2018年高考全国卷I-理科数学试题及参考答案

合集下载

2018年高考理科数学全国卷3(含答案与解析)

2018年高考理科数学全国卷3(含答案与解析)

绝密★启用前-在------------------- 2018 年普通高等学校招生全国统一考试 ( 课标全国卷Ⅲ )----------- 理科数学本试卷满分 150 分 , 考试时间 120分钟 .6. 直线 x y 2=0 分别与△ABP 面积的取值范围是 22x 轴, y 交于 A , B 两点,点 P 在圆 (x 2)2 y 2=2 上,则( ) C. [ 2,3 2 ] D [ 2 2,3 2]号生考第Ⅰ卷(选择题 共 60分) 、选择题 :本题共 12小题,每小题 5分,共 60分.在每小题给出的四个选项中 ,只有 项是符合题目要求的 .- 1--.-已---知--集合 A {x ∣x 1≥0}, B {0,1,2} ,则()卷A. {0}B.{1}C. {1,2}D.{0,1,2}2. (1 i)(2 i)()A. 3 iB. 3 iC. 3 iD. 3 i------ 3--.-中---国-- 古建筑借助榫卯将木构件连接起来 . 构件的凸出部分叫榫头 , 凹进部分叫卯眼 , 图 中木构件右边的小长方体是榫头 . 若如图摆放的木构件与某一带卯眼的木构件咬合成 长方体 , 则咬合时带卯眼的木构件的俯视图可以是名姓 A. [2,6 ]B. [4,8]校学业ABC1 4. 若 sin 则 cos2------ 877 无 --- ---.-- B.C.999题D.8. 某群体中的每位成员使用移动支付的概率都为为该群体的 10 位成员中使用移动支付的人数p ,各成员的支付方式相互独立 .设 X , DX 2.4, P (X 4)<P (X6) , 则 pxA. 10B. 20C. 4025. (x 2 )5 的展开式中 x 4的系数为 D.80A. 0.79. △ ABC 的内角B A , B ,0.6C 的对边分别为C. 0.4D. 0.3a ,b ,c .若△ABC 的面积为222 a 2 b 2c 2, 则4C( )π π π π A. B C. D.234 6( )10. 设A, B, C , D是同一个半径为4的球的球面上四点 , △ ABC为等边三角形且其面积为9 3, 则三棱锥D ABC 体积的最大值为()A.12 3B. 18 3C. 24 3D. 54 3xy11. 设F1, F2是双曲线C : 2 2 1(a>0,b>0) 的左、右焦, O 是坐标原点.过F2作C 的一条渐近线的垂线 , 垂足为P.若|PF1| 6 | OP |,则C的离心率为 ( )A. 5B. 2C. 3D. 212. 设 a log 0.20.3, blog2 0.3, 则()A. a b< ab<0B. a b< a b< 0C. a b<0< abD. a b<0< a b第Ⅱ卷( 非选择共 90二、填空题:本题共 4小题,每小题 5分,共 20分.13.已知向量a (1,2) , b (2, 2), c (1, ).若c∥(2a b),则= .14.曲线y (ax 1)e x在点(0,1) 处的切线的斜率为2,则a .15 函数f (x) cos(3x 6π) 在[0,π] 的零点个数为 .16.已知点M( 1,1)和抛物线C:y2 4x ,过C的焦点且斜率为k的直线与C交于A, B 两点.若AMB 90 ,则k .三、解答题:共 70分. 解答应写出文字说明、证明过程或演算步骤.第 17~ 21题为必考题,每个试题考生都必须作答 .第22、23题为选考题 ,考生根据要求作答 .) ( 一 ) 必考题:共 60 分 .17.( 12 分 )等比数列{a n} 中, a1 1, a5 4a3 .(1)求{a n} 的通项公式;(2)记S n为{a n}的前n项和.若S m 63,求m.18.( 12 分) 某工厂为提高生产效率 , 开展技术创新活动 , 提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率 ,选取40名工人 ,将他们随机分成两组 ,每组20 人. 第一组工人用第一种生产方式,第二组工人用第二种生产方式 .根据工人完成生产任务的工作时间 ( 单位: min) 绘制了如下茎叶图:( 1)根据茎叶图判断哪种生产方式的效率更高,并说明理由;(2)求40名工人完成生产任务所需时间的中位数m ,并将完成生产任务所需时间超过m 和不超过m 的工人数填入下面的列联表:(3)根据(2)中的列联表 ,能否有99%的把握认为两种生产方式的效率有差异?2附:K 2n(ad bc)2,(a b)(c d)(a c)(b d)P(K 2≥k) 0.050 0.010 0.001k 3.841 6.635 10.82819.( 12 分)-在---------------------- 如图,边长为2的正方形ABCD所在的平面与半圆弧CD所在平面垂直 , M是CD上(二)选考题:共 10分.请考生在第 22、23 题中任选一题作答 .如果多做 ,则按所做的第号生考名异于C , D的点 .(1)证明:平面AMD 平面BMC ;(2)当三棱锥M ABC 体积最大时 , 求面MAB 与面MCD -所--成二面角的正弦值 .20.( 12 分)22 已知斜率为k 的直线l 与椭圆C :x y 1交于A, B两点, 线段AB的中点为43 ----------- M--(1,m)(m>0 ).1(1)证明:k< - ;2(2)设F 为C 的右焦点 , P 为C 上一点 , 且FP FAFB 0. 证明:成等差数列 , 并求该数列的公差 .校学业题21.( 12分)已知函数f (x) (2 x ax2 )ln(1 x) 2x.(1) 若a 0 ,证明:当1<x<0时, f(x)<0 ;当x>0时,f(x)>0 ; (2)若x=0是f(x)的极大值点 ,求a.无一题计分 .22. [选修 4—4:坐标系与参数方程](10分)在平面直角坐标系xOy中, O的参数方程为x cos ,(为参数), 过点(0,2)且y sin倾斜角为的直线l 与O交于A, B两点 .(1)求的取值范围;(2)求AB中点P 的轨迹的参数方程 .23. [选修 4—5:不等式选讲](10 分)设函数f(x) 2x 1 x 1 .(1) 画出y f (x) 的图象;(2)当x [ 0, ), f ( x)≤ ax b,求a b的最小值 .2018 年普通高等学校招生全国统一考试( 课标全国卷Ⅲ )理科数学答案解析第Ⅰ卷一、选择题1. 【答案】 C【解析】∵ A={ x|x≥1} , B {0,1,2} , ∴ AB={1,2},故选C.2. 【答案】 D【解析】(1 i)(2 i) 2 i 2i i2 3 i,故选 D.3. 【答案】 A【解析】两个木构件咬合成长方体时,小长方体(榫头)完全嵌入带卯眼的木构件,易知俯视图可以为 A. 故选 A.4. 【答案】 B1 12 7【解析】由sin , 得cos2 1 2sin2 1 2 ( )2=1 = . 故选 B.3 3 9 95. 【答案】 C2【解析】( x2)5的展开式的通项T r 1 C5r(x2)5 r (2x1)r 2r C5r x10 3r,令10 3r 4, x得r 2,所以x4的系数为22 C52 40.故选 C.6. 【答案】 A【解析】由圆(x 2)2 y2 =2可得圆心坐标(2,0) ,半径r 2 , △ABP的面积记为S,点1P到直线AB的距离记为d,则有S AB d.易知2AB 2 2, d max 22022 2 3 2, d min 22022 2 2 ,所以max12 12 min12 122≤S≤6 , 故选A.7. 【答案】D解析】∵ f (x) x4 x2 2 , ∴ f (x) 4x3 2x , 令f (x)>0 , 解得x< 2或22 2 20<x< 2, 此时, f(x) 递增;令f (x)<0, 解得2 <x<0或x> 2,此时, f(x)递减.由此可得f (x)的大致图象 .故选 D.8. 【答案】 B【解析】由题知X ~ B(10, p) ,则DX 10 p (1 p) 2.4, 解得p 0.4或0.6.又∵P(X 4)<P(X 6),即C140 P4 (1 p)6<C160P6(1 p)4 (1 p)2<p2 p>0.5 , ∴p 0.6, 故选B.9. 【答案】解析】S△ ABC222 根据余弦定理得a2 b2 c2 2abcosC , 因为S△ABC a b c, 所以42abc osC41,又S△ABC1 absinC ,所以tanC 1,因为C (0, π) ,所以C ABC2故选C.10. 【答案】解析】设△ABC 的边长为a , 则S△ABC去). △ ABC的外接圆半径r满足2r sin6011a a sin60 =9 3 , 解得a 6 ( 负值舍26,得r 2 3 ,球心到平面ABC 的距离为42 2 3 2 . 所以点D 到平面ABC 的最大距离为2 4 6, 所以三棱锥1D ABC 体积的最大值为31 9 3 6 18 3, 故选 B.311. 【答案】Cb(b>0) ,而OF2 c,所以解析】点F2(c,0) 到渐近线y b x的距离a在Rt△OPF2中,由勾股定理可得OP c2 b2 a,PF2Rt△OPF2 中cos PF2Ocos PF2OPF2 2 F1F2 2 PF12 PF2 F1F2OF2所以PF1 6 OP 6a.b c△F1F2Pb24c26a22b 2cb 4c 6a 2 2 2 2 2 23b24c 62a , 则有32(c2a2) 4c24bc值舍去), 即e 3.故选 C.6a2, 解得c 3( 负率k f (0) a 1 2, 解得a 3.【解析】解法一:∵ a log0.2 0.3>log0.2 1=0, b log 2 0.3<log2 1=0, ∴ ab<0 ,排除 C.∵ 0< log 0.2 0.3< log0.2 0.2=1 , log 2 0.3< log 2 0.5= 1,即0<a<1 , b<-1,∴a b<0,排除 D.b log2 0.3 lg0.2 b 3∵ 2log2 0.2 , ∴ b log 2 0.3 log2 0.2 log2 <1 , ∴a log0.2 0.3 lg2 2 a 2 2 2 2 b<1b ab<a b, 排除 A.故选 B.a解法二:易知0< a<1 , b< 1, ∴ab<0, a b<0 ,11∵log0.3 0.2 log0.3 2 log 0.3 0.4<1 ,abab即<1, ∴ a b>ab,ab∴ ab< a b<0 . 故选 B.第Ⅱ卷二、填空题113. 【答案】21 【解析】由已知得2a b (4,2).又c (1, ),c∥(2a b),所以4 2=0 ,解得 .2 14. 【答案】3【解析】设f(x) (ax 1)e x, 则f (x) (ax a 1)e x,所以曲线在点(0,1)处的切线的斜15.【答案】3【解析】令f(x) 0 ,得cos(3x π),解得xkπ+ π(k Z).当k 0时, x π;当k 1 6 3 9 9时, x 4π;当k 2时, x 7π,又x[ 0,π] ,所以满足要求的零点有 3个. 9916.【答案】2【解析】解法一:由题意可知 C 的焦点坐标为(1,0), 所以过焦点(1,0) ,斜率为k 的直线方程为x y 1,设 A y1 1,y1kkxy1,程联立得x k 1,整理得y2 4 y 4 0 , 从而得y1 y24, y1 y2 4 .∵2 k k y 4x,M ( 1,1) , AMB 90 , ∴ MA MB即k2 4k 4 0, 解得k 2. y24x ,①解法二:设A(x1,y1),B(x2,y2),则y124x1,②-①得y22 y12 4(x2 x1),从而y2 4x2, ②k y2 y1 4. 设AB的中点为M ,连接MM . ∵直线AB过抛物线x2 x1 y1 y2y2 4x 的焦点,∴ 以线段AB 为直径的⊙M 与准线l : x 1 相切. ∵M( 1,1) , AMB 90 , ∴点M 在准线l:x 1上,同时在⊙M 上, ∴准线l是⊙M 的切线 , 切点M , 且MM ⊥l , 即MM 与x轴平行, ∴点M 的纵坐标为1, 即y1 y2 4 4, B y2 1,y2 , 将直线方程与抛物线方k0,即(y k1 2) (y k2 2) (y1 1)(y2 1) 0,12. 【答案】 B1 2 1 y1 y2 2 , 故k 2 .2 1 2y1 y2 2故答案为:2.三、解答题17.【答案】 ( 1)解:设{a n}的公比为q ,由题设得a n q n1. 由已知得q4 4q2, 解得q 0 (舍去 )或q 2或q 2 . 故a n ( 2)n 1或a n 2n 1.(2)若a n ( 2)n 1,则S n 1 ( 2).n n3由S m 63得( 2)m 188. 此方程没有正整数解 .若a n 2n1,则S n 2n 1.由S m 63得2m 64,解得m 6.综上 , m 6.【解析】 (1)解:设{a n}的公比为q ,由题设得a n q n 1.由已知得q 4q , 解得q 0( 舍去 ) 或q 2 或q 2.故a n ( 2)n 1或a n 2n 1.(2)若a n ( 2)n1,则S n 1 ( 2).3由S m 63得( 2)m 188。

2018年高考数学卷(全国卷3)答案

2018年高考数学卷(全国卷3)答案

据函数的解析式通过图象变换直接作图,另一个角度就是从
研究函数的性质入手去判断,常从函数的定义域、值域、特殊
点、函数的单调性、奇偶性等角度去研究识别 .
8.B 【解题思路】本题考查二项分布的概率、方差的计算 .由已
{ 知得
10p(1-p)=2.4 C410p4(1-p)6<C6 10p6(1-p)4
①,解 ②,
线的位置关系 .根据题意设直线 AB的方程为 y=k(x-1)
{ y=k(x-1),
(k≠0),联 立 抛 物 线 方 程 得 y2=4x, 消 元 并 整 理 得
( ) ( ) y2- 4ky-4=0,设 A y421,y1 ,B y422,y2 ,则 y1+y2=
( ) 4k,y1·y2 = -4 ①,由 于 →MA· M→B =
3.A 【解题思路】本题考查三视图 .由题知当咬合时,进入木构 件内部的部分看不见,需用虚线表示,且由直观图中凸出部分
的位置知 A是正确的,故选 A.
4.B 【解题思路】本题考查二倍角公式的应用 .因为 cos2α =1-
( ) 2sin2α=1-2×
1 3


7 9,故选
B.
5.C 【解题思路】本题考查二项展开式的通项公式的应用 .由于
12.B 【解题思路】本题考查对数的运算、不等式 .由于 a+b=
log0.20.3+log20.3=log0.130.2+log10.32=l lo og g00..330 0. .2 2+ ×l lo og g00..332 2=
log0.3lo0g.02.3×0.lo4g0.32,因为 log0.30.4>0,log0.30.2>0,log0.32<0,

2018年高考理科数学全国卷3(含答案与解析)

2018年高考理科数学全国卷3(含答案与解析)

2018年高考理科数学全国卷3(含答案与解析) 数学试卷 第1页(共20页) 数学试卷 第2页(共20页)绝密★启用前2018年普通高等学校招生全国统一考试(课标全国卷Ⅲ)理科数学本试卷满分150分,考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{10}A x x =-∣≥,{0,1,2}B =,则A B = ( )A .{0}B .{1}C .{1,2}D .{0,1,2} 2.()(1i 2i)+-=( )A .3i --B .3i -+C .3i -D .3i +3.中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )ABC D 4.若1sin 3α=,则cos2α=( )A .89B .79C .79-D .89-5.252()x x+的展开式中4x 的系数为( )A .10B .20C .40D .806.直线2=0x y ++分别与x 轴,y 交于A ,B 两点,点P 在圆22(2)=2x y -+上,则ABP △面积的取值范围是( )A .[2,6 ]B .[4,8]C .[2,3 2 ]D [ 22,32] 7.函数422y x x =-++的图象大致为( )ABCD8.某群体中的每位成员使用移动支付的概率都为p ,各成员的支付方式相互独立.设X为该群体的10位成员中使用移动支付的人数, 2.4DX =,()6(4)P X P X ==<,则p =( )A .0.7B .0.6C .0.4D .0.39.ABC △的内角A ,B ,C 的对边分别为a ,b ,c .若ABC △的面积为2224,则C = ( )A .π2B .π3C .π4D .π6毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共20页) 数学试卷 第4页(共20页)10.设A ,B ,C ,D 是同一个半径为4的球的球面上四点,ABC △为等边三角形且其面积为93,则三棱锥D ABC -体积的最大值为( )A .123B .183C .243D .54311.设1F ,2F 是双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若1||6||PF OP =,则C 的离心率为 ( )A .5B .2C .3D .2 12.设0.2log 0.3a =,2log 0.3b =,则( )A .0a b ab +<<B .ab a b +<<0C .0a b ab +<<D .0ab a b +<<第Ⅱ卷(非选择题 共90分)二、填空题:本题共4小题,每小题5分,共20分.13.已知向量2)(1,=a ,)2(2,=-b ,),(1λ=c .若2()+∥c a b ,则=λ . 14.曲线)e (1xy ax =+在点(0,1)处的切线的斜率为2-,则a = .15函数π()cos(3)6f x x =+在[0,π]的零点个数为 .16.已知点1()1,M -和抛物线C :²4y x =,过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若90AMB ∠=,则k = .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.) (一)必考题:共60分. 17.(12分)等比数列{}n a 中,11a =,534a a =. (1)求{}n a 的通项公式;(2)记n S 为{}n a 的前n 项和.若63m S =,求m .18.(12分)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人.第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min )绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高,并说明理由;(2)求40名工人完成生产任务所需时间的中位数m ,并将完成生产任务所需时间超过超过m不超过m第一种生产方式 第二种生产方式(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?附:22()(a b)(c d)(a c)(b d)n ad bc K -=++++,2()P K k ≥0.050 0.010 0.001k3.841 6.635 10.82819.(12分)-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------2018年高考理科数学全国卷3(含答案与解析)数学试卷 第5页(共20页) 数学试卷 第6页(共20页)如图,边长为2的正方形ABCD 所在的平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M ABC -体积最大时,求面MAB 与面MCD 所成二面角的正弦值.20.(12分)已知斜率为k 的直线l 与椭圆C :22143x y +=交于A ,B 两点,线段AB 的中点为(1,)()M m m >0.(1)证明:12k <-;(2)设F 为C 的右焦点,P 为C 上一点,且0FP FA FB ++=.证明:FA ,FP ,FB成等差数列,并求该数列的公差. 21.(12分)已知函数22()()ln(1)2f x a x x x x +=-++.(1)若0a =,证明:当10x -<<时,()0f x <;当0x >时,()0f x >; (2)若=0x 是()f x 的极大值点,求a .(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4—4:坐标系与参数方程](10分)在平面直角坐标系xOy 中,O 的参数方程为cos ,sin x y θθ=⎧⎨=⎩(θ为参数),过点(0,2)且倾斜角为α的直线l 与O 交于A ,B 两点. (1)求α的取值范围;(2)求AB 中点P 的轨迹的参数方程.23.[选修4—5:不等式选讲](10分) 设函数()211f x x x =++-. (1)画出() y f x =的图象;(2)当[ 0),x ∈+∞,()b x f ax +≤,求a b +的最小值.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________数学试卷 第7页(共20页) 数学试卷 第8页(共20页)2018年普通高等学校招生全国统一考试(课标全国卷Ⅲ)理科数学答案解析第Ⅰ卷一、选择题 1.【答案】C【解析】∵={1}A x x |≥,{0,1,2}B =,∴={1,2}A B ,故选C .2.【答案】D【解析】21i 2i)(2i 2i i 3i )(+-=-+-=+,故选D . 3.【答案】A【解析】两个木构件咬合成长方体时,小长方体(榫头)完全嵌入带卯眼的木构件,易知俯视图可以为A .故选A . 4.【答案】B 【解析】由1sin 3α=,得22127cos212sin 12()=1=399αα=-=-⨯-.故选B .5.【答案】C【解析】252()x x+的展开式的通项251103155()(2)2r r r r r r r T C x x C x ---+==,令1034r -=,得2r =,所以4x 的系数为225240C ⨯=.故选C . 6.【答案】A【解析】由圆22(2)=2x y -+可得圆心坐标(2,0),半径r =ABP △的面积记为S ,点P 到直线AB 的距离记为d ,则有12S AB d =.易知AB =maxd ==min d =所以26S ≤≤,故选A .7.【答案】D【解析】∵42()2f x x x =-++,∴3()42f x x x '=-+,令()0f x '>,解得x <或x 0<此时,()f x 递增;令()0f x '<,解得x <0或x ,此时,()f x 递减.由此可得()f x 的大致图象.故选D . 8.【答案】B【解析】由题知~1()0,X B p ,则(101 2.4)DX p p =⨯⨯-=,解得0.4p =或0.6.又∵()6(4)P X P X ==<,即446664221010(1)(1)(1)0.5C P p C P p p p p --⇒-⇒<<>,∴0.6p =,故选B .9.【答案】C【解析】根据余弦定理得2222cos a b c ab C +-=,因为2224ABCa Sbc +-=△,所以c 42os ABC ab C S =△,又1sin 2ABC S ab C =△,所以tan 1C =,因为π()0,C ∈,所以4C π=.故选C .10.【答案】B【解析】设ABC △的边长为a ,则1sin60=932ABC S a a =△,解得6a =(负值舍去).ABC △的外接圆半径r 满足62sin60r=,得r =球心到平面ABC 的距离为2=.所以点D 到平面ABC 的最大距离为246+=,所以三棱锥DABC -体积的最大值为163⨯=故选B .11.【答案】C【解析】点2(,0)F c 到渐近线b y x a =的距离2(0)PF b b ==>,而2OF c =,所以在2Rt OPF △中,由勾股定理可得OP a ,所以1PF ==.在2Rt OPF △中,222cos PF b PF O OF c∠==,在12F F P△中,2222222121221246cos 22PF F F PF b c a PF O PF F F b c+-+-∠==⋅⋅2,所以222222463464b b c a b c a c bc +-=⇒=-,则有22223()46c a c a -=-值舍去),即e =.故选C .2018年高考理科数学全国卷3(含答案与解析)数学试卷 第9页(共20页) 数学试卷 第10页(共20页)12.【答案】B【解析】解法一:∵0.20.2log 0.3log 1=0a =>,22log 0.3log 1=0b =<,∴0ab <,排除C . ∵0.20.20log 0.3log 0.2=1<<,22log 0.3log 0.5=1-<,即01a <<,1b <-,∴0a b +<,排除D .∵220.2log 0.3lg0.2log 0.2log 0.3lg 2b a ===,∴2223log 0.3log 0.2log 12b b a -=-=<,∴1bb ab a b a+⇒+<<,排除A .故选B . 解法二:易知01a <<,1b -<,∴0ab <,0a b +<, ∵0.30.30.311log 0.2log 2log 0.41a b +=+=<, 即1a bab+<,∴a b ab +>, ∴0ab a b +<<.故选B .第Ⅱ卷二、填空题13.【答案】12【解析】由已知得2(4,2)+=a b .又,()1c λ=,2()+∥c a b ,所以42=0λ-,解得12λ=. 14.【答案】3-【解析】设(e ))1(x f x ax =+,则()()1e x f x ax a '=++,所以曲线在点(0,1)处的切线的斜率(0)12k f a '==+=-,解得3a =-. 15.【答案】3【解析】令()0f x =,得πcos(3)6x +,解得ππ+()39k x k =∈Z .当0k =时,π9x =;当1k =时,4π9x =;当2k =时,7π9x =,又[ 0,π]x ∈,所以满足要求的零点有3个.16.【答案】2【解析】解法一:由题意可知C 的焦点坐标为(1,0),所以过焦点(1,0),斜率为k 的直线方程为1y x k =+,设111,y A y k ⎛⎫+ ⎪⎝⎭,221,y B y k ⎛⎫+ ⎪⎝⎭,将直线方程与抛物线方程联立得21,4,y x k y x ⎧=+⎪⎨⎪=⎩整理得2440y y k --=,从而得124y y k +=,124y y =-.∵1()1,M -,90AMB ∠=,∴0MA MB =,即1212(2)(2)(1)(1)0y yy y k k+++--=,即2440k k -+=,解得2k =.解法二:设11A(,)x y ,22(),B x y ,则2112224,4,y x y x ⎧=⎨=⎩①②②-①得2221214()y y x x -=-,从而2121124y y x x k y y --+==.设AB 的中点为M ',连接MM '.∵直线AB 过抛物线24y x =的焦点,∴以线段AB 为直径的M '⊙与准线:1l x =-相切.∵1()1,M -,90AMB ∠=,∴点M 在准线:1l x =-上,同时在M '⊙上,∴准线l 是M '⊙的切线,切点M ,且MM l '⊥,即MM '与x 轴平行,∴点M '的纵坐标为1,即1212221y y y y =⇒++=,故124422y y k =+==. 故答案为:2. 三、解答题17.【答案】(1)解:设{}n a 的公比为q ,由题设得1n n a q -=.由已知得424q q =,解得0q =(舍去)或2q =-或2q =. 故1(2)n n a -=-或12n n a -=. (2)若1(2)n n a -=-,则1(2)3nn S --=.数学试卷 第11页(共20页) 数学试卷 第12页(共20页)由63m S =得(2)188m -=-.此方程没有正整数解.若12n n a -=,则21n n S =-.由63m S =得264m =,解得6m =. 综上,6m =.【解析】(1)解:设{}n a 的公比为q ,由题设得1n n a q-=.由已知得424q q =,解得0q =(舍去)或2q =-或2q =. 故1(2)n n a -=-或12n n a -=.(2)若1(2)n n a -=-,则1(2)3n n S --=.由63m S =得(2)188m -=-。

2018年高考理科数学试题及答案-全国卷3

2018年高考理科数学试题及答案-全国卷3

2018年普通高等学校招生全国统一考试(全国卷3)理科数学一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合{}|10A x x =-≥,{}012B =,,,则A B =A .{}0B .{}1C .{}12,D .{}012,, 2.()()1i 2i +-= A .3i --B .3i -+C .3i -D .3i +3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是4.若1sin 3α=,则cos2α=A .89B .79C .79-D .89-5.522x x ⎛⎫+ ⎪⎝⎭的展开式中4x 的系数为A .10B .20C .40D .806.直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆()2222x y -+=上,则ABP △面积的取值范围是 A .[]26,B .[]48,C .232⎡⎤⎣⎦,D .2232⎡⎤⎣⎦, 7.函数422y x x =-++的图像大致为8.某群体中的每位成员使用移动支付的概率都为p ,各成员的支付方式相互独立,设X 为该群体的10位成员中使用移动支付的人数, 2.4DX =,()()46P X P X =<=,则p = A .0.7B .0.6C .0.4D .0.39.ABC △的内角A B C ,,的对边分别为a ,b ,c ,若ABC △的面积为2224a b c +-,则C =A .π2B .π3C .π4D .π610.设A B C D ,,,是同一个半径为4的球的球面上四点,ABC △为等边三角形且其面积为93,则三棱锥D ABC -体积的最大值为A .123B .183C .243D .54311.设12F F ,是双曲线22221x y C a b-=:(00a b >>,)的左,右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若16PF OP =,则C 的离心率为 A .5B .2C .3D .212.设0.2log 0.3a =,2log 0.3b =,则A .0a b ab +<<B .0ab a b <+<C .0a b ab +<<D .0ab a b <<+二、填空题:本题共4小题,每小题5分,共20分。

2018高考数学全国卷含答案解析

2018高考数学全国卷含答案解析
由于 ,故应该对余下的产品作检验.
21.(12分)
解:(1) 的定义域为 , .
(i)若 ,则 ,当且仅当 , 时 ,所以 在 单调递减.
(ii)若 ,令 得, 或 .
当 时, ;
当 时, .所以 在 单调递减,在 单调递增.
(2)由(1)知, 存在两个极值点当且仅当 .
由于 的两个极值点 满足 ,所以 ,不妨设 ,则 .由于
A.p1=p2B.p1=p3
C.p2=p3D.p1=p2+p3
11.已知双曲线Biblioteka : ,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M、N.若 为直角三角形,则|MN|=
A. B.3C. D.4
12.已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为
19.(12分)
解:(1)由已知得 ,l的方程为x=1.
由已知可得,点A的坐标为 或 .
所以AM的方程为 或 .
(2)当l与x轴重合时, .
当l与x轴垂直时,OM为AB的垂直平分线,所以 .
当l与x轴不重合也不垂直时,设l的方程为 , ,
则 ,直线MA,MB的斜率之和为 .
由 得
.
将 代入 得
.
所以, .
23.[选修4—5:不等式选讲](10分)
解:(1)当 时, ,即
故不等式 的解集为 .
(2)当 时 成立等价于当 时 成立.
若 ,则当 时 ;
若 , 的解集为 ,所以 ,故 .
综上, 的取值范围为 .
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。

2018年高考理数真题试题(全国Ⅱ卷)(Word版+答案+解析)

2018年高考理数真题试题(全国Ⅱ卷)(Word版+答案+解析)

2018年高考理数真题试卷(全国Ⅱ卷)一、选择题1.1+2i1−2i=( )A. −45−35i B. −45+35i C. −35−45i D. −35+45i2.已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z}.则A中元素的个数为()A. 9B. 8C. 5D. 43.函数f(x)=e x−e−xx2的图像大致为( )A. B.C. D.4.已知向量a→,b→满足|a→|=1, a→⋅b→=−1 ,则a→·(2a→-b→)=()A. 4B. 3C. 2D. 05.双曲线x2a2−y2b2=1(a>0,b>0)的离心率为√3,则其渐近线方程为()A. y=±√2xB. y=±√3xC. y=±√22x D. y=±√32x6.在ΔABC中,cos C2=√55,BC=1,AC=5则AB=()A. 4√2B. √30C. √29D. 2√57.为计算S=1−12+13−14+⋅⋅⋅+199−1100,设计了右侧的程序框图,则在空白框中应填入()A. i=i+1B. i=i+2C. i=i+3D. i=i+48.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果,哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是( )A. 112 B. 114 C. 115 D. 1189.在长方形ABCD-A 1B 1C 1D 1中,AB=BC=1,AA 1= √3 ,则异面直线AD 1与DB 1所成角的余弦值为( ) A. 15 B. √56C. √55D. √2210.若 f(x)=cosx −sinx 在 [−a,a] 是减函数,则a 的最大值是( ) A. π4 B. π2 C. 3π4 D. π11.已知 f(x) 是定义为 (−∞,+∞) 的奇函数,满足 f(1−x)=f(1+x) 。

2018年新课标I、II、III数学(文)(理)高考真题试卷(Word版含答案)

2018年新课标I、II、III数学(文)(理)高考真题试卷(Word版含答案)

2018 年一般高等学校招生全国一致考试( Ⅰ卷 )文科数学注意事项:1.答卷前,考生务势必自己的九名、考生号等填写在答题卡和试卷指定地点上.2.回答选择题时,选出每题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需变动,用橡皮擦洁净后,再选涂其余答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题(此题共 12 小题,每题 5 分,共60 分.在每题给出的四个选项中,只有一项是切合题目要求的.)1.已知会合 A 0,2 ,B 2 , 1,0 ,1,2 ,则AIB ()A. 0,2 B. 1,2 C. 0 D. 2, 1,0 ,1,21 i,则 z ()2.设z 2i1 iA.0 B.1C. 1 D. 2 23.某地域经过一年的新乡村建设,乡村的经济收入增添了一倍.实现翻番.为更好地认识该地域乡村的经济收入变化状况,统计了该地域新乡村建设前后乡村的经济收入组成比率.获得以下饼图:则下边结论中不正确的选项是()A.新乡村建设后,栽种收入减少B.新乡村建设后,其余收入增添了一倍以上C.新乡村建设后,养殖收入增添了一倍D.新乡村建设后,养殖收入与第三家产收入的总和超出了经济收入的一半4.记 S n为等差数列a n的前n项和.若 3S3 S2 S4, a1 2 ,则 a3 ()A.12 B.10 C.10 D. 125.设函数 f x x 3a 1 x 2ax .若 f x 为奇函数, 则曲线 yf x 在点 0 ,0 处的切线方程为()A . y2xB . y xC . y 2xD . y x6.在 △ ABC 中, AD 为 BC 边上的中线,uuurE 为 AD 的中点,则 EB ()A . 3 uuur1 uuurB . 1 uuur 3 uuur4 AB4 AC 4 AB AC4 C . 3 uuur 1 uuur D . 1 uuur 3 uuur 4 AB4 AC4 AB AC47.某圆柱的高为 2,底面周长为 16,其三视图以下图,圆柱表面上的点 M 在正视图上的对应点为 A ,圆柱表面上的点 N 在左视图上的对应点为 B ,则在此圆柱 侧面上,从 M 到 N的路径中,最短路径的长度为( )A .2 17B .2 5C .3D .28.设抛物线 C :y24 x 的焦点为 F ,过点2 ,0 且斜率为2的直线与 C 交于 M , N 两点,3uuuur uuur ()则FM FNA .5B . 6C .7D . 89.已知函数 f xx, ≤0 , f xf x x a (),若 g x 存在 2 个零点, 则 a 的exln x ,x 0取值范围是A . 1,0B . ,C . 1,D . 1,10.下列图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆组成,三个半圆的直径分别为直角三角形ABC 的斜边 BC ,直角边 AB , AC , △ ABC 的三边所围成的地区记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p 1 , p 2 , p 3 ,则( )A . p 1 p 2B . p 1 p 3C . p 2 p 3D . p 1 p 2p 3211.已知双曲线 C :xy 2 1 , O 为坐标原点, F 为 C 的右焦点,过 F 的直线与 C 的两条渐 3近线的交点分别为 M , N .若 △ OMN 为直角三角形,则 MN () A .3B . 3C .2 3D . 4212.设函数 f x2 x, ≤ 0,则知足 f x 1f 2x 的 x 的取值范围是()x 01,yA .,1B . 0,C . 1,0D . ,0二、填空题(此题共 4 小题,每题 5 分,共 20 分)13.已知函数 f xlog 2 x 2 a ,若 f 31 ,则 a________.x 2 y 2 ≤ 014.若 x ,y 知足拘束条件x ≥ 0 ,则 z3x 2 y 的最大值为 ________.y 1y ≤ 015.直线 y x 1 与圆 x 2y 2 2 y 3 0 交于 A ,B 两点,则 AB________ .16. △ ABC 的内角 A ,B ,C 的对边分别为 a ,b ,c ,已知 b sinC csin B4asin Bsin C ,b 2c 2 a 2 8 ,则 △ ABC 的面积为 ________.三、解答题(共70 分。

(完整版)2018年北京高考数学及答案

(完整版)2018年北京高考数学及答案

2018年普通高等学校招生全国统一考试数 学(理)(北京卷)本试卷共5页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回.第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分.1. 已知集合,,则 ( ){}2|<=x x A {}2,1,0,2-=B =⋂B A .A {}1,0.B {}1,0,1-.C {}2,1,0,2-.D {}2,1,0,1-2. 在复平面内,复数的共轭复数对应的点位于( )i-11第一象限第二象限 第三象限第四象限.A .B .C .D 3. 执行如图所示的程序框图,输出的值为()s.A 21.B 65.C 67.D 127s4.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为,则第八个单音的频率122f 为( ).A f 32.B f 322.C f 1252.D f12725. 某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为()12 34.A .B .C .D 6. 设a ,b 均为单位向量,则“”是“a ⊥b ”的()33-=+a b a b充分而不必要条件 必要而不充分条件 充分必要条件既不充分也不必要条件.A .B .C .D 7. 在平面直角坐标系中,记为点到直线的距离,当变化时,的最d ()θθsin ,cos P 02=--my x m ,θd 大值为()1234.A .B .C .D 8. 设集合,则( )(){}2,4,1|,≤->+≥-=ay x y ax y x y x A 对任意实数,对任意实数,.A a ()A∈1,2.B a ()A∉1,2当且仅当时,当且仅当时,.C 0<a ()A∉1,2.D 23≤a ()A ∉1,2第二部分(非选择题共110分)二、填空题共6小题,每小题5分,共30分.9. 设是等差数列,且,,则的通项公式为__________.{}n a 31=a 3652=+a a {}n a 10.在极坐标系中,直线与圆相切,则_________.()0sin cos >=+a a θρθρθρcos 2==a 11. 设函数,若对任意的实数都成立,则的最小值为()()06cos >⎪⎭⎫⎝⎛-=ωπωx x f ()⎪⎭⎫⎝⎛≤4πf x f x ω__________.12.若,满足,则的最小值是__________.x y x y x 21≤≤+x y -213.能说明“若对任意的都成立,则在上是增函数”为假命题的一个函数()()0f x f >]2,0(∈x ()x f []2,0是__________.14. 已知椭圆,双曲线,若双曲线的两条渐近线与椭圆()01:2222>>=+b a b y a x M 1:2222=-ny m x N N 的四个交点及椭圆的两个焦点恰为一个正六边形的顶点,则椭圆的离心率为__________;双曲M M M 线的离心率为__________.N 3、解答题共6小题,共80分。

2018年高考理科数学全国卷1(含详细答案)

2018年高考理科数学全国卷1(含详细答案)

理科数学试题A 第1页(共26页)理科数学试题A 第2页(共26页)绝密★启用前2018年普通高等学校招生全国统一考试理科数学本试卷共4页,23小题,满分150分,考试用时120分钟 注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上,用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上,将条形码横贴在答题卡右上角“条形码张贴处”。

2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其它答案。

答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液,不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.设121i z i i-=++,则z =( )A .0B .12C .1 D2.已知集合{}2|20A x x x =-->,则A =R ð( ) A .{}|12x x -<< B .{}|12x x -≤≤ C .{}{}|1|2x x x x <->D .{}{}|1|2x x x x -≤≥3.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是( ) A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 4.记n S 为等差数列{}n a 的前n 项和.若3243S S S =+,12a =,则3a =( ) A .12-B .10-C .10D .125.设函数()()321f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点()00,处的切线方程为( ) A .2y x =-B .y x =-C .2y x =D .y x =6.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =( )A .3144AB AC - B .1344AB AC -C .3144AB AC +D .1344AB AC +7.某圆柱的高为2,底面周长为16,其三视图如右图所示,圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N的路径中,最短路径的长度为( )A. B. C .3D .28.设抛物线24C y x =:的焦点为F ,过点()20-,且斜率为23的直线与C 交于M ,N 两点,则FM FN ⋅=( ) A .5B .6C .7D .89.已知函数()0ln 0x e x f x x x ⎧=⎨>⎩,≤,,()()g x f x x a =++,若()g x 存在2个零点,则a的取-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________理科数学试题A 第3页(共26页)理科数学试题A 第4页(共26页)值范围是( ) A .[)10-,B .[)0+∞,C .[)1-+∞,D .[)1+∞,10.下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC ,ABC △的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为1p ,2p ,3p ,则( )A .12p p =B .13p p =C .23p p =D .123p p p =+11.已知双曲线2213x C y -=:,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M ,N .若OMN △为直角三角形,则MN =( )A .32B .3 C. D .412.已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为( )ABCD二、填空题(本题共4小题,每小题5分,共20分)13.若x y ,满足约束条件220100x y x y y --⎧⎪-+⎨⎪⎩≤≥≤,则32z x y =+的最大值为________.14.记n S 为数列{}n a 的前n 项和.若21n n S a =+,则6S =________.15.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有________种.(用数字填写答案)16.已知函数()2sin sin 2f x x x =+,则()f x 的最小值是________.三、解答题(共70分。

2018年全国统一高考数学试卷(理科)(新课标ⅲ)(含解析版)

2018年全国统一高考数学试卷(理科)(新课标ⅲ)(含解析版)

2018年全国统一高考数学试卷(理科)(新课标Ⅲ)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)已知集合A={x|x﹣1≥0},B={0,1,2},则A∩B=()A.{0}B.{1}C.{1,2}D.{0,1,2} 2.(5分)(1+i)(2﹣i)=()A.﹣3﹣i B.﹣3+i C.3﹣i D.3+i3.(5分)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()A.B.C.D.4.(5分)若sinα=,则cos2α=()A.B.C.﹣D.﹣5.(5分)(x2+)5的展开式中x4的系数为()A.10B.20C.40D.806.(5分)直线x+y+2=0分别与x轴,y轴交于A,B两点,点P在圆(x﹣2)2+y2=2上,则△ABP面积的取值范围是()A.[2,6]B.[4,8]C.[,3]D.[2,3] 7.(5分)函数y=﹣x4+x2+2的图象大致为()A.B.C.D.<P(X=6),则p=()9.(5分)△ABC的内角A,B,C的对边分别为a,b,c.若△ABC的面积为,则C=()A.B.C.D.10.(5分)设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且面积为9,则三棱锥D﹣ABC体积的最大值为()A.12B.18C.24D.5411.(5分)设F1,F2是双曲线C:﹣=1(a>0.b>0)的左,右焦点,O是坐标原点.过F2作C的一条渐近线的垂线,垂足为P,若|PF1|=|OP|,则C的离心率为()A.B.2C.D.12.(5分)设a=log2A.a+b<ab<0B.ab<a+b<0C.a+b<0<ab D.ab<0<a+b 二、填空题:本题共4小题,每小题5分,共20分。

(完整版)2018年高考全国卷1数学试题及答案解析[理科]

(完整版)2018年高考全国卷1数学试题及答案解析[理科]

WORD整理版分享2017 年普通高等学校招生全国统一考试(全国I 卷)理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上,2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12 小题,每小题 5 分,共60 分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

x1.已知集合 A x x 1 ,B x 3 1 ,则()A. A B x x 0 B. A B RC. A B x x 1 D. A B2.如图,正方形ABCD 内的图形来自中国古代的太极图. 正方形内切圆中的黑色部分和白色部分位于正方形的中心成中心对称,在正方形内随机取一点,则此点取自黑色部分的概率是()A.14B.π8C.12D.π43.设有下面四个命题,则正确的是()1 p :若复数z 满足1z R,则z R ;p :若复数z 满足z2 R ,则z R ;2p :若复数3 z,z 满足z z R ,则1 2 1 2zz ;1 2p :若复数z R ,则z R .4A.p1 ,p3 B.p,pC.1 4p,pD.2 3p,p244.记S n 为等差数列a n 的前n 项和,若a4 a5 24,S6 48 ,则a n 的公差为()A.1 B.2 C. 4 D.85.函数 f x 在,单调递减,且为奇函数.若 f 1 1,则满足1≤ f x 2 ≤ 1 的 x的取值范围是()A.2,2 B.1,1 C.0 ,4 D.1,3范文范例参考指导WORD整理版分享6.11 1x2x6展开式中 2x 的系数为A.15 B. 20 C. 30 D. 357.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形、该多面体的各个面中有若干是梯形,这些梯形的面积之和为A.10 B. 12 C. 14 D.16n n 8.右面程序框图是为了求出满足3 2 1000 的最小偶数n ,那么在和两个空白框中,可以分别填入A. A 1000 和n n 1 B. A 1000 和n n 2 C. A≤1000 和n n 1 D. A≤1000 和 n n 29.已知曲线2πC1 : y cos x , C2 : y sin 2x ,则下面结论正确的是()3A.把 C1 上各点的横坐标伸长到原来的 2 倍,纵坐标不变,再把得到的曲线向右平移单位长度,得到曲线C2π个6B.把 C1 上各点的横坐标伸长到原来的 2 倍,纵坐标不变,再把得到的曲线向左平移π个12单位长度,得到曲线C2C.把 C 上各点的横坐标缩短到原来的1 12倍,纵坐标不变,再把得到的曲线向右平移π个6单位长度,得到曲线C2D.把 C 上各点的横坐标缩短到原来的 2 倍,纵坐标不变,再把得到的曲线向左平移1π个12单位长度,得到曲线C2范文范例参考指导WORD 整理版分享10. 已知 F 为抛物线C :2 4y x 的交点, 过 F 作两条互相垂直 l 1 ,l 2 ,直线 l 1 与 C 交于 A 、B两点,直线 l 2 与 C 交于 D , E 两点, AB DE 的最小值为()A .16B . 14C . 12D .1011.设x , y , z 为正数,且 2x 3y 5z,则()A . 2x 3y 5zB . 5z 2x 3yC . 3y 5z 2xD . 3y 2x 5z12. 几位大学生响应国家的创业号召,开发了一款应用软件,为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动,这款软件的激活码为下面数学问题的答案:已知数列 1, 1, 2 , 1, 2 , 4 , 1, 2 , 4 , 8 , 1, 2 , 4 , 8 , 16 ,⋯ ,其中第一项是20,接下来的两项是 20 , 21 ,在接下来的三项式26 , 21 , 22,依次类推,求满足如下条件的 最小整数 N :N 100 且该数列的前N 项和为 2的整数幂. 那么该款软件的激活码是 ( )A . 440B . 330C . 220D .110二、 填空题:本题共 4 小题,每小题 5 分,共 20 分。

全国高考数学理科(全国I卷)试题及答案

全国高考数学理科(全国I卷)试题及答案

普通高等学校招生全国统一考试(全国一卷)理科数学一、选择题:1、设z=, 则∣z∣=()A.0B. 12C.1D.√22、已知集合A={x|x2-x-2>0}, 则C R A =()A、{x|-1<x<2}B、{x|-1≤x≤2}C、{x|x<-1}∪{x|x>2}D、{x|x≤-1}∪{x|x ≥2}3、某地区经过一年的新农村建设, 农村的经济收入增加了一倍, 实现翻番, 为更好地了解该地区农村的经济收入变化情况, 统计了该地区新农村建设前后农村的经济收入构成比例, 得到如下饼图:则下面结论中不正确的是()A.新农村建设后, 种植收入减少B.新农村建设后, 其他收入增加了一倍以上C.新农村建设后, 养殖收入增加了一倍D.新农村建设后, 养殖收入与第三产业收入的总和超过了经济收入的一半4、记Sn为等差数列{an}的前n项和, 若3S3= S2+ S4, a1=2, 则a5=()A、-12B、-10C、10D、125、设函数f(x)=x³+(a-1)x²+ax .若f(x)为奇函数, 则曲线y= f(x)在点(0, 0)处的切线方程为()A.y= -2xB.y= -xC.y=2xD.y=x6、在∆ABC中, AD为BC边上的中线, E为AD的中点, 则EB→=()A.34AB→ - 14AC→ B. 14AB→ - 34AC→ C. 34AB→ + 14AC→ D. 14AB→ + 34AC→建设前经济收入构成比例建设后经济收入构成比例7、某圆柱的高为2, 底面周长为16, 其三视图如右图。

圆柱表面上的点M 在正视图上的对应点为A, 圆柱表面上的点N 在左视图上的对应点为B, 则在此圆柱侧面上, 从M 到N 的路径中, 最短路径的长度为( )A. 2√17B. 2√5C. 3D. 28.设抛物线C :y ²=4x 的焦点为F, 过点(-2, 0)且斜率为23的直线与C 交于M, N 两点, 则FM→ ·FN→ =( )A.5B.6C.7D.8 9.已知函数f (x )= g (x )=f (x )+x+a, 若g (x )存在2个零点, 则a 的取值范围是( )A. [-1, 0)B. [0, +∞)C. [-1, +∞)D. [1, +∞)10.下图来自古希腊数学家希波克拉底所研究的几何图形。

2018年普通高等学校招生全国统一考试理科数学试题(1、2、3卷)参考答案

2018年普通高等学校招生全国统一考试理科数学试题(1、2、3卷)参考答案

2502018年普通高等学校招生全国统一考试(全国卷Ⅰ)理科数学参考答案 第Ⅰ卷(选择题 60分)一、选择题(共60分) 1-12 CBABD ABDCA BA第Ⅱ卷(非选择题 90分)二、填空题(共20分)13.6 14.63- 15.16 16.2-三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17─21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.(本小题满分12分) 解:(1)在ABD ∆中,由正弦定理得sin sin BD ABA ADB=∠∠. 由题设知,52sin 45sin ADB=︒∠,∴sin =5ADB ∠.由题设知,90ADB ∠<︒,∴cos ADB ∠==.(2)由题设及(1)知,cos sin 5BDC ADB ∠=∠=. 在BCD ∆中,由余弦定理得2222cos BC BD DC BD DC BDC=+-⋅∠25825255=+-⨯⨯=.∴5BC =.18.(本小题满分12分) 解:(1)由已知可得,BF ⊥PF ,BF ⊥EF ,∴BF ⊥平面PEF .又BF ⊂平面ABFD , ∴平面PEF ⊥平面ABFD . (2)作PH ⊥EF ,垂足为H . 由(1)得,PH ⊥平面ABFD .以H 为坐标原点,HF 的方向为y 轴正方向,BF 为单位长,建立如图所示的空间直角坐标系H −xyz .由(1)可得,DE ⊥PE .又DP =2,DE =1,∴PE.又PF =1,EF =2,∴PE ⊥PF .可得3,22PH EH ==,且3(0,0,0),(0,0,1,,0)22H P D -,3(1,22DP =.3(0,0,)2HP =为平面ABFD 的法向量.设DP 与平面ABFD 所成角为θ,则3sin 4HP DP HP DPθ⋅==⋅. ∴DP 与平面ABFD所成角的正弦值为4. 19.(本小题满分12分) 解:(1)由已知得(1,0)F ,l 的方程为x =1. 由已知可得,点A的坐标为(1,)2或(1,2-. ∴AM 的方程为20x -=或20x --=.(2)当l 与x 轴重合时, 0OMA OMB ∠=∠=︒.当l 与x 轴垂直时,OM 为AB 的垂直平分线,∴OMA OMB ∠=∠.251当l 与x 轴不重合也不垂直时,设l 的方程为(1)(0)y k x k =-≠,且11(,)A x y ,22(,)B x y,则12x x MA ,MB 的斜率之和为121222MA MB y yk k x x +=+--. 由1122,y kx k y kx k =-=-得 []()()12121223()422MA MB k x x x x k k x x -+++=--.将(1)(0)y k x k =-≠代入2212x y +=得 2222(21)4220k x k x k +-+-=. ∴22121222422=,2121k k x x x x k k -+=++,∴[]121223()4k x x x x -++3332441284021k k k k k k --++==+. 从而0MA MB k k +=,∴MA ,MB 的倾斜角互补, ∴OMA OMB ∠=∠. 综上,OMA OMB ∠=∠. 20.(本小题满分12分) 解:(1)20件产品中恰有2件不合格品的概率为221820()(1)f p C p p =-,且 21821720()[2(1)18(1)]f p C p p p p '=---217202(110)(1)C p p p =--.令()0f p '=,得0.1p =. 当(0,0.1)p ∈时,()0f p '>; 当(0.1,1)p ∈时,()0f p '<. ∴()f p 的最大值点为0.1p =. (2)由(1)知,0.1p =.(i )令Y 表示余下的180件产品中的不合格品件数,依题意知(180,0.1)Y B ,202254025X Y Y =⨯+=+.∴(4025)4025490EX E Y EY =+=+=.(ii )如果对余下的产品作检验,则这一箱产品所需要的检验费为400元. 由于400EX >,∴应该对余下的产品作检验. 21.(本小题满分12分)解:(1)()f x 的定义域为(0,)+∞,且22211()1a x ax f x x x x -+'=--+=-.(i )若2a ≤,则()0f x '≤,当且仅当2,1a x ==时,()0f x '=, ∴()f x 在(0,)+∞单调递减.(ii )若2a >,令()0f x '=得,2a x -=或2a x +=.当2a a x ⎛⎛⎫+∈+∞⎪ ⎪⎝⎭⎝⎭时,()0f x '<;当x∈⎝⎭时,()0f x '>. ∴()f x 在⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭单调递减,在⎝⎭单调递增.(2)由(1)知,()f x 存在两个极值点时,当且仅当2a >.由于()f x 的两个极值点12,x x 满足21=0x a x -+,∴121x x =,不妨设12x x <,则21x >. 1212()()f x f x x x --121212ln ln 11x x a x x x x -=--+-1212ln ln 2x x a x x -=-+-2522222ln 21x ax x -=-+-,∴1212()()2f x f x a x x -<--等价于 22212ln 0x x x -+<. 设函数1()2ln g x x x x=-+,由(1)知,()g x 在(0,)+∞单调递减,又(1)=0g ,从而当(1,)x ∈+∞时,()0g x <. ∴22212ln 0x x x -+<,即 1212()()2f x f x a x x -<--.(二)选考题:22. (本小题满分10分)[选修4—4:坐标系与参数方程]解:(1)由cos ,sin x y ρθρθ==得2C 的直角坐标方程为22(1)4x y ++=. (2)由(1)知2C 是圆心为(1,0)A -,半径为2的圆.由题设知,1C 是过点(0,2)B 且关于y 轴对称的两条射线.记y 轴右边的射线为1l ,y 轴左边的射线为2l .由于B 在圆2C 的外面,故1C 与2C 有且仅有三个公共点等价于1l 与2C 只有一个公共点且2l 与2C 有两个公共点,或2l 与2C 只有一个公共点且1l 与2C 有两个公共点.当1l 与2C 只有一个公共点时,A 到1l 所在直线的距离为2,2=,解得43k =-或0k =.经检验,当0k =时,1l 与2C 没有公共点;当43k =-时,1l 与2C 只有一个公共点,2l 与2C 有两个公共点.当2l 与2C 只有一个公共点时,A 到2l 所在直线的距离为2,2=,故0k =或43k =. 经检验,当0k =时,1l 与2C 没有公共点;当43k =时,2l 与2C 没有公共点. 综上,所求1C 的方程为423y x =-+.23.(本小题满分10分) [选修4—5:不等式选讲] 解:(1)当1a =时,()11f x x x =+--,即2(1),()2(11),2(1).x f x x x x -≤-⎧⎪=-<<⎨⎪≥⎩∴不等式()1f x >的解集为1,2⎛⎫+∞⎪⎝⎭. (2)当(0,1)x ∈时11x ax x +-->成立等价于当(0,1)x ∈时1ax -<1成立. 若0a ≤,则当(0,1)x ∈时1ax -≥1; 若a >0,1ax -<1的解集为20x a<<,∴21a≥,∴02a <≤. 综上,a 的取值范围为(]0,2.2532018年普通高等学校招生全国统一考试(全国卷Ⅱ)理科数学参考答案 第Ⅰ卷(选择题 60分)一、选择题(共60分) 1-12 DABBA ABCCA CD第Ⅱ卷(非选择题 90分)二、填空题(共20分) 13.2y x = 14.9 15.12-16.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17─21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.(本小题满分12分)解:(1)设{a n }的公差为d ,由题意得3a 1+3d =–15. 由a 1=–7得d =2.∴{a n }的通项公式为a n =2n –9.(2)由(1)得S n =n 2–8n =(n –4)2–16.∴当n =4时,S n 取得最小值,最小值为–16.18.(本小题满分12分)解:(1)利用模型①,该地区2018年的环境基础设施投资额的预测值为 =–30.4+13.5×19=226.1(亿元).利用模型②,该地区2018年的环境基础设施投资额的预测值为 =99+17.5×9=256.5(亿元).(2)利用模型②得到的预测值更可靠. 理由如下:(i )从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线y =–30.4+13.5t 上下,这说明利用2000年至2016年的数据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋势.2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010年至2016年的数据建立的线性模型=99+17.5t 可以较好地描述2010年以后的环境基础设施投资额的变化趋势,因此利用模型②得到的预测值更可靠.(ii )从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模型①得到的预测值226.1亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理,说明利用模型②得到的预测值更可靠. 以上给出了2种理由,考生答出其中任意一种或其他合理理由均可得分. 19.(本小题满分12分)解:(1)由已知得(1,0)F ,l 的方程为为(1)(0)y k x k =-≠. 设11(,)A x y ,22(,)B x y .由2(1),4y k x y x =-⎧⎨=⎩得22222(2)0k x k x k -++=. ∴ 216160k ∆=+>,212224=k x x k++. ∴AB AF BF =+212244(1)(+1)=k x x k +=++.由题设知2244=8k k+,解得k =–1(舍去),k =1.∴l 的方程为y =x –1.(2)由(1)得AB 的中点坐标为(3,2),∴AB 的垂直平分线方程为2(3)y x -=--,即5y x =-+. 设所求圆的圆心坐标为(x 0,y 0),则00220005,(1)(1)16,2y x y x x =-+⎧⎪⎨-++=+⎪⎩ 解得003,2x y =⎧⎨=⎩或0011,6.x y =⎧⎨=-⎩∴所求圆的方程为22(3)(2)16x y -+-=或22(11)(6)144x y -++=. 20.(本小题满分12分) 解:(1)∵4AP CP AC ===,O 为AC 的中点,所以OP AC ⊥,且OP =254连结OB .因为2AB BC AC ==,所以ABC ∆为等腰直角三角形,且OB AC ⊥,122OB AC ==.由222OP OB PB +=知OP OB ⊥. 由OP OB ⊥,OP AC ⊥知 OP ⊥平面ABC .(2)如图,以O 为坐标原点,OB 的方向为x 轴正方向,建立空间直角坐标系O xyz -.由已知得(0,0,0),(2,0,0),(0,2,0)O B A -,(0,2,0)C,(0,0,P ,(0,2,AP =.取平面P AC 的法向量(2,0,0)OB =. 设(,2,0)(02)M a a a -<≤,则(,4,0)AM a a =-.设平面P AM 的法向量为(,,)x y z m =.由0,0,AP AM ⎧⋅=⎪⎨⋅=⎪⎩m m即20,(4)0y ax a y ⎧+=⎪⎨+-=⎪⎩得,).y a x z a ⎧=⎪⎨-=⎪⎩可取),,)a a -m =.所以cos OB <>=m,由已知得cos 2OB <>=m,.=. 解得4a =或4a=-(舍去).∴4(,)333-m =.又∵(0,2,PC =-,∴3cos PC <>=m, ∴PC 与平面P AM 所成角的正弦值为4. 21.(本小题满分12分)解:(1)当a =1时,()1f x ≥等价于2(1)10x x e -+-≤.设函数2()(1)1xg x x e-=+-,则22()(21)(1)x x g x x x e x e --'=--+=--. 当1x ≠时,()0g x '<, ∴()g x 在(0,)+∞单调递减. 而(0)0g =,∴当0x ≥时,()0g x ≤,即()1f x ≥.(2)设函数2()1x h x ax e -=-.()f x 在(0,)+∞只有一个零点当且仅当()h x 在(0,)+∞只有一个零点.(i )当0a ≤时,()0h x >,()h x 没有零点;(ii )当a >0时,()(2)x h x ax x e -'=-.当(0,2)x ∈时,()0h x '<;当(2,)x ∈+∞时,()0h x '>.∴()h x 在(0,2)单调递减,在(2,)+∞单调递增.∴2(2)14h ae -=-是()h x 在[0,)+∞的最小值.①若(2)0h >,即214a e <,()h x 在255(0,)+∞没有零点;②若(2)0h =,即214a e =,()h x 在(0,)+∞只有一个零点;③若(2)0h <,即214a e >,由于(0)1h =,∴()h x 在(0,2)内有一个零点, 由(1)知,当0x >时,2x e x >,∴334221616(4)11()a a a a h a e e =-=-34161110(2)a a a>-=->.∴()h x 在(2,4)a 内有一个零点, ∴()h x 在(0,)+∞有两个零点.综上,()f x 在(0,)+∞只有一个零点时,214a e =.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分. 22.(本小题满分10分)[选修4-4:坐标系与参数方程] 解:(1)曲线C 的直角坐标方程为221416x y +=. 当cos 0α≠时,l 的直角坐标方程为 (tan )2tan y x αα=+-. 当cos 0α=时,l 的直角坐标方程为x =1. (2)将l 的参数方程代入C 的直角坐标方程,整理得关于t 的方程22(13cos )4(2cos t αα+++ sin )80t α-=.①∵曲线C 截直线所得线段的中点(1,2)在C 内,∴方程①有两个解12,t t ,且1224(2cos sin )13cos t t ααα++=-+. 由参数t 的几何意义得120t t +=.∴2cos sin 0αα+=,于是直线的斜率tan 2k α==-. 22.(本小题满分10分) [选修4—5:不等式选讲] 解:(1)当a =1时,24(1),()2(12),26(2).x x f x x x x +≤-⎧⎪=-<≤⎨⎪-+>⎩当1x ≤-时,由()240f x x =+≥得2x ≥-,即21x -≤≤-;当12x -<≤时,()20f x =>; 当2x >时,由()260f x x =-+≥得 3x ≤,即23x <≤. 综上可得()0f x ≥的解集为[]2,3-. (2)()1f x ≤等价于24x a x ++-≥. 而22x a x a ++-≥+,且当x=2时等号成立.∴()1f x ≤等价于24a +≥. 由24a +≥可得6a ≤-或2a ≥. ∴a 的取值范围是(][),62,-∞-+∞.2562018年普通高等学校招生全国统一考试(全国卷Ⅲ)理科数学参考答案 第Ⅰ卷(选择题 60分)一、选择题(共60分) 1-12 CDABC ADBCB CB第Ⅱ卷(非选择题 90分)二、填空题(共20分) 13.1214.3- 15.3 16.2 (一)必考题:共60分. 一、选择题(本题共12小题,每小题5分,共60分.在每小题给的四个选项中,只有一项符合) 1.C解:∵{}[)101,A x x =-≥=+∞,{}012B =,,, ∴ {}1,2AB =,∴选C .2.D解:∵()()212223i i i i i i +-=-+-=+, ∴选D . 3.A解:选A . 4.B解:由已知条件,得2217cos 212sin 1239αα⎛⎫=-=-= ⎪⎝⎭,∴选B .5.C解:由已知条件,得 251031552()2rr r r r r r T C x C x x --+⎛⎫== ⎪⎝⎭,令1034r -=,解得2r =, x 4的系数为22552240rr C C ==, ∴选C .6.A解:由已知条件,得(2,0),(0,2)A B --,∴||AB == 圆22(2)2x y -+=的圆心为(2,0),∴圆心到直线20x y ++=的距离为= ∴点P 到直线20x y ++=的距离的取值范围为d ≤≤+d ≤≤,∴1||[2,6]2ABP S AB d ∆=⋅∈.∴选A . 7.D解:令0x =,得2y =,∴A,B 不能选. 令321424()02y x x x x '=-+=-->,得2x <-或02x <<,即函数在0⎛ ⎝⎭内单调递增, ∴选D . 8.B解:由已知条件知,X ~B (10,p ),且 10p (1-p )=2.4,解得p =0.6或p =0.4. 又由P (X=4)< P (X=6)得,即4466641010(1)(1)C p p C p p -<-,0.5p >,∴p =0.6. ∴选B . 9.C解:由已知条件,得2222cos 44ABC a b c ab CS ∆+-==cos 1sin 22ab C ab C ==,即tan 1C =,∴4C π=.∴选C . 10.B解:如图,ABC ∆为等边三角形,点O 为,,,A B C D 外接球的球心,E 为ABC ∆的重心,点F 为边BC 的中点.当点D 在EO 的延长上,即DE ⊥面ABC 时,三棱锥D ABC -体积取得最大值.V =,5分,.1=2,x,且196π.257258当366x πππ≤+≤时有1个零点,3,629x x πππ+==;当326x πππ<+≤时有1个零点,343,629x x πππ+==; 当192366x πππ<+≤时有1个零点,573=,629x x πππ+=. ∴零点个数为3,∴填3. 16.2解:由已知条件知,抛物线C 的焦点为(1,0)F . 设22121212(,),(,)()44y yA yB y y y ≠,则由A ,F ,B 三点共线,得221221(1)(1)44y y y y -=-,∴12=4y y -. ∵∠AMB =90º,∴221212(1,1)(1,1)44y y MA MB y y ⋅=+-⋅+-,221212(1)(1)(1)(1)44y y y y =+++-⋅-2121(2)04y y =+-=, ∴12=2y y +.∴212221124244y y k y y y y -===+-,∴填2. 三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17─21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. 17.(本小题满分12分) 解:(1)设数列{}n a 的公比为q ,则由534a a =,得2534a q a ==,解得2q =±. ∴12n n a -=或1(2)n n a -=-.(2)由(1)知,122112nn n S -==--或1(2)1[1(2)]123n n n S +-==--+,∴2163mm S =-=或1[1(2)]633m m S =--=(舍), ∴6m =.18.(本小题满分12分) 解:(1)第一种生产方式的平均数为184X =,第二种生产方式平均数为274.7X =,∴12X X >,∴第一种生产方式完成任务的平均时间大于第二种,即第二种生产方式的效率更高. (2)由茎叶图数据得到中位数80m =,∴列联表为(3)()()()()()22n ad bc K a b c d a c b d -=++++,()24015155510 6.63520202020⨯-⨯==>⨯⨯⨯,∴有99%的把握认为两种生产方式的效率有差异. 19.(本小题满分12分) 解:(1)由已知条件知,在正方形ABCD 中,AD CD ⊥.∵正方形ABCD ⊥半圆面CMD ,平面ABCD 半圆面CMD CD =, ∴AD ⊥半圆面CMD .∵CM 在平面CMD 内,∴AD CM ⊥,即CM AD ⊥.259OM (0,0,1)(0,-1,0)0)又∵M 是CD 上异于C ,D 的点, ∴CM MD ⊥.又∵AD DM D =, ∴CM ⊥平面AMD , ∵CM 在平面BMC 内,∴平面AMD ⊥平面(2)由条件知,2ABC S ∆=是常数, ∴当点M 到平面ABCD 的距离.最大,即点M 为弧CD 的中点时,三棱锥M – ABC 体积最大.如图,以CD 中点O 为原点,过点O 且平行于AD 的直线为x 轴,OC ,OM 所在直线为y ,Z 轴建立空间直角坐标系O-xyz ,则由已知条件知,相关点的坐标为 A(2,-1,0),B(2,1,0),M(0,0,1) ,且(0,2,0)AB =,(2,1,1)MA =--.由(1)知,平面MCD 的法向量为(1,0,0)=m .令平面MXB 的法向量为(,,)x y z =n ,则(,,)(0,2,0)=20,(,,)(2,1,1)20AB x y z y MA x y z x y z ⎧⋅=⋅=⎪⎨⋅=⋅--=--=⎪⎩,n n 即0,2y z x ==, ∴取(1,0,2)=n.∴cos ,⋅<>==⋅m nm n m n ,∴sin ,5<>=m n ,即面MAB 与MCD 所成二面角的正弦值.为5.20.(本小题满分12分)解:(1)设直线l 的方程为y kx t =+,则由22,143y kx t x y =+⎧⎪⎨+=⎪⎩消去y ,得222(43)84120k x ktx t +++-=,①由22226416(43)(3)0k t k t ∆=-+->,得2243t k <+.②设1122(,),(,)A x y B x y ,则12,x x 是方程①的两个根,且122843ktx x k -+=+,121226()243ty y k x x t k +=++=+. ∵线段AB 的中点为()()10M m m >,, ∴1228243ktx x k -+==+,121226()2243ty y k x x t m k +=++==+. ∵0m >,∴0t >,0k <,且2434k t k+=-.③由②③得22243434k k k ⎛⎫+-<+ ⎪⎝⎭,解得12k >或12k <-.∵0k <,∴12k <-.(2)∵点()()10M m m >,是线段AB 的中点,且FP FA FB ++=0,∴2FP FM +=0,即2FP FM =-.④ 由已知条件知,()()10M m m >,,()10F ,.令(,)P x y ,则由④得:(1,)2(0,)x y m -=-,即1,2x y m ==-, ∴P 的坐标为(1,2)m -.由于点P 在椭圆上,得214143m +=,解得26034m =或34m =-(舍去),且3(1,)2P -.又222211221,14343x y x y +=+=, ∴两式相减,得2112211234y y x xx x y y -+=--+. 又12123=2,22x x y y m ++==,∴21122112314y y x xk x x y y -+==-=--+, 243744k t k +=-=,∴直线l 的方程为74y x =-+. 将71,4k t =-=代入方程①,得 2285610x x -+=,解得121,11414x x =-=+,1233414414y y =+=-.∴3(2FA x ==+, 32FP =,3(2FB x == ∴=2FA FB FP +,即,,FA FP FB 成等差数列,且该数列的公差28d =±. 另解:(1)设1122(,),(,)A x y B x y ,则222211221,14343x y x y +=+=, 两式相减,得2112211234y y x xk x x y y -+==--+. ∵线段AB 的中点为()()10M m m >,, ∴122x x +=,122y y m +=,34k m=-. 由点()()10M m m >,在椭圆内得21143m +<,即302m <<. ∴12k <-.(2)由题设知(1,0)F .令(,)P x y ,则由FP FA FB ++=0得1122(1,)(1,)(1,)(0,0)x y x y x y -+-+-=,∴1212=3(),()x x x y y y -+=-+. 由得=1,2x y m =-<0. ∴P 的坐标为(1,2)m -.由于点P 在椭圆上,得214143m +=,解得34m =或34m =-(舍去),且3(1,)2P -,且32FP =. (FA x =122x=-,同理222xFB =-.∴12=2222x xFA FB +-+-124322x xFP +=-==,即,,FA FP FB 成等差数列.把34m =代入34k m =-得1k =-,且3(1,)4M∴直线l 的方程为74y x =-+. 把直线方程与椭圆方程联立,消去y 得:2285610x x -+=,于是有121212,28x x x x +==.设成等差数列的公差为d ,则26121122d FB FA x x =-=-==, d =±21.(本小题满分12分)解:由条件知,函数()f x 的定义域为(1,)-+∞.(1)若0a =,则函数()(2)ln(1)2f x x x x =++-,且1()ln(1)11f x x x'=++-+, 2211()1(1)(1)xf x x x x ''=-=+++. ∴(0)0f =,(0)0f '=,(0)0f ''=. ∴当10x -<<时,()0f x ''<,∴当10x -<<时,()f x '单调递减. ∴()(0)0f x f ''>=,∴当10x -<<时,()f x 单调递增, ∴()(0)0f x f <=,即()0f x <. 当x > 0时,()0f x ''>,∴当x > 0时, ()f x '单调递增.∴()(0)0f x f ''>=,∴当x > 0时,()f x 单调递增, ∴()(0)0f x f >=,即()0f x >. 综上可得,当10x -<<时,()f x <0; 当x > 0时,()0f x >. (2)(i )若0a ≥,由(1)知,当x >0时,()(2)ln(1)20(0)f x x x x f ≥++->=,这与x=0是()f x 的极大值点矛盾.(ii )若0a <,设函数2()()2f x g x x ax =++22ln(1)2xx x ax =+-++. 由于当min x ⎧⎪<⎨⎪⎩时,220x ax ++>, ∴()g x 与()f x 符号相同. 又(0)(0)0g f ==,∴0x =是()f x 的极大值点当且仅当0x =是()g x 的极大值点.22212(2)2(12)()12x ax x ax g x x x ax ++-+'=-+++() 22222(461)(1)(2)x a x ax a x x ax +++=+++. 如果610a +>,则当6104a x a+<<-,且m i n 1,x ⎧⎪<⎨⎪⎩时,()0g x '>,∴0x =不是()g x 的极大值点.如果610a +<,则22461=0a x ax a +++存在根10x <.∴当1(,0)x x ∈,且m in 1,x ⎧⎪<⎨⎪⎩时,()0g x '<,∴0x =不是()g x 的极大值点. 如果61=0a +,则322(24)()(1)(612)x x g x x x x -'=+--.当(1,0)x ∈-时,()0g x '>; 当(0,1)x ∈时,()0g x '<. ∴0x =是()g x 的极大值点,从而0x =是()f x 的极大值点.综上,16a =-.(二)选考题:共10分,请考生在第22、23题中任选一题作答。

2018年安徽高考理科数学试题含答案(Word版)

2018年安徽高考理科数学试题含答案(Word版)

2018年普通高等学校招生全国统一考试(卷)数学(理科)本试卷分第Ⅰ卷和第II 卷(非选择题)两部分,第Ⅰ卷第1至第2页,第II 卷第3至第4页。

全卷满分150分,考试时间为120分钟。

参考公式:如果事件A 与B 互斥,那么()()()P A B P A P B +=+如果事件A 与B 相互独立,那么()()()P AB P A P B =第Ⅰ卷(选择题 共50分)一.选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

(1) 设i 是虚数单位,z 表示复数z 的共轭复数,若z=1+I,则iz +i ·z = (A )-2 (B )-2i (C )2 (D )2i (2)“x <0”是ln (x+1)<0的 (A )充分不必要条件(B )必要不充分条件 (C )充分必要条件(D )既不充分也不必要条件(3)如图所示,程序框图(算法流程图)的输出结果是(A )34 (B )55 (C )78 (D )89(4) 以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位。

已知直线l 的参数方程是⎩⎨⎧-=+=3,1t y t x (t 为参数),圆C 的极坐标方程是θρcos 4=,则直线l 被圆C 截得的弦长为(A )14 (B )214 (C )2 (D )22(5)x , y 满足约束条件⎪⎩⎪⎨⎧≥+-≤--≤-+.022,022,02y x y x y x 若z=y-ax 取得最大值的最优解不唯一...,则实数a 的值为(A )21 或-1 (B )2或21 (C )2或1 (D )2或-1 (6)设函数f(x)(x ∈R )满足f(x+π)=f(x)+sinx.当0≤x ≤π时,f(x)=0,则)623(πf = (A )21(B )23(C )0 (D )21-(7)一个多面体的三视图如图所示,则该多面体的表面积为(A )321+ (B )318+ (C )21 (D )18(8)从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有 (A )24对 (B )30对 (C )48对 (D )60对(9)若函数f(x)=| x+1 |+| 2x+a |的最小值为3,则实数a 的值为 (A )5或8 (B )-1或5 (C )-1或 -4 (D )-4或8(10)在平面直角坐标系xOy 中,已知向量啊a , b , | a | = | b | = 1 , a ·b = 0,点Q 满足=2( a + b ).曲线C={ P |OP =a cos θ + b sin θ ,0≤θ<2π},区域Ω={ P | 0 < r ≤|PQ | ≤ R , r < R },若C ⋂Ω为两段分离的曲线,则(A )1 < r < R <3 (B )1 < r < 3 ≤ R (C )r ≤ 1 < R <3 (D )1 < r < 3 < R2014普通高等学校招生全国统一考试(卷)数 学(理科) 第Ⅱ卷(非选择题 共100分)考生注意事项:请用0.5毫米黑色墨水签字笔在答题卡上.....作答,在试题卷上答题无效.........。

2018年高考理科数学试题(天津卷)及参考答案

2018年高考理科数学试题(天津卷)及参考答案

绝密★启用前2018年普通高等学校招生全国统一考试(天津卷)数学(理工类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。

第Ⅰ卷1至2页,第Ⅱ卷3至5页。

答卷前,考生务必将自己的姓名、准考证号填写在答题考上,并在规定位置粘贴考试用条形码。

答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。

考试结束后,将本试卷和答题卡一并交回。

祝各位考生考试顺利!第I 卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

2.本卷共8小题,每小题5分,共40分。

参考公式:如果事件A ,B 互斥,那么()()()P AB P A P B =+ .如果事件A ,B 相互独立,那么()()()P AB P A P B = .棱柱的体积公式V Sh =,其中S 表示棱柱的底面面积,h 表示棱柱的高. 棱锥的体积公式13V Sh =,其中S 表示棱锥的底面面积,h 表示棱锥的高. 一. 选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. (1)设全集为R ,集合{02}A x x =<<,{1}B x x =≥,则()R A C B = (A) {01}x x <≤(B) {01}x x << (C) {12}x x ≤<(D) {02}x x <<(2)设变量x ,y 满足约束条件5,24,1,0,x y x y x y y +≤⎧⎪-≤⎪⎨-+≤⎪⎪≥⎩ 则目标函数35z x y =+的最大值为(A) 6 (B) 19 (C) 21 (D) 45(3)阅读如图的程序框图,运行相应的程序,若输入N 的值为20,则输出T 的值为 (A) 1(B) 2(C) 3(D) 4(4)设x ∈R ,则“11||22x -<”是“31x <”的 (A)充分而不必要条件 (B)必要而不充分条件 (C)充要条件(D)既不充分也不必要条件(5)已知2log e =a ,ln 2b =,121log 3c =,则a ,b ,c 的大小关系为 (A) a b c >> (B) b a c >>(C) c b a >>(D) c a b >>(6)将函数sin(2)5y x π=+的图象向右平移10π个单位长度,所得图象对应的函数 (A)在区间35[,]44ππ上单调递增(B)在区间3[,]4ππ上单调递减(C)在区间53[,]42ππ上单调递增(D)在区间3[,2]2ππ上单调递减 (7)已知双曲线22221(0,0)x y a b a b-=>>的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B两点. 设A ,B 到双曲线同一条渐近线的距离分别为1d 和2d ,且126d d +=,则双曲线的方程为(A)221412x y -=(B)221124x y -= (C)22139x y -=(D) 22193x y -= (8)如图,在平面四边形ABCD 中,AB BC ⊥,AD CD ⊥,120BAD ∠=︒,1AB AD ==. 若点E 为边CD 上的动点,则AE BE ⋅的最小值为 (A)2116(B)32(C)2516(D) 3第Ⅱ卷注意事项:1. 用黑色墨水的钢笔或签字笔将答案写在答题卡上。

2018年高考数学卷(全国卷2)

2018年高考数学卷(全国卷2)

2018年普通高等学校招生全国统一考试(全国卷)赠数学(理科)使用地区:海南、宁夏、黑龙江、吉林、辽宁、新疆、内蒙古、青海、甘肃、重庆、陕西本试卷满分150分,考试时间120分钟.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.1+2i1-2i=()A.-45-35iB.-45+35iC.-35-45iD.-35+45i2.已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则A中元素的个数为()A.9B.8C.5D.43.函数f(x)=ex-e-xx2的图象大致为()4.已知向量a,b满足|a|=1,a·b=-1,则a·(2a-b)=()A.4B.3C.2D.05.双曲线x2a2-y2b2=1(a>0,b>0)的离心率为则其渐近线方程为()A.yB.yC.yD.y6.在△ABC中,cosC2BC=1,AC=5,则AB=()ABCD7.为计算S=1-12+13-14+…+199-1100,设计了如图所示的程序框图,则在空白框中应填入()A.i=i+1B.i=i+2C.i=i+3D.i=i+48.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是()A.112B.114C.115D.1189.在长方体ABCD-A1B1C1D1中,AB=BC=1,AA1则异面直线AD1与DB1所成角的余弦值为()A.1510.若f(x)=cosx-sinx在[-a,a]是减函数,则a的最大值是()A.π4B.π2C.3π4D.π11.已知f(x)是定义域为(-∞,+∞)的奇函数,满足f(1-x)=f(1+x).若f(1)=2,则f(1)+f(2)+f(3)+…+f(50)=()A.-50B.0C.2D.5012.已知F1,F2是椭圆C:x2a2+y2b2=1(a>b>0)的左、右焦点,A是C的左顶点,点P在过A的直线上,△PF1F2为等腰三角形,∠F1F2P=120°,则C的离心率为()A.23B.12C.13D.14二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.13.曲线y=2ln(x+1)在点(0,0)处的切线方程为.14.若x,y满足约束条件x+2y-5≥0,x-2y+3≥0,x-5≤0{,则z=x+y的最大值为.15.已知sinα+cosβ=1,cosα+sinβ=0,则sin(α+β)=.16.已知圆锥的顶点为S,母线SA,SB所成角的余弦值为78,SA与圆锥底面所成角为45°.若△SAB的面积为则该圆锥的侧面积为.三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22,23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(本小题满分12分)记Sn为等差数列{an}的前n项和,已知a1=-7,S3=-15.(Ⅰ)求{an}的通项公式;(Ⅱ)求Sn,并求Sn的最小值.18.(本小题满分12分)下图是某地区2000年至2016年环境基础设施投资额y(单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了y与时间变量t的两个线性回归模型.根据2000年至2016年的数据(时间变量t的值依次为1,2,…,17)建立模型①:^y=-30.4+13.5t;根据2010年至2016年的数据(时间变量t的值依次为1,2,…,7)建立模型②:^y=99+17.5t.(Ⅰ)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;(Ⅱ)你认为用哪个模型得到的预测值更可靠?并说明理由.19.(本小题满分12分)设抛物线C:y2=4x的焦点为F,过F且斜率为k(k>0)的直线l与C交于A,B两点,|AB|=8.(Ⅰ)求l的方程;(Ⅱ)求过点A,B且与C的准线相切的圆的方程.20.(本小题满分12分)如图,在三棱锥P-ABC中,AB=BC=PA=PB=PC=AC=4,O为AC的中点.(Ⅰ)证明:PO⊥平面ABC;(Ⅱ)若点M在棱BC上,且二面角M-PA-C为30°,求PC与平面PAM所成角的正弦值.21.(本小题满分12分)已知函数f(x)=ex-ax2.(Ⅰ)若a=1,证明:当x≥0时,f(x)≥1;(Ⅱ)若f(x)在(0,+∞)只有一个零点,求a.(二)选考题:共10分.请考生在第22,23题中任选一题作答.如果多做,则按所做的第一题计分.22.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy中,曲线C的参数方程为x=2cosθ,y=4sin{θ(θ为参数),直线l的参数方程为x=1+tcosα,y=2+tsin{α(t为参数).(Ⅰ)求C和l的直角坐标方程;(Ⅱ)若曲线C截直线l所得线段的中点坐标为(1,2),求l的斜率.23.(本小题满分10分)选修4-5:不等式选讲设函数f(x)=5-|x+a|-|x-2|.(Ⅰ)当a=1时,求不等式f(x)≥0的解集;(Ⅱ)若f(x)≤1,求a的取值范围.。

2018年(全国卷Ⅲ)高考数学理真题试题含答案

2018年(全国卷Ⅲ)高考数学理真题试题含答案

绝密★启用前2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}|10A x x =-≥,{}012B =,,,则A B = A .{}0B .{}1C .{}12,D .{}012,, 2.()()1i 2i +-=A .3i --B .3i -+C .3i -D .3i +3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是4.若1sin 3α=,则cos 2α=A .B .79C .79-D .89-5.522x x ⎛⎫+ ⎪⎝⎭的展开式中4x 的系数为A .10B .20C .40D .806.直线20x y ++=分别与轴,轴交于A ,B 两点,点P 在圆()2222x y -+=上,则ABP △面积的取值范围是A .[]26,B .[]48,C .232⎡⎤⎣⎦,D .2232⎡⎤⎣⎦,7.函数422y x x =-++的图像大致为8.某群体中的每位成员使用移动支付的概率都为p ,各成员的支付方式相互独立,设X 为该群体的10位成员中使用移动支付的人数, 2.4DX =,()()46P X P X =<=,则p =A .0.7B .0.6C .0.4D .0.3 9.ABC △的内角A B C ,,的对边分别为,,,若ABC △的面积为2224a b c +-,则C =A .π2B .π3C .π4D .π610.设A B C D ,,,是同一个半径为4的球的球面上四点,ABC △为等边三角形且其面积为93,则三棱锥D ABC -体积的最大值为 A .123B .183C .243D .543 11.设12F F ,是双曲线22221x y C a b-=:(00a b >>,)的左、右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若16PF OP =,则C 的离心率为A .5B .2C .3D .2 12.设0.2log 0.3a =,2log 0.3b =,则A .0a b ab +<<B .0ab a b <+<C .0a b ab +<<D .0ab a b <<+ 二、填空题:本题共4小题,每小题5分,共20分.13.已知向量()=1,2a ,()=2,2-b ,()=1,λc .若()2∥c a +b ,则λ=________.14.曲线()1e x y ax =+在点()01,处的切线的斜率为2-,则a =________. 15.函数()πcos 36f x x ⎛⎫=+ ⎪⎝⎭在[]0π,的零点个数为________. 16.已知点()11M -,和抛物线24C y x =:,过C 的焦点且斜率为的直线与C 交于A ,B 两点.若 90AMB =︒∠,则k =________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分. 17.(12分)等比数列{}n a 中,15314a a a ==,. (1)求{}n a 的通项公式;(2)记n S 为{}n a 的前项和.若63m S =,求m .18.(12分)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min )绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求40名工人完成生产任务所需时间的中位数m ,并将完成生产任务所需时间超过m 和不超过m 的工人数填入下面的列联表:超过m不超过m第一种生产方式 第二种生产方式(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异? 附:()()()()()22n ad bc K a b c d a c b d -=++++,()2P K k ≥ 0.050 0.0100.0013.8416.635 10.82819.(12分)如图,边长为2的正方形ABCD 所在的平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点.(1)证明:平面AM D ⊥平面BMC ;(2)当三棱锥M ABC -体积最大时,求面MAB 与面MCD 所成二面角的正弦值.20.(12分)已知斜率为的直线与椭圆22143x y C +=:交于A ,B 两点,线段AB 的中点为()()10M m m >,. (1)证明:12k <-;(2)设F 为C 的右焦点,P 为C 上一点,且FP FA FB ++=0.证明:FA ,FP ,FB 成等差数列,并求该数列的公差. 21.(12分)已知函数()()()22ln 12f x x ax x x =+++-.(1)若0a =,证明:当10x -<<时,()0f x <;当0x >时,()0f x >; (2)若0x =是()f x 的极大值点,求.(二)选考题:共10分,请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分. 22.选修4—4:坐标系与参数方程](10分)在平面直角坐标系xOy 中,O ⊙的参数方程为cos sin x y θθ=⎧⎨=⎩,(为参数),过点()02-,且倾斜角为α的直线与O ⊙交于A B ,两点.(1)求α的取值范围;(2)求AB 中点P 的轨迹的参数方程. 23.选修4—5:不等式选讲](10分)设函数()211f x x x =++-.(1)画出()y f x =的图像;(2)当[)0x +∞∈,,()f x ax b +≤,求a b +的最小值.参考答案:1 2 3 4 5 6 7 8 9 10 11 12 CDABCADBCBCB13.1214.3- 15. 16.2 17.(12分)解:(1)设{}n a 的公比为,由题设得1n n a q -=.由已知得424q q =,解得0q =(舍去),2q =-或2q =. 故1(2)n n a -=-或12n n a -=.(2)若1(2)n n a -=-,则1(2)3n n S --=.由63m S =得(2)188m -=-,此方程没有正整数解.若12n n a -=,则21n n S =-.由63m S =得264m=,解得6m =. 综上,6m =.18.(12分)解:(1)第二种生产方式的效率更高. 理由如下:(i )由茎叶图可知:用第一种生产方式的工人中,有75%的工人完成生产任务所需时间至少80分钟,用第二种生产方式的工人中,有75%的工人完成生产任务所需时间至多79分钟.因此第二种生产方式的效率更高.(ii )由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间的中位数为85.5分钟,用第二种生产方式的工人完成生产任务所需时间的中位数为73.5分钟.因此第二种生产方式的效率更高.(iii )由茎叶图可知:用第一种生产方式的工人完成生产任务平均所需时间高于80分钟;用第二种生产方式的工人完成生产任务平均所需时间低于80分钟,因此第二种生产方式的效率更高.(iv )由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间分布在茎8上的最多,关于茎8大致呈对称分布;用第二种生产方式的工人完成生产任务所需时间分布在茎7上的最多,关于茎7大致呈对称分布,又用两种生产方式的工人完成生产任务所需时间分布的区间相同,故可以认为用第二种生产方式完成生产任务所需的时间比用第一种生产方式完成生产任务所需的时间更少,因此第二种生产方式的效率更高.以上给出了4种理由,考生答出其中任意一种或其他合理理由均可得分. (2)由茎叶图知7981802m +==. 列联表如下:超过m 不超过m第一种生产方式 15 5 第二种生产方式515(3)由于2240(151555)10 6.63520202020K ⨯-⨯==>⨯⨯⨯,所以有99%的把握认为两种生产方式的效率有差异.19.(12分) 解:(1)由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC ⊂平面ABCD ,所以BC ⊥平面CMD ,故BC ⊥DM .因为M 为CD 上异于C ,D 的点,且DC 为直径,所以 DM ⊥CM . 又 BC CM =C ,所以DM ⊥平面BMC .而DM ⊂平面AMD ,故平面AMD ⊥平面BMC .(2)以D 为坐标原点,DA 的方向为x 轴正方向,建立如图所示的空间直角坐标系D −xyz .当三棱锥M −ABC 体积最大时,M 为CD 的中点.由题设得(0,0,0),(2,0,0),(2,2,0),(0,2,0),(0,1,1)D A B C M ,(2,1,1),(0,2,0),(2,0,0)AM AB DA =-== 设(,,)x y z =n 是平面MAB 的法向量,则 0,0.AM AB ⎧⋅=⎪⎨⋅=⎪⎩n n 即20,20.x y z y -++=⎧⎨=⎩ 可取(1,0,2)=n .DA 是平面MCD 的法向量,因此5cos ,5||||DA DA DA ⋅==n n n , 25sin ,5DA =n , 所以面MAB 与面MCD 所成二面角的正弦值是255. 20.(12分)解:(1)设1221(,),(,)A y x y x B ,则222212121,14343y x y x +=+=. 两式相减,并由1221y x y k x -=-得1122043y x y k x +++⋅=. 由题设知12121,22x y x y m ++==,于是 34k m=-.①由题设得302m <<,故12k <-.(2)由题意得(1,0)F ,设33(,)P x y ,则331122(1,)(1,)(1,)(0,0)y x x y x y -+-+-=.由(1)及题设得3321213()1,()20y y x x y x m =-+==-+=-<.又点P 在C 上,所以34m =,从而3(1,)2P -,3||2FP =.于是222211111||(1)(1)3(1)242x x FA x x y =-+=-+-=-.同理2||22x FB =-. 所以121||||4()32FA FB x x +=-+=. 故2||||||FP FA FB =+,即||,||,||FA FP FB 成等差数列.设该数列的公差为d ,则1122212112||||||||||()422FB FA x x x x x x d =-=-=+-.② 将34m =代入①得1k =-. 所以l 的方程为74y x =-+,代入C 的方程,并整理得2171404x x -+=.故121212,28x x x x +==,代入②解得321||28d =.所以该数列的公差为32128或32128-. 21.(12分)解:(1)当0a =时,()(2)ln(1)2f x x x x =++-,()ln(1)1xf x x x'=+-+. 设函数()()ln(1)1x g x f x x x '==+-+,则2()(1)xg x x '=+. 当10x -<<时,()0g x '<;当0x >时,()0g x '>.故当1x >-时,()(0)0g x g ≥=,且仅当0x =时,()0g x =,从而()0f x '≥,且仅当0x =时,()0f x '=. 所以()f x 在(1,)-+∞单调递增.学#又(0)0f =,故当10x -<<时,()0f x <;当0x >时,()0f x >. (2)(i )若0a ≥,由(1)知,当0x >时,()(2)ln(1)20(0)f x x x x f ≥++->=,这与0x =是()f x 的极大值点矛盾.(ii )若0a <,设函数22()2()ln(1)22f x xh x x x ax x ax==+-++++. 由于当1||min{1,}||x a <时,220x ax ++>,故()h x 与()f x 符号相同. 又(0)(0)0h f ==,故0x =是()f x 的极大值点当且仅当0x =是()h x 的极大值点. 2222222212(2)2(12)(461)()1(2)(1)(2)x ax x ax x a x ax a h x x x ax x ax x ++-++++'=-=++++++. 如果610a +>,则当6104a x a +<<-,且1||min{1,}||x a <时,()0h x '>,故0x =不是()h x 的极大值点.如果610a +<,则224610a x ax a +++=存在根10x <,故当1(,0)x x ∈,且1||min{1,}||x a <时,()0h x '<,所以0x =不是()h x 的极大值点.如果610a +=,则322(24)()(1)(612)x x h x x x x -'=+--.则当(1,0)x ∈-时,()0h x '>;当(0,1)x ∈时,()0h x '<.所以0x =是()h x 的极大值点,从而0x =是()f x 的极大值点综上,16a =-.22.选修4—4:坐标系与参数方程](10分)【解析】(1)O 的直角坐标方程为221x y +=.当2απ=时,与O 交于两点. 当2απ≠时,记tan k α=,则的方程为2y kx =-.与O 交于两点当且仅当22||11k<+,解得1k <-或1k >,即(,)42αππ∈或(,)24απ3π∈.综上,α的取值范围是(,)44π3π.(2)的参数方程为cos ,(2sin x t t y t αα=⎧⎪⎨=-+⎪⎩为参数,44απ3π<<.设A ,B ,P 对应的参数分别为A t ,B t ,P t ,则2A B P t tt +=,且A t ,B t 满足222sin 10t t α-+=.于是22sin A B t t α+=,2sin P t α=.又点P 的坐标(,)x y 满足cos ,2sin .P P x t y t αα=⎧⎪⎨=-+⎪⎩ 所以点P 的轨迹的参数方程是2sin 2,222cos 222x y αα⎧=⎪⎪⎨⎪=--⎪⎩(α为参数,44απ3π<<.23.选修4—5:不等式选讲](10分)【解析】(1)13,,21()2,1,23, 1.x x f x x x x x ⎧-<-⎪⎪⎪=+-≤<⎨⎪≥⎪⎪⎩()y f x =的图像如图所示.(2)由(1)知,()y f x =的图像与y 轴交点的纵坐标为,且各部分所在直线斜率的最大值为,故当且仅当3a ≥且2b ≥时,()f x ax b ≤+在[0,)+∞成立,因此a b +的最小值为.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

G (0, 1, 1 t ) ,则 JE ( t , 0, t ) , JI (0, 1 t , t 1) , EI (t , 1 t , 1) , i j k | JE JI | 1 t (1 t ) 3 , t 0 t EG (t 1, 1, t ) ,所以有 S EJI 2 2 2 0 1 t t 1
理科数学试题及参考答案 第 4 页(共 9 页)
二、填空题:本题共 4 小题,每小题 5 分,共 20 分。
x 2 y 2 0 13. 若 , y 满足约束条间 x y 1 0 , 则 z 3x 2 y 的 y 0
最大值为 【解析】 :满足约束条所描述的如右图阴影部分所示,当直线 z 3 x 2 y 过 (2, 0) 时, z 取得 最大值,为 z max 6 14. 记 S n 为数列 {a n } 的前 n 项和,若 S n 2 a n 1 ,则 S 6 【解析】 :若 S n 2 a n 1 ,则 S n 1 2 a n 1 1 ,得 a n 2( a n a n 1 ) ,即 q
2 2 4 2 2 5 ,选择 B 选项。
理科数学试题及参考答案 第 2 页(共 9 页)
8. 设抛物线 C : y 2 4 x 的焦点为 F,过点 ( 2, 0) 且斜率为
FM FN =
A. 5 B. 6 C. 7 【解析】 :如右图所示,直线的方程为 l : y
则下面结论中不正确的是 A. 新农材建设后,种植收入减少 B. 新农村建设后,其他收入增加了一倍以上 C. 新农村建设后,养殖收入增加了一倍 D. 新农材建设后,养殖收入与第三产业收入的总和超过了经济收入的一半
理科数学试题及参考答案 第 1 页(共 9 页)
【解析】 :根据题意经过一年的新农村建设,农村的经济收入增加了一倍,设第一年总收入为 则第二年为 2 x 。 第一年各项收入为: 种植收入为 0.6 x 、 第三产业收入为 0.06 x 、 x, 其他收入为 0.04 x 、养殖收入为 0.3 x ;第二年各项收入为:种植收入为 0.74 x 、第 三产业收入为 0.56 x 、其他收入为 0.1x 、养殖收入为 0.6 x 。对于 A 选项,第二年 种植收入 0.74 x 大于第一年种植收入 0.6 x ,错误。 对于 B 选项,第二年其他收入/第一年其他收入= 0.1x /0.04 x 2 ,正确。 对于 C 选项,第二年养殖收入/第一年养殖收入= 0.6 x /0.3 x 2 ,正确。 对于 D 选项,养殖收入与第三产业收入之和 (0.6 x 0.56 x ) / 2 x 0.5 ,正确。 因此,选择 A 选项 4. 记 S n 为等差数列 {an } 的前 n 项和,若 3 S 3 S 2 S 4 , a1 2 ,则 a5 A. 12 B. 10 C. 10 D. 12 【解析】 : 3 S 3 S 2 S 4 ,则 S 3 ( S 4 S 3 ) ( S 3 S 2 ) d ,而 S 3 3a1 3d d ,则有
2
C. y 2 x
D. y x
【解析】 : f ( x ) 为奇函数,则 x 项系数为 0,即 a 1 , f ( x ) x 3 x , f (0) 1 ,切线为
y x ,选择 D 选项。
6. 在 △ABC 中,AD 为 BC 边上的中线,E 为 AD 中点,则 EB =
S EIG
i j | EI EG | 1 t 1 t 2 2 t 1 1
k 1 t
(t 2 t 1) 3 , S EFGHIJ 3S EJI S EIG 2
1 (1 2t 2t 2 ) 3 3 3 ,因此当且仅当 t 时, ( S EFGHIJ ) max ,选择 A 选项。 2 2 4
一、选择题:本题共 12 小题,每小题 5 分,共 60 分。在每小题给出的四个选项中,只有一项 是符合题目要求的。 1. 设 z A. 0
1 i 2i ,则 | z | 1 i
B.
1 2
C. 1
D.
2
(1 i)2 2i 2i 2i i ,则 | z | 1 。选择 C 选项 【解析】 :z (1 i)(1 i) 2 2 2. 已知集合 A {x | x x 2 0} ,则 CR A
D 选项。
e x , x 0 , g ( x ) f ( x ) x a ,若 g ( x) 存在 2 个零点,则 a 的取 9. 已知函数 f ( x ) ln x, x 0
值范围是 A. [1, 0) B. [0, ) C. [1, ) D. [1, )
A. {x | 1 x 2} C. {x | x 1} {x | x 2}
2
B. {x | 1 x 2} D. {x | x 1} {x | x 2}
【解析】 : A {x | x x 2 0}={x | x 1or x 2} ,则 CR A {x | 1 x 2} ,选择 B 选 项。 3. 某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该 地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例, 得到如下饼图:
必定存在一个零点。综上所述,即 a 1 ,选择 C 选项。 10. 右图来自古希腊数学家希波克拉底所研究的几何图形, 此图 由三个半圆构成,三个半圆的直径分别为 Rt△ABC 的斜边 BC, 直角边 AB、 AC,△ABC 的三边所围成的区域记为 I 黑 色部分记为 II,其余部分记为 III。在整个图形中随机取一 点,此点取自 I,II,III 的概率分别记为 p1 、 p2 、 p3 则 A. p1 p2 B. p1 p3 C. p2 p3 D. p1 p2 p3
3 3 ) , N (3, 3) ,则 | MN | 3 ,选择 B 选项。 2 2 12. 已知正方体的棱长为 1,每条棱所在直线与平面 所成的角都相等,则 截此正方体所
联立渐近线方程可得, M ( , 得截面面积最大值为 A.
3 3 4
B.
2 3 3
C.
3 2 4
D.
3 2
图 12-1 图 12-2 等边 ACB1 , 重心为 O , 【解析】 : (1)依题意, 如图 12-1 中, 在正方体 ABCD A1 B1C1 D1 中, 且 BO 平面 ACB1 , BA BC BB1 ,BAO1 BCO1 BB1O1 ,而又 因此, 正方体 ABCD A1 B1C1 D1 中任意一 正方体其他边均平行于 BA、BC、BB1 , 条边与平面 ACB1 夹角相等。 (2)平移平面 ACB1 ,如图 12-2 所示,与正方体交于六边形 EFGHIJ ,建立直角坐 标系 D1 xyz ,设 AE AJ t ,则 ED 1 t ,连接 EI、IG、GE ,因此正六边 形面积分为 3S EJI S EIG ,则有 E (1 t , 0, 1) , J (1, 0, 1 t ) , I (1, 1 t , 0) ,
【解析】 :当 x 0 时, g ( x ) e x x a ,则 g ( x) 在 (,0] 上单调增加,仅可能存在一个 零点;当 x 0 时, g ( x ) ln x x a ,则 g ( x) 在 (0, ) 上单调增加,仅可能存 在一个零点。依题意 g ( x) 存在 2 个零点,则在 (, 0] 上存在一个,在 (0, ) 上
2
2 的直线交于 M、N 两点,则 3
D. 8
2 ( x 2) ,代入抛 3
物线方程 C : y 2 4 x 得: x 5 x 4 0 则 xM 1 、
x N 4 ,可得 M (1, 2) 、 N (4, 4) ,而又 F (1, 0) 可得 因此 FM FN =8 , 选择 FM (0, 2) ,FN (3, 4) ,

3 1 AB AC 4 4 3 1 D. AB AC 4 4 1 1 【解析】 : △ ABC 如右图所示, EB AB AE AB AD AB ( AB AC ) 2 4 1 3 = AB AC ,选择 A 选项。 4 4 1 3 AB AC 4 4 1 3 C. AB AC 4 4
【解析】 : 落入 I, II, III 的概率即为三者的面积关系。 设 AB 2 R ,AC 2 r , 则 S I 2 Rr , 而 S II
SO1 SO2 S O 2
S△ABC
R2 r 2 (R2 r 2 )
2
2 Rr 2 Rr , 而
3 2
B. 3
C. 2 3
D. 4
理科数学试题及参考答案 第 3 页(共 9 页)
【解析】 : 双曲线的渐近线方程为 y
x , 二者不垂直, 3
因此只有直线 MN 垂直与其中一条渐近线,如 右图所示,则直线 MN 斜率为 kMN 3 ,又 过 F (2,0) ,则 MN 方程为: y 3( x 2) 。
d 3 ,则 a5 a1 4 d 10 ,选择 B 选项。
5. 设函数 f ( x ) x 3 ( a 1) x 2 ax ,若 f ( x ) 为奇函数,则曲线 y f ( x ) 在点 (0, 0) 处的 切线方程为 A. y 2 x B. y x
S III
1 (R2 r 2 ) S O S△ABC 2 Rr ,即 SI SII ,则 p1 p2 ,选择 A 选项。 2 2
x2 11. 已知双曲线 C : y 2 1 ,O 为坐标原点,F 为 C 的右焦点,过 F 的直线与 C 的两条 3
相关文档
最新文档