高中数学函数题最容易出错的10类题型

合集下载

10.函数中易混易错的十个问题.doc精编版

10.函数中易混易错的十个问题.doc精编版

函数中易混易错的十个问题函数是高中数学的主干知识,在学习中应注意理解有关概念的内涵,甄别易混易错的概念,深入分析函数的性质。

下面就几个易混易错的问题举例说明。

一、复合函数[]()f g x 的定义域与复合函数的外层函数)(x f 的定义域复合函数[]()f g x 的定义域受函数()f x 的定义域的制约,如“已知()f x 的定义域为[],a b ,求[]()f g x 的定义域”是指求满足()a g x b ≤≤的x 的取值范围;而“已知复合函数[]()f g x 的定义域为[],a b ”就是指b x a ≤≤,则()f x 的定义域为()x g 在x ∈[]b a ,上的值域.例1.(1)设函数)(x f 的定义域为[0,2],求函数)12(-x f 的定义域:解: 由2120≤-≤x 解得21-≤x ≤23. 从而)12(-x f 的定义域为⎥⎦⎤⎢⎣⎡-23,21. (2)设函数)12(-x f )的定义域为[0,2],则)(x f 的定义域为____________.解:)(x f 的定义域即()|12|-=x x g 在[0,2]上的值域.由0≤x ≤2得-1≤2x-1≤3,从而0≤|2x-1|≤3.所以)(x f 的定义域为[0,3].练习:1.已知函数)(x f 的定义域为[0,1],值域为[1,2],求函数()2+x f 的定义域和值域。

答案:[-2,-1] ,[1,2]2.已知函数)2x 2(f -的定义域是[0,2],求f (-3x )的定义域由函数)2x 2(f -的定义域是[0,2],可得2x 0≤≤,有22x 22≤-≤-,故f (x )的定义域为[-2,2]二、函数的定义域为A 与函数在A 上恒有意义“函数在A 上恒有意义”中的A 是()f x 的定义域的一个子集,是不等式恒成立问题;而“函数的定义域为A ”中的A 是使函数有意义的自变量取值范围。

例2.已知函数m x f x x ⋅++=421)((1)若此函数在]1,(-∞上有意义,求m 的取值范围.(2)若此函数的定义域为]1,(-∞ ,求m 的取值范围.解:(1)因为函数m x f x x ⋅++=421)(在]1,(-∞ 上有意义,即0421≥⋅++m x x 对]1,(-∞∈x 恒成立,xx m )21()41(--≥ 令xx x u )21()41()(--=则)(x u 在]1,(-∞上单调递增 又∵43)1(-=u ∴43-≥m (2)若函数m x f x x ⋅++=421)(的定义域为]1,(-∞ ,则1240x x m ++≥的解集]1,(-∞ 从而有0)21()41(≥++m x x 的解为1≤x 易解得2411)21(m x -+-≥ 即2411log 21m x -+-≤ ∴12411log 21=-+-m 解得43-=m 练习:已知函数()212()log 23f x x ax =-+,解答下列问题:(1)若函数在[)1,-+∞内有意义,求实数a 的取值范围;(2)若函数的定义域为),3()1,(+∞-∞ ,求实数a 的值;解:记222()23()3u g x x ax x a a ==-+=-+-。

高中数学易错题精选

高中数学易错题精选

高中数学错题精选一:三角部分1.△ABC 中,已知cosA=135,sinB=53,则cosC 的值为( ) A 、6516 B 、6556 C 、6516或6556 D 、6516−2.为了得到函数⎪⎭⎫⎝⎛−=62sin πx y 的图象,可以将函数x y 2cos =的图象( ) A 向右平移6π B 向右平移3π C 向左平移6π D 向左平移3π 3.若sin cos θθ+=1,则对任意实数n nn ,sin cos θθ+的取值为( )A. 1B. 区间(0,1)C.121n −D. 不能确定4.函数]),0[)(26sin(2ππ∈−=x x y 为增函数的区间是…………………( )A. ]3,0[πB. ]127,12[ππC. ]65,3[ππ D. ],65[ππ 5.在锐角⊿ABC 中,若1tan +=t A ,1tan −=t B ,则t 的取值范围为( )A 、),2(+∞B 、),1(+∞C 、)2,1(D 、)1,1(− 6.已知53sin +−=m m θ,524cos +−=m m θ(πθπ<<2),则=θtan (C )A 、324−−m mB 、m m 243−−±C 、125− D 、12543−−或7.曲线y=2sin(x+)4πcos(x-4π)和直线y=21在y 轴右侧的交点按横坐标从小到大依次记为P 1、P 2、P 3……,则|P 2P 4|等于 ( )A .πB .2πC .3πD .4π8.函数的图象的一条对称轴的方程是()9.先将函数y=sin2x 的图象向右平移π3个单位长度,再将所得图象作关于y 轴的对称变换,则所得函数图象对应的解析式为 ( )A .y=sin(-2x+π3 )B . y=sin(-2x -π3)C .y=sin(-2x+ 2π3 )D . y=sin(-2x -2π3)10.函数x x y cos sin =的单调减区间是( )A 、]4,4[ππππ+−k k (z k ∈) B 、)](43,4[z k k k ∈++ππππC 、)](22,42[z k k k ∈++ππππ D 、)](2,4[z k k k ∈++ππππ11.已知奇函数()[]上为,在01−x f 单调减函数,又α,β为锐角三角形内角,则( ) A 、f(cos α)> f(cos β) B 、f(sin α)> f(sin β) C 、f(sin α)<f(cos β) D 、f(sin α)> f(cos β)高中数学错题精选二:不等式部分1、若不等式ax 2+x+a <0的解集为 Φ,则实数a 的取值范围( )A a ≤-21或a ≥21 B a <21 C -21≤a ≤21 D a ≥ 21 正确答案:D 错因:学生对一元二次不等式与二次函数的图象之间的关系还不能掌握。

高中数学高频错题总结 (含例题答案)

高中数学高频错题总结 (含例题答案)

高一上学期易错陷阱总结1、 对数型函数中,(易忽略真数位置大于0)5.已知y =log a (2-ax )在[0,1]上为减函数,则a 的取值范围为( ) A .(0,1) B .(1,2) C .(0,2) D .[2,+∞) 2、 集合中,空集的特殊性(易忘记讨论空集)13.已知集合A ={x |2a +1≤x ≤3a -5},B ={x |x <-1,或x >16},分别根据下列条件求实数a 的取值范围. (1)A ∩B =∅; (2)A ⊆(A ∩B ). 3、集合中,元素的互异性(易忽略导致取值错误)[例2] 已知集合⎩⎨⎧⎭⎬⎫1,a ,b a ={0,a 2,a +b },求a 2 019+b 2 020的值.跟踪探究 2.已知集合A ={2,x ,y },B ={2x,2,y 2}且A =B ,求x ,y 的值.4、集合中,元素的特殊要求(比如:易忽略x等条件)跟踪探究 1.若集合A ={x |1≤x ≤3,x ∈N },B ={x |x ≤2,x ∈N },则A ∩B =( )A.{x |1≤x ≤2} B .{x |x ≥1} C .{2,3}D .{1,2}5、抽象函数的定义域问题(定义域仅代表x ,括号内取值范围一致)14、函数的定义域为,则的定义域是___;函数的定义域为___.6、 区间中默认a<b14.已知函数f (x )=, x是偶函数,则a+b=7、 换元法求值域类问题(易忽略换元后,t 的取值范围)(1)f (x +1)=x +2x ,求f (x )的值域;8、动轴定区间类问题(分类讨论不重不漏)典型案例:求函数y =x 2-2ax -1在[0,2]上的最值.9同增异减求单调区间问题(对数型时不能忽略真数位置大于0)(多个区间,隔开)跟踪探究 2.求函数y =log 2(x 2-5x +6)的单调区间.10、分段函数单调性问题。

(易忽略结点处)13.已知函数f (x )=⎩⎪⎨⎪⎧x 2-ax +4,(x ≤1),-ax +3a -4,(x >1)且f (x )在R 上递减,则实数a 的取值范围________.11.解分式不等式。

强烈推荐高一数学练习函数易错题

强烈推荐高一数学练习函数易错题

强烈推荐高一数学练习函数易错题高中数学练习(函数中的易错题)1. 作函数(1)y =3x -1与(2)y =3x -1的图像,正确的作图顺序是:____和____。

A. (1)f (x )=3x ?(2)y =f (x -1)?(3)y =f (x )B. (1)f (x )=3x ?(2)y =f (x )?(3)y =f (x -1)2. (1)若x 2+2x +a >0在R 上恒成立,则实数a 满足的条件是________________;(2)若9+2?3+a >0 在R 上恒成立,则实数a 满足的条件是________________。

3. (1)若f (x )满足f (x )-f (2-x )=0,则y =f (x )图像的特征是___________________;(2)若f (x )满足f (x )+f (2-x )=0,则y =f (x )图像的特征是___________________;(3)若f (x )满足f (x )-f (x -2)=0,则y =f (x )图像的特征是___________________;(4)若f (x )满足f (x )+f (x -2)=0,则y =f (x )图像的特征是___________________。

4. (1)若方程4x -2x 1+a =0有解,则实数a 满足的条件是___________________;+(2)若方程4x -2x 1+a =0有两相异解,则实数a 满足的条件是__________________;(3)若方程x 2-2x +a =0有解,则实数a 满足的条件是_________________。

+x x5. (1)若函数f (x )=______________; 11-a 2x 2+4(a -1)x +4的定义域为R ,则实数a 满足的条件是22(2)若函数f (x )=lg ?的定义域为R ,则实数a 满足的条件是1-a x +4(a -1)x +4?()??____________;22(3)若函数(f x )=lg ?的值域为R ,则实数a 满足的条件是__________。

高考函数的十大题型

高考函数的十大题型

高考函数的十大题型一、函数定义与性质1.确定函数的定义域、值域,并描述函数的单调性、奇偶性、周期性等基本性质。

2.根据函数的不同特性比较大小,解决与函数性质相关的问题。

二、函数图象与变换1.能够绘制函数的图象,并分析函数的周期性、对称性等特性。

2.通过平移、对称、伸缩等变换,研究函数图象的变化规律。

三、函数解析式与求值1.根据函数解析式,求函数的值或已知函数值求自变量的值。

2.理解参数在函数中的作用,掌握参数的求法。

四、函数不等式与最值1.利用函数的单调性或导数研究不等式,解决与不等式相关的问题。

2.求解函数的最大值、最小值,以及在特定条件下的最优化问题。

五、函数零点与方程根1.求函数的零点或方程的根,并分析零点或根的分布情况。

2.利用零点或根的性质解决方程的求解问题。

六、函数单调性与极值1.利用导数研究函数的单调性,判断函数的极值点。

2.求函数的极值或已知极值求参数的值。

七、函数奇偶性与周期性1.分析函数的奇偶性,判断函数的对称性。

2.研究函数的周期性,掌握周期函数的性质和特点。

八、函数值域与最优化1.求函数的值域或已知值域求参数的范围。

2.解决与最优化相关的问题,如最大利润、最小成本等。

九、函数在实际问题中的应用1.利用函数模型解决实际问题,如增长率、人口模型等。

2.掌握常见函数在实际问题中的应用技巧和方法。

十、综合题与压轴题1.掌握综合题的解题思路和方法,能够灵活运用多个知识点解决复杂问题。

2.掌握压轴题的解题技巧和方法,提高解题能力和思维水平。

(完整版)高中高考数学(函数部分)易错题汇总及解析

(完整版)高中高考数学(函数部分)易错题汇总及解析
5.已知函数 在 上单调递增,则
A、 B、 C、 D、
答案:A
解析:根据导数解答,分出变量但注意等号是否取得。
6.已知函数 在 上是增函数,且 是偶函数,则 的大小顺序
是A B C D、
答案:A
解析:数形结合,根据题意易知函数f(x)在 上为增函数利用单调性即可比较大小。
7.若 都是定义在实数集 上的函数,且方程 有实数解,则 不可能的是()
(1)当 时, ,
(2)当 ,
(3)当 ,
综上: 。
27、证明略。
28、 ,


27.已知奇函数 的定义域为 ,且 在 上单调递增,
求证: 在 上单调递减。
28.已知 ,求 的最大值与最小值。
答案:
一、选择题:BCCCAABBBDDCADA
二、(17) ,(18) ,(19) ,(20)3,(21)-4,(22) ,
(23)-4,(24) ,
三、解答题:
25、 。
26、对称轴:Βιβλιοθήκη ,A、 B、C、 D、
答案:A
解析:易知 = 的形式,展开即可得a,b,c,d的关系,再利用当0<x<1时,f(x)小于零得关于b的不等式。
二、填空题:
17.若 是奇函数,且在 内是增函数,又 ,则 的解集是。
18.已知 ,则不等式 的解集为。
19.若关于 的方程 有实根,则实数 的取值范围是。
20.若 ,函数 的最大值为14,则 =。
A、 B、 C、 D、
答案:B
解析:可将选项逐次判断。
8.已知函数 在区间 上单调且 ,则方程 在区间 内()
A、至少有一实根B、至多有一实根C、没有实根D、必有惟一实根

高中数学易错题整理

高中数学易错题整理

高中数学错题集1、“直线ax+y +1=0和直线4x+ay -2=0”平行的充要条件为”a = “.22、.已知函数f(x)是R 上的减函数,A(0,-2),B(-3,2)是其图像上的两点,那么不等式|f(x -2)|>2的解集为 .请将错误的一个改正为 .3、已知正数x,y 满足x+ty =1,其中t 是给定的正实数,若1/x +1/y 的最小值为16,则实数t 的值为 .4、已知,,x y z R +∈,230x y z -+=,则2y xz的最小值 .34、若不等式|3x -b |<4的解集中的整数有且仅有1,2,3,则b 的取值范围 。

(5,7).5、已知正数x,y 满足4x-y=xy 则,x-y 的做小值为 .6、偶函数f(x)在[0,+∞]上是增函数,若f(ax+1)>f(x-3)在[1,2]上恒成立,则实数的取值范围为 .(a>1ora<-3)7、若数列{a n }的通项公式⋅⋅2n-2n-1n 22a =5()-4()55,数列{a n }的最大项为第x 项,最小项为第y 项,则x+y=_______________. 12. 38、已知a ,b 是两个互相垂直的单位向量, 且1=⋅=⋅b c a c 2=,则对0>t a t ++的最小值是 。

9、定义:区间)](,[2121x x x x <的长度为12x x -.已知函数|log |5.0x y =定义域为],[b a ,值域为]2,0[,则区间],[b a 的长度的最大值为 10.154函数f(x)=sin(ωx+π/3)(ω>0)在[0,2]上恰有一个最大值和最小值,则ω的取值范围是 .10.设D 、P 为△ABC 内的两点,且满足,51),(41+=+=则ABCAPDS S ∆∆= .0.1 11、设D 为ABC ∆的边AB 上的点,P 为ABC ∆内一点,且满足52,43+==,则=∆∆ABCAPD S S .10312、若函数2()x f x x a =+(0a >)在[)1,+∞上的最大值为3,则a 的值为113、 已知函数M,最小值为m,则mM的值为 ___________。

(完整版)高中数学易错题

(完整版)高中数学易错题

高中数学易错题数学概念的理解不透必修一(1)若不等式ax 2+x+a <0的解集为 Φ,则实数a 的取值范围( ) A.a ≤-21或a ≥21 B.a <21 C.-21≤a ≤21 D.a ≥ 21【错解】选A.由题意,方程ax 2+x+a=0的根的判别式20140a ∆<⇔-<⇔ a ≤-21或a ≥21,所以选A.【正确解析】D .不等式ax 2+x+a <0的解集为 Φ,若a=0,则不等式为x<0解集不合已知条件,则a 0≠;要不等式ax 2+x+a <0的解集为 Φ,则需二次函数y=ax 2+x+a 的开口向上且与x 轴无交点,所以a>0且20140120a a a ⎧∆≤⇔-≤⇔≥⎨>⎩.必修一(2)判断函数f(x)=(x -1)xx-+11的奇偶性为____________________【错解】偶函数.f(x)=(x -===,所以()()f x f x -===,所以f (x )为偶函数.【正解】非奇非偶函数.y=f(x)的定义域为:(1)(1)01011101x x xx x x +-≥⎧+≥⇔⇔-≤<⎨-≠-⎩,定义域不关于原点对称,所以此函数为非奇非偶函数.1) 必修二(4)1l ,2l ,3l 是空间三条不同的直线,则下列命题正确的是( ) (A)12l l ⊥,23l l ⊥13//l l ⇒ (B )12l l ⊥,3//l l ⇒13l l ⊥(C)123////l l l ⇒ 1l ,2l ,3l 共面 (D )1l ,2l ,3l 共点⇒1l ,2l ,3l 共面 【错解】错解一:选A.根据垂直的传递性命题A 正确; 错解二:选C.平行就共面;【正确解答】选B.命题A 中两直线还有异面或者相交的位置关系;命题C 中这三条直线可以是三棱柱的三条棱,因此它们不一定共面;命题D 中的三条线可以构成三个两两相交的平面,所以它们不一定共面.必修五(5)x=ab 是a 、x 、b 成等比数列的( )A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件 【错解】C.当.x=ab 时,a 、x 、b 成等比数列成立;当a 、x 、b 成等比数列时,x=ab 成立 .【正确解析】选D.若x=a=0,x=ab 成立,但a 、x 、b 不成等比数列, 所以充分性不成立;反之,若a 、x 、b成等比数列,则2x ab x =⇔=x=ab 不一定成立,必要性不成立.所以选D.排列组合(6)(1)把三枚硬币一起掷出,求出现两枚正面向上,一枚反面向上的概率. 分析:(1)【错解】三枚硬币掷出所有可能结果有2×2×2=8种,而出现两正一反是一种结果,故所求概率P=.81【正解】在所有的8种结果中,两正一反并不是一种结果,而是有三种结果:正、正、反,正、反、正,反、正、正,因此所求概率,83=P 上述错解在于对于等可能性事件的概念理解不清,所有8种结果的出现是等可能性的,如果把上述三种结果看作一种结果就不是等可能性事件了,应用求概率的基本公式n m P =自然就是错误的.公式理解与记忆不准(7)若1,0,0=+>>y x y x ,则yx41+的最小值为___________.【错解】 y x 41+8)2(14422=+≥≥y x xy ,错解原因是忽略等号成立条件. 【正解】yx 41+=945)(4≥++=+++yx xy yy x xy x(8)函数y=sin 4x+cos 4x -43的相位____________,初相为__________ .周期为_________,单调递增区间为____________.【错解】化简y=sin 4x+cos 4x -43=1cos 44x ,所以相位为4x ,初相为0,周期为2π,增区间为….【正确解析】y=sin 4x+cos 4x -43=11cos 4sin(4)442x x π=+.相位为42x π+,初相为2π,周期为2π,单调递增区间为21[,]()42k k k Z ππ-∈. 审题不严 (1)读题不清必修五(9)已知()f x 是R 上的奇函数,且当0x >时,1()()12x f x =+,则()f x 的反函数的图像大致是【错解】选B.因为1()2x y =在0x >内递减,且1()()12x f x =+过点(0,2),所以选B. 【正确解答】A .根据函数与其反函数的性质,原函数的定义域与值域同其反函数的值域、定义域相同.当10,0()1,122x x y ><<⇒<<,所以选A.或者首先由原函数过点(0,2),则其反函数过点(2,0),排除B 、C ;又根据原函数在0x >时递减,所以选A. 排列组合(10)一箱磁带最多有一盒次品.每箱装25盒磁带,而生产过程产生次品磁带的概率是0.01.则一箱磁带最多有一盒次品的概率是 .【错解】一箱磁带有一盒次品的概率240.01(10.01)⨯-,一箱磁带中无次品的概率25(10.01)-,所以一箱磁带最多有一盒次品的概率是240.01(10.01)⨯-+25(10.01)-.【正确解析】一箱磁带有一盒次品的概率124250.01(10.01)C ⋅⨯-,一箱磁带中无次品的概率02525(10.01)C ⋅-,所以一箱磁带最多有一盒次品的概率是124250.01(10.01)C ⋅⨯-+02525(10.01)C ⋅-.(2)忽视隐含条件必修一(11)设βα、是方程0622=++-k kx x 的两个实根,则22)1()1(-+-βα的最小值是( )不存在)D (18)C (8)B (449)A (-【错解】利用一元二次方程根与系数的关系易得:,6,2+==+k k αββα2222(1)(1)2121αβααββ∴-+-=-++-+2()22()2αβαβαβ=+--++23494().44k =--选A.【正确解析】利用一元二次方程根与系数的关系易得:,6,2+==+k k αββα2222(1)(1)2121αβααββ∴-+-=-++-+2()22()2αβαβαβ=+--++23494().44k =--Θ 原方程有两个实根βα、,∴0)6k (4k 42≥+-=∆ ⇒.3k 2k ≥-≤或当3≥k 时,22)1()1(-+-βα的最小值是8;当2-≤k 时,22)1()1(-+-βα的最小值是18.选B. 必修一(12)已知(x+2)2+ y 24=1, 求x 2+y 2的取值范围.【错解】由已知得 y 2=-4x 2-16x -12,因此 x 2+y 2=-3x 2-16x -12=-3(x+38)2+328, ∴当x=-83 时,x 2+y 2有最大值283 ,即x 2+y 2的取值范围是(-∞, 283].【正确解析】由已知得 y 2=-4x 2-16x -12,因此 x 2+y 2=-3x 2-16x -12=-3(x+38)2+328 由于(x+2)2+ y 24 =1 ⇒ (x+2)2=1- y 24≤1 ⇒ -3≤x ≤-1,从而当x=-1时x 2+y 2有最小值1.∴ x 2+y 2的取值范围是[1, 283 ].(此题也可以利用三角函数和的平方等于一进行求解)必修一(13) 方程1122log (95)log (32)20x x ------=的解集为___________________- 【错解】111122222log (95)log (32)20log (95)log (32)log 40x x x x --------=⇔----=11111122log (95)log 4(32)954(32)(31)(33)0x x x x x x -------=-⇔-=-⇔--=1310x --=或1330x --=所以x=1或x=2.所以解集为{1,2}.【正解】111122222log (95)log (32)20log (95)log (32)log 40x x x x --------=⇔----=111111221954(32)log (95)log 4(32)3203302950x x x x x x x x -------⎧-=-⎪-=-⇔->⇔-=⇔=⎨⎪->⎩所以解集为{2}.字母意义含混不清(14)若双曲线22221x y a b -=-的离心率为54,则两条渐近线的方程为( )A.0916x y ±= B.0169x y ±= C.034x y ±= D.043x y±= 【错解】选D.22222222252593310416164443c c a b b b b x y e y x a a a a a a +==⇒===+⇒=⇒=±⇒=±⇒±=,选D. 【正确解析】2222222211x y y x a b b a-=-⇒-=,与标准方程中字母a,b 互换了.选C.4.运算错误(1)数字与代数式运算出错若)2,1(),7,5(-=-=b a ρρ,且(b a ρρλ+)b ρ⊥,则实数λ的值为____________.【错解】(5,72)a b λλλ+=--+r r ,则(b a ρρλ+)()052(72)03b a b b λλλλ⊥⇔+⋅=⇔-+-+=⇒=r r r r.【正确解析】(5,72)a b λλλ+=--+r r,(ba ρρλ+)19()052(72)05b a b b λλλλ⊥⇔+⋅=⇔-+-+=⇒=r r r r必修二18. 已知直线l 与点A (3,3)和B (5,2)的距离相等,且过二直线1l :3x -y -1=0和2l:x+y-3=0的交点,则直线l的方程为_______________________【错解】先联立两直线求出它们交点为(1,2),设所求直线的点斜式,再利用A、B到12k=⇔=-,所以所求直线为x+2y-5=0.【正确解析】x-6y+11=0或x+2y-5=0.联立直线1l:3x-y-1=0和2l:x+y-3=0的方程得它们的交点坐标为(1,2),令过点(1,2)的直线l为:y-2=k(x-1)(由图形可看出直线l的斜率必然存在),11,62k k=⇔==-,所以直线l的方程为:x-6y+11=0或x+2y-5=0.(2)运算方法(如公式、运算程序或运算方向等)选择不当导致运算繁杂或不可能得解而出错必修二19. 已知圆(x-3)2+y2=4和直线y=mx的交点分别为P,Q两点,O为坐标原点,则OQOP⋅的值为.【运算繁杂的解法】联立直线方程y=mx与圆的方程(x-3)2+y2=4消y,得关于x的方程22(1)650m x x+-+=,令1122(,),(,)P x y Q x y,则12122265,11x x x xm m+=⋅=++,则221212251my y m x xm==+,由于向量OPuuu r与向量OQuuu r共线且方向相同,即它们的夹角为0,所以212122255511mOP OQ OP OQ x x y ym m⋅=⋅=+=+=++u u u r u u u r.【正确解析】根据圆的切割线定理,设过点O的圆的切线为OT(切点为T),由勾股定理,则222325OP OQ OT⋅==-=.(3)忽视数学运算的精确性,凭经验猜想得结果而出错曲线x2-122=y的右焦点作直线交双曲线于A、B两点,且4=AB,则这样的直线有___________条.【错解】4条.过右焦点的直线,与双曲线右支交于A、B时,满足条件的有上、下各一条(关于x轴对称);与双曲线的左、右分别两交于A、B两点,满足条件的有上、下各一条(关于x 轴对称),所以共4条.【正解】过右焦点且与X 轴垂直的弦AB (即通径)为222241b a ⨯==,所以过右焦点的直线,与双曲线右支交于A 、B 时,满足条件的仅一条;与双曲线的左、右分别两交于A 、B 两点,满足条件的有上、下各一条(关于x 轴对称),所以共3条. 5.数学思维不严谨(1)数学公式或结论的条件不充分24.已知两正数x,y 满足x+y=1,则z=11()()x y x y++的最小值为 .【错解一】因为对a>0,恒有12a a +≥,从而z=11()()x y x y++≥4,所以z 的最小值是4.【错解二】22222()2x y xy z xy xy xy +-==+-≥21)-=,所以z 的最小值是1). 【正解】z=11()()x y x y ++=1y xxy xy x y+++=21()222x y xy xy xy xy xy xy +-++=+-,令t=xy, 则210()24x y t xy +<=≤=,由2()f t t t =+在10,4⎛⎤⎥⎝⎦上单调递减,故当t=14时 2()f t t t =+有最小值334,所以当12x y ==时z 有最小值334.(2)以偏概全,重视一般性而忽视特殊情况必修一(1)不等式|x+1|(2x -1)≥0的解集为____________解析:(1)【错解】1[,)2+∞.因为|x+1|≥0恒成立,所以原不等式转化为2x-1≥0,所以1[,)2x ∈+∞【正确解析】}1{),21[-⋃+∞.原不等式等价于|x+1|=0或2x-1≥0,所以解集为1[,){1}2x ∈+∞⋃-.必修一(2)函数y =的定义域为 .(2) 【错解】10(1)(1)011x x x x x+≥⇒+-≥⇒≥-或1x ≤-.【正解】(1)(1)0(1)(1)010111011x x x x x x x x x+-≥+-≤⎧⎧+≥⇒⇒⇒-≤<⎨⎨-≠≠-⎩⎩(3)解题时忽视等价性变形导致出错 27.已知数列{}n a 的前n 项和12+=n n S ,求.n a【错解】 .222)12()12(1111----=-=+-+=-=n n n n n n n n S S a 【正确解析】当1=n 时,113a S ==,n 2≥时,1111(21)(21)222nn n n n n n n a S S ----=-=+-+=-=.所以13(1)2(2)n n n a n -⎧=⎪=⎨≥⎪⎩.选修实数a 为何值时,圆012222=-+-+a ax y x 与抛物线x y 212=有两个公共点. 【错解】 将圆012222=-+-+a ax y x 与抛物线 x y 212=联立,消去y , 得 ).0(01)212(22≥=-+--x a x a x ①因为有两个公共点,所以方程①有两个相等正根,得⎪⎪⎩⎪⎪⎨⎧>->-=∆.01021202a a , 解之得.817=a【正确解析】要使圆与抛物线有两个交点的充要条件是方程①有一正根、一负根;或有两个相等正根.当方程①有一正根、一负根时,得⎩⎨⎧<->∆.0102a 解之,得.11<<-a因此,当817=a 或11<<-a 时,圆012222=-+-+a ax y x 与抛物线x y 212=有两个公共点.(1)设等比数列{}n a 的全n 项和为n S .若9632S S S =+,求数列的公比q .【错解】 ,2963S S S =+Θq q a q q a q q a --⋅=--+--∴1)1(21)1(1)1(916131, .012(363)=整理得--q q q1q 24q ,0)1q )(1q 2(.01q q 20q 33336=-=∴=-+∴=--≠或得方程由.【正确解析】若1=q ,则有.9,6,3191613a S a S a S ===但01≠a ,即得,2963S S S ≠+与题设矛盾,故1≠q .又依题意 963S 2S S =+ ⇒ q q a q q a q q a --⋅=--+--1)1(21)1(1)1(916131 ⇒ 01q q 2(q 363)=--,即,0)1)(12(33=-+q q 因为1≠q ,所以,013≠-q 所以.0123=+q 解得 .243-=q空间识图不准必修二直二面角α-l -β的棱l 上有一点A ,在平面α、β内各有一条射线AB ,AC 与l 成450,AB βα⊂⊂AC ,,则∠BAC= .【错解】如右图.由最小角定理,12221cos cos cos 23BAC BAC πθθ∠=⋅=⨯=⇒∠=. 【正确解析】3π或23π.如下图.当6CAF π∠=时,由最小角定理,时,12221cos cos cos 2223BAC BAC πθθ∠=⋅=⨯=⇒∠=;当AC 在另一边DA 位置23BAC π∠=.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学函数题最容易出错的10类题

姓名:__________
指导:__________
日期:__________
易错点1求函数定义域时条件考虑不充分。

经典例题:注意
练一练
参考答案:
易错点2求复合函数定义域时忽视“内层函数的值域是外层函数的定义域”经典例题:

意:
练一练:参考答案:
易错点3判断函数奇偶性时忽视定义域经典例题:
注意:
练一练:参考答案:
易错点4求复合函数单调区间时忽视定义域经典例题:

意:
练一练:
参考答案:
练一练:
参考答案:
易错点5解“二次型函数”问题时忽视对二次项系数的讨论经典例题:

意:
练一练
参考答案:
易错点6用函数图象解题时作图不准经典例题:注意:
练一练:参考答案:练一练:
参考答案:
易错点7忽视分段函数各段的取值范围经典例题:注意:
练一练:
参考答案:练一练:
参考答案:易错点8分段函数单调性问题,忽略分界点函数值的比较经典例题:注意:
练一练:
参考答案:易错点9误解“函数的零点”意义经典例题:
注意:
参考答案:易错点10函数零点定理使用不当经典例题:
注意:
练一练:参考答案:。

相关文档
最新文档