1土的物理性质和工程分类
第1章 土的物理性质及分类
筛分法
200g 10 5.0 2.0 1.0 0.5 0.25 0.1 P % 95 87 78 66 55 36
筛分法就是用一套标准筛子如孔 直径(mm):20、10、5.0、2.0、 l.0、0.5、0.25、0.1、0.075, 将烘干且分散了的200g有代表性 的试样倒入标准筛内摇振,然后 分别称出留在各筛子上的土重, 并计算出各粒组的相对含量,即 得土的颗粒级配。 沉降分析法:具体有密度计法(也 称比重计法)或移液管法(也称吸管 法)。该两法的理论基础都是依据 Stokes(司笃克斯)定律,即球状的 细颗粒在水中的下沉速度与颗粒 直径的平方成正比
第1章 土的物理性质及工程分类
§1.1 §1.2 §1.3 §1.4 §1.5 土的形成与三相组成 土的三相比例指标 无粘性土的密实度 粘性土的物理特征 土的工程分类
土的形成过程
土的三相组成 土的物理状态 土的结构
决定
渗透特性 变形特性 强度特性
土的工程分类:便于研究和应用 土 的 压 实 性:如何获得较好的土
知识要点
1.掌握土体的三相组成及三相比例 指标之间的换算 2.领会无粘性土密实度概念、判别 方法及砂土相对密度的计算 3.掌握粘性土的塑限、液限、塑性 指数和液性指数的概念及其物理状态评价 4.掌握无粘性土和粘性土的分类依据 和分类方法 5.掌握土的工程分类
§1.1 土的形成与三相组成 一、土的形成
固体颗粒 – 颗粒级配
土的三相组成 – 固体颗粒
矿物成分取决于母岩的矿物成分和风化作用 原生矿物:由岩石经过物理风化形成,其矿物
成分与母岩相同。
例:石英、云母、长石等 特征:矿物成分的性质较稳定,由其组成的土具
有无粘性、透水性较大、压缩性较低的特点
土的物理性质及工程分类
如有你有帮助,请购买下载,谢谢!第一章:土的物理性质及工程分类土是三相体——固相(土颗粒)、液相(土中水)和气相(土中空气)。
固相:是由难溶于水或不溶于水的各种矿物颗粒和部分有机质所组成。
2.土粒颗粒级配(粒度) 2. 土粒大小及其粒组划分b.土粒颗粒级配(粒度成分)土中各粒组相对含量百分数称为土的粒度或颗粒级配。
粒径大于等于0.075mm 的颗粒可采用筛分法来区分。
粒径小于等于0.075mm 的颗粒需采用水分法来区分。
颗粒级配曲线斜率: 某粒径范围内颗粒的含量。
陡—相应粒组质量集中;缓--相应粒组含量少;平台--相应粒组缺乏。
特征粒径: d 50 : 平均粒径;d 60 : 控制粒径;d 10 : 有效粒径;d 30粗细程度: 用d 50 表示。
曲线的陡、缓或不均匀程度:不均匀系数C u = d 60 / d 10 ,Cu ≤5,级配均匀,不好Cu ≥10,,级配良好,连续程度:曲率系数C c = d 302 / (d 60 ×d 10 )。
较大颗粒缺少,Cc 减小;较小颗粒缺少,Cc 增大。
Cc = 1~ 3, 级配连续性好。
粒径级配累积曲线及指标的用途:1.粒组含量用于土的分类定名;2)不均匀系数Cu 用于判定土的不均匀程度:Cu ≥ 5, 不均匀土; Cu < 5, 均匀土;3)曲率系数Cc 用于判定土的连续程度:C c = 1 ~ 3,级配连续土;Cc > 3或Cc < 1,级配不连续土。
4)不均匀系数Cu 和曲率系数Cc 用于判定土的级配优劣:如果 Cu ≥ 5且C c = 1 ~ 3,级配良好的土;如果 Cu < 5 或 Cc > 3或Cc < 1, 级配不良的土。
土粒的矿物成份——矿物分为原生矿物和次生矿物。
原生矿物:岩浆在冷凝过程中形成的矿物(圆状、浑圆状、棱角状) 次生矿物:原生矿物经化学风化后发生变化而形成。
(针状、片状、扁平状) 粗粒土:原岩直接破碎,基本上是原生矿物,其成份同生成它们的母岩。
土力学总结
土力学第一章土的物理性质及工程分类1.土的特点:碎散性、三相性(固,液,气) 、天然性(自然变异性)或成层性.2.土粒大小是影响土的性质最主要因素.土性取决于颗粒的形状,大小和矿物成分.3.常用的粒度成分的表示方法有表格法、累计曲线法和三角坐标法.1).表格法.表格法是以列表形式直接表达各粒组的百分含量.它用于粒度成分的分类是十分方便的.2)累计曲线法.该方法是比较全面和通用的一种图解法,适应于各种土级配好坏的相对比较.由累计曲线的坡度可以大致判断土粒的均匀程度或级配是否良好.3)三角坐标法.三角坐标法只适用于划分三个组粒的情况.4.研究土中水必须考虑到水的存在状态及其土粒的相互作用;存在于土中的液态水可分为结合水和自由水两大类.结合水是指受电分子吸引力吸附在土粒表面的土中水.自由水是存在于土粒表面电场影响范围以外的水.5.土中气:土中的气体存在于土孔隙中未被水所占据的部位.含气体的土称为非饱和土,非饱和土的工程性质研究已形成土力学的一个热点.6.我们把粘土颗粒在直流电作用下向阳极移动的现象称为电泳;而水分子向阴极移动的现象称为电渗.7.双电层的厚度既取决于颗粒表面的带电性,又取决于溶液中阳离子的价数.8.粘土间的相互作用力:(1)粒间吸引力土粒间吸引力主要来源于分子间的范德华力.(2)土粒间排斥力9.土的结构:是指由土粒单元的大小、形状、相互排列及其联结关系等因素形成的综合特征.10.土的构造:土中的物质成分和颗粒大小等都相近的各部分土层之间的相互关系的特征.11.反映土轻重程度的指标:(1)土的天然密度ρ.ρ=m/V (2)土的干密度ρd =m s/V. (3)土的饱和密度ρsat=m s+Vvρw/V (4)土的浮密度ρ′(5)土粒的相对密度12.反映土松密程度的指标(1)孔隙比e:土中孔隙体积与土粒体积之比(2)孔隙率n :土中孔隙体积与总体积之比,以百分数表示.13.反映土含水程度的指标(1)土的含水率ω:土中水的质量与土颗粒质量之比,称为土的含水率,以百分数计.14.影响压实效果的因素:土类、级配、压实功能和含水率,另外土的毛细管压力以及孔隙压力对土的压实性也有一定影响.第二章土中水的运动规律1.孔隙中的自由水在重力(水位差)作用下,发生运动(从土内孔隙中透过)的现象叫渗透.2.土体具有被水透过的性质称为土的渗透性或透水性.3.渗流引起的渗透破坏问题主要有两大类:一是因渗流力的作用,使土体颗粒流失或局部土体产生移动,导致土体变形甚至失稳,如深基坑中流沙和管涌现象;二是由于渗流作用,使水压力或浮力发生变化,导致土体或结构失稳.4.渗流力:水在土中渗流时,受到土颗粒的阻力T的作用,这个力的作用方向与水流方向相反.5.流沙现象:土颗粒之间的压力等于零,土颗粒将处于悬浮状态而失去稳定.6.流沙现象的防治原则:(1)减小或消除水头差,如采取基坑外的井点降水法降低地下水位或水下挖掘;(2)增长渗流途径,如打板桩;(3)在向上渗流出口处地表用透水材料覆盖压重以平衡渗流力;(4)土层处理,减小土的渗透系数,如冻结法、注浆法等.7.管涌现象:水在砂性土中渗流时,土中的一些细小颗粒在渗流力作用下,可能通过粗颗粒的孔隙被水流带走,这种现象称为管涌.8.防治管涌现象,一般从下列三个方面采取措施:(1)改变几何条件,在渗流逸出部位设反滤层是防止管涌破坏的有效措施;(2)改变水力条件,降低水力梯度,如打板桩等;(3)土层处理,减小土的渗透系数.9.流网是由一组流线和一组等势线相互正交组成的网格.流网具有以下特征:(1)流线与等势线相互正交.(2)流线与等势线构成的各个网格的长宽比为常数.(3)相邻等势线之间的水头损失相等.(4)各个流槽(即各相邻两流线间)的渗流量相等.10.土的毛细现象是指土中水在表面张力作用下,沿着孔隙向上及其他地方移动的现象.这种细微孔隙中的水被称为毛细水.11.影响冻胀的因素:(1)土的因素(2)水的因素(3)温度的因素(4)外载荷的因素第三章土中应力计算1.土中应力按其起因可分为自重应力和附加应力两种.土中应力按其作用原理或传递方式可分为有效应力和孔隙应力两种.2.土体的应力-应变关系:(1)土的连续性假定(2)土的线弹性假定(3)土的各向同性假定3.土中某点的自重应力与附加应力之和为土体总的应力.4.在土力学中,正应力以压为正,拉为负.剪应力以逆时针为正.5.地下水位升降,使地基土中自重应力也相应发生变化.6.基底附加压力是指超出原有地基竖向应力的那部分基底压力,也即是作用在基础底面的压力与基底处建造前土中自重应力之差.7.有效应力原理:计算土中应力的目的是为了研究土体受力后的变形和强度问题.8.土中有效应力是指土中固体颗粒(土粒)接触点传递的粒间应力.9.存在土体中某点的总应力有三种情况,即自重应力附加应力、自重应力与附加应力之和.10.有效应力原理:(1)饱和土中任意点的总应力σ总是等于有效应力加上孔隙水压力;(2)土的有效应力控制了土的变形及强度.第四章土的压缩性与地基沉降计算1.土的三大工程问题:渗流、变形、强度.2.在外力作用下土体体积缩小的特性称为土的压缩性.3.土的压缩通常由三部分组成:(1)固体土颗粒被压缩;(2)土中水及封闭气体被压缩;(3)水和气体从孔隙中排出.4.对饱和土来说,土体的压缩变形主要是孔隙水的排出.5沉降:在建筑物荷载作用下,地基土主要由于压缩而引起基础的竖向位移.6.计算地基沉降时,必须取得土的压缩性指标.土的压缩性指标可以通过室内压缩试验或现场原位试验的方式获得.7.土的变形模量是指土体在无侧限条件下的应力与应变的比值.变形模量是反映土的压缩性的重要指标之一.8.土的弹性模量的定义是土体在无侧限条件下瞬时压缩的应力-应变模量.9.变形顺序:初始沉降、固结沉降、次固结沉降.10.几种沉降计算方法:分层总和法、应力面积法和弹性理论方法.第五章土的抗剪强度1.土的抗剪强度是指土抵抗剪切破坏的极限能力.2.土的c和ф统称为土的抗剪强度指标.3.土的抗剪强度是决定建筑物地基和土工建筑物稳定性的关键因素.4.无粘性土的抗剪强度决定于有效法向应力和内摩擦角.5.应力路径是指在外力作用下,土中某一点的应力变化过程在应力坐标图中的轨迹.它是描述土体在外力作用下应力变化情况或过程的一种方法.第六章土压力与挡土墙1.用来支撑天然或人工斜坡不致坍塌,保持土体稳定性的一种建筑物,俗称挡土墙.2.土压力是设计挡土墙结构物断面及验算其稳定性的主要外载荷.3.根据挡土墙的方向,大小及墙后填土处的应力状态,将土压力分为静止土压力,主动土压力,被动土压力三种.4.影响土压力的最主要因素:墙体位移条件.5.挡土墙的类型:重力式挡土墙、悬臂式挡土墙、扶壁式挡土墙、锚定板及锚杆式挡土墙.第七章地基承载力1.地基承载力是指单位面积上地基所能承受的荷载.2.地基破坏模式可分为整体剪切破坏、局部剪切破坏及冲切破坏三种。
1土的物理性质及分类
土的三相组成
土的三相比例指标
土的结构
粘性土的界限含水量 砂土的密实度 粘性土的物理化学性质 土的工程分类
土的三相组成
总体特征
土是由三相组成的。土体是岩石风化的产物,具有强度低、 压缩性高、渗透性三个特点。
一、土的固体颗粒 土粒的矿物成分
1)原生矿物:母岩经物理风化而成,eg.石英、云母、长石;其成分与母 岩相同,分为单矿物颗粒,多矿物颗粒。 2)次生矿物:母岩经化学风化而成,如eg.高岭石、伊里石、蒙脱石。 其成分与母岩不同,为一种新矿物颗粒。主要是粘土矿物。D<0.005mm 漂石、卵石、圆砾等粗大土粒都是母岩的碎屑,其矿物成分与母岩相 同; 砂粒大部分是母岩中的单矿物颗粒,如如石英、云母、长石。
14.0
16.0
18.0
20.0
22.0
24.0
26.0
系列1 多项式 (系列1)
含水量
土的三相比例指标
土的三相比例指标
三、换算指标
孔隙比e和孔隙率n
度的重要物理性质指标,e或n越大, 土越疏松,反之土越密实。一般e<0.6 的土是密实的低压缩性土,e>1.0的土 VV n 100 % 是疏松的高压缩性土。
由试验成果定义如下指标:
d 60 不均匀系数: C u d10
曲率系数:
Cs
d
2 30
d 60 d10
土的工程分类
不均匀系数 反映大小不同粒组的分布情况 ,小于5的 土为均匀土,级配不良,大于10,级配良好,但过大表 明缺少中间粒径,属不连续级配。 曲率系数反映曲线的整体形状,过大或过小都表明缺乏 中间粒径。 对于砂类土,不均匀系数大于5而曲率系数介于1到3之间 时,级配良好。
土力学:第1章 土的物理性质和工程分类
d320 d60d10
(1 1b)
式中:d 、d 、d 分别相当于累计百分含量为
10
30
60
10%、30%和60%的粒径;
d10 称为有效粒径;
d60 称为限制粒径;
d 、d 10
30、称d为6平0 均粒径。
3.粒度成分及其表示方法(5)
不均匀系数 Cu 、Cc 反映大小不同粒组的分布情况:
Cu >= 5、Cc =1-3的土级配良好,其余情况为级配不良。
1)横坐标(按对数比例尺)表示某一粒径, 2)纵坐标表示小于某一粒径的土粒的百分
含量。
3.粒度成分及其表示方法(3)
表1-3中的三种土的累计曲线如图1-1所示。
3.粒度成分及其表示方法(4)
在累计曲线上,可确定两个描述土的级配的指标:
• 不均匀系数
Cu
d60 d10
(1 1a)
• 曲率系数
Cs
粒组名称
粒组范围(mm)
粒组名称
粒组范转(mm)
漂石(块石)粒组
>200
砂粒粒组
0.075~2
卵石(碎石粒组)
20~200
粉粒粒组
0.005~0.075
砾石粒粗
2~20
粘粒粒组
<0.005
我国上述规范采用的粒组划分标准见表1-1。《土的
工程分类标准》1.(G土B的J14粒5-9组0)划在分砂粒(粒4组)与粉粒粒组
第一章土的物理性质与工程分类-第一章土的物理性质及工程分
第一章土的物理性质及工程分类第一节土的组成与结构一、土的组成天然状态下的土的组成(一般分为三相)⑴固相:土颗粒--构成土的骨架,决定土的性质--大小、形状、成分、组成、排列⑵液相:水和溶解于水中物质⑶气相:空气及其他气体(1)干土=固体+气体(二相)(2)湿土=固体+液体+气体(三相)(3)饱和土=固体+液体(二相)二、土的固相——矿物颗粒土粒粒径大小及矿物成分不同,对土的物理力学性质有着较大影响。
如当土粒粒径由粗变细时,土的性质可从无粘性变化到有粘性。
(一)土的粒组划分工程上将物理力学性质较为接近的土粒划分为一个粒组,粒组与粒组之间的分界尺寸称为界限粒径。
土颗粒根据粒组范围划分不同的粒组名称:六大粒组:块石(漂石)、碎石(卵石)、角粒(圆粒)、砂粒、粉粒、粘粒界限粒径分别是:200mm、20mm、2mm、0.075mm、0.005mm,见下表。
表1-1 粒组划分标准(GB 50021—94)(二)土的颗粒级配自然界的土通常由大小不同的土粒组成,土中各个粒组重量(或质量)的相对含量百分比称为颗粒级配,土的颗粒级配曲线可通过土的颗粒分析试验测定。
1.颗粒大小分析试验方法(1)筛分法:适用60—0.075mm的粗粒土(2)密度计法:适用小于0.075mm的细粒土2.颗粒级配曲线——半对数坐标系3.级配良好与否的判别1)定性判别(1)坡度渐变——大小连续——连续级配(级配曲线)(2)水平段(台阶)——缺乏某些粒径——不连续级配(1)曲线形状平缓——粒径变化范围大——不均匀——良好(2) 曲线形状较陡——变化范围小——均匀——不良 2) 定量判别:不均匀系数 1060d d C u =103060d d d 分别表示级配曲线上纵坐标为60% 30% 10%时对应粒径 不均匀系数越大,土粒越不均匀,工程上把5<u C 的看作是均匀的,级配不好;把10>u C 大于的土看作是不均匀的,级配良好。
1.土的物理性质及工程分类
设土的总体积 V 1.0cm3
m V 1.67 1.0 1.67 g
m ms 1.67 ms 0.129 ms 1.48 g ms ms mw m ms 1.67 1.48 0.19 g
34
Gs 2.67
1-4 土的三相比例指标
Vw mw w 0.19 1.0 0.19cm3
结合水: 受颗粒表面电场作用力吸引而包围在颗粒四周,不传 递静水压力,不能任意流动的水,称为结合水。 强结合水:紧靠于颗粒表面的水分子,所受电场的作 用力很大,几乎完全固定排列,丧失液体的特性而 接近于固体,完全不能移动,这层水称为强结合水
弱结合水:指强结合水以外,电场作用范围以内的水
自由水: 是存在于颗粒表面电场影响范围以外的水
1-1 概述
风化(物理、 化学)作用
搬运 沉积
ห้องสมุดไป่ตู้
岩石
岩石破碎 化学成分改变
大小、形状和 成分都不相同 的松散颗粒集 合体(土)
固相 土 液相 气相
土中颗粒的大小、成分及三相 之间的相互作用和比例关系, 反映出土的不同性质
1
1-1 概述 土的定义: 土是连续,坚固的岩石在风化作用下形成 的大小悬殊的颗粒,经过不同的搬运方式,在 各种自然环境中生成的沉积物。
(1—3)
23
1-4 土的三相比例指标
1. 试验指标(基本指标) ② 土粒比重(相对密度)Gs :土粒比重定义为土粒的 质量与同体积 4C时纯水的质量之比,无量纲: ms s Gs (1—4) Vs w w
式中 w 为纯水在 4C 时的密度 ,取:
w 1.0 g cm
中 细 极细
0.5~0.25mm 0.25~0.10mm 0.10~0.05mm
土力学-1.土的物理性质及工程分类-1.3 土的三相比例指标
完全被水充满时的土的密度
学
资
土粒
sat
ms
Vv
V
环浮密度ρ :土单位体积内土 安 粒质量与同体积水的质量之差
学
院
ms Vs
V
干密度ρd :单位体积中固
体颗粒部分的质量
d
ms V
土的三相比例指标中的质量密度指标共有4个,土的密度
土 ρ,饱和密度ρsat,干密度ρd,浮密度ρ (kg/m3),相应的重 力 度指标也有4个,土的重度,饱和重度sat,干重度d,浮 学 重度 (kN/m3)
m ms
g
100 % 187 167 11.98% 167
1.87 10 18.7kN / m3 d
m 187 1.87g / cm3
V 100
d
g
167 100
10
16.7kN
/
m3
e Gs (1 ) 1 2.66(1 0.1198 ) 1 0.593
院
e Gs w 1 Gs (1 ) w 1
d
土
sat
ms
VV w
V
(Gs e)w
1 e
d
ms V
Gs w
1 e
1
n VV e V 1e
力 学
sat
(Gs 1)w
1 e
Sr
Vw VV
mw
VV W
Gs
e
南 五、例题分析
土力学-第一章
土的结构类型
• 示意图
单粒结构—松
• 排列形式 • 矿物成分
点与点、点与面 原生矿物
单粒结构—密
粗 粒 土
30 岩土工程研究所
郭莹主讲
土力学
§1 土的物性及分类 §1.1土的三相组成和结构 1.1.4土的结构
土的结构类型
• 示意图
细 粒 土 • 形成环境
颗粒级配 颗粒级配曲线及指标的用途:
1)粒组含量用于土的分类定名;
2)不均匀系数Cu用于判定土的不均匀程度: Cu ≥ 5,不均匀土; Cu < 5,均匀土
3)曲率系数Cc用于判定土的连续程度: C c = 1 ~ 3, 级配连续土; Cc > 3 或 Cc < 1,级配不连续土
4)不均匀系数Cu和曲率系数Cc用于判定土的级配优劣: 如果 Cu ≥ 5且 C c = 1 ~ 3 , 级配良好的土; 如果 Cu < 5 或 Cc > 3 或 Cc < 1, 级配不良的土。
重力水
地下水位(浸润线)以下饱和土中; 在重力作用下可在土中自由流动。
(gravitation water)
自由水
(free water)
• 存在于固气之间
毛细水
• 在重力与表面张力作用下
可在土粒间孔隙中自由移动 (capillary water)
26 岩土工程研究所
郭莹主讲
土力学
§1 土的物性及分类 §1.1土的三相组成和结构 1.1.3土的液相
粒径(mm)
∵d60A = d60B= 0.28,d10A=0.15 d10B =0.02 ∴CuA=1.87 <CuB=14
16 岩土工程研究所
郭莹主讲
土的基本性质
Ws Vs w ms g Vs w g ' 'g V V
(1-17)
与其相应,提出了浮密度的概念,土的浮密度是单位体 积内的土粒质量与同体积水质量之差,其表达式为:
Ws ms g d d g V V
(1-14)
土烘干,体积要减小,因而,土的干密度不等于烘干土的 密度。土的干密度或干重度也是评定土密实程度的指标, 干密度或干重度愈大表明土愈密实,反之愈疏松。
(五)饱和密度ρsat与饱和重度γsat
饱和密度定义:土中孔隙完全被水充满土处于饱和状态时 单位体积土的质量。表达式为:
形成过程 形成条件
影响
物理力学 性质
土是由岩石经过物理风化和化学风化作用后,在不同条件 下形成的自然历史的产物
岩石
风化 搬运、沉积
土
地球
地球
化学风化:岩体(或岩块、岩屑)与氧气、二氧化碳等各种气体 、水和各种水溶液等物质相接触,经氧化、碳化和水化作用,使 这些岩石或岩屑逐渐产生化学变化,分解为极细颗粒的过程。
第一章 土的物理性质及工程分类
第一章 土的物理性质指标与工程分类
土是松散颗粒的堆积物,是岩石风化的产物(人工破碎;堆石坝的 坝壳料;相当于物理风化)。 土是指覆盖在地表的没有胶结或弱胶结的颗粒堆积物。 根据来源分:有机土和无机土 岩石风化分为物理风化和化学风化。 物理风化:岩石经受风、霜、雨、雪的侵蚀,或受波浪的冲击、地 震等引起各种力的作用,温度的变化、冻胀等因素使整体岩石产生 裂隙、崩解碎裂成岩块、岩屑的过程。
Cu小,曲线陡; Cu大,易压密;Cc过大,台阶在 d10~d30间; Cc过小,台阶在d30~d60间;
规范:纯净砾、砂,Cu>=5,且Cc=1~3时,级配良好,否则,不良。
土的物理性质及工程分类
第1章土的物理性质及工程分类1.1 土的形成岩土体是地壳的物质组成。
岩体是地壳表层圈层,经建造和改造而形成的具一定组分和结构的地质体。
它赋存于一定的地质环境之中,并随着地质环境的演化和地质作用的持续,仍在不断的变化着。
土体是岩石风化的产物,是一种松散的颗粒堆积物。
由于岩土材料组成的复杂性,其性质在许多方面不同于其它材料,具有其特有的多变性及复杂性。
以下就岩土的特性分别简述之。
1.2 土的组成1.1.1 土的结构与特性土是一种松散的颗粒堆积物。
它是由固体颗粒、液体和气体三部份组成。
土的固体颗粒一般由矿物质组成,有时含有胶结物和有机物,这一部分构成土的骨架。
土的液体部分是指水和溶解于水中的矿物质。
空气和其它气体构成土的气体部分。
土骨架间的孔隙相互连通,被液体和气体充满。
土的三相组成决定了土的物理力学性质。
1)土的固体颗粒土骨架对土的物理力学性质起决定性的作用。
分析研究土的状态,就要研究固体颗粒的状态指标,即粒径的大小及其级配、固体颗粒的矿物成分、固体颗粒的形状。
(1)固体颗粒的大小与粒径级配土中固体颗粒的大小及其含量,决定了土的物理力学性质。
颗粒的大小通常用粒径表示。
实际工程中常按粒径大小分组,粒径在某一范围之内的分为一组,称为粒组。
粒组不同其性质也不同。
常用的粒组有:砾石粒、砂粒、粉粒、粘粒、胶粒。
以砾石和砂粒为主要组成成分的土称为粗粒土。
以粉粒、粘粒和胶粒为主的土,称为细粒土。
土的工程分类见本章第三节。
各粒组的具体划分和粒径范围见表1-1。
土中各粒组的相对含量称土的粒径级配。
土粒含量的具体含义是指一个粒组中的土粒质量与干土总质量之比,一般用百分比表示。
土的粒径级配直接影响土的性质,如土的密实度、土的透水性、土的强度、土的压缩性等。
要确定各粒组的相对含量,需要将各粒组分离开,再分别称重。
这就是工程中常用的颗粒分析方法,实验室常用的有筛分法和密度计法。
筛分法适用粒径大于0.075mm的土。
利用一套孔径大小不同的标准筛子,将称过质量的干土过筛,充分筛选,将留在各级筛上的土粒分别称重,然后计算小于某粒径的土粒含量。
土的物理性质及工程分类
•0
•塑限ωP
•液限ωL
•ω
•固态或半固态
•可塑状态
•流动状态
• 粘性土由某一种状态过渡到另一状态的界限含水量称为土的 稠度界限。
• 液塑限测定根据《土工试验规程》(SL237-007-1999)规定,采 用液塑限联合测定仪进行测定。
PPT文档演模板
土的物理性质及工程分类
•说明:塑性指数的大小取决于土颗粒吸附结合水的能力,即与土中 粘粒含量有关。粘粒含量越多,塑性指数就越高
•液性指数IL是粘性土的天然含水量和塑限的差值与塑性指数之比
PPT文档演模板
•说明:液性指数表征土的天然含水量与界限含水量间的相对关系。 当IL≤0时,ω≤ωP,土处于坚硬状态;当IL>1时,ω>ωL,土处于流动 状态。根据IL值可以直接判定土的软硬状态
•风化(物理、 化学)作用
•岩石破碎
•岩
化学成分
石
改变
•搬运沉
积 •大小、形状和 成分都不相同的 松散颗粒集合体 (土)
•固 相 •土 •液 相 •气 相
•土中颗粒的大小、成分及三相之间的相互 作用和比例关系,反映出土的不同性质。
土的物理性质及工程分类
§2.1 土的组成及其结构与构造
v 一、土的固相
•分类方法:
•1.《建筑地基基础设计规范》(GB50007-2002)
• 根据土粒大小、粒组的土粒含量或土的塑性指数把地基土 (岩)分为岩石、碎石土、砂土、粉土和粘性土五大类。
•a.岩石的分类
• 颗粒间牢固粘结,呈整体或具有节理隙的岩体称为岩石,坚硬 程度可根据岩块的饱和单轴抗压强度frk分类
•坚硬程度类别 •坚硬岩 •较硬岩 •较软岩 •软岩 •极软岩
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
土的物理性质和工程分类
“土”一词在不同的学科领域有其不同的涵义。
就土木工程领域而言,土是指覆盖在地表的没有胶结和弱胶结的颗粒堆积物。
土与岩石的区分仅在于颗粒间胶结的强弱。
物理风化——指由于温度变化、水的冻胀、波浪冲击、地震等引起的物理力使岩体
崩解、碎裂成岩块、岩屑的过程。
物理风化仅使岩石产生量的变化。
化学风化——指岩体(或岩块、岩屑)与空气、水和各种水溶液相接触,经氧化、碳
化和水化作用分解为极细颗粒的过程,生物的活动也可助长风化的进
程。
而化学风化却使岩石产生质的变化。
土是由固相、液相、气相组成的三相分散系。
固相——包括多种矿物成分组成土的骨架,骨架间
的空隙为液相和气相填满,这些空隙是相
互连通的,形成多孔介质。
液相——主要是水(溶解有少量的可溶盐类)。
气相——主要是空气、水蒸气,有时还有沼气等
一、土的固相
土是岩石风化的产物。
因此土粒的矿物组成将取决于成土母岩的矿物组成及其后的风化作用。
成土矿物可分为两大类。
原生矿物
•由岩石经物理风化生成的颗粒通常是由一种或几种原生矿物所组成,它的成分成分与母岩的相同,常见的有石英、长石相云母。
•颗粒一般较粗,多呈浑圆形、块状或板状。
•吸附水的能力弱,性质比较稳,无塑性。
次生矿物
•由原生矿物经化学风化生成的新矿物,它的成分成分与母岩的完全不同。
次生矿物主要是粘土矿物,即高岭石、伊利石和蒙脱石。
•颗粒极细,且多呈片状。
•性质活泼,有较强的吸附水能力(尤其是由蒙脱石组成的颗粒),具塑性。
水溶盐
可溶性次生矿物。
最常见的有岩盐、钾盐、石膏、方解石,硫酸盐类还对金属和混凝土有一定的腐蚀作用
有机质
动植物分解后的残骸,分解彻底的称为腐殖质。
腐殖质的颗粒极细,粒径小于0.1 m,呈凝胶状,带有电荷,具有极强的吸附性。
土的颗粒级配
土是由大小不同的土粒组成的。
土粒的粒径由粗到细逐渐变化时,土的性质相应地发生变化。
例如土的性质随着粒径的变细可由无粘性变化到有粘性。
界限粒径——划分粒组的分界尺寸。
土的颗粒级配——土中各个粒组的相对含量(各粒组占土粒总重的百分数)。
颗粒级配累积曲线——颗粒大小分析试验成果,由其横坐标(对数坐标)表示粒径。
纵坐标则表示用小于(或大于)某粒径的土重含量(或称累计百分含量) 。
土粒质量累计百分数为10%时,相应的粒径称为有效粒径d10。
小于某粒径的土粒质量累计百分数为30%时的粒径用d30表示。
当小于某粒径的土粒质量累计百分数为60%时,该粒径称为限定粒径d60。
利用颗粒级配累积曲线可以确定土粒的级配指标,如d60与d10的比值Cu称
不均匀系数: 1060d d C u = 曲率系数Cc : 60
102
30
d d d C c =
不均匀系数C u反映大小不同粒组的分布情况。
C u越大表示土粒大小的分布范围越大、
其级配越良好,作为填方工程的土料时,则比较容易获得较大的密实度。
曲率系数Cc 描写累积曲线的分布范围,反映曲线的整体形状。
曲线平缓,粒径大小相差悬殊,土粒不均匀。
颗粒级配可以在一定程度上反映土的某些性质。
对于级配良好的土,较粗颗粒间的孔隙被较细的颗粒所填充,因而土的密实度较好,相应的地基土的强度和稳定性也较好.透水性和压缩性也较小,可用作堤坝或其它土建工程的填方土料。
双电层理论
表面带有一定量负电荷的粘粒,由于静电引力的作用,在水溶液中将吸引水中的阳离子到土粒表面来。
这些阳离子实际是水化阳离子,体积较大,阻碍着阳离子的密集。
另一方面,阳离子又受到热运动的扩散作用,要离开土粒表面。
因而阳离子的分布是不均匀的,愈靠近表面,静电作用力愈大、吸引力愈强,阳离子浓库也愈大:随着离土粒表面距离的增加,静电引力也降低,阳离子浓度也逐渐下降.直至孔隙中水溶液的浓度正常为止这个层称为反离子层。
同样,阴离子的浓度,由于静电斥力的作用,愈靠近表面,浓度愈低;随着距离的增加,阴离子浓度也逐渐增加,直至达到正常浓度为止。
土粒表面的负电荷与受土粒表面影响的阳离子层(反离子层)合起来称为双电层。
影响双电层的因素
首先决定于土粒表面的电位,土粒表面电位的大小则与土粒大小、矿物成分类型等。
二、土的液相
土中水处于不同位置和温度条件下,可具有不同的物理状态——固态、液态、气态。
液态水是土中孔隙水的主要存在状态,因其受土粒表面双电层影响程度的不同可分为结
合水、毛细水、重力水。
后两者也称为非结合水(自由水)。
(一)结合水
土颗粒表面带有一定的电荷,当土粒与水相接触时,由于静电作用力,将吸引水化离子
和水分子,形成双电层,在双电层影响下的水膜称为表面结合水。
双电层的厚薄也反映了结
合水的厚薄,结合水具有与一般自由水不同的性质,其密度较大、粘滞度高、流动性差、冰
点低、比热较大、介电常数较低。
这种差异随距离增加而减弱。
二)非结合水
在双电层影响以外的水为自由液态水,它主要受重力作用的控制,土粒表面吸引力居次
要地位,这部分水称为非结合水,它包括毛细水和重力水。
(1)毛细水
毛细水是受到水与空气交界面处表面张力作用的自由水。
毛管现象是毛细管壁对水的吸
力和水的表面张力共同作用的结果。
毛细水按其与地下水面是否联系可分为毛细悬挂水(与地下水无直接联系)和毛细水上升水(与地下水相连)两种。
毛细水是受毛细管作用控制的水,可以把土的孔隙看作是连续变截面的毛细管,毛细管放在水中,管中的水位会上升到自由水位以上的一定高度,毛管直径愈细上升高度愈高。
在常温下毛细上升高度hc与毛管半径r有以下关系:当r=0.1μ m时,hc=150mm,这与砂土(粒径为0.5~l mm)中的情况大致相当。
粘土的孔隙直径约为0.1μm,按上式计算毛细上升高度将达150m。
?
毛细区域内的水压力与一般静水压力的概念相同,它与水头高度非常hc成正比。
负号表示拉力。
自由水位以下为压力,自由水位以上,毛细区域内为拉力。
颗粒骨架承受水的反作用力,因此自由水位以下。
上骨架受浮托力,减小颗粒间的压力。
自由水位以上,毛细区域内,颗粒间受压力,毛细压力呈倒三角形分布。
弯液面处最大,自由水面处为零。
(2)重力水
重力水是存在于地下水位以下的适水土层中的地下水。
它是在重力或压力差作用下运动的自由水,对土粒有浮力作用。
重力水只受重力控制,不受土粒表面吸引力的影响。
毛细压力增加了土粒间的联结,所以散粒状的砂土,当含有少量水分时具有假粘聚力,但是当土饱和时,这种联结作用即告消失。
因此,由于毛细力而呈现的粘性是暂时性的。