化工原理课程设计换热器
化工原理课程设计换热器
化工原理课程设计换热器
换热器设计是化工原理课程设计中一个重要的部分。
下面将为您介绍步骤和注意事项。
一、设计步骤:
1. 确定换热器类型:根据工艺要求及介质性质,选择适合的换热器类型,如管壳式、板式、螺旋板式等。
2. 估算传热系数:根据换热器类型、流体类型、流量、温度等因素,估算出传热系数。
3. 计算传热面积:根据所需传热量和传热系数,计算指定温度下需求的传热面积。
4. 选择换热器管径及壳体规格:根据所需传热面积和换热器类型,选择合适的换热器管径及壳体规格。
5. 设计热损失:根据换热器使用环境,计算换热器热损失量,以确保能量转化的高效。
6. 设计流路:结合工艺流程及介质性质,确定换热器内部介质的流路和流速,
以确保传热效率。
二、注意事项:
1. 选用合适的换热器类型,以确保传热效率和占用空间的合理性。
2. 估算传热系数要考虑介质性质、流量、温度等因素,更加科学地估算传热系数。
3. 所需传热面积要根据实际需要,同时结合换热器的大小、材质等因素做出合理的选择。
4. 选择换热器管径及壳体规格要遵循一定的社会标准及安全规范,以确保换热器使用的稳定性和安全性。
5. 设计热损失要考虑换热器使用环境,以确保能量转化的高效。
同时,必须符合国家有关规定。
化工原理课程设计换热器
化工原理课程设计换热器换热器是化工生产中常用的一种设备,其作用是将热量从一个介质传递到另一个介质,以实现物料加热或冷却的目的。
在化工原理课程设计中,学生需要深入了解换热器的工作原理、设计计算方法以及实际应用,以便将理论知识与实际工程实践相结合。
首先,换热器的工作原理是基于热量传递的原理。
当两种介质温度不同时,热量会从温度较高的介质传递到温度较低的介质,直至两者达到热平衡。
换热器通过设计合理的传热面积和传热系数,以及确定良好的介质流动方式,来实现高效的换热效果。
其次,设计换热器需要考虑多方面的因素。
首先是确定换热器的类型,包括管壳式换热器、板式换热器、螺旋板式换热器等,根据介质性质、温度压力要求、换热效率等因素进行选择。
其次是确定换热器的传热面积和传热系数,这需要根据介质流动性质、传热过程中的温度差、介质流速等因素进行计算。
最后是确定换热器的实际应用场景,包括换热器的安装位置、管道连接方式、维护保养等方面的考虑。
在化工原理课程设计中,学生需要通过理论学习和实际案例分析,掌握换热器的设计计算方法。
这包括传热面积的计算、传热系数的确定、换热器的选型和性能评价等内容。
通过实际案例的分析,学生可以更好地理解换热器设计的关键技术和实际应用中的问题,提高自己的工程设计能力。
除了理论知识的学习,化工原理课程设计还需要学生进行实际操作和实验。
通过实验,学生可以了解不同类型换热器的工作原理,观察不同工况下的换热效果,掌握换热器的实际操作技能。
这对于学生将来从事化工工程实践具有重要的指导意义。
总的来说,化工原理课程设计中的换热器设计是一个重要的环节,它涉及到理论知识与实际工程实践的结合,需要学生具备扎实的理论基础和实际操作能力。
通过深入学习换热器的工作原理、设计计算方法以及实际应用,学生可以更好地理解化工原理课程的重要性,提高自己的专业能力,为将来的工程实践打下坚实的基础。
化工原理课程设计换热器
化工原理课程设计换热器本文主要介绍化工原理课程设计中涉及到的换热器的相关知识和设计思路。
换热器是化工工业中常用的设备之一,其主要功能是通过传导、对流和辐射的方式实现热量的传递,从而将一个流体的热量传递给另一个流体。
因此,在化工原理课程设计中涉及到换热器的设计,既需要考虑流体的物理性质,也需要考虑热力学参数的影响。
换热器的类型繁多,按照传热方式的不同可分为对流式换热器和辐射式换热器。
常用的对流式换热器包括管壳式换热器、板式换热器和螺旋式换热器等。
在换热器的设计中,需要首先确定换热器所要实现的传热方式和工作条件,如流体流速、进出口温度和压力等。
接下来需要考虑的问题是如何选择合适的材料以满足流体的物理性质和热力学参数的要求。
在化工原理课程设计中,换热器的设计重点之一是热力学计算。
为了实现对流体的热量传递,需要考虑流体的传热系数。
传热系数与流体的物理性质密切相关,包括流体的密度、比热、粘度和导热系数等。
通过对这些参数的测量和分析,可以计算出传热系数,并进而确定换热器的传热效率。
另外,在化工原理课程设计中,换热器的设计还需要考虑到换热器的尺寸、材料和结构等方面的问题。
尺寸的设计需要考虑工作流体的容积和流速等因素,以保证换热器的实现效率和安全性。
材料选择需要考虑到流体的化学性质,以避免流体与材料发生反应和腐蚀。
结构设计需要兼顾容易清洗、拆卸和维护的要求,以方便日常运行和维护。
总之,在化工原理课程设计中,换热器的设计是一个系统性的工程,包括物理学、化学和工程学等多个学科领域的综合运用。
只有充分理解流体的物理性质和热力学参数,才能做出合理的设计并实现高效的换热效果。
同时,还需要考虑到实际工程的应用需求,以满足生产的需要和安全的要求。
化工原理课程设计——换热器
化工原理课程设计管壳式换热器选型姓名:学号:10091693班级:工092指导老师:袁萍前言1.换热器的设备简介传热是热能从热流体间接或直接传向冷流体的过程。
其性质复杂,不但要考虑经过间壁的热传导,而且要考虑到间壁两边流体的对流传热,有时还须考虑到辐射传热。
在化学工业中常遇到的热交换问题,根据冷、热流体热量交换的原理和方式基本上可分三大类即:间壁式、混合式和蓄热式。
其中间壁式换热器詹用量最大,据统计,这类换热器占总用量的99%。
间壁式换热器又可分为管壳式和板壳式换热器两类,其中管壳式换热器以其高度的可靠性和广泛的适应性,在长期的操作过程中积累了丰富的经验,其设计资料基本齐全,在许多国家都有了系列化的标准。
因此,作为广泛应用于各个领域的工业设备,它在国民经济中具有非常重要的作用。
换热器(英语翻译:heat exchanger),是将热流体的部分热量传递给冷流体的设备,又称热交换器。
管壳式换热器按结构特点分为固定管板式换热器、浮头式换热器、U型管式换热器、双重管式换热器、填料函式换热器和双管板换热器等。
前3种应用比较普遍。
固定管板式换热器的结构:主要有外壳、管板、管束、顶盖(又称封头)等部件构成。
它的特点是结构简单,没有壳侧密封连接,相同的壳体内径排管最多,在有折流板的流动中旁路最小,管程可以分成任何管程数,因两个管板由管子互相支撑,故在各种管壳式换热器中它的管板最薄,造价最低,因而得到广泛应用。
这种换热器的缺点是:壳程清洗困难,有温差应力存在。
这种换热器适用于两种介质温差不大,或温差较大但壳程压力不高及壳程介质清洁,不易结垢的场合。
在满足工艺过程要求的前提下,换热器应达到安全与经济的目标。
换热器设计的主要任务是参数选择和结构设计、传热计算及压降计算等。
设计主要包括壳体形式、管程数、换热管类型、管长、管子排列、管子支承结构、冷热流体的流动通道等工艺设计和封头、壳体、管板等零部件的结构、强度设计计算。
化工原理课程设计换热器资料课件
加工成型
采用冲压、焊接、铸造等工 艺将材料加工成换热器的主 体结构。
表面处理
对加工成型的换热器进行清 洗、除锈、喷漆等表面处理 ,以提高其耐腐蚀性和美观 度。
组装与调试
将各部件按照设计要求进行 组装,并进行严格的调试和 检测,确保换热器的性能和 质量符合要求。
05
换热器运行维护与故障处 理
换热器的运行操作要点
03
换热器设计计算
设计计算的基本步骤
计算传热面积
选择合适的换热器类型
根据工艺要求、操作条件、经济 性和可靠性等因素,选择合适的 换热器类型。
根据传热方程和给定的工艺条件 ,计算所需的传热面积。
设计换热器结构
根据传热面积和工艺要求,设计 换热器的结构参数,如管径、管 长、管数、折流板间距等。
确定设计任务和设计条件
本次课程设计的任务是设计一个满足特定工艺要求的换热器,要求掌握换热器 的基本原理、设计方法和优化措施。
实例分析过程展示
换热器类型的选择
设计参数的确定
热力计算与校核
结构设计与优化
根据工艺条件和设计要求,选 择合适的换热器类型,如管壳 式换热器、板式换热器等。
确定换热器的设计参数,包括 流体的进出口温度、流量、压 力降等。
振动与噪音
振动和噪音可能是由于设备不平衡、紧固件松动等原因引起的,需及 时检查并调整;若问题严重,需停机检修并更换损坏部件。
06
课程设计实例分析与讨论
实例背景介绍
换热器在化工生产中的应用
换热器是化工生产中常见的设备,用于实现两种不同温度流体之间的热量交换 ,以达到加热或冷却的目的。
课程设计任务与要求
换热器设计的优化与创新
总结本次课程设计的经验教训,探讨换热器设计的优化与 创新方向,如提高传热效率、降低压力降、实现紧凑化设 计等。
化工原理课程设计模板-换热器
化工原理课程设计模板-换热器1. 引言换热器是化工过程中常用的设备之一,其主要功能是在流体之间进行热量传递,以实现温度控制、能量回收等目的。
本文将介绍化工原理课程设计中换热器的设计过程和要点。
2. 设计目标在进行换热器设计之前,首先要确定设计的目标。
设计目标包括但不限于以下几点:•确定需要传热的流体的进口温度和出口温度;•确定传热后流体的温度变化范围;•确定换热器的热传导面积;•确定换热器的传热系数。
3. 设计步骤换热器的设计过程可以分为以下几个步骤:3.1 确定流体的性质参数在设计换热器之前,需要明确流体的性质参数,包括流体的密度、比热容以及传热系数等。
这些参数可以通过实验测定或者查阅相关文献获得。
3.2 计算流体的传热量根据热传导定律,可以计算流体的传热量。
传热量的计算公式如下:Q = m * c * ΔT其中,Q表示传热量,m表示流体的质量,c表示流体的比热容,ΔT表示流体的温度变化。
3.3 确定换热器的传热面积根据热传导定律,可以计算换热器的传热面积。
传热面积的计算公式如下:A = Q / (U * ΔTlm)其中,A表示传热面积,U表示换热器的传热系数,ΔTlm表示对数平均温差。
3.4 选择换热器的类型和结构根据设计要求和实际情况,选择合适的换热器类型和结构。
常见的换热器类型包括管壳式换热器、板式换热器等。
3.5 进行换热器的细节设计在确定了换热器的类型和结构之后,进行换热器的细节设计,包括管道的布置、流体的流动方式以及换热器的材料选择等。
3.6 进行换热器的性能评价完成换热器的设计之后,进行性能评价,验证设计结果是否满足设计目标。
性能评价主要包括换热器的传热效率、压降以及经济性等方面。
4. 实例分析下面通过一个实例来说明换热器的设计过程。
实例:管壳式换热器假设需要设计一个管壳式换热器,用于将流体A的温度从40℃降至20℃,同时将流体B的温度从70℃升至90℃。
根据设计要求,我们可以计算出流体A和流体B的传热量,然后根据对数平均温差计算出传热面积,从而确定换热器的尺寸。
化工原理课程设计 换热器
一、设计任务书二、确定设计方案2.1 选择换热器的类型本设计中空气压缩机的后冷却器选用带有折流挡板的固定管板式换热器,这种换热器适用于下列情况:①温差不大;②温差较大但是壳程压力较小;③壳程不易结构或能化学清洗。
本次设计条件满足第②种情况。
另外,固定管板式换热器具有单位体积传热面积大,结构紧凑、坚固,传热效果好,而且能用多种材料制造,适用性较强,操作弹性大,结构简单,造价低廉,且适用于高温、高压的大型装置中。
采用折流挡板,可使作为冷却剂的水容易形成湍流,可以提高对流表面传热系数,提高传热效率。
本设计中的固定管板式换热器采用的材料为钢管(20R钢)。
2.2 流动方向及流速的确定本冷却器的管程走压缩后的热空气,壳程走冷却水。
热空气和冷却水逆向流动换热。
根据的原则有:(1)因为热空气的操作压力达到1.1Mpa,而冷却水的操作压力取0.3Mpa,如果热空气走管内可以避免壳体受压,可节省壳程金属消耗量;(2)对于刚性结构的换热器,若两流体的的温度差较大,对流传热系数较大者宜走管间,因壁面温度与对流表面传热系数大的流体温度相近,可以减少热应力,防止把管子压弯或把管子从管板处拉脱。
(3)热空气走管内,可以提高热空气流速增大其对流传热系数,因为管内截面积通常比管间小,而且管束易于采用多管程以增大流速。
查阅《化工原理(上)》P201表4-9 可得到,热空气的流速范围为5~30 m·s-1;冷却水的流速范围为0.2~1.5 m·s-1。
本设计中,假设热空气的流速为8 m·s-1,然后进行计算校核。
2.3 安装方式冷却器是小型冷却器,采用卧式较适宜。
三、设计条件及主要物性参数3.1设计条件由设计任务书可得设计条件如下表:体积流量进口温度出口温度操作压力设计压力注:要求设计的冷却器在规定压力下操作安全,必须使设计压力比最大操作压力略大,本设计的设计压力比最大操作压力大0.1MPa 。
3.2确定主要物性数据3.2.1定性温度的确定可取流体进出口温度的平均值。
化工原理课程设计(换热器)
一、设计题目:设计一台换热器二、操作条件:1、煤油:入口温度140℃,出口温度40℃。
2、冷却介质:循环水,入口温度35℃。
3、允许压强降:不大于1×105Pa。
4、每年按330天计,每天24小时连续运行。
三、设备型式:管壳式换热器四、处理能力:114000吨/年煤油五、设计要求:1、选定管壳式换热器的种类和工艺流程。
2、管壳式换热器的工艺计算和主要的工艺尺寸设计。
3、设计结果概要或设计结果一览表。
4、设备简图(要求按比例画出主要结构及尺寸)。
5、对本设计的评述及有关问题的讨论。
第1章设计概述1、1热量传递的概念与意义[1](205)1、1、1 传热的概念所谓的传热(又称热传递)就是间壁两侧两种流体之间的热量传递问题。
由热力学第二定律可知,凡是有温差存在时,就必然发生热量从高温处传递到低温处,因此传热是自然界和工程技领域中极普遍的一种传递现象。
1、1、2 传热的意义化工生产中的很多过程和单元操作,都需要进行加热和冷却,如:化学反应通常要在一定的温度进行,为了达到并保持一定温度,就需要向反应器输入或输出热量,又如在蒸发、蒸馏、干燥等单元操作中,都要向这些设备输入或输出热量。
所以传热是最常见的重要单元操作之一。
无论是在能源,宇航,化工,动力,冶金,机械,建筑等工业部门,还是在农业,环境等部门中都涉及到许多有关传热的问题。
此外,化工设备的保温,生产过程中热能的合理利用以及废热的回收利用等都涉及到传热的问题,由此可见;传热过程普遍的存在于化工生产中,且具有极其重要的作用。
归纳起来化工生产中对传热过程的要求经常有以下两种情况:①强化传热过程,如各种换热设备中的传热。
②削弱传热过程,如设备和管道的保温,以减少热损失。
1、2 换热器的概念与意义[2]1、2、1 换热器的概念在不同温度的流体间传递热能的装置称为热交设备,简称为换热器。
在换热器中至少要有两种不同的流体,一种流体温度较高,放出热量:另一种流体则温度较低,吸收热量。
化工原理课程设计换热器
化工原理课程设计 换热器一、课程目标知识目标:1. 学生能够理解并掌握换热器的基本工作原理,包括热传导、对流和辐射在换热过程中的作用。
2. 学生能够掌握换热器类型及适用范围,了解各类换热器的结构特点及优缺点。
3. 学生能够运用热量平衡原理,进行换热器的热力计算,掌握换热器设计的基本方法。
技能目标:1. 学生能够运用相关公式,对换热器进行选型和计算,提高解决实际工程问题的能力。
2. 学生能够通过查阅资料,了解并掌握换热器材料的选用原则,提高材料应用能力。
3. 学生能够运用CAD等软件绘制换热器简图,提高绘图技能。
情感态度价值观目标:1. 培养学生热爱化学工程,关注化工设备,具备良好的职业素养。
2. 培养学生严谨的科学态度,提高团队合作意识,培养沟通与协作能力。
3. 培养学生节能环保意识,关注换热器在化工生产过程中的节能减排作用。
课程性质:本课程为化工原理课程的一部分,侧重于换热器的原理、计算和应用。
学生特点:学生为高中二年级学生,具有一定的物理和化学知识基础,对工程问题有一定的好奇心。
教学要求:结合学生特点,通过实例分析、计算练习和小组讨论等形式,使学生掌握换热器相关知识,提高解决实际问题的能力。
教学过程中注重启发式教学,引导学生主动探究和思考。
在教学评估中,关注学生的学习成果,及时调整教学策略,确保教学目标的有效实现。
二、教学内容1. 换热器原理:包括热传导、对流和辐射的基本概念,换热器的基本工作原理及热量传递过程。
相关教材章节:第二章第四节《热量传递的基本原理》2. 换热器类型与结构:介绍各类换热器(如管壳式、板式、空气冷却式等)的结构、特点、应用范围及优缺点。
相关教材章节:第三章第一节《换热器的类型与结构》3. 换热器选型与计算:讲解换热器选型原则,热量平衡原理,换热器热力计算方法及步骤。
相关教材章节:第三章第二节《换热器的选型与计算》4. 换热器材料:介绍换热器常用材料及其选用原则,分析不同材料的性能和适用场合。
化工原理课程设计课件换热器
换热器中冷、热流体的温度通常都由工艺条件规 定,但在某些情况下则需在设计时加以确定。例 如用冷水冷却某热流体,冷水的进口温度可根据 当地气温条件作出估计(已给),而冷却水的出口 温度由设计者确定。
一般来说,可采用冷却水的进、出口温差为 5~15℃。
2. 确定冷却水用量
由热量衡算:Q热=Q冷+Q损
式中Q损=(3-5%
)Q 化工原理课程设计课件换热器
热
Q冷= w水C水(t2-t1) Q热=w热C热(T1-T2)
w 水C Q 水 ( 热 t2Q -t损 1)?kg /s?m 3/h
3、计算热负荷Q ′
由于热流体走壳程,热损失不经过传热面积,
★具有补偿圈的固定管板式换热器
膨胀节结构 化工原理课程设计课件换热器
列管式换热器型式的选择
★( 2) U型管式换热器 ❖结构特点:换热器中化的工原理每课程根设计管课件换子热器都弯制成U形,
进口、出口分别安装在同一管板的两侧,由于仅 一块管板,管子在受热或冷却时可以自由伸缩。
( 2) U型管式换热器
换热器设计主要内容
1
设计方案的确定 化工原理课程设计课件换热器
2
工艺设计计算
3
结构设计及选型
4
绘制装置图
5
撰写说明书
一.设计方案的确定
设计方案确定内容: 化工原理课程设计课件换热器 工艺过程及流程简介(流程图) 换热器类型、型式的选择; 换热器放置方式的选择; 流体流道的选择; 流体流速的选择 冷却剂(水)出口温度的确定等。
7、选择管径、管长,确定换热管数目 (参化原)
我国列管式换热器标化准工原理中课程常设计用课件换的热器钢管规格(外壁 ×壁厚)有:φ19×2;φ25×2.5; φ38×2.5等。
化工原理课程设计__换热器
一、设计任务书二、确定设计方案2.1选择换热器的类型本设计中空气压缩机的后冷却器选用带有折流挡板的固定管板式换热器,这种换热器适用于下列情况:①温差不大;②温差较大但是壳程压力较小;③壳程不易结构或能化学清洗。
本次设计条件满足第②种情况。
另外,固定管板式换热器具有单位体积传热面积大,结构紧凑、坚固,传热效果好,而且能用多种材料制造,适用性较强,操作弹性大,结构简单,造价低廉,且适用于高温、高压的大型装置中。
采用折流挡板,可使作为冷却剂的水容易形成湍流,可以提高对流表面传热系数,提高传热效率。
本设计中的固定管板式换热器采用的材料为钢管(20R钢)。
2.2流动方向及流速的确定本冷却器的管程走压缩后的热空气,壳程走冷却水。
热空气和冷却水逆向流动换热。
根据的原则有:(1)因为热空气的操作压力达到1.1Mpa,而冷却水的操作压力取0.3Mpa,如果热空气走管内可以避免壳体受压,可节省壳程金属消耗量;(2)对于刚性结构的换热器,若两流体的的温度差较大,对流传热系数较大者宜走管间,因壁面温度与对流表面传热系数大的流体温度相近,可以减少热应力,防止把管子压弯或把管子从管板处拉脱。
(3)热空气走管内,可以提高热空气流速增大其对流传热系数,因为管内截面积通常比管间小,而且管束易于采用多管程以增大流速。
查阅《化工原理(上)》P201表4-9可得到,热空气的流速范围为5~30m·s-1;冷却水的流速范围为0.2~1.5m·s-1。
本设计中,假设热空气的流速为8m·s-1,然后进行计算校核。
2.3安装方式冷却器是小型冷却器,采用卧式较适宜。
三、设计条件及主要物性参数3.1设计条件由设计任务书可得设计条件如下表:注:要求设计的冷却器在规定压力下操作安全,必须使设计压力比最大操作压力略大,本设计的设计压力比最大操作压力大0.1MPa 。
3.2确定主要物性数据3.2.1定性温度的确定可取流体进出口温度的平均值。
化工原理课程设计列管式换热器
可用旳场合:
1)管程走清洁流体;
2)管程压力尤其高;
3)管壳程金属温差很大,固定管板换热器连设置膨胀节都无法 满足要求旳场合.
2、流动空间旳选择
3、流速旳拟定
4、流动方式旳选择
除逆流和并流之外,在列管式换热器中冷、 热流体还能够作多种多管程多壳程旳复杂 流动。当流量一定时,管程或壳程越多, 表面传热系数越大,对传热过程越有利。 但是,采用多管程或多壳程必造成流体阻 力损失,即输送流体旳动力费用增长。所 以,在决定换热器旳程数时,需权衡传热 和流体输送两方面旳损失。
5、流体出口温度旳拟定
若换热器中冷、热流体旳温度都由工艺条件所要求,则不存在 拟定流体两端温度旳问题。若其中一流体仅已知进口温度,则 出口温度应由设计者来拟定。例如用冷水冷却一热流体,冷水 旳进口温度可根据本地旳气温条件作出估计,而其出口温度则 可根据经济核实来拟定:为了节省冷水量,可使出口温度提升 某些,但是传热面积就需要增长;为了减小传热面积,则需要 增长冷水量。两者是相互矛盾旳。一般来说,水源丰富旳地域 选用较小旳温差,缺水地域选用较大旳温差。但是,工业冷却 用水旳出口温度一般不宜高于45℃,因为工业用水中所含旳部 分盐类(如CaCO3、CaSO4、 MgCO3和MgSO4等)旳溶解度 随温度升高而减小,如出口温度过高,盐类析出,将形成传热 性能很差旳污垢,而使传热过程恶化。假如是用加热介质加热 冷流体,可按一样旳原则选择加热介质旳出口温度。
取管长应根据出厂旳钢管长度合理截用。 我国生产系列原则中管长有1.5m,2m, 3m,4.5m,6m和9m六种,其中以3m和 6m更为普遍。同步,管子旳长度又应与管 径相适应,一般管长与管径之比,即L/D约 为4~6
化工原理课程设计换热器
化工原理课程设计换热器化工工程专业是一门应用学科,其中涉及到很多实际工程应用,而其中最为重要的一项便是换热技术。
在化工原理课程中,学生需要学习换热的原理,同时也需要进行相应的课程设计,以加深对该项工艺的理解。
本文将具体介绍化工原理课程设计中的换热器部分。
一、换热器的定义与应用换热器是指将工作介质中的热量从一种流体(或气体)传到另一种流体(或气体)的装置。
具体来说,它是用于加热或冷却化学、石油、食品、冶金、电力、纺织等行业在生产过程中所使用的流体的设备,是化工生产过程中最为常用的一种装置。
换热器可分为管式换热器、板式换热器、壳式换热器等。
其中,壳式换热器是最常用的一种,也是本文课程设计的重点。
二、化工原理换热器课程设计1. 设计目标作为化工原理课程中的一个重要部分,换热器的课程设计旨在让学生了解换热器的原理和设计方法,培养学生的动手能力和实践能力,为学生未来从事化工工作提供实践基础。
2. 设计内容换热器的课程设计通常包括以下内容:(1)了解壳式换热器的结构和分类,并对不同的壳式换热器进行比较和分析。
(2)了解换热器的传热原理和传热方式,以及热传导、对流传热和辐射传热等基本原理。
(3)了解不同流体的传热性质,如热导率、热容、热透过系数等,并掌握其应用方法。
(4)掌握壳式换热器的设计方法,包括换热面积的计算、流速的估算、流体性质的确定等。
(5)通过计算确定换热器的设计参数,如壳程和管程的流体流量、进出口温度、换热系数等,并绘制换热器的流程图和工艺图。
3. 设计过程换热器的课程设计通常分为理论计算和实践操作两个部分。
理论计算部分包括上述内容中的步骤(1)至(4),而实践操作部分则需要学生使用化工实验室中的相应设备进行实验操作。
在实践部分中,学生需要完成以下操作:(1)拆卸换热器,进行清洗和维修,对设备的状态进行检查和评估。
(2)确定流量计和温度计的安装点,并将它们安装在换热器的管路中,以便后续的流量和温度测量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、设计任务书二、确定设计方案2.1 选择换热器的类型本设计中空气压缩机的后冷却器选用带有折流挡板的固定管板式换热器,这种换热器适用于下列情况:①温差不大;②温差较大但是壳程压力较小;③壳程不易结构或能化学清洗。
本次设计条件满足第②种情况。
另外,固定管板式换热器具有单位体积传热面积大,结构紧凑、坚固,传热效果好,而且能用多种材料制造,适用性较强,操作弹性大,结构简单,造价低廉,且适用于高温、高压的大型装置中。
采用折流挡板,可使作为冷却剂的水容易形成湍流,可以提高对流表面传热系数,提高传热效率。
本设计中的固定管板式换热器采用的材料为钢管(20R钢)。
2.2 流动方向及流速的确定本冷却器的管程走压缩后的热空气,壳程走冷却水。
热空气和冷却水逆向流动换热。
根据的原则有:(1)因为热空气的操作压力达到1.1Mpa,而冷却水的操作压力取0.3Mpa,如果热空气走管内可以避免壳体受压,可节省壳程金属消耗量;(2)对于刚性结构的换热器,若两流体的的温度差较大,对流传热系数较大者宜走管间,因壁面温度与对流表面传热系数大的流体温度相近,可以减少热应力,防止把管子压弯或把管子从管板处拉脱。
(3)热空气走管内,可以提高热空气流速增大其对流传热系数,因为管内截面积通常比管间小,而且管束易于采用多管程以增大流速。
查阅《化工原理(上)》P201表4-9 可得到,热空气的流速范围为5~30 m·s-1;冷却水的流速范围为0.2~1.5 m·s-1。
本设计中,假设热空气的流速为8 m·s-1,然后进行计算校核。
2.3 安装方式冷却器是小型冷却器,采用卧式较适宜。
三、设计条件及主要物性参数3.1设计条件由设计任务书可得设计条件如下表:类型体积流量(标准m3/min)进口温度(℃)出口温度(℃)操作压力(Mpa)设计压力(Mpa)空气(管内)15 148 42 1.1 1.2冷却水(管外)-25 33 0.3 0.4 空气水水空气参数注:要求设计的冷却器在规定压力下操作安全,必须使设计压力比最大操作压力略大,本设计的设计压力比最大操作压力大0.1MPa 。
3.2确定主要物性数据3.2.1定性温度的确定可取流体进出口温度的平均值。
管程气体的定性温度为95242148=+=T ℃ 壳程水的定性温度为2923325=+=t ℃ 3.2.2流体有关物性数据根据由上面两个定性温度数据,查阅《化工原理(上)》P243的附录六:干空气的物理性质(101.33kPa )和P244的附录七:水的物理性质。
运用内插法(公式为()()/()b a b a b avg b y y y y t t t t =+--⨯- ),可得壳程和管程流体的有关物性数据。
空气在95℃,1.2MPa 下的有关物性数据如下:水在29℃的物性数据如下:注:空气的物性受压力影响较大,而水的物性受压力影响不大。
空气密度校正,由《化工原理实验》P31,公式2-36得: ρi =1.293T273273'+P P =1.293×(1.2MPa/101.33kPa)×273/(273+95)=11.36 kg ·m -3四、传热过程工艺计算4.1 估算传热面积4.1.1热流量空气的质量流量为 m i = 60 V i ’ A i (0℃,1atm)=60×83×1.293=6439.14 kg/h 根据《流体力学(上)》P177,公式(4-109),热流量为Q i = m i C pi (T 1-T 2) =6439.14×1.009×(148-42)=6.887×105 kJ/h = 1.913×105 W4.1.2平均传热温差根据《传热传质过程设备设计》P15,公式1-11,m t ∆=12211221ln)()(t T t T t T t T -----= A i (0℃,1atm)=51.26℃4.1.3传热面积由于管程气体压力较高,故可选较大的总传热系数。
初步设定设K i ‘=200 W ·m -2·℃-1。
根据《传热传质过程设备设计》P14,公式1-2,则估算的传热面积为66.1826.51200191300t m '=⨯=∆=i i K Q S m 24.1.4冷却水用量根据《传热传质过程设备设计》P15,公式1-8m o =206202533175.4106.887)(512=-⨯⨯=-)(t t c Q po i kg/h4.2主体构件的工艺结构尺寸4.2.1管径和管内流速选用φ25×2.5mm 的传热管(碳钢管);由《传热传质过程设备设计》P7表1-3得管壳式换热器中常用的流速范围的数据,可设空气流速u i =8m/s ,用u i计算传热膜系数,然后进行校核。
4.2.2管程数和传热管数依《化工单元过程及设备课程设计》P62,公式3-9可依据传热管内径和流速确定单程传热管数226439.14/(11.363600630.7850.02084i s i iV n d u π⨯===⨯⨯)(根)按单程管计算,所需的传热管长度为72.463020.014.366.18=⨯⨯==s i n d S L πm 按单管程设计,传热管过长,宜采用多管程结构。
现取传热管长 l = 3 m ,则该换热器管程数为N p =L / l =4.72/3≈2(管程)传热管总根数 N = 63×2= 126 (根)。
单根传热管质量0m l d ρπδ=钢=7850×3×3.14×0.0225×0.0025=4.16kg4.2.3 平均传热温差校正及壳程数依《化工单元过程及设备课程设计》P63,公式3-13a 和3-13b , 平均传热温差校正系数R =1221t t T T --==13.25P =1112t T t t --=332514825--=0.065 依《传热传质过程设备设计》P16,公式3-13, 温度校正系数为=∆t ϕ112-+R R ×)11(2)11(2ln11ln22+++-+-+---R R P R R P PR P =213.25113.251+-×2210.065ln10.06513.2520.065(113.2513.251)ln20.065(113.2513.251)--⨯-+-+-+++≈0.931依《传热传质过程设备设计》P16,公式3-14, 平均传热温差校正为△t m =t ∆ϕ×△t m ’ =51.26×0.931=47.72( ℃ )由于平均传热温差校正系数大于0.8,同时壳程流体流量较大,故取单壳程合适。
4.2.4 传热管的排列和分程方法采用组合排列法,即每程内均按正三角形排列,隔板两侧采用正方形排列。
其中,每程内的正三角形排列,其优点为管板强度高,流体走短路的机会少,且管外流体扰动较大,因而对流传热系数较高,相同的壳程内可排列更多的管子。
查《热交换器原理与设计》P46,表2-3 管间距,取管间距:t =32 mm 。
由《化工原理上册》P278,公式4-123,得横过管束中心线的管数为1.1e n n ==1.1×126≈13根由《化工单元过程及设备课程设计》P67,公式3-16,隔板中心到离其最近一排管中心距离S=t/2+6=32/2+6=22 mm取各程相邻管的管心距为44mm。
4.2.5 壳体内径采用多管程结构,取管板利用率η=0.7,由《流体力学与传热》P206,公式4-115,得壳体内径为Di=1.05×32查阅《化工原理(上)》P275,附录二十三:热交换器,取Di=450mm。
4.2.6折流板采用弓形折流板,取弓形折流板圆缺高度为壳体内径的25%,则切去的圆缺高度为h=0.25×450=112.5 mm ,故可取h=110 mm。
取折流板间距B=0.4Di,则B=0.4×450=180 mm。
取板间距H=150mm,则:折流板数 NB =折流板间距传热管长-1=3000150-1=19 块折流板圆缺面水平装配。
4.3换热器主要传热参数核算4.3.1热量核算(1)壳程对流传热系数对于圆缺形折流板,可采用克恩公式。
由《流体力学与传热》P164,公式4-60、4-61,得h o = 14.03/155.0)(PrRe36.0woeodμμλ其中:①当水做冷却剂时,粘度校正为14.0)(wo μμ=1.05 ②当量直径,管子为正三角形排列时,依《化工单元过程及设备课程设计》P72,公式3-22得d e=22)24o od d -ππ=220.0320.025)243.140.025-⨯⨯π=0.0202 m③壳程流通截面积,由《流体力学与传热》P164,公式4-62,得S o = BD(1-t d o )=0.15×0.45×(1-0.0250.032)=0.0148 m 2 ④壳程冷却水的流速及其雷诺数分别为u o =o o S V =20620/(3600996.0)0.0148⨯=0.389 m/s Re o =oeo o d u μρ=996.00.3890.02020.000821⨯⨯=9532.73 ⑤普朗特准数(<传热传质过程设备设计>P26,公式1-43)Pr =oopo c λμ =41750.0008210.0601⨯=57.03因此,壳程水的传热膜系数h o 为h o = 0.551/30.140.6010.369532.7357.03 1.050.0202⨯⨯⨯⨯ =6408.1 W/(m 2·℃)(2)管程对流传热系数由《流体力学与传热》P158,公式4-52a 、4-52b ,得h i = 0.023Re 0.8Pr0.3iid λ 其中:①管程流通截面积S i =242i d n π•=23.140.0212642⨯⨯=0.0198 m 2②管程空气的流速及其雷诺数分别为u i =i i S V =6439.14/(360011.36)0.0198⨯=7.95 m/s Re =iii i d u μρ=511.367.950.022.1710-⨯⨯⨯=8.32369⨯104 ③普兰特准数Pr =iipi c λμ =51009 2.17100.0317-⨯⨯=0.691因此,管程空气的传热膜系数h i 为h i =0.023×83236.90.8×0.6910.3×0.03170.02=281.74 W/(m 2·℃) (3)基于管内表面积的总传热系数K i查阅《化工原理(上)》P365,附录22,得● 冷却水侧的热阻R so =0.000172m 2·℃·W -1 ● 热空气侧的热阻R si =0.000344m 2·℃·W -1 ● 钢的导热系数λ=45W ·m -1·℃-1因此,依《化工单元过程及设备课程设计》P71,公式3-21i K 1=ih 1+R si +m i d bd λ+o o i d h d +o i so d d R=1281.74 +0.000344+0.00250.02450.0225⨯⨯+0.026408.1 0.025⨯+0.000172×0.020.025解得:i K =237.80 W/ (m 2·℃)此计算值与前面的初设值K i ‘=200 W/ (m 2·℃)的关系:'i i K K =237.80200=1.189 满足换热器设计所要求的i K /K i ‘=1.15~1.25的范围,初选的换热器合适。