信程度越小C.k越接近于0,“X与Y无关”程度越小D.k越大,“X与Y无关”程度越大答案:B@4.下面是一个2×2列联表:则表中a、b的值分别为()。
A.94、96 B.52、50C.52、54 D.54、52答案:C5.性别与身高列联表如下:那么,检验随机变量K2的值约等于()A.B.C.22 D.答案:C:6.给出列联表如下:根据表格提供的数据,估计“成绩与班级有关系”犯错误的概率约是( ) *A .B .0.5C .D .答案:B►素能提高1.在调查中发现480名男人中有38名患有色盲,520名女人中有6名患有色盲,下列说法中正确的是( )A .男人、女人中患有色盲的频率分别为、B .男人、女人患色盲的概率分别为19240、3260C .男人中患色盲的比例比女人中患色盲的比例大,患色盲是与性别有关的 /D .调查人数太少,不能说明色盲与性别有关解析:男人患色盲的比例为38480,比女人中患色盲的比例6520大,其差值为⎪⎪⎪⎪⎪⎪38480-6520≈ 6,差值较大. 答案:C2.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:男 女 :总计爱好40 20 60 不爱好 20 30 50总计¥6050 110由K 2=算得, K 2=≈.附表:P(K2≥k0):k0参照附表,得到的正确结论是()A.有99%以上的把握认为“爱好该项运动与性别有关”B.有99%以上的把握认为“爱好该项运动与性别无关”¥C.在犯错误的概率不超过%的前提下,认为“爱好该项运动与性别有关”D.在犯错误的概率不超过%的前提下,认为“爱好该项运动与性别无关”答案:A3.若由一个2×2列联表中的数据计算得K2=,那么在犯错误的概率不超过的前提下认为两个变量______(填“有”或“没有”)关系.答案:有4.(2013·韶关二模)以下四个命题:%①在一次试卷分析中,从每个试室中抽取第5号考生的成绩进行统计,是简单随机抽样;②样本数据:3,4,5,6,7的方差为2;③对于相关系数r,|r|越接近1,则线性相关程度越强;④通过随机询问110名性别不同的行人,对过马路是愿意走斑马线还是愿意走人行天桥进行抽样调查,得到如下列联表:男女总计走天桥—402060走斑马线203050总计6050·110由K2=可得,K2==,则有99%以上的把握认为“选择过马路方式与性别有关”,其中正确的命题序号是________.答案:②③④附表P(K2≥k0)?k05.某学校为了调查喜欢语文学科与性别的关系,随机调查了一些学生情况,具体数据如下表:^类别不喜欢语文喜欢语文性别男1310女720—为了判断喜欢语文学科是否与性别有关系,根据表中的数据,得到K2的观测值k=≈,因为k≥,根据下表中的参考数据:P(K2≥k0)/k0|判定喜欢语文学科与性别有关系,那么这种判断出错的可能性为________.答案:5%—6.某学校课题组为了研究学生的数学成绩与物理成绩之间的关系,随机抽取高二年级20名学生某次考试成绩(满分100分)如下表序号12345678~910数学成绩95758094926567 (849871)物理成绩906372879171]58829381序号11121314(151617181920数学成绩679364·78779057837283物理成绩7782 (4885699161847886)若单科成绩85以上(含85分),则该科成绩优秀.(1)根据上表完成下面的2×2列联表(单位:人).< 数学成绩优秀数学成绩不优秀合计物理成绩优秀物理成绩不优秀【合计解析:(1)2×2列联表为(单位:人):;数学成绩优秀数学成绩不优秀合计物理成绩优秀527物理成绩不优秀112;13合计61420(2)根据题(1)中表格的数据计算,能否在犯错误的概率不超过的前提下认为学生的数学成绩与物理成绩之间有关系参数数据:①假设有两个分类变量X和Y,它们的值域分别为(x1,x2)和(y1,y2),其样本频数列联表(称为2×2列联表)为:! y1y2合计x1a b a+bx2c:d c+d合计a+c b+d a+b+c+d则随机变量K2=,其中n=a+b+c+d为样本容量;②独立检验随机变量K2的临界值参考表如下:…P(K2≥k0)k0<P(K2≥k0)k0/解析:根据列联表可以求得K2的观测值k=≈>.在犯错误的概率不超过的前提下认为:学生的数学成绩与物理成绩之间有关系."7.2013年3月14日,CCTV财经频道报道了某地建筑市场存在违规使用未经淡化海砂的现象.为了研究使用淡化海砂与混凝土耐久性是否达标有关,某大学实验室随机抽取了60个样本,得到了相混凝土耐久性达标混凝土耐久性不达标总计使用淡化海砂255^30使用未经淡化海砂151530总计402060的概率不超过1%的前提下,认为使用淡化海砂与混凝土耐久性是否达标有关、解析:提出假设H0:使用淡化海砂与混凝土耐久性是否达标无关.根据表中数据,求得K2的观测值k==>.查表得P(K2≥=.∴能在犯错误的概率不超过1%的前提下,认为使用淡化海砂与混凝土耐久性是否达标有关.(2)若用分层抽样的方法在使用淡化海砂的样本中抽取了6个,现从这6个样本中任取2个,则取出的2个样本混凝土耐久性都达标的概率是多少参考数据:解析:用分层抽样的方法在使用淡化海砂的样本中抽取6个,其中应抽取“混凝土耐久性达标”的为2530×6=5,“混凝土耐久性不达标”的为6-5=1,“混凝土耐久性达标记”为A1,A2,A3,A4,A5”;“混凝土耐久性不达标”的记为B.在这6个样本中任取2个,有以下几种可能:(A1,A2),(A1,A3),(A1,A4),(A1,A5),(A1,B),(A2,A3),(A2,A4),(A2,A5),(A2,B),(A3,A4),(A3,A5),(A3,B),(A4,A5),(A4,B)(A5,B),共15种.设“取出的2个样本混凝土耐久性都达标”为事件A,它的对立事件A为“取出的2个样本至少有1个混凝土耐久性不达标”,包含(A1,B),(A2,B),(A3,B),(A4,B),(A5,B),共5种可能.∴P(A)=1-P(A)=1-515=2 3.即取出的2个样本混凝土耐久性都达标的概率是2 3.8.某食品厂为了检查甲、乙两条自动包装流水线的生产情况,随机在这两条流水线上各抽取40件产品作为样本称出它们的重量(单位:克),重量值落在(495,510]的产品为合格品,否则为不合格品.左下表是甲流水线样本频数分布表,右下图是乙流水线样本的频率分布直方图.(1)根据上表数据作出甲流水线样本的频率分布直方图;解析:甲流水线样本的频率分布直方图如下:((2)若以频率作为概率,试估计从两条流水线分别任取1件产品,该产品恰好是合格品的概率;解析:由题表知甲样本中合格品数为8+14+8=30,由题图知乙样本中合格品数为++×5×40=36,故甲样本合格品的频率为3040=,乙样本合格品的频率为36 40=.据此可估计从甲流水线任取1件产品,该产品恰好是合格品的概率为.从乙流水线任取1件产品,该产品恰好是合格品的概率为.(3)由以上统计数据完成下面2×2列联表,能否在犯错误的概率不超过的前提下认为产品的包装质量与两条自动包装流水线的选择有关甲流水线?乙流水线合计合格品a=b=不合格品c=d=|合计n=附表:P(K2≥k0)?k0~(参考公式:K2=,其中n=a+b+c+d)解析:2×2列联表如下:¥甲流水线乙流水线合计合格品a=30b=3666不合格品c=10d=4'14合计4040n=80∵K2=n ad-bc2a+b c+d a+c b+d=80×120-360266×14×40×40≈>.∴在犯错误的概率不超过的前提下认为产品的包装质量与两条自动包装流水线的选择有关.>►品味高考1.为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老人,结果如下:性别是否需要志愿者男女需要4030:不需要160270(1)解析:调查的500位老年人中有70位需要志愿者提供帮助,因此该地区老年人中需要帮助的老年人的比例的估计值为70500=14%.(2)能否在犯错误的概率不超过的前提下认为该地区的老年人是否需要志愿者提供帮助与性别有关解析:K2的观测值k=500×40×270-30×1602200×300×70×430≈,`由于>所以在犯错误的概率不超过的前提下认为该地区的老年人是否需要帮助与性别有关.(3)根据(2)的结论,能否提出更好的调查办法来估计该地区的老年人中需要志愿者提供帮助的老年人的比例说明理由.解析:由于(2)的结论知,该地区的老年人是否需要帮助与性别有关,并且从样本数据能看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男、女两层并采用分层抽样方法比采用简单随机抽样方法更好.附:K2=P(K2≥k0)k02.某工厂有25周岁以上(含25周岁)工人300名,25周岁以下工人200名.为研究工人的日平均生产量是否与年龄有关,现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,再将两组工人的日平均生产件数分为5组:[50,60),[60,70),[70,80),[80,90),[90,100)分别加以统计,得到如图所示的频率分布直方图.(1)从样本中日平均生产件数不足60件的工人中随机抽取2人,求至少抽到一名“25周岁以下组”工人的概率;解析:由已知得,样本中有25周岁以上组工人60名,25周岁以下组工人40名.所以,样本中日平均生产件数不足60件的工人中,25周岁以上组工人有60×=3(人),记为A1,A2,A3;25周岁以下组工人有40×=2(人),记为B1,B2.从中随机抽取2名工人,所有的可能结果共有10种,它们是:(A1,A2),(A1,A3),(A2,A3),(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(B1,B2).其中至少有1名“25岁以下组”工人的可能结果共有7种,它们是:(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(B1,B2).故所求的概率P=7 10.(2)规定日平均生产件数不少于80件者为“生产能手”,请你根据已知条件完成列联表,并判断是否有90%的把握认为“生产能手与工人所在的年龄组有关”附:K2=P(K2≥k0)k0解析:由频率分布直方图可知,在抽取的100名工人中,“25周岁以上组”中的生产能手60×=15(人),“25周岁以下组”中的生产能手40×=15(人),据此可得2×2列联表如下:生产能手非生产能手合计25周岁以上组15456025周岁以下组152540合计3070100因为<,所以没有90%的把握认为“生产能手与工人所在年龄组有关”.。
(新课程)高中数学1.2 独立性检验的基本思想及其初步应用教案 新人教A版选修1-2
1.2独立性检验的基本思想及其初步应用(二)教学要求:通过探究“吸烟是否与患肺癌有关系”引出独立性检验的问题,并借助样本数据的列联表、柱形图和条形图展示在吸烟者中患肺癌的比例比不吸烟者中患肺癌的比例高,让学生亲身体验独立性检验的实施步骤与必要性.教学重点:理解独立性检验的基本思想及实施步骤.教学难点:了解独立性检验的基本思想、了解随机变量2K 的含义.教学过程:教学过程:一、复习准备:独立性检验的基本步骤、思想二、讲授新课:1. 教学例1:例1 在某医院,因为患心脏病而住院的665名男性病人中,有214人秃顶;而另外772名不是因为患心脏病而住院的男性病人中有175名秃顶. 分别利用图形和独立性检验方法判断秃顶与患心脏病是否有关系?你所得的结论在什么范围内有效?① 第一步:教师引导学生作出列联表,并分析列联表,引导学生得出“秃顶与患心脏病有关”的结论;第二步:教师演示三维柱形图和二维条形图,进一步向学生解释所得到的统计结果; 第三步:由学生计算出2K 的值;第四步:解释结果的含义.② 通过第2个问题,向学生强调“样本只能代表相应总体”,这里的数据来自于医院的住院病人,因此题目中的结论能够很好地适用于住院的病人群体,而把这个结论推广到其他群体则可能会出现错误,除非有其它的证据表明可以进行这种推广.2. 教学例2:例2 为考察高中生的性别与是否喜欢数学课程之间的关系,在某城市的某校高中生中随机由表中数据计算得到的观察值. 在多大程度上可以认为高中生的性别与是否数学课程之间有关系?为什么?(学生自练,教师总结)强调:①使得2( 3.841)0.05P K ≥≈成立的前提是假设“性别与是否喜欢数学课程之间没有关系”.如果这个前提不成立,上面的概率估计式就不一定正确;②结论有95%的把握认为“性别与喜欢数学课程之间有关系”的含义;③在熟练掌握了两个分类变量的独立性检验方法之后,可直接计算2K 的值解决实际问题,而没有必要画相应的图形,但是图形的直观性也不可忽视.3. 小结:独立性检验的方法、原理、步骤 三、巩固练习: 某市为调查全市高中生学习状况是否对生理健康有影响,随机进行调查并得到如下的列联表:请问有多大把握认为“高中生学习状况与生理健康有关”?。
人教A版高中数学选修1-2《独立性检验的基本思想及其初步应用》
课题:独立性检验的基本思想及其初步应用教材:人教A版·普通高中课程标准实验教科书·数学·选修1-2一、教学任务分析1. 在统计学中,独立性检验就是检验两个分类变量是否相关的一种统计方法. 高中数学研究的是两个分类变量各取2个值即2×2列联表的情况:2. 独立性检验与回归分析都可以判断两个变量的相关关系. 两者既有联系又有区别,回归分析适用于定量变量的问题,独立性检验适用于分类变量的问题.二、教学目标(1)能够用列联表、三维柱形图、二维条形图、等高条形图直观地判断两个分类变量是否相关.(2)了解独立性检验的基本思想,能够按照独立性检验的步骤去检验两个分类变量的关系.(3)通过独立性检验的学习,了解数学在统计与概率中的确定性思维特点,体会直观与抽象、感性与理性的联系.三、教学重点、难点教学重点:理解独立性检验的基本思想及实施步骤.教学难点:(1)了解独立性检验的基本思想.(2)了解随机变量卡方的含义.四、教学方法与手段采用“活动(课前)→问题→解决问题→总结”的教学方法,即:在教师的引导下,通过开放性问题的设置来启发学生思考,在思考中体会数学概念的形成过程中所蕴涵的数学思想和方法,加强学生能力的培养.利用计算器进行数据计算,通过Excel软件作图,通过制作的课件呈现更丰富的教学素材.五、课前准备(1)布置实习作业学完《§1.1回归分析的基本思想及其初步应用》后,让学生完成判断两个变量是否相关的题目,一类是可以用回归分析解决的(如问题一),另一类则不行(如问题二). 把这两类问题以实习作业的形式要求学生进行收集数据、整理分析数据、得出结论并进行估计与预测. 作业要求思路清晰、图文并茂、言之有理.(2)本节课前的实习作业问题一:课外学习时间与学习成绩的关系问题二:高中学生是否喜欢音乐与性别的关系六、教学流程(一)创设情景,问题引入(二)观察感知,启发引导(三)自主探究,体会思想(四)例题学习,变式巩固(五)知识应用,尝试练习(六)解决疑问,尝试小结(七)课后作业,自主学习板书设计八、教学反思1. 注重系统学习,课后作业为下一节课作铺垫.课前作业(即前面学习的作业)的中“问题二”与熟悉的问题有些类似,都是两个变量的相关关系,但却不能使用回归分析的方法来做. 尽管如此,学生还是能够利用比例、图形去解决问题,为新课学习提供了很好的铺垫. 本节课的作业,除了巩固所学知识,也要为下一节课作铺垫.2. 解决疑问,尝试小结在教学设计过程中,预留时间给学生提出自己的问题,尝试自己去小结,可让学生做到自主学习,进行课堂复习,有时还能克服学生在下课前的疲劳状态.给时间学生思考本节课还不懂的问题,可写在小纸上. 对于学生提出的问题,适当解决. 这样可方便进行教学反思,也为下一节课的设计提供一些材料.独立性检验的基本思想及其初步应用的教案说明教材:人教A版·普通高中课程标准实验教科书·数学·选修1-2针对所教班级的数学基础比较弱,本节课通过之前准备的两个实习作业,让学生在一定的感性认识的基础上,带着问题与好奇心,感受数学从感性认识上升到理性认识,共同经历从定性描述到定量描述的过程,从中认识数学解决问题的方法. 根据新课程的特点,本课以学生发展为本,遵循学生的认知规律,体现循序渐进、共同探究与启发式的教学原则,充分发挥学生的主体作用与教师在适当环节的引导作用.一、对教学目标和教学重难点的认识:根据数学学科的特点、学生身心发展的合理需要,本节课从认知、能力、情感等层面确定了相应的教学目标.想及随机变量卡方的含义二、教学方法的选择:采用“活动(课前)→问题→解决问题→总结”的教学方法,即:在教师的引导下,通过开放性问题的设置来启发学生思考,在思考中体会数学概念的形成过程中所蕴涵的数学思想和方法,加强学生能力的培养.三、教学手段的利用:采用多媒体技术,通过各种素材的呈现,提高学生学习兴趣、激活学生思维、加深理解.四、教学过程的说明:针对学生已有的体验以及学生的认知水平,把教学过程分为了七个环节:。
(新课程)高中数学《1.2 独立性检验的基本思想及其初步应用》课件 新人教A版选修1-2
(1)分类变量
变量的不同“值”表示个体所属的 不同类别 ,像这样的变 量称为分类变量. (2)列联表 ①定义:列出的两个分类变量的 频数表 ,称为列联表.
②2×2列联表
一般地,假设两个分类变量X和Y,它们的取值分别为
{x1,x2}和{y1,y2},其样本频数列联表(称2×2列联表)为 总计 a+b c+d
误区警示 因未理解P(K2≥k0)的含义而致错 【示例】 某小学对232名小学生调查中发现:180名男生中有98名 有多动症,另外82名没有多动症,52名女生中有2名有多动症, 另外50名没有多动症,用独立性检验方法判断多动症与性别 是否有关系?
[错解] 由题目数据列出如下列联表:
多动症 无多动症 总计
类别,而国籍变量则有多种类别.
2.独立性检验
定义 利用随机变量 K2 来判断“两个分类变量 有关系”的方法称为独立性检验
nad-bc2 K2= , a+bc+da+cb+d 公式 其中 n=
a+b+c+d
①根据实际问题的需要,确定容许推断“两个分类变量有 关系”犯错误概率的上界α.然后查表确定 临界值k0 . 具体 步骤 ②利用公式计算随机变量K2的 观测值k . ③如果 k≥k0 ,就推断“X与Y有关系”,这种推
k0
题型一 有关“相关的检验”
【例1】 某校对学生课外活动进行调查,结果整理成下表:
试用你所学过的知识进行分析,能否在犯错误的概率不超过 0.005的前提下,认为“喜欢体育还是文娱与性别有关系”? 体育 文娱 总计 男生 女生 总计 21 6 27 23 29 52 44 35 79
[思路探索] 可用数据计算 K2,再确定其中的具体关系. 解 判断方法如下: 假设 H0“喜欢体育还是喜欢文娱与性别没有关系”,若 H0 成立, 则 K2 应该很小. ∵a=21,b=23,c=6,d=29,n=79, nad-bc2 ∴k= a+bc+da+cb+d 79×21×29-23×62 = ≈8.106. 21+23×6+29×21+6×23+29
高中数学选修1-2教案6:1.2 独立性检验的基本思想及其初步应用教学设计
独立性检验的基本思想及其应用【学情分析】:在实际的问题中,经常会面临需要推断的问题,比如研制一种新药,需要推断此药是否有效?有人怀疑吸烟的人更容易患肺癌,那么吸烟是否与患肺癌有关呢?等等。
在对类似的问题作出推断时,我们不能仅凭主观意愿作出结论,需要通过试验来收集数据,并依据独立性检验的原理作出合理的分析推断.在本节的学习中,通过案例分析,使学生学会用假设检验的思想方法解决对于两个分类变量是否有关系的判断问题,并理解统计思维与确定性思维的差异。
【教学目标】:(1)知识与技能:进一步加强阅读三维柱形图和二维条形图的能力;加强理解独立性检验思想,会利用独立性检验方法解决实际问题。
(2)过程与方法:提供多个案例,让学生能自觉运用独立性检验的思维解决问题。
(3)情感态度与价值观:通过提供适当的情境资料,吸引学生的注意力,激发学生的学习兴趣;在合作讨论中学会交流与合作,启迪思维,提高创新能力;通过实际问题的解决和从不同角度对问题的解决,可提高学生应用数学能力。
【教学重点】:理解独立性检验的基本思想及实施步骤,初步应用。
【教学难点】:(1)了解独立性检验的基本思想;(2)了解随机变量2K太大认为两个分类变量是有关系的。
K的含义,2【课前准备】:课件【教学过程设计】:同步练习:(基础题)1、在研究某种新措施对猪白痢的防治效果问题时,得到了以下数据:试问新措施对猪白痢的防治效果如何?[解析]由公式得:()230013236114187.31715015024654k ⨯⨯-⨯=≈⨯⨯⨯,由于7.317>6.635,所以我们有99%的把握认为新措施对猪白痢的防治是有效的。
2、调查某医院某段时间内婴儿出生的时间与性别的关系,得到下面的数据表,试问能以多大的把握认为婴儿的性别与出生时间有关系。
[解析]由公式得:()2892426831 3.689 3.84155343257k ⨯⨯-⨯=≈<⨯⨯⨯,所以没有充分的证据显示婴儿的性别与出生时间有关。
高中数学人教A版选修1-2教案:1.2独立性检验的基本思想及其初步应用(共2课时)
教学目标(一)知识与技能:通过本节知识的学习,了解独立性检验的基本思想和初步应用,能对两个分类变量是否有关做出明确的判断。
明确对两个分类变量的独立性检验的基本思想具体步骤,会对具体问题作出独立性检验。
(二)过程与方法:在本节知识的学习中,应使学生从具体问题中认识进行独立性检验的作用及必要性,树立学好本节知识的信心,在此基础上学习三维柱形图和二维柱形图,并认识它们的基本作用和存在的不足,从而为学习下面作好铺垫,进而介绍K的平方的计算公式和K的平方的观测值R的求法,以及它们的实际意义。
从中得出判断“X与Y有关系”的一般步骤及利用独立性检验来考察两个分类变量是否有关系,并能较准确地给出这种判断的可靠程度的具体做法和可信程度的大小。
最后介绍了独立性检验思想的综合运用(三)情感、态度与价值观:通过本节知识的学习,首先让学生了解对两个分类博变量进行独立性检验的必要性和作用,并引导学生注意比较与观测值之间的联系与区别,从而引导学生去探索新知识,培养学生全面的观点和辨证地分析问题,不为假想所迷惑,寻求问题的内在联系,培养学生学习数学、应用数学的良好的数学品质。
加强与现实生活相联系,从对实际问题的分析中学会利用图形分析、解决问题及用具体的数量来衡量两个变量之间的联系,学习用图形、数据来正确描述两个变量的关系。
明确数学在现实生活中的重要作用和实际价值。
教学中,应多给学生提供自主学习、独立探究、合作交流的机会。
养成严谨的学习态度及实事求是的分析问题、解决问题的科学世界观,并会用所学到的知识来解决实际问题。
教学重点:理解独立性检验的基本思想及实施步骤.教学难点:了解独立性检验的基本思想、了解随机变量2K的含义.教学方法:诱思探究教学法学习方法:自主探究、观察发现、合作交流、归纳总结。
教学过程:一、复习准备:回归分析的方法、步骤,刻画模型拟合效果的方法(相关指数、残差分析)、步骤.二、讲授新课:1. 教学与列联表相关的概念:①分类变量:变量的不同“值”表示个体所属的不同类别的变量称为分类变量. 分类变量的取值一定是离散的,而且不同的取值仅表示个体所属的类别,如性别变量,只取男、女两个值,商品的等级变量只取一级、二级、三级,等等. 分类变量的取值有时可用数字来表示,但这时的数字除了分类以外没有其他的含义. 如用“0”表示“男”,用“1”表示“女”.②列联表:分类变量的汇总统计表(频数表)一般我们只研究每个分类变量只取两个值,这样的列联表称为22 . 如吸烟与患肺癌的列联表:2. 教学三维柱形图和二维条形图的概念:由列联表可以粗略估计出吸烟者和不吸烟者患肺癌的可能性存在差异.(教师在课堂上用EXCEL软件演示三维柱形图和二维条形图,引导学生观察这两类图形的特征,并分析由图形得出的结论)3. 独立性检验的基本思想:①独立性检验的必要性(为什么中能只凭列联表的数据和图形下结论?):列联表中的数据是样本数据,它只是总体的代表,具有随机性,故需要用列联表检验的方法确认所得结论在多大程度上适用于总体. ② 独立性检验的步骤(略)及原理(与反证法类似):第一步:提出假设检验问题 H 0:吸烟与患肺癌没有关系↔ H 1:吸烟与患肺癌有关系第二步:选择检验的指标22()K ()()()()n ad bc a b c d a c b d -=++++(它越小,原假设“H 0:吸烟与患肺癌没有关系”成立的可能性越大;它越大,备择假设“H 1:吸烟与患肺癌有关系”成立的可能性越大. 第三步:查表得出结论1.三维柱形图中柱的高度表示的是( )A .各分类变量的频数B .分类变量的百分比C .分类变量的样本数D .分类变量的具体值解析: 三维柱形图中柱的高度表示图中各个频数的相对大小.选A2. 统计推断,当______时,有95 %的把握说事件A 与B 有关;当______时,认为没有充分的证据显示事件A 与B 是有关的.解析:当841.3>k 时,就有95 %的把握说事件A 与B 有关,当076.2≤k 时认为没有充分的证据显示事件A 与B 是有关的.3.为了探究患慢性气管炎与吸烟有无关系,调查了却339名50岁以上的人,结果如下表所示,据此数据请问:50岁以上的人患慢性气管炎与吸烟习惯有关系吗?分析:有表中所给的数据来计算2K 的观测值k,再确定其中的具体关系.解:设患慢性气管炎与吸烟无关.a=43,b=162,c=13,d=121,a+b=205,c+d=134, a+c=56,b+d=283,n=339所以2K 的观测值为469.7))()()(()(2==+++-=d b c a d c b a bc ad n k .因此635.6>k ,故有99%的把握认为患慢性气管炎与吸烟有关. 四,课后练习:1. 在三维柱形图中,主对角线上两个柱形高度的乘积与副对角线上的两个柱形的高度的乘积相差越大两个变量有关系的可能性就( ) A.越大 B.越小 C.无法判断 D.以上都不对2.下列关于三维柱形图和二维条形图的叙述正确的是: ( ) A .从三维柱形图可以精确地看出两个分类变量是否有关系B .从二维条形图中可以看出两个变量频数的相对大小,从三维柱形图中无法看出相对频数的大小C .从三维柱形图和二维条形图可以粗略地看出两个分类变量是否有关系D .以上说法都不对3.对分类变量X 与Y 的随机变量2K 的观测值K ,说法正确的是() A . k 越大," X 与Y 有关系”可信程度越小; B . k 越小," X 与Y 有关系”可信程度越小; C . k 越接近于0," X 与Y 无关”程度越小 D . k 越大," X 与Y 无关”程度越大4. 在吸烟与患肺病这两个分类变量的计算中,下列说法正确的是( )A.若K 2的观测值为k=6.635,我们有99%的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病;B.从独立性检验可知有99%的把握认为吸烟与患肺病有关系时,我们说某人吸烟,那么他有99%的可能患有肺病;C.若从统计量中求出有95% 的把握认为吸烟与患肺病有关系,是指有5% 的可能性使得推判出现错误;D.以上三种说法都不正确.5.若由一个2*2列联表中的数据计算得k 2=4.013,那么有 把握认为两个变量有关系6.某高校“统计初步”课程的教师随机调查了选该课的一些学生情况,具体数据如下表:250(1320107) 4.84423272030k ⨯⨯-⨯=≈⨯⨯⨯因为2 3.841K ≥,所以判定主修统计专业与性别有关系,那么这种判断出错的可能性为 ____;7.在对人们的休闲方式的一次调查中,共调查了124人,其中女性70人,男性54人。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学情分析:
1、学生具备的知识基础:
回归分析的基本思想;假设检验思想;课前自主学习,明确列联表以及分类变量;
2、学生具备的能力基础:
收集整理数据,看图识图能力;
简单的excel制表作图能力;
3、学生接触统计和分布较少,引起的思维跳跃和冲突
案例操作→获得图表和图形语言
定量描述→K2的突然引入
效果分析:
1、课堂教学
课堂气氛融洽,学生思维积极,小组讨论热烈,敢于表达自己想法,教学效果明显,学生对于整个独立性检验的基本思想以及由来可以形成自己的体系。
2、课堂评测
●课堂练习题目第1题和第2题属于常规题(要求准确规范),学生反映较快,做得很好;
●第3题属于逆向思维问题,多数同学转化到位;
●第4题主要是强调独立性检验的思想和步骤,要求学生规范答题。
(因时间关系第4题
未在课堂完成,转为课下完成)
●第4题的课后反馈统计:
全班51人,全对的40人;下结论出问题的5人;计算出错3人;规范性较差3人。
1、课堂随机变量的引入最好只出现2个变量取值的,再最后课堂生成后可以举出多个取值的,
把知识拓展的不是2×2列联表的分类变量的处理中,提升学生对于此类问题更深层次的探究和学习。
2、现实中的例子阐述的还是较少,只体现了疫苗和甲流,心脏病和秃头,性别和选修专业三个
方面,其实这一章节对于数学来源生活并服务于生活是很好的阐释,建议多加一些和生活相关的例子,最好是需要决策的例子。
比如喝酒与肝癌,吸烟与肺癌等,这样还可以达到教育学生注重健康的目的。
3、统计案例和概率等部分的知识处理时,可以更多的借鉴生活中热点,最好能通过一个或几个
题目涵盖整个知识。