弹簧计算公式
弹簧弹力计算公式
弹簧弹力计算公式 Corporation standardization office #QS8QHH-HHGX8Q8-GNHHJ8弹力计算公式压力弹簧初拉力计算F 0=〖{π3.14×d 3}÷(8×D)〗×79mpa F 0={3.14×(5×5×5)÷(8×33)}×79=117 kgf1. 压力弹簧的设计数据,除弹簧尺寸外,更需要计算出最大负荷及变位尺寸的负荷;2. 弹簧常数:以k 表示,当弹簧被压缩时,每增加1mm 距离的负荷(kgf/mm);3. 弹簧常数公式(单位:kgf/mm );K=(G ×d 4)/(8×D 3×Nc)G=线材的钢性模数:琴钢丝G=8000 ;不锈钢丝G=7300 ,60Si2MnA 钢丝G=7900,磷青铜线G=4500 ,黄铜线G=3500 d=线径(钢丝直径)D=中径N=总圈数Nc=有效圈数F=运动行程(550mm) 弹簧常数计算范例:线径=5.0mm , 中径=20mm , 有效圈数=9.5圈 ,钢丝材质=不锈钢丝K=(G ×d 4)/(8×D 3×Nc)=(7900×54)/(8×203×9.5)=8.12kgf/mm ×(F=100)=812 kgf拉力弹簧拉力弹簧的初张力:初张力等于适足拉开互相紧贴的弹簧并圈所需的力,初张力在弹簧卷制成形后发生。
拉力弹簧在制作时,因钢丝材质、线径、弹簧指数、静电、润滑油脂、热处理、电镀等不同,使得每个拉力弹簧初始拉力产生不平均的现象。
所以安装各规格的拉力弹簧时,应预拉至各并圈之间稍为分开一些间距所需的力称为初张力。
初张力=P-(k×F1)=最大负荷-(弹簧常数×拉伸长度)扭力弹簧弹簧常数:以 k 表示,当弹簧被扭转时,每增加1°扭转角的负荷 (kgf/mm)弹簧常数公式(单位:kgf/mm ):K=(E ×d 4)/(1167×D ×p ×N ×R)E=线材之钢性模数:琴钢丝E=21000 ,不锈钢丝E=19400 ,磷青铜线E=11200 ,黄铜线E=11200d=线径(钢丝直径)D=中径N=总圈数R=负荷作用的力臂p=3.1416。
弹簧计算公式
胡克弹性定律指出,在弹性极限范围内,弹簧的弹性力f 与弹簧的长度x 成正比,即f =-kx,k 是一个物体的质量弹性系数,该系数由材料的性质决定,负号表示弹簧产生的弹性力与其延伸(或压缩)方向相反弹簧常数: 以k 表示,当弹簧被压缩时,载荷(kgf/mm)增加1mm 的距离,弹簧常数公式(单位: kgf/mm) : k = (g d4)/(8dm3 nc) g = 钢丝的刚度模量: 钢琴丝g = 8000; 不锈钢丝g = 7300; 磷青铜丝g = 4500;黄铜丝g = 3500d = 线径= 0d = 外径= id = 内径= md = 中径= do-dn = 转速总数弹簧常数的计算例子: 线径= 2.0 mm,外径= 22 mm,总匝数= 5。
5圈,钢丝材料= 钢琴钢丝k = (gxd4)/(8xdm3xnc) = (8000x24)/(8x203x3.5) = 0.571 kg f/mmpull,张力弹簧的k 值与压力弹簧的k 值相同。
张力弹簧的初始张力: 初始张力等于拉开彼此接近的弹簧所需的力,并发生在弹簧轧制成型之后。
在制作张力弹簧时,由于钢丝材质、线径、弹簧指数、静电现象、油脂、热处理、电镀等的不同,使得各张力弹簧的初始张力不均匀。
因此,在安装各种规格的张力弹簧时,应该预张力到平行弯道之间一定距离的力称为初张力。
初始张力= p-(kxf1) = 最大载荷-(弹簧常数x 拉伸长度)扭转弹簧常数: 以k 表示,当弹簧扭转时,载荷(kgf/m)增加1个扭转角。
弹簧常数(单位: kgf/mm) : k = (exd #)/(1167 xdmxpnxr) e = 钢丝的刚度模量: 钢琴线e = 21000,不锈钢线e = 19400,磷青铜线e =11200,黄铜丝e = 11200d = 线径= 0d = 外径= id = 内径= md = 中径= do-dn = 载荷作用下转臂的总长度= 3.1416。
弹簧力的计算
弹簧力的计算弹簧力是一个力学中常见的概念,它定义了弹簧接受外力时的反作用力大小。
弹簧力的计算涉及到弹簧的弹性系数、弹簧的伸长或压缩量以及外力的大小,同时也与弹簧的形状和材料有关。
首先,需要明确弹簧力的计算公式。
一般来说,弹簧力可以用胡克定律来计算,即 F = k * x,其中 F 代表弹簧力,k 代表弹性系数,x 代表弹簧的伸长或压缩量。
这个公式说明了弹簧力与伸长或压缩量成正比,而弹性系数则是弹簧的特性之一。
弹性系数取决于弹簧的形状和材料。
不同形状的弹簧有不同的弹性系数计算方法,如圆环弹簧、螺旋弹簧等。
此外,弹簧材料的选择也会影响弹性系数的取值。
常见的弹簧材料有金属材料如钢、铜等,以及非金属材料如橡胶。
对于圆环弹簧,弹性系数 k 的计算可以按照以下公式进行:k = 3 * E * R^4 / (4 * d^3 * n),其中 E 代表弹簧材料的弹性模量,R 代表弹簧的平均半径,d 为弹簧的线径,n 代表弹簧的匝数。
这个公式显示了弹性系数与弹簧尺寸及材料的关系,也说明了弹性系数的大小对于弹簧力的计算具有重要意义。
螺旋弹簧的弹性系数计算可以使用更为简单的公式:k = (G * d^4) / (8 * D^3 * n),其中 G 代表弹簧材料的剪切模量,d 代表弹簧线径,D 为弹簧的平均直径,n 表示弹簧的匝数。
这个公式说明了弹性系数与弹簧尺寸及材料的关联,而剪切模量则与弹簧材料的剪切刚度有关。
了解了弹性系数的计算方法,接下来需要考虑弹簧的伸长或压缩量。
通常情况下,伸长或压缩量可以通过直接测量获得,也可以通过应变仪器或力传感器等设备进行测量。
一般而言,弹簧的伸长或压缩量与作用力大小成正比。
通过合理的测量并代入公式中,可以求解弹簧力的大小。
例如,假设我们有一个圆环弹簧,其线径为 0.5 mm,匝数为 10,材料弹性模量为 200 GPa,平均半径为 10 mm,并且伸长了 2 cm。
代入公式,我们可以得到弹性系数 k 的值为 400 N/m,即弹簧力为 800 N。
弹簧劲度系数计算公式
弹簧劲度系数计算公式1.直线形弹簧:直线形弹簧是最简单和常见的弹簧形状。
它的劲度系数可以通过钩定律来计算,钩定律表明弹簧受力与其形变成正比。
假设弹簧的形变量为x,受力为F,劲度系数为k,则钩定律可以写为F=kx。
2.螺旋形弹簧:螺旋形弹簧是应用最广泛的弹簧形状之一,如压缩弹簧和拉伸弹簧。
对于螺旋形弹簧,可以使用以下公式计算劲度系数:a)压缩弹簧:k=(G*d^4)/(8*N*D^3)其中G为杨氏模量,d为弹簧线径,N为弹簧总匝数,D为弹簧平均直径。
b)拉伸弹簧:k=(G*d^4)/(8*N*D^3)其中G为杨氏模量,d为弹簧线径,N为弹簧总匝数,D为弹簧平均直径。
3.扭转形弹簧:扭转形弹簧主要用于扭矩传递或储存能量。
扭转形弹簧的劲度系数可以使用以下公式进行计算:a)圆弦形扭转弹簧:k=(G*d^4)/(10.4*N*D^3)其中G为杨氏模量,d为弹簧线径,N为弹簧总匝数,D为弹簧平均直径。
b)方弦形扭转弹簧:k=(G*d^4)/(10.7*N*D^3)其中G为杨氏模量,d为弹簧线径,N为弹簧总匝数,D为弹簧平均直径。
需要注意的是,上述公式中的参数具体取值要根据弹簧的具体材料和几何参数来确定。
此外,材料的物理特性也会影响弹簧的劲度系数。
一般来说,杨氏模量越大,弹簧的劲度系数越大。
最后,弹簧的劲度系数也可以通过实验测量得到。
在实验中,将弹簧固定在一端,并施加一定的力量或位移观察弹簧的响应,从而计算得到劲度系数。
总之,弹簧劲度系数是描述弹簧硬度和弹性的重要物理量,通过以上列举的计算公式可以计算得到。
在实际应用中,还需根据弹簧的具体情况和实验数据来确定劲度系数的具体数值。
弹簧弹力计算公式
弹簧弹力计算公式 Revised by Liu Jing on January 12, 2021弹力计算公式压力弹簧初拉力计算F0=〖{π3.14×d3}÷(8×D)〗×79mpaF0={3.14×(5×5×5)÷(8×33)}×79=117 kgf1.压力弹簧的设计数据,除弹簧尺寸外,更需要计算出最大负荷及变位尺寸的负荷;2.弹簧常数:以k表示,当弹簧被压缩时,每增加1mm距离的负荷(kgf/mm);3.弹簧常数公式(单位:kgf/mm);K=(G×d4)/(8×D3×Nc)G=线材的钢性模数:琴钢丝G=8000 ;不锈钢丝G=7300 ,60Si2MnA钢丝G=7900,磷青铜线G=4500 ,黄铜线G=3500d=线径(钢丝直径)D=中径N=总圈数Nc=有效圈数F=运动行程(550mm)弹簧常数计算范例:线径=5.0mm , 中径=20mm , 有效圈数=9.5圈 ,钢丝材质=不锈钢丝K=(G×d4)/(8×D3×Nc)=(7900×54)/(8×203×9.5)=8.12kgf/mm×(F=100)=812 kgf拉力弹簧拉力弹簧的初张力:初张力等于适足拉开互相紧贴的弹簧并圈所需的力,初张力在弹簧卷制成形后发生。
拉力弹簧在制作时,因钢丝材质、线径、弹簧指数、静电、润滑油脂、热处理、电镀等不同,使得每个拉力弹簧初始拉力产生不平均的现象。
所以安装各规格的拉力弹簧时,应预拉至各并圈之间稍为分开一些间距所需的力称为初张力。
初张力=P-(k×F1)=最大负荷-(弹簧常数×拉伸长度)扭力弹簧弹簧常数:以 k 表示,当弹簧被扭转时,每增加1°扭转角的负荷 (kgf/mm)弹簧常数公式(单位:kgf/mm):K=(E×d4)/(1167×D×p×N×R)E=线材之钢性模数:琴钢丝E=21000 ,不锈钢丝E=19400 ,磷青铜线E=11200 ,黄铜线E=11200d=线径(钢丝直径)D=中径N=总圈数R=负荷作用的力臂p=3.1416。
弹簧计算公式
弹簧力F=-KX,其中X是弹性系数,X是形状变量。
物体在外力作用下发生变形后,如果去掉外力,主体可以恢复到原来的形状,即所谓的“弹性力”。
方向与使对象变形的外力的方向相反。
由于物体变形的多样性,弹性力的形式也不同。
例如,如果把一个重物放在一个塑料板上,弯曲的塑料应该回到原来的状态,产生向上的弹性,这就是它对重物的支撑力。
把一个物体挂在弹簧上,这个物体就会拉伸弹簧。
拉长的弹簧需要回到原来的状态,产生向上的弹性力,即作用在物体上的拉力。
扩展数据:在线弹性阶段,一般虎克定律成立,即当应力σ1<σP(σP是比例极限)时,它成立。
它不一定保持在弹性范围内,σP<σ1<σe(σe是弹性极限)。
虽然在弹性范围内,广义虎克定律并不成立。
胡克弹性定律指出,弹簧的弹性力F与弹簧的伸长(或压缩)x成正比,即F=k·x。
k是材料的弹性系数,它只由特性决定,与其他因素无关。
负号表示弹簧在与其拉伸(或压缩)相反的方向上产生力。
满足虎克定律的弹性体是一种重要的物理理论模型。
它是对现实世界中复杂非线性本构关系的线性化简。
实践证明,这在一定程度上是有效的。
然而,事实上,有许多例子不符合胡克定律。
胡克定律的意义不仅在于它描述了弹性体的变形与力之间的关系,而且它创造了一种重要的研究方法:对现实世界中复杂的非线性现象进行线性化简,这在理论上在物理学中并不少见。
Fn∕S=E·(Δl∕l.)式中,FN为内力,s为FN作用的面积,L为弹性体的原始长度,ΔL为应力后的伸长率,比例系数e称为弹性模量,也称为杨氏模量,因为应变ε=ΔL/L。
因此,弹性模量和应力σ=FN/s具有相同的单位。
弹性模量是描述材料本身的物理量。
由上式可知,当应力大应变小时,弹性模量大,反之亦然。
否则,弹性模量较小。
弹性模量反映了材料对拉伸或压缩变形的抵抗力。
因为两种材料的弹性模量是不一样的,所以两者的弹性模量是不同的。
弹簧弹力计算公式
弹簧弹力计算公式标准化管理部编码-[99968T-6889628-J68568-1689N]弹力计算公式压力弹簧初拉力计算F0=〖{π×d 3}÷(8×D)〗×79mpaF0={×(5×5×5)÷(8×33)}×79=117 kgf1.压力弹簧的设计数据,除弹簧尺寸外,更需要计算出最大负荷及变位尺寸的负荷;2.弹簧常数:以k表示,当弹簧被压缩时,每增加1mm距离的负荷(kgf/mm);3.弹簧常数公式(单位:kgf/mm);K=(G×d4)/(8×D3×Nc)G=线材的钢性模数:琴钢丝G=8000 ;不锈钢丝G=7300 ,60Si2MnA钢丝G=7900,磷青铜线G=4500 ,黄铜线G=3500d=线径(钢丝直径)D=中径N=总圈数Nc=有效圈数F=运动行程(550mm)弹簧常数计算范例:线径=5.0mm , 中径=20mm , 有效圈数=圈 ,钢丝材质=不锈钢丝K=(G×d4)/(8×D3×Nc)=(7900×54)/(8×203×=mm×(F=100)=812 kgf拉力弹簧拉力弹簧的初张力:初张力等于适足拉开互相紧贴的弹簧并圈所需的力,初张力在弹簧卷制成形后发生。
拉力弹簧在制作时,因钢丝材质、线径、弹簧指数、静电、润滑油脂、热处理、电镀等不同,使得每个拉力弹簧初始拉力产生不平均的现象。
所以安装各规格的拉力弹簧时,应预拉至各并圈之间稍为分开一些间距所需的力称为初张力。
初张力=P-(k×F1)=最大负荷-(弹簧常数×拉伸长度)扭力弹簧弹簧常数:以 k 表示,当弹簧被扭转时,每增加1°扭转角的负荷 (kgf/mm)弹簧常数公式(单位:kgf/mm):K=(E×d4)/(1167×D×p×N×R)E=线材之钢性模数:琴钢丝E=21000 ,不锈钢丝E=19400 ,磷青铜线E=11200 ,黄铜线E=11200d=线径(钢丝直径)D=中径N=总圈数R=负荷作用的力臂p=。
弹簧计算公式
弹簧力F =-KX,其中X是弹性系数,X是形状变量。
在物体通过外力变形后,如果去除外力,则主体可以恢复其原始形状,这称为“弹性力”。
其方向与使物体变形的外力方向相反。
由于物体变形的多样性,弹力的形式也多种多样。
例如,如果将重物放在塑料板上,则弯曲的塑料应恢复到其原始状态并产生向上的弹力,这是其对重物的支撑力。
将一个物体挂在弹簧上,然后该物体将弹簧拉长。
需要将细长弹簧恢复到其原始状态,以产生向上的弹力,该弹力是作用在物体上的拉力。
扩展数据:在在线弹性阶段,一般的胡克定律成立,也就是说,当应力σ1 <σP(σP是比例极限)时,它成立。
它不一定保持在弹性范围内,σP <σ1 <σe(σe是弹性极限)。
尽管在弹性范围内,但广义的胡克定律不成立。
虎克的弹性定律指出,弹簧的弹力F与弹簧的伸长(或压缩)x成正比,即f = k·X。
K是材料的弹性系数,仅由特性决定材质,与其他因素无关。
负号表示弹簧在与其伸长(或压缩)相反的方向上产生力。
满足胡克定律的弹性体是重要的物理理论模型。
它是现实世界中复杂的非线性本构关系的线性简化,实践证明其在一定程度上是有效的。
但是,实际上,有许多不满足胡克定律的例子。
胡克定律的意义不仅在于它描述了弹性体的变形与力之间的关系,而且在于它创造了一种重要的研究方法:在现实世界中线性简化复杂的非线性现象,这在理论物理学中并不罕见。
Fn ∕S = E·(Δl∕l。
)其中FN是内力,s是FN作用的面积,L.是弹性体的原始长度,ΔL是应力后的伸长率,比例系数e称为弹性模量,也称为杨氏模量,因为应变ε=ΔL /L。
因此,弹性模量和应力σ= FN / s具有相同的单位。
弹性模量是描述材料本身的物理量。
从上式可以看出,如果应力大,应变小,则弹性模量大;反之,则大。
否则,弹性模量较小。
弹性模量反映了材料对拉伸或压缩变形的抵抗力。
对于某种材料,拉伸和压缩的弹性模量不同,但相差不大,因此可以将两者视为相同。
弹簧力的计算公式
胡克的弹性定律指出:在弹性限度内,弹簧的弹力f和弹簧的长度x成正比,即f=-kx,k是物质的弹性系数,它由材料的性质所决定,负号表示弹簧所产生的弹力与其伸长(或压缩)的方向相反。
压力弹簧的设计数据,除弹簧尺寸外,更需要计算出最大负荷及变位尺寸的负荷;弹簧常数:以k表示,当弹簧被压缩时,每增加1mm距离的负荷(kgf/mm);弹簧常数公式(单位:kgf/mm):K=(G×d4)/(8×Dm3×Nc)G=线材的钢性模数:琴钢丝G=8000 ;不锈钢丝G=7300;磷青铜线G=4500 ;黄铜线G=3500d=线径Do=OD=外径Di=ID=内径Dm=MD=中径=Do-dN=总圈数Nc=有效圈数=N-2弹簧常数计算范例:线径=2.0mm , 外径=22mm , 总圈数=5.5圈 ,钢丝材质=琴钢丝K=(G×d4)/(8×Dm3×Nc)=(8000×24)/(8×203×3.5)=0.571kgf/mm拉力弹簧拉力弹簧的 k值与压力弹簧的计算公式相同。
拉力弹簧的初张力:初张力等于适足拉开互相紧贴的弹簧并圈所需的力,初张力在弹簧卷制成形后发生。
拉力弹簧在制作时,因钢丝材质、线径、弹簧指数、静电、润滑油脂、热处理、电镀等不同,使得每个拉力弹簧初始拉力产生不平均的现象。
所以安装各规格的拉力弹簧时,应预拉至各并圈之间稍为分开一些间距所需的力称为初张力。
初张力=P-(k×F1)=最大负荷-(弹簧常数×拉伸长度)扭力弹簧弹簧常数:以 k 表示,当弹簧被扭转时,每增加1°扭转角的负荷(kgf/mm).弹簧常数公式(单位:kgf/mm): K=(E×d4)/(1167×Dm×p×N×R)E=线材之钢性模数:琴钢丝E=21000 ,不锈钢丝E=19400 ,磷青铜线E=11200,黄铜线E=11200d=线径Do=OD=外径Di=ID=内径Dm=MD=中径=Do-dN=总圈数R=负荷作用的力臂p=3.1416。
弹簧力的计算公式
E=线材之钢 性模数:琴 钢丝 E=21000 , 不锈钢丝 E=19400 , 磷青铜线 E=11200,黄 铜线 E=11200 d=线径
胡克的弹性定律指出:在弹性限度内,弹簧的弹力f和弹簧的长度x成正比,即f=-kx,k是物 质的弹性系数,它由材料的性质所决定,负号表示弹簧所产生的弹力与其伸长(或压缩)的 方向相反。
压力弹簧的 设计数据, 除弹簧尺寸 外,更需要 计算出最大 负荷及变位 尺寸的负 荷;
弹簧常数: 以k表示, 当弹簧被压 缩时,每增 加1mm距离 的负荷 (kgf/mm); 弹簧常数公 式(单位: kgf/mm): K=(G×d 4)/(8 ×Dm3× Nc)
Do=OD=外径
Di=ID=内径 Dm=MD=中径 =Do-d N=总圈数 R=负荷作用 的力臂 p=3.1416
G=线材的钢 性模数:琴 钢丝G=8000 ;不锈钢丝 G=7300;磷 青铜线 G=4500 ; 黄铜线 G=3500 d=线径
Do=OD=外径
Di=ID=内径
Dm=MD=中径 =Do-d
N=总圈数 Nc=有效圈 数=N-2 弹簧常数计 算范例:线 径=2.0mm , 外径=22mm , 总圈数 =5.5圈 ,钢 丝材质=琴 钢丝
K=(G×d4) /(8×D m3×N c)=(8 000×2 4)/(8 ×拉力力弹弹簧簧的 k值与压力
拉力弹簧的初张力:初张力等于适足拉开互相紧贴的弹簧并圈所需的力,初张力在弹簧卷制成形后发生。 拉力弹簧在制作时,因钢丝材质、线径、弹簧指数、静电、润滑油脂、热处理、电镀等不同, 使得每个拉力弹簧初始拉力产生不平均的现象。所以安装各规格的拉力弹簧时, 应预拉至各并圈之间稍为分开一些间距所需的力称为初张力。 初张力=P(k×F1)= 最大负荷(弹簧常数 ×拉伸长 度)
弹簧计算公式
弹簧力F=-KX,其中X是弹性系数,X是形状变量。
物体在外力作用下发生变形后,如果去掉外力,主体可以恢复到原来的形状,这就是所谓的“弹性力”。
方向与使对象变形的外力的方向相反。
由于物体变形的多样性,弹性力的形式也不同。
例如,如果把重物放在塑料板上,弯曲的塑料应恢复到原来的状态并产生向上的弹性,这就是它对重物的支撑力。
把一个物体挂在弹簧上,然后这个物体就会拉伸弹簧。
拉长的弹簧需要恢复到其原始状态,以产生向上的弹性力,即作用于物体上的拉力。
扩展数据:在线弹性阶段,一般虎克定律成立,即当应力σ1<σP(σP是比例极限)时,它成立。
它不一定保持在弹性范围内,σP<σ1<σe(σe是弹性极限)。
虽然在弹性范围内,广义虎克定律并不成立。
胡克弹性定律指出,弹簧的弹性力F与弹簧的伸长(或压缩)x成正比,即F=k·x。
k是材料的弹性系数,它只由特性决定,与其他因素无关。
负号表示弹簧在与其拉伸(或压缩)相反的方向上产生力。
满足虎克定律的弹性体是重要的物理理论模型。
它是对现实世界中复杂非线性本构关系的线性化简,实践证明,它在一定程度上是有效的。
然而,事实上,有许多例子不符合胡克定律。
胡克定律的意义不仅在于它描述了弹性体的变形与受力之间的关系,而且它创造了一种重要的研究方法:对现实世界中复杂的非线性现象进行线性化简,这在理论物理学中并不少见。
Fn∕S=E·(Δl∕l.)式中,FN是内力,s是FN作用的面积,L是弹性体的原始长度,ΔL是应力后的伸长率,比例系数e被称为弹性模量,也称为杨氏模量,因为应变ε=ΔL/L。
因此,弹性模量和应力σ=FN/s具有相同的单位。
弹性模量是描述材料本身的物理量。
由上式可知,当应力大应变小时,弹性模量大,反之则大。
否则,弹性模量较小。
弹性模量反映了材料对拉伸或压缩变形的抵抗力。
对于某种材料,拉伸和压缩的弹性模量是不同的,但差别不大,所以可以认为两者是相同的。
弹簧基本计算公式
弹簧的几何尺寸计算公式作者:转载关键词:弹簧的几何尺寸计算公式录入时间:2005年7月6日表12-1 圆柱形压缩、拉伸螺旋弹簧的几何尺寸计算公式名称与代号压缩螺旋弹簧拉伸螺旋弹簧弹簧直径d/mm由强度计算公式确定弹簧中径D2/mm D2=Cd弹簧内径D1/mm D1=D2-d弹簧外径D/mm D=D2+d弹簧指数C C=D2/d一般4≤C≤6螺旋升角γ/°对压缩弹簧,推荐γ=5°~9°有效圈数n由变形条件计算确定一般n>2总圈数n1压缩n1=n+(2~2.5);拉伸n1=nn1=n+(1.5~2)(YⅠ型热卷);n1的尾数为1/4、1/2、3/4或整圈,推荐1/2圈自由高度或长度H0/mm两端圈磨平n1=n+1.5时,H0=np+dn1=n+2时,H0=np+1.5dn1=n+2.5时,H0=np+2d两端圈不磨平n1=n+2时,H0=np+3dn1=n+2.5时,H0=np+3.5dLI型H0=(n+1)d+D1LⅡ型H0=(n+1)d+2D1LⅦ型H0=(n+1.5)d+2D1工作高度或长度H n/mmH n=H0-λn H n=H0+λn,λn-变形量节距p/mm p=d间距δ/mmδ=p-dδ=0压缩弹簧高径比b b=H0/D2展开长度L/mm L=πD2n1/cosγL=πD2n+钩部展开长度弹簧设计基本公式作者:转载关键词:设计录入时间:2005年4月13日(1)强度计算公式式中,K为曲度系数,;F为载荷;C为弹簧指数(亦称旋绕比),C = D2/d;[τ] 为弹簧材料的许用扭转应力。
由此可计算弹簧丝直径d。
(2)刚度计算公式式中,n 为弹簧的有效圈数;G为弹簧的切变模量;λ为弹簧变形量;D为弹簧圈中径;2其它符号意义同前。
(3)稳定性计算公式为了限制弹簧载荷F小于失稳时的临界载荷F cr。
一般取F = F cr/(2~2.5),其中临界载荷可按下式计算F cr = C B kH0式中,C B 为不稳定系数注:1---两端固定;2---一端固定;3---两端自由转动。
弹簧弹力计算公式
弹力计算公式压力弹簧初拉力计算F0=〖{π3.14×d3}÷(8×D)〗×79mpaF0={3.14×(5×5×5)÷(8×33)}×79=117 kgf1.压力弹簧的设计数据,除弹簧尺寸外,更需要计算出最大负荷及变位尺寸的负荷;2.弹簧常数:以k表示,当弹簧被压缩时,每增加1mm距离的负荷(kgf/mm);3.弹簧常数公式(单位:kgf/mm);K=(G×d4)/(8×D3×Nc)G=线材的钢性模数:琴钢丝G=8000 ;不锈钢丝G=7300 ,60Si2MnA钢丝G=7900,磷青铜线G=4500 ,黄铜线G=3500d=线径(钢丝直径)D=中径N=总圈数Nc=有效圈数F=运动行程(550mm)弹簧常数计算范例:线径=5.0mm , 中径=20mm , 有效圈数=9.5圈,钢丝材质=不锈钢丝K=(G×d4)/(8×D3×Nc)=(7900×54)/(8×203×9.5)=8.12kgf/m m×(F=100)=812 kgf拉力弹簧拉力弹簧的初张力:初张力等于适足拉开互相紧贴的弹簧并圈所需的力,初张力在弹簧卷制成形后发生。
拉力弹簧在制作时,因钢丝材质、线径、弹簧指数、静电、润滑油脂、热处理、电镀等不同,使得每个拉力弹簧初始拉力产生不平均的现象。
所以安装各规格的拉力弹簧时,应预拉至各并圈之间稍为分开一些间距所需的力称为初张力。
初张力=P-(k×F1)=最大负荷-(弹簧常数×拉伸长度)扭力弹簧弹簧常数:以k 表示,当弹簧被扭转时,每增加1°扭转角的负荷(kgf/mm)弹簧常数公式(单位:kgf/mm):K=(E×d4)/(1167×D×p×N×R)E=线材之钢性模数:琴钢丝E=21000,不锈钢丝E=19400 ,磷青铜线E=11200 ,黄铜线E=11200d=线径(钢丝直径)D=中径N=总圈数R=负荷作用的力臂p=3.1416。
弹簧弹力计算公式
弹力计算公式压力弹簧初拉力计算F0=〖{π3.14×d3}÷(8×D)〗×79mpaF0={3.14×(5×5×5)÷(8×33)}×79=117 kgf1.压力弹簧的设计数据,除弹簧尺寸外,更需要计算出最大负荷及变位尺寸的负荷;2.弹簧常数:以k表示,当弹簧被压缩时,每增加1mm距离的负荷(kgf/mm);3.弹簧常数公式(单位:kgf/mm);K=(G×d4)/(8×D3×Nc)G=线材的钢性模数:琴钢丝G=8000 ;不锈钢丝G=7300 ,60Si2MnA钢丝G=7900,磷青铜线G=4500 ,黄铜线G=3500d=线径(钢丝直径)D=中径N=总圈数Nc=有效圈数F=运动行程(550mm)弹簧常数计算范例:线径=5.0mm , 中径=20mm , 有效圈数=9.5圈,钢丝材质=不锈钢丝K=(G×d4)/(8×D3×Nc)=(7900×54)/(8×203×9.5)=8.12kgf/mm×(F=100)=812 kgf拉力弹簧拉力弹簧的初张力:初张力等于适足拉开互相紧贴的弹簧并圈所需的力,初张力在弹簧卷制成形后发生。
拉力弹簧在制作时,因钢丝材质、线径、弹簧指数、静电、润滑油脂、热处理、电镀等不同,使得每个拉力弹簧初始拉力产生不平均的现象。
所以安装各规格的拉力弹簧时,应预拉至各并圈之间稍为分开一些间距所需的力称为初张力。
初张力=P-(k×F1)=最大负荷-(弹簧常数×拉伸长度)扭力弹簧弹簧常数:以k 表示,当弹簧被扭转时,每增加1°扭转角的负荷(kgf/mm)弹簧常数公式(单位:kgf/mm):K=(E×d4)/(1167×D×p×N×R)E=线材之钢性模数:琴钢丝E=21000 ,不锈钢丝E=19400 ,磷青铜线E=11200 ,黄铜线E=11200d=线径(钢丝直径)D=中径N=总圈数R=负荷作用的力臂p=3.1416。
弹簧弹力计算公式
弹力计算公式压力弹簧初拉力计算F0=〖{π×d3}÷(8×D)〗×79mpaF0={×(5×5×5)÷(8×33)}×79=117 kgf1.压力弹簧的设计数据,除弹簧尺寸外,更需要计算出最大负荷及变位尺寸的负荷;2.弹簧常数:以k表示,当弹簧被压缩时,每增加1mm距离的负荷(kgf/mm);3.弹簧常数公式(单位:kgf/mm);K=(G×d4)/(8×D3×Nc)G=线材的钢性模数:琴钢丝G=8000 ;不锈钢丝G=7300 ,60Si2MnA钢丝G=7900,磷青铜线G=4500 ,黄铜线G=3500d=线径(钢丝直径)D=中径N=总圈数Nc=有效圈数F=运动行程(550mm)弹簧常数计算范例:线径=5.0mm , 中径=20mm , 有效圈数=圈,钢丝材质=不锈钢丝K=(G×d4)/(8×D3×Nc)=(7900×54)/(8×203×=m m×(F=100)=812 kgf拉力弹簧拉力弹簧的初张力:初张力等于适足拉开互相紧贴的弹簧并圈所需的力,初张力在弹簧卷制成形后发生。
拉力弹簧在制作时,因钢丝材质、线径、弹簧指数、静电、润滑油脂、热处理、电镀等不同,使得每个拉力弹簧初始拉力产生不平均的现象。
所以安装各规格的拉力弹簧时,应预拉至各并圈之间稍为分开一些间距所需的力称为初张力。
初张力=P-(k×F1)=最大负荷-(弹簧常数×拉伸长度)扭力弹簧弹簧常数:以k 表示,当弹簧被扭转时,每增加1°扭转角的负荷(kgf/mm)弹簧常数公式(单位:kgf/mm):K=(E×d4)/(1167×D×p×N×R)E=线材之钢性模数:琴钢丝E=21000,不锈钢丝E=19400 ,磷青铜线E=11200 ,黄铜线E=11200d=线径(钢丝直径)D=中径N=总圈数R=负荷作用的力臂p=。