2014四川高考数学试卷(理科word版)

合集下载

2014年四川高考理科数学试题含答案(Word版)-推荐下载

2014年四川高考理科数学试题含答案(Word版)-推荐下载
2
4.若 a b 0 , c d 0 ,则一定有
A. a b B. a b C. a b
【答案】D
cd
cd
dc
【解析】由 c d 0 1 1 0 ,又 a b 0 ,由不等式性质知: a b 0 ,
所以 a b dc

4(m

4)

2(2m

2)

m

2
【解析 2】由几何意义知 c 为以 ma , b 为邻边的菱形的对角线向量,又| b | 2 | a | 故 m 2
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线0产中不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资22负料,荷试而下卷且高总可中体保资配障料置23试时23卷,各调需类控要管试在路验最习;大题对限到设度位备内。进来在行确管调保路整机敷使组设其高过在中程正资1常料中工试,况卷要下安加与全强过,看2度并55工且22作尽2下可护1都能关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编5试技写、卷术重电保交要气护底设设装。备备4置管高调、动线中试电作敷资高气,设料中课并3技试资件且、术卷料拒管中试试调绝路包验卷试动敷含方技作设线案术,技槽以来术、及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

2014年全国高考理科数学试题及答案-四川卷

2014年全国高考理科数学试题及答案-四川卷

2014年普通高等学校招生全国统一考试(四川卷)理科数学一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的。

1.已知集合2{|20}A x x x =--≤,集合B 为整数集,则A B ⋂=A .{1,0,1,2}-B .{2,1,0,1}--C .{0,1}D .{1,0}- 2.在6(1)x x +的展开式中,含3x 项的系数为A .30B .20C .15D .103.为了得到函数sin(21)y x =+的图象,只需把函数sin 2y x =的图象上所有的点A .向左平行移动12个单位长度 B .向右平行移动12个单位长度 C .向左平行移动1个单位长度 D .向右平行移动1个单位长度 4.若0a b >>,0c d <<,则一定有A .a b c d > B .a b c d < C .a b d c > D .a bd c< 5.执行如图1所示的程序框图,如果输入的,x y R ∈,则输出的S 的最大值为A .0B .1C .2D .36.六个人从左至右排成一行,最左端只能排甲或乙,最右端不能拍甲,则不同的排法共有A .192种B .216种C .240种D .288种 7.平面向量(1,2)a =,(4,2)b =,c ma b =+(m R ∈),且c 与a 的夹角等于c 与b 的夹角,则m = A .2- B .1- C .1 D .28.如图,在正方体1111ABCD A B C D -中,点O 为线段BD 的中点。

设点P 在线段1CC 上,直线OP 与平面1A BD 所成的角为α,则sin α的取值范围是A .B .C .D . 9.已知()ln(1)ln(1)f x x x =+--,(1,1)x ∈-。

现有下列命题:①()()f x f x -=-; ②22()2()1xf f x x =+; ③|()|2||f x x ≥。

2014年全国高考四川省数学(理)试卷及答案【精校版】

2014年全国高考四川省数学(理)试卷及答案【精校版】

2014年普通高等学校招生全国统一考试理科(四川卷)参考答案第I 卷(选择题 共50分)一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的。

1.已知集合2{|20}A x x x =--≤,集合B 为整数集,则A B ⋂=A .{1,0,1,2}-B .{2,1,0,1}--C .{0,1}D .{1,0}-【答案】A2.在6(1)x x +的展开式中,含3x 项的系数为A .30B .20C .15D .10【答案】C3.为了得到函数sin(21)y x =+的图象,只需把函数sin 2y x =的图象上所有的点A .向左平行移动12个单位长度B .向右平行移动12个单位长度 C .向左平行移动1个单位长度 D .向右平行移动1个单位长度【答案】A4.若0a b >>,0c d <<,则一定有A .a b c d > B .a b c d< C .a b d c > D .a b d c < 【答案】D5.执行如图1所示的程序框图,如果输入的,x y R ∈,则输出的S 的最大值为A .0B .1C .2D .3【答案】C6.六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有A .192种B .216种C .240种D .288种【答案】B7.平面向量a=(1,2), b=(4,2), c=ma+b (m R ∈),且c 与a 的夹角等于c 与b 的夹角,则m =A .2-B .1-C .1D .2【答案】D8.如图,在正方体1111ABCD A B C D -中,点O 为线段BD 的中点。

设点P 在线段1CC 上,直线OP 与平面1A BD 所成的角为α,则sin α的取值范围是A .B .C .D . 【答案】B9.已知()ln(1)ln(1)f x x x =+--,(1,1)x ∈-。

2014年四川高考数学试卷(理科)(含答案解析)

2014年四川高考数学试卷(理科)(含答案解析)

2014年四川省高考数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给处的四个选项中,只有一项是符合题目要求的.1.(5分)(2014•四川)已知集合A={x|x2﹣x﹣2≤0},集合B为整数集,则A∩B=()A.{﹣1,0,1,2} B.{﹣2,﹣1,0,1} C.{0,1} D.{﹣1,0}2.(5分)(2014•四川)在x(1+x)6的展开式中,含x3项的系数为()A.30 B.20 C.15 D.103.(5分)(2014•四川)为了得到函数y=sin(2x+1)的图象,只需把y=sin2x的图象上所有的点()A.向左平行移动个单位长度B.向右平行移动个单位长度C.向左平行移动1个单位长度D.向右平行一定1个单位长度4.(5分)(2014•四川)若a>b>0,c<d<0,则一定有()A.>B.<C.>D.<5.(5分)(2014•四川)执行如图所示的程序框图,若输入的x,y∈R,那么输出的S的最大值为()A.0B.1C.2D.36.(5分)(2014•四川)六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有()A.192种B.216种C.240种D.288种7.(5分)(2014•四川)平面向量=(1,2),=(4,2),=m+(m∈R),且与的夹角等于与的夹角,则m=()A.﹣2 B.﹣1 C.1D.28.(5分)(2014•四川)如图,在正方体ABCD﹣A1B1C1D1中,点O为线段BD的中点,设点P在线段CC1上,直线OP与平面A1BD所成的角为α,则sinα的取值范围是()A.[,1]B.[,1]C.[,]D.[,1]9.(5分)(2014•四川)已知f(x)=ln(1+x)﹣ln(1﹣x),x∈(﹣1,1).现有下列命题:①f(﹣x)=﹣f(x);②f()=2f(x)③|f(x)|≥2|x|其中的所有正确命题的序号是()A.①②③B.②③C.①③D.①②10.(5分)(2014•四川)已知F为抛物线y2=x的焦点,点A,B在该抛物线上且位于x轴的两侧,•=2(其中O为坐标原点),则△ABO与△AFO面积之和的最小值是()A.2B.3C.D.二、填空题:本大题共5小题,每小题5分,共25分11.(5分)(2014•四川)复数=_________.12.(5分)(2014•四川)设f(x)是定义在R上的周期为2的函数,当x∈[﹣1,1)时,f(x)=,则f()=_________.13.(5分)(2014•四川)如图,从气球A上测得正前方的河流的两岸B,C的俯角分别为67°,30°,此时气球的高是46m,则河流的宽度BC约等于_________m.(用四舍五入法将结果精确到个位.参考数据:sin67°≈0.92,cos67°≈0.39,sin37°≈0.60,cos37°≈0.80,≈1.73)14.(5分)(2014•四川)设m∈R,过定点A的动直线x+my=0和过定点B的动直线mx﹣y﹣m+3=0交于点P(x,y).则|PA|•|PB|的最大值是_________.15.(5分)(2014•四川)以A表示值域为R的函数组成的集合,B表示具有如下性质的函数φ(x)组成的集合:对于函数φ(x),存在一个正数M,使得函数φ(x)的值域包含于区间[﹣M,M].例如,当φ1(x)=x3,φ2(x)=sinx时,φ1(x)∈A,φ2(x)∈B.现有如下命题:①设函数f(x)的定义域为D,则“f(x)∈A”的充要条件是“∀b∈R,∃a∈D,f(a)=b”;②函数f(x)∈B的充要条件是f(x)有最大值和最小值;③若函数f(x),g(x)的定义域相同,且f(x)∈A,g(x)∈B,则f(x)+g(x)∉B.④若函数f(x)=aln(x+2)+(x>﹣2,a∈R)有最大值,则f(x)∈B.其中的真命题有_________.(写出所有真命题的序号)三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(12分)(2014•四川)已知函数f(x)=sin(3x+).(1)求f(x)的单调递增区间;(2)若α是第二象限角,f()=cos(α+)cos2α,求cosα﹣sinα的值.17.(12分)(2014•四川)一款击鼓小游戏的规则如下:每盘游戏都需要击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐:每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得﹣200分).设每次击鼓出现音乐的概率为,且各次击鼓出现音乐相互独立.(1)设每盘游戏获得的分数为X,求X的分布列;(2)玩三盘游戏,至少有一盘出现音乐的概率是多少?(3)玩过这款游戏的许多人都发现.若干盘游戏后,与最初分数相比,分数没有增加反而减少了.请运用概率统计的相关知识分析分数减少的原因.18.(12分)(2014•四川)三棱锥A﹣BCD及其侧视图、俯视图如图所示,设M,N分别为线段AD,AB的中点,P为线段BC上的点,且MN⊥NP.(1)证明:P是线段BC的中点;(2)求二面角A﹣NP﹣M的余弦值.19.(12分)(2014•四川)设等差数列{a n}的公差为d,点(a n,b n)在函数f(x)=2x的图象上(n∈N*).(1)若a1=﹣2,点(a8,4b7)在函数f(x)的图象上,求数列{a n}的前n项和S n;(2)若a1=1,函数f(x)的图象在点(a2,b2)处的切线在x轴上的截距为2﹣,求数列{}的前n项和T n.20.(13分)(2014•四川)已知椭圆C:+=1(a>b>0)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.(1)求椭圆C的标准方程;(2)设F为椭圆C的左焦点,T为直线x=﹣3上任意一点,过F作TF的垂线交椭圆C于点P,Q.①证明:OT平分线段PQ(其中O为坐标原点);②当最小时,求点T的坐标.21.(14分)(2014•四川)已知函数f(x)=e x﹣ax2﹣bx﹣1,其中a,b∈R,e=2.71828…为自然对数的底数.(1)设g(x)是函数f(x)的导函数,求函数g(x)在区间[0,1]上的最小值;(2)若f(1)=0,函数f(x)在区间(0,1)内有零点,求a的取值范围.2014年四川省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给处的四个选项中,只有一项是符合题目要求的.1.(5分)(2014•四川)已知集合A={x|x2﹣x﹣2≤0},集合B为整数集,则A∩B=()A.{﹣1,0,1,2} B.{﹣2,﹣1,0,1} C.{0,1} D.{﹣1,0}考点:交集及其运算.专题:计算题.分析:计算集合A中x的取值范围,再由交集的概念,计算可得.解答:解:A={x|﹣1≤x≤2},B=Z,∴A∩B={﹣1,0,1,2}.故选:A.点评:本题属于容易题,集合知识是高中部分的基础知识,也是基础工具,高考中涉及到对集合的基本考查题,一般都比较容易,且会在选择题的前几题,考生只要够细心,一般都能拿到分.2.(5分)(2014•四川)在x(1+x)6的展开式中,含x3项的系数为()A.30 B.20 C.15 D.10考点:二项式系数的性质.专题:二项式定理.分析:利用二项展开式的通项公式求出(1+x)6的第r+1项,令x的指数为2求出展开式中x2的系数.然后求解即可.解答:解:(1+x)6展开式中通项T r+1=C6r x r,令r=2可得,T3=C62x2=15x2,∴(1+x)6展开式中x2项的系数为15,在x(1+x)6的展开式中,含x3项的系数为:15.故选:C.点评:本题考查二项展开式的通项的简单直接应用.牢记公式是基础,计算准确是关键.3.(5分)(2014•四川)为了得到函数y=sin(2x+1)的图象,只需把y=sin2x的图象上所有的点()A.向左平行移动个单位长度B.向右平行移动个单位长度C.向左平行移动1个单位长度D.向右平行一定1个单位长度考点:函数y=Asin(ωx+φ)的图象变换.专题:三角函数的图像与性质.分析:根据y=sin(2x+1)=sin2(x+),利用函数y=Asin(ωx+φ)的图象变换规律,得出结论.解答:解:∵y=sin(2x+1)=sin2(x+),∴把y=sin2x的图象上所有的点向左平行移动个单位长度,即可得到函数y=sin(2x+1)的图象,故选:A.点评:本题主要考查函数y=Asin(ωx+φ)的图象变换规律,属于基础题.4.(5分)(2014•四川)若a>b>0,c<d<0,则一定有()A.>B.<C.>D.<考点:不等式比较大小;不等关系与不等式.专题:不等式的解法及应用.分析:利用特例法,判断选项即可.解答:解:不妨令a=3,b=1,c=﹣3,d=﹣1,则,,∴A、B不正确;,=﹣,∴C不正确,D正确.故选:D.点评:本题考查不等式比较大小,特值法有效,导数计算正确.5.(5分)(2014•四川)执行如图所示的程序框图,若输入的x,y∈R,那么输出的S的最大值为()A.0B.1C.2D.3考点:程序框图.专题:计算题;算法和程序框图.分析:算法的功能是求可行域内,目标还是S=2x+y的最大值,画出可行域,求得取得最大值的点的坐标,求出最大值.解答:解:由程序框图知:算法的功能是求可行域内,目标还是S=2x+y的最大值,画出可行域如图:当时,S=2x+y的值最大,且最大值为2.故选:C.点评:本题借助选择结构的程序框图考查了线性规划问题的解法,根据框图的流程判断算法的功能是解题的关键.6.(5分)(2014•四川)六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有()A.192种B.216种C.240种D.288种考点:排列、组合及简单计数问题.专题:应用题;排列组合.分析:分类讨论,最左端排甲;最左端只排乙,最右端不能排甲,根据加法原理可得结论.解答:解:最左端排甲,共有=120种,最左端只排乙,最右端不能排甲,有=96种,根据加法原理可得,共有120+96=216种.故选:B.点评:本题考查排列、组合及简单计数问题,考查学生的计算能力,属于基础题.7.(5分)(2014•四川)平面向量=(1,2),=(4,2),=m+(m∈R),且与的夹角等于与的夹角,则m=()A.﹣2 B.﹣1 C.1D.2考点:数量积表示两个向量的夹角.专题:平面向量及应用.分析:由已知求出向量的坐标,再根据与的夹角等于与的夹角,代入夹角公式,构造关于m的方程,解方程可得答案.解答:解:∵向量=(1,2),=(4,2),∴=m+=(m+4,2m+2),又∵与的夹角等于与的夹角,∴=,∴=,∴=,解得m=2,故选:D点评:本题考查的知识点是数量积表示两个向量的夹角,难度中档.8.(5分)(2014•四川)如图,在正方体ABCD﹣A1B1C1D1中,点O为线段BD的中点,设点P在线段CC1上,直线OP与平面A1BD所成的角为α,则sinα的取值范围是()A.[,1]B.[,1]C.[,]D.[,1]考点:直线与平面所成的角.专题:空间角.分析:由题意可得:直线OP于平面A1BD所成的角α的取值范围是∪.再利用正方体的性质和直角三角形的边角关系即可得出.解答:解:由题意可得:直线OP于平面A1BD所成的角α的取值范围是∪.不妨取AB=2.在Rt△AOA1中,==.sin∠C1OA1=sin(π﹣2∠AOA1)=sin2∠AOA1=2sin∠AOA1cos∠AOA1=,=1.∴sinα的取值范围是.故选:B.点评:本题考查了正方体的性质和直角三角形的边角关系即可、线面角的求法,考查了推理能力,属于中档题.9.(5分)(2014•四川)已知f(x)=ln(1+x)﹣ln(1﹣x),x∈(﹣1,1).现有下列命题:①f(﹣x)=﹣f(x);②f()=2f(x)③|f(x)|≥2|x|其中的所有正确命题的序号是()A.①②③B.②③C.①③D.①②考点:命题的真假判断与应用.专题:函数的性质及应用.分析:根据已知中函数的解析式,结合对数的运算性质,分别判断三个结论的真假,最后综合判断结果,可得答案.解答:解:∵f(x)=ln(1+x)﹣ln(1﹣x),x∈(﹣1,1),∴f(﹣x)=ln(1﹣x)﹣ln(1+x)=﹣f(x),即①正确;f()=ln(1+)﹣ln(1﹣)=ln()﹣ln()=ln()=ln[()2]=2ln()=2[ln(1+x)﹣ln(1﹣x)]=2f(x),故②正确;当x∈[0,1)时,|f(x)|≥2|x|⇔f(x)﹣2x≥0,令g(x)=f(x)﹣2x=ln(1+x)﹣ln(1﹣x)﹣2x(x∈[0,1))∵g′(x)=+﹣2=≥0,∴g(x)在[0,1)单调递增,g(x)=f(x)﹣2x≥g(0)=0,又f(x)≥2x,又f(x)与y=2x为奇函数,所以丨f(x)丨≥2丨x丨成立,故③正确;故正确的命题有①②③,故选:A点评:本题以命题的真假判断为载体,考查了对数的运算性质,代入法求函数的解析式等知识点,难度中档.10.(5分)(2014•四川)已知F为抛物线y2=x的焦点,点A,B在该抛物线上且位于x轴的两侧,•=2(其中O为坐标原点),则△ABO与△AFO面积之和的最小值是()A.2B.3C.D.考点:直线与圆锥曲线的关系.专题:圆锥曲线中的最值与范围问题.分析:可先设直线方程和点的坐标,联立直线与抛物线的方程得到一个一元二次方程,再利用韦达定理及•=2消元,最后将面积之和表示出来,探求最值问题.解答:解:设直线AB的方程为:x=ty+m,点A(x1,y1),B(x2,y2),直线AB与x轴的交点为M((0,m),由⇒y2﹣ty﹣m=0,根据韦达定理有y1•y2=﹣m,∵•=2,∴x1•x2+y1•y2=2,从而,∵点A,B位于x轴的两侧,∴y1•y2=﹣2,故m=2.不妨令点A在x轴上方,则y1>0,又,∴S△ABO+S△AFO==.当且仅当,即时,取“=”号,∴△ABO与△AFO面积之和的最小值是3,故选B.点评:求解本题时,应考虑以下几个要点:1、联立直线与抛物线的方程,消x或y后建立一元二次方程,利用韦达定理与已知条件消元,这是处理此类问题的常见模式.2、求三角形面积时,为使面积的表达式简单,常根据图形的特征选择适当的底与高.3、利用基本不等式时,应注意“一正,二定,三相等”.二、填空题:本大题共5小题,每小题5分,共25分11.(5分)(2014•四川)复数=﹣2i.考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:利用两个复数代数形式的乘除法法则化简所给的复数,可得结果.解答:解:复数===﹣2i,故答案为:﹣2i.点评:本题主要考查两个复数代数形式的乘除法法则的应用,属于基础题.12.(5分)(2014•四川)设f(x)是定义在R上的周期为2的函数,当x∈[﹣1,1)时,f(x)=,则f()=1.考点:函数的值.专题:计算题.分析:由函数的周期性f(x+2)=f(x),将求f()的值转化成求f()的值.解答:解:∵f(x)是定义在R上的周期为2的函数,∴=1.故答案为:1.点评:本题属于容易题,是考查函数周期性的简单考查,学生在计算时只要计算正确,往往都能把握住,在高考中,属于“送分题”.13.(5分)(2014•四川)如图,从气球A上测得正前方的河流的两岸B,C的俯角分别为67°,30°,此时气球的高是46m,则河流的宽度BC约等于60m.(用四舍五入法将结果精确到个位.参考数据:sin67°≈0.92,cos67°≈0.39,sin37°≈0.60,cos37°≈0.80,≈1.73)考点:余弦定理的应用;正弦定理;正弦定理的应用.专题:应用题;解三角形.分析:过A点作AD垂直于CB的延长线,垂足为D,分别在Rt△ACD、Rt△ABD中利用三角函数的定义,算出CD、BD的长,从而可得BC,即为河流在B、C两地的宽度.解答:解:过A点作AD垂直于CB的延长线,垂足为D,则Rt△ACD中,∠C=30°,AD=46m∴CD==46≈79.58m.又∵Rt△ABD中,∠ABD=67°,可得BD==≈19.5m∴BC=CD﹣BD=79.58﹣19.5=60.08≈60m故答案为:60m点评:本题给出实际应用问题,求河流在B、C两地的宽度,着重考查了三角函数的定义、正余弦定理解三角形的知识,属于中档题.14.(5分)(2014•四川)设m∈R,过定点A的动直线x+my=0和过定点B的动直线mx﹣y﹣m+3=0交于点P(x,y).则|PA|•|PB|的最大值是5.考点:点到直线的距离公式.专题:直线与圆.分析:先计算出两条动直线经过的定点,即A和B,注意到两条动直线相互垂直的特点,则有PA⊥PB;再利用基本不等式放缩即可得出|PA|•|PB|的最大值.解答:解:有题意可知,动直线x+my=0经过定点A(0,0),动直线mx﹣y﹣m+3=0即m(x﹣1)﹣y+3=0,经过点定点B(1,3),注意到动直线x+my=0和动直线mx﹣y﹣m+3=0始终垂直,P又是两条直线的交点,则有PA⊥PB,∴|PA|2+|PB|2=|AB|2=10.故|PA|•|PB|≤=5(当且仅当时取“=”)故答案为:5点评:本题是直线和不等式的综合考查,特别是“两条直线相互垂直”这一特征是本题解答的突破口,从而有|PA|2+|PB|2是个定值,再由基本不等式求解得出.直线位置关系和不等式相结合,不容易想到,是个灵活的好题.15.(5分)(2014•四川)以A表示值域为R的函数组成的集合,B表示具有如下性质的函数φ(x)组成的集合:对于函数φ(x),存在一个正数M,使得函数φ(x)的值域包含于区间[﹣M,M].例如,当φ1(x)=x3,φ2(x)=sinx时,φ1(x)∈A,φ2(x)∈B.现有如下命题:①设函数f(x)的定义域为D,则“f(x)∈A”的充要条件是“∀b∈R,∃a∈D,f(a)=b”;②函数f(x)∈B的充要条件是f(x)有最大值和最小值;③若函数f(x),g(x)的定义域相同,且f(x)∈A,g(x)∈B,则f(x)+g(x)∉B.④若函数f(x)=aln(x+2)+(x>﹣2,a∈R)有最大值,则f(x)∈B.其中的真命题有①③④.(写出所有真命题的序号)考点:命题的真假判断与应用;充要条件;函数的值域.专题:新定义;极限思想;函数的性质及应用;不等式的解法及应用.分析:根据题中的新定义,结合函数值域的概念,可判断出命题①②③是否正确,再利用导数研究命题④中函数的值域,可得到其真假情况,从而得到本题的结论.解答:解:(1)对于命题①“f(x)∈A”即函数f(x)值域为R,“∀b∈R,∃a∈D,f(a)=b”表示的是函数可以在R中任意取值,故有:设函数f(x)的定义域为D,则“f(x)∈A”的充要条件是“∀b∈R,∃a∈D,f(a)=b”∴命题①是真命题;(2)对于命题②若函数f(x)∈B,即存在一个正数M,使得函数f(x)的值域包含于区间[﹣M,M].∴﹣M≤f(x)≤M.例如:函数f(x)满足﹣2<f(x)<5,则有﹣5≤f(x)≤5,此时,f(x)无最大值,无最小值.∴命题②“函数f(x)∈B的充要条件是f(x)有最大值和最小值.”是假命题;(3)对于命题③若函数f(x),g(x)的定义域相同,且f(x)∈A,g(x)∈B,则f(x)值域为R,f(x)∈(﹣∞,+∞),并且存在一个正数M,使得﹣M≤g(x)≤M.∴f(x)+g(x)∈R.则f(x)+g(x)∉B.∴命题③是真命题.(4)对于命题④∵函数f(x)=aln(x+2)+(x>﹣2,a∈R)有最大值,∴假设a>0,当x→+∞时,→0,ln(x+2)→+∞,∴aln(x+2)→+∞,则f(x)→+∞.与题意不符;假设a<0,当x→﹣2时,→,ln(x+2)→﹣∞,∴aln(x+2)→+∞,则f(x)→+∞.与题意不符.∴a=0.即函数f(x)=(x>﹣2)当x>0时,,∴,即;当x=0时,f(x)=0;当x<0时,,∴,即.∴.即f(x)∈B.故命题④是真命题.故答案为①③④.点评:本题考查了函数值域的概念、基本不等式、充要条件,还考查了新定义概念的应用和极限思想.本题计算量较大,也有一定的思维难度,属于难题.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(12分)(2014•四川)已知函数f(x)=sin(3x+).(1)求f(x)的单调递增区间;(2)若α是第二象限角,f()=cos(α+)cos2α,求cosα﹣sinα的值.考点:两角和与差的余弦函数;正弦函数的单调性.专题:三角函数的求值.分析:(1)令2kπ﹣≤3x+≤2kπ+,k∈z,求得x的范围,可得函数的增区间.(2)由函数的解析式可得f()=sin(α+),又f()=cos(α+)cos2α,可得sin(α+)=cos(α+)cos2α,化简可得(cosα﹣sinα)2=.再由α是第二象限角,cosα﹣sinα<0,从而求得cosα﹣sinα的值.解答:解:(1)∵函数f(x)=sin(3x+),令2kπ﹣≤3x+≤2kπ+,k∈z,求得﹣≤x≤+,故函数的增区间为[﹣,+],k∈z.(2)由函数的解析式可得f()=sin(α+),又f()=cos(α+)cos2α,∴sin(α+)=cos(α+)cos2α,即sin(α+)=cos(α+)(cos2α﹣sin2α),∴sinαcos+cosαsin=(cos2α﹣sin2α)(sinα+cosα).又∵α是第二象限角,∴cosα﹣sinα<0,当sinα+cosα=0时,此时cosα﹣sinα=﹣.当sinα+cosα≠0时,此时cosα﹣sinα=﹣.综上所述:cosα﹣sinα=﹣或﹣.点评:本题主要考查正弦函数的单调性,三角函数的恒等变换,属于中档题.17.(12分)(2014•四川)一款击鼓小游戏的规则如下:每盘游戏都需要击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐:每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得﹣200分).设每次击鼓出现音乐的概率为,且各次击鼓出现音乐相互独立.(1)设每盘游戏获得的分数为X,求X的分布列;(2)玩三盘游戏,至少有一盘出现音乐的概率是多少?(3)玩过这款游戏的许多人都发现.若干盘游戏后,与最初分数相比,分数没有增加反而减少了.请运用概率统计的相关知识分析分数减少的原因.考点:离散型随机变量及其分布列;离散型随机变量的期望与方差.专题:概率与统计.分析:(1)设每盘游戏获得的分数为X,求出对应的概率,即可求X的分布列;(2)求出有一盘出现音乐的概率,独立重复试验的概率公式即可得到结论.(3)计算出随机变量的期望,根据统计与概率的知识进行分析即可.解答:解:(1)X可能取值有﹣200,10,20,100.则P(X=﹣200)=,P(X=10)==P(X=20)==,P(X=100)==,故分布列为:X ﹣200 10 20 100P由(1)知,每盘游戏出现音乐的概率是p=+=,则至少有一盘出现音乐的概率p=1﹣.由(1)知,每盘游戏或得的分数为X的数学期望是E(X)=(﹣200)×+10×+20××100=﹣=.这说明每盘游戏平均得分是负分,由概率统计的相关知识可知:许多人经过若干盘游戏后,入最初的分数相比,分数没有增加反而会减少.点评:本题主要考查概率的计算,以及离散型分布列的计算,以及利用期望的计算,考查学生的计算能力.18.(12分)(2014•四川)三棱锥A﹣BCD及其侧视图、俯视图如图所示,设M,N分别为线段AD,AB的中点,P为线段BC上的点,且MN⊥NP.(1)证明:P是线段BC的中点;(2)求二面角A﹣NP﹣M的余弦值.考点:二面角的平面角及求法;直线与平面平行的判定;用空间向量求平面间的夹角.专题:空间向量及应用.分析:(1)用线面垂直的性质和反证法推出结论,(2)先建空间直角坐标系,再求平面的法向量,即可求出二面角A﹣NP﹣M的余弦值.解答:解:(1)由三棱锥A﹣BCD及其侧视图、俯视图可知,在三棱锥A﹣BCD中:平面ABD⊥平面CBD,AB=AD=BD=CD=CB=2设O为BD的中点,连接OA,OC于是OA⊥BD,OC⊥BD 所以BD⊥平面OAC⇒BD⊥AC因为M,N分别为线段AD,AB的中点,所以MN∥BD,MN∥NP,故BD⊥NP假设P不是线段BC的中点,则直线NP与直线AC是平面ABC内相交直线从而BD⊥平面ABC,这与∠DBC=60°矛盾,所以P为线段BC的中点(2)以O为坐标原点,OB,OC,OA分别为x,y,z轴建立空间直角坐标系,则A(0,0,),M(,O,),N(,0,),P(,,0)于是,,设平面ANP和平面NPM的法向量分别为和由,则,设z1=1,则由,则,设z2=1,则cos===所以二面角A﹣NP﹣M的余弦值点评:本题考查线线的位置关系,考查二面角知识的应用,解题的关键是掌握用向量的方法求二面角大小的步骤,属于中档题.19.(12分)(2014•四川)设等差数列{a n}的公差为d,点(a n,b n)在函数f(x)=2x的图象上(n∈N*).(1)若a1=﹣2,点(a8,4b7)在函数f(x)的图象上,求数列{a n}的前n项和S n;(2)若a1=1,函数f(x)的图象在点(a2,b2)处的切线在x轴上的截距为2﹣,求数列{}的前n项和T n.考点:数列的求和;数列与函数的综合.专题:函数的性质及应用;等差数列与等比数列.分析:(1)由于点(a8,4b7)在函数f(x)=2x的图象上,可得,又等差数列{a n}的公差为d,利用等差数列的通项公式可得=2d.由于点(a8,4b7)在函数f(x)的图象上,可得=b8,进而得到=4=2d,解得d.再利用等差数列的前n项和公式即可得出.(2)利用导数的几何意义可得函数f(x)的图象在点(a2,b2)处的切线方程,即可解得a2.进而得到a n,b n.再利用“错位相减法”即可得出.解答:解:(1)∵点(a8,4b7)在函数f(x)=2x的图象上,∴,又等差数列{a n}的公差为d,∴==2d,∵点(a8,4b7)在函数f(x)的图象上,∴=b8,∴=4=2d,解得d=2.又a1=﹣2,∴S n==﹣2n+=n2﹣3n.(2)由f(x)=2x,∴f′(x)=2x ln2,∴函数f(x)的图象在点(a2,b2)处的切线方程为,又,令y=0可得x=,∴,解得a2=2.∴d=a2﹣a1=2﹣1=1.∴a n=a1+(n﹣1)d=1+(n﹣1)×1=n,∴b n=2n.∴.∴T n=+…++,∴2T n=1+++…+,两式相减得T n=1++…+﹣=﹣==.点评:本题综合考查了指数函数的运算性质、导数的几何意义、等差数列与等比数列的通项公式及其前n项和公式等基础知识与基本技能方法,考查了推理能力、计算能力、“错位相减法”,属于难题.20.(13分)(2014•四川)已知椭圆C:+=1(a>b>0)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.(1)求椭圆C的标准方程;(2)设F为椭圆C的左焦点,T为直线x=﹣3上任意一点,过F作TF的垂线交椭圆C于点P,Q.①证明:OT平分线段PQ(其中O为坐标原点);②当最小时,求点T的坐标.考点:直线与圆锥曲线的关系;椭圆的标准方程.专题:圆锥曲线中的最值与范围问题.分析:第(1)问中,由正三角形底边与高的关系,a2=b2+c2及焦距2c=4建立方程组求得a2,b2;第(2)问中,先设点的坐标及直线PQ的方程,利用两点间距离公式及弦长公式将表示出来,由取最小值时的条件获得等量关系,从而确定点T的坐标.解答:解:(1)依题意有解得所以椭圆C的标准方程为+=1.(2)设T(﹣3,m),P(x1,y1),Q(x2,y2),PQ的中点为N(x0,y0),①证明:由F(﹣2,0),可设直线PQ的方程为x=my﹣2,由⇒(m2+3)y2﹣4my﹣2=0,所以于是,从而,即,则,所以O,N,T三点共线,从而OT平分线段PQ,故得证.②由两点间距离公式得,由弦长公式得==,所以,令,则(当且仅当x2=2时,取“=”号),所以当最小时,由x2=2=m2+1,得m=1或m=﹣1,此时点T的坐标为(﹣3,1)或(﹣3,﹣1).点评:本题属相交弦问题,应注意考虑这几个方面:1、设交点坐标,设直线方程;2、联立直线与椭圆方程,消去y或x,得到一个关于x或y一元二次方程,利用韦达定理;3、利用基本不等式或函数的单调性探求最值问题.21.(14分)(2014•四川)已知函数f(x)=e x﹣ax2﹣bx﹣1,其中a,b∈R,e=2.71828…为自然对数的底数.(1)设g(x)是函数f(x)的导函数,求函数g(x)在区间[0,1]上的最小值;(2)若f(1)=0,函数f(x)在区间(0,1)内有零点,求a的取值范围.考点:导数在最大值、最小值问题中的应用;函数的零点.专题:导数的综合应用.分析:(1)求出f(x)的导数得g(x),再求出g(x)的导数,对它进行讨论,从而判断g(x)的单调性,求出g(x)的最小值;(2)利用等价转换,若函数f(x)在区间(0,1)内有零点,则函数f(x)在区间(0,1)内至少有三个单调区间,所以g(x)在(0,1)上应有两个不同的零点.解答:解:∵f(x)=e x﹣ax2﹣bx﹣1,∴g(x)=f′(x)=e x﹣2ax﹣b,又g′(x)=e x﹣2a,x∈[0,1],∴1≤e x≤e,∴①当时,则2a≤1,g′(x)=e x﹣2a≥0,∴函数g(x)在区间[0,1]上单调递增,g(x)min=g(0)=1﹣b;②当,则1<2a<e,∴当0<x<ln(2a)时,g′(x)=e x﹣2a<0,当ln(2a)<x<1时,g′(x)=e x﹣2a>0,∴函数g(x)在区间[0,ln(2a)]上单调递减,在区间[ln(2a),1]上单调递增,g(x)min=g[ln(2a)]=2a﹣2aln(2a)﹣b;③当时,则2a≥e,g′(x)=e x﹣2a≤0,∴函数g(x)在区间[0,1]上单调递减,g(x)min=g(1)=e﹣2a﹣b,综上:函数g(x)在区间[0,1]上的最小值为;(2)由f(1)=0,⇒e﹣a﹣b﹣1=0⇒b=e﹣a﹣1,又f(0)=0,若函数f(x)在区间(0,1)内有零点,则函数f(x)在区间(0,1)内至少有三个单调区间,由(1)知当a≤或a≥时,函数g(x)在区间[0,1]上单调,不可能满足“函数f(x)在区间(0,1)内至少有三个单调区间”这一要求.若,则g min(x)=2a﹣2aln(2a)﹣b=3a﹣2aln(2a)﹣e+1令h(x)=(1<x<e)则.由>0⇒x<∴h(x)在区间(1,)上单调递增,在区间(,e)上单调递减,=+<0,即g min(x)<0 恒成立,∴函数f(x)在区间(0,1)内至少有三个单调区间⇔⇒,又,所以e﹣2<a<1,综上得:e﹣2<a<1.点评:本题考查了,利用导数求函数的单调区间,分类讨论思想,等价转换思想,函数的零点等知识点.是一道导数的综合题,难度较大.参与本试卷答题和审题的老师有:任老师;王老师;孙佑中;刘长柏;qiss;尹伟云;翔宇老师;szjzl;caoqz;清风慕竹;静定禅心;maths(排名不分先后)菁优网2014年6月24日。

2014年四川卷理科数学高考试卷(原卷 答案)

2014年四川卷理科数学高考试卷(原卷 答案)

绝密★启用前2014年普通高等学校招生全国统一考试(四川卷)理科数学本试卷共14题,共100分。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.答题时请按要求用笔。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

第Ⅰ卷 (选择题 共50分)注意事项:必须使用2B 铅笔在答题卡上将所选答案对应的标号涂黑。

第Ⅰ卷共10小题。

一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的。

1.已知集合2{|20}A x x x =−−≤,集合B 为整数集,则A B ⋂= A .{1,0,1,2}− B .{2,1,0,1}−− C .{0,1} D .{1,0}− 2.在6(1)x x +的展开式中,含3x 项的系数为A .30B .20C .15D .103.为了得到函数sin(21)y x =+的图象,只需把函数sin 2y x =的图象上所有的点A .向左平行移动12个单位长度 B .向右平行移动12个单位长度 C .向左平行移动1个单位长度 D .向右平行移动1个单位长度 4.若0a b >>,0c d <<,则一定有A .a b c d >B .a b c d <C .a b d c >D .a b d c<5. 执行如图1所示的程序框图,如果输入的,x y R ∈,则输出的S 的最大值为 A .0 B .1 C .2 D .36.六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有 A .192种 B .216种 C .240种 D .288种7.平面向量(1,2)a =,(4,2)b =,c ma b =+(m R ∈),且c 与a 的夹角等于c 与b 的夹角,则m =A .2−B .1−C .1D .28.如图,在正方体1111ABCD A B C D −中,点O 为线段BD 的中点。

2014年全国高考四川省数学(理)试卷及答案【精校版】

2014年全国高考四川省数学(理)试卷及答案【精校版】

2014 年一般高等学校招生全国一致考试理科(四川卷)参照答案第 I 卷(选择题共50分)一.选择题:本大题共 10 小题,每题5 分,共 50 分.在每题给出的四个选项中,只有一个是切合题目要求的。

1A { x | x 2 x 20},会合 B 为整数集,则 AB.已知会合A . { 1,0,1,2}B . { 2, 1,0,1}C . {0,1}D . { 1,0}【答案】 A 2.在 x(1x)6 的睁开式中,含 x 3 项的系数为A . 30B . 20C . 15D . 10【答案】 C3.为了获得函数 ysin(2 x 1) 的图象,只要把函数 y sin 2x 的图象上全部的点A .向左平行挪动1个单位长度B .向右平行挪动 1个单位长度22C .向左平行挪动 1个单位长度D .向右平行挪动 1个单位长度【答案】 A4.若 a b0 , c d 0 ,则必定有A .ab B .ab c d c d aba bC .cD .cdd 【答案】 D5.履行如图 1 所示的程序框图,假如输入的x, y R ,则输出的 S 的最大值为A . 0B . 1C . 2D . 3【答案】 C6.六个人从左至右排成一行,最左端只好排甲或乙,最右端不可以排甲,则不一样的排法共有A .192种B . 216种C . 240种D . 288 种【答案】 B7.平面向量a=(1,2), b=(4,2), c=ma+b (m R ),且c与a的夹角等于c与b的夹角,则 mA.2B.1C.1D.2【答案】 D8.如图,在正方体ABCD A1B1C1D1中,点 O 为线段BD 的中点。

设点P 在线段CC1上,直线OP 与平面A1 BD 所成的角为,则 sin 的取值范围是A.[3,1] B .[6,1] C.[ 6,2 2] D.[2 2,1] 3 3 3 3 3【答案】 B9.已知f (x) ln(1 x) ln(1 x) , x ( 1,1) 。

2014年高考真题(理科数学)四川卷 纯Word版解析可编辑

2014年高考真题(理科数学)四川卷 纯Word版解析可编辑

2014·四川卷(理科数学)1.[2014·四川卷] 已知集合A ={x |x 2-x -2≤0},集合B 为整数集,则A ∩B =( ) A .{-1,0,1,2} B .{-2,-1,0,1} C .{0,1} D .{-1,0} 1.A [解析] 由题意可知,集合A ={x |-1≤x ≤2},其中的整数有-1,0,1,2,故A ∩B ={-1,0,1,2},故选A.2.[2014·四川卷] 在x (1+x )6的展开式中,含x 3项的系数为( ) A .30 B .20 C .15 D .102.C [解析] x (1+x )6的展开式中x 3项的系数与(1+x )6的展开式中x 2项的系数相同,故其系数为C 26=15.3.[2014·四川卷] 为了得到函数y =sin (2x +1)的图像,只需把函数y =sin 2x 的图像上所有的点( )A .向左平行移动12个单位长度B .向右平行移动12个单位长度C .向左平行移动1个单位长度D .向右平行移动1个单位长度3.A [解析] 因为y =sin(2x +1)=sin2⎝⎛⎭⎫x +12,所以为得到函数y =sin(2x +1)的图像,只需要将y =sin 2x 的图像向左平行移动12个单位长度.4.[2014·四川卷] 若a >b >0,c <d <0,则一定有( ) A.a c >b d B.a c <b d C.a d >b c D.a d <b c4.D [解析] 因为c <d <0,所以1d <1c <0,即-1d >-1c >0,与a >b >0对应相乘得,-a d >-b c >0,所以a d <bc.故选D. 5.,[2014·四川卷] 执行如图1-1所示的程序框图,如果输入的x ,y ∈R ,那么输出的S 的最大值为( )图1-1A .0B .1C .2D .35.C [解析] 题中程序输出的是在⎩⎪⎨⎪⎧x +y ≤1,x ≥0,y ≥0的条件下S =2x +y 的最大值与1中较大的数.结合图像可得,当x =1,y =0时,S =2x +y 取得最大值2,2>1,故选C.6.[2014·四川卷] 六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有( )A .192种B .216种C .240种D .288种6.B [解析] 当甲在最左端时,有A 55=120(种)排法;当甲不在最左端时,乙必须在最左端,且甲也不在最右端,有A 11A 14A 44=4×24=96(种)排法,共计120+96=216(种)排法.故选B.7.[2014·四川卷] 平面向量a =(1,2),b =(4,2),c =m a +b (m ∈R ),且c 与a 的夹角等于c 与b 的夹角,则m =( )A .-2B .-1C .1D .27.2 [解析] c =m a +b =(m +4,2m +2),由题意知a ·c |a |·|c |=b ·c |b |·|c |,即(1,2)·(m +4,2m +2)12+22=(4,2)·(m +4,2m +2)42+22,即5m +8=8m +202,解得m =2.图1-28.[2014·四川卷] 如图1-2,在正方体ABCD - A 1B 1C 1D 1中,点O 为线段BD 的中点,设点P 在线段CC 1上,直线OP 与平面A 1BD 所成的角为α,则sin α的取值范围是( )A.⎣⎡⎦⎤33,1B.⎣⎡⎦⎤63,1 C.⎣⎡⎦⎤63,223 D.⎣⎡⎦⎤223,1 8.B [解析] 连接A 1O ,OP 和P A 1,不难知∠POA 1就是直线OP 与平面A 1BD 所成的角(或其补角)设正方体棱长为2,则A 1O = 6.(1)当P 点与C 点重合时,PO =2,A 1P =23,且cos α=6+2-122×6×2=-33,此时α=∠A 1OP 为钝角,sin α=1-cos 2α=63; (2)当P 点与C 1点重合时,PO =A 1O =6,A 1P =22,且cos α=6+6-82×6×6=13,此时α=∠A 1OP 为锐角,sin α=1-cos 2 α=223;(3)在α从钝角到锐角逐渐变化的过程中,CC 1上一定存在一点P ,使得α=∠A 1OP =90°.又因为63<223,故sin α的取值范围是⎣⎡⎦⎤63,1,故选B. 9.[2014·四川卷] 已知f (x )=ln(1+x )-ln(1-x ),x ∈(-1,1).现有下列命题: ①f (-x )=-f (x );②f ⎝⎛⎭⎫2x1+x 2=2f (x );③|f (x )|≥2|x |.其中的所有正确命题的序号是( )A .①②③B .②③C .①③D .①② 9.A [解析] f (-x )=ln(1-x )-ln(1+x ) =ln1-x 1+x =-ln 1+x1-x=-[]ln (1+x )-ln (1-x ) =-f (x ),故①正确;当x ∈(-1,1)时,2x 1+x 2∈(-1,1),且f ⎝⎛⎭⎫2x 1+x 2=ln ⎝⎛⎭⎫1+2x 1+x 2-ln ⎝⎛⎭⎫1-2x 1+x 2=ln 1+2x1+x 21-2x 1+x 2=ln 1+x 2+2x 1+x 2-2x =ln ⎝ ⎛⎭⎪⎫1+x 1-x 2=2ln 1+x 1-x =2[ln(1+x )-ln(1-x )]=2f (x ),故②正确;由①知,f (x )为奇函数,所以|f (x )|为偶函数,则只需判断当x ∈[0,1)时,f (x )与2x 的大小关系即可.记g (x )=f (x )-2x ,0≤x <1,即g (x )=ln(1+x )-ln(1-x )-2x ,0≤x <1,g ′(x )=11+x +11-x -2=2x 21-x 2,0≤x <1.当0≤x <1时,g ′(x )≥0,即g (x )在[0,1)上为增函数,且g (0)=0,所以g (x )≥0, 即f (x )-2x ≥0,x ∈[0,1),于是|f (x )|≥2|x |正确. 综上可知,①②③都为真命题,故选A. 10.,[2014·四川卷] 已知F 为抛物线y 2=x 的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,OA →·OB →=2(其中O 为坐标原点),则△ABO 与△AFO 面积之和的最小值是( )A .2B .3 C.1728D.1010.B [解析] 由题意可知,F ⎝⎛⎭⎫14,0.设A (y 21,y 1),B (y 22,y 2),∴OA →·OB →=y 1y 2+y 21y 22=2,解得y 1y 2=1或y 1y 2=-2.又因为A ,B 两点位于x 轴两侧,所以y 1y 2<0,即y 1y 2=-2. 当y 21≠y 22时,AB 所在直线方程为y -y 1=y 1-y 2y 21-y 22(x -y 21)= 1y 1+y 2(x -y 21), 令y =0,得x =-y 1y 2=2,即直线AB 过定点C (2,0).于是S △ABO +S △AFO =S △ACO +S △BCO +S △AFO =12×2|y 1|+12×2|y 2|+12×14|y 1|=18(9|y 1|+8|y 2|)≥18×29|y 1|×8|y 2|=3,当且仅当9|y 1|=8|y 2|且y 1y 2=-2时,等号成立.当y 21=y 22时,取y 1=2,y 2=-2,则AB 所在直线的方程为x =2,此时求得S △ABO +S △AFO =2×12×2×2+12×14×2=1728,而1728>3,故选B. 11.[2014·四川卷] 复数2-2i1+i =________.11.-2i [解析] 2-2i 1+i =2(1-i )2(1+i )(1-i )=-2i.12.[2014·四川卷] 设f (x )是定义在R 上的周期为2的函数,当x ∈[-1,1)时,f (x )=⎩⎪⎨⎪⎧-4x 2+2,-1≤x <0,x , 0≤x <1,则f ⎝⎛⎭⎫32=________. 12.1 [解析] 由题意可知,f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫2-12=f ⎝⎛⎭⎫-12=-4⎝⎛⎭⎫-122+2=1. 13.,[2014·四川卷] 如图1-3所示,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为67°,30°,此时气球的高度是46 m ,则河流的宽度BC 约等于________m .(用四舍五入法将结果精确到个位.参考数据:sin 67°≈0.92,cos 67°≈0.39,sin 37°≈0.60,cos 37°≈0.80,3≈1.73)图1-313.60 [解析] 过A 点向地面作垂线,记垂足为D ,则在Rt △ADB 中,∠ABD =67°,AD =46 m ,∴AB =AD sin 67°=460.92=50(m),在△ABC 中,∠ACB =30°,∠BAC =67°-30°=37°,AB =50 m , 由正弦定理得,BC =AB sin 37°sin 30°=60 (m),故河流的宽度BC 约为60 m. 14.,[2014·四川卷] 设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则|P A |·|PB |的最大值是________.14.5 [解析] 由题意可知,定点A (0,0),B (1,3),且两条直线互相垂直,则其交点P (x ,y )落在以AB 为直径的圆周上,所以|P A |2+|PB |2=|AB |2=10.∴|P A ||PB |≤|P A |2+|PB |22=5,当且仅当|P A |=|PB |时等号成立. 15.,[2014·四川卷] 以A 表示值域为R 的函数组成的集合,B 表示具有如下性质的函数φ(x )组成的集合:对于函数φ(x ),存在一个正数M ,使得函数φ(x )的值域包含于区间[-M ,M ].例如,当φ1(x )=x 3,φ2(x )=sin x 时,φ1(x )∈A ,φ2(x )∈B .现有如下命题:①设函数f (x )的定义域为D ,则“f (x )∈A ”的充要条件是“∀b ∈R ,∃a ∈D ,f (a )=b ”; ②函数f (x )∈B 的充要条件是f (x )有最大值和最小值;③若函数f (x ),g (x )的定义域相同,且f (x )∈A ,g (x )∈B ,则f (x )+g (x )∉B ;④若函数f (x )=a ln(x +2)+xx 2+1(x >-2,a ∈R )有最大值,则f (x )∈B .其中的真命题有________.(写出所有真命题的序号)15.①③④ [解析] 若f (x )∈A ,则f (x )的值域为R ,于是,对任意的b ∈R ,一定存在a ∈D ,使得f (a )=b ,故①正确.取函数f (x )=x (-1<x <1),其值域为(-1,1),于是,存在M =1,使得f (x )的值域包含于[-M ,M ]=[-1,1],但此时f (x )没有最大值和最小值,故②错误.当f (x )∈A 时,由①可知,对任意的b ∈R ,存在a ∈D ,使得f (a )=b ,所以,当g (x )∈B 时,对于函数f (x )+g (x ),如果存在一个正数M ,使得f (x )+g (x )的值域包含于[-M ,M ],那么对于该区间外的某一个b 0∈R ,一定存在一个a 0∈D ,使得f (a 0)=b -g (a 0),即f (a 0)+g (a 0)=b 0∉[-M ,M ],故③正确.对于f (x )=a ln(x +2)+xx 2+1 (x >-2),当a >0或a <0时,函数f (x )都没有最大值.要使得函数f (x )有最大值,只有a =0,此时f (x )=xx 2+1(x >-2).易知f (x )∈⎣⎡⎦⎤-12,12,所以存在正数M =12,使得f (x )∈[-M ,M ],故④正确. 16.,,,[2014·四川卷] 已知函数f (x )=sin ⎝⎛⎭⎫3x +π4.(1)求f (x )的单调递增区间;(2)若α是第二象限角,f ⎝⎛⎭⎫α3=45cos ⎝⎛⎭⎫α+π4cos 2α,求cos α-sin α的值.16.解:(1)因为函数y =sin x 的单调递增区间为⎣⎡⎦⎤-π2+2k π,π2+2k π,k ∈Z ,由-π2+2k π≤3x +π4≤π2+2k π,k ∈Z ,得-π4+2k π3≤x ≤π12+2k π3,k ∈Z .所以,函数f (x )的单调递增区间为⎣⎡⎦⎤-π4+2k π3,π12+2k π3,k ∈Z . (2)由已知,得sin ⎝⎛⎭⎫α+π4=45cos ⎝⎛⎭⎫α+π4(cos 2α-sin 2α),所以sin αcos π4+cos αsin π4=45⎝⎛⎭⎫cos α cos π4-sin αsin π4(cos 2 α-sin 2 α),即sin α+cos α=45(cos α-sin α)2(sin α+cos α).当sin α+cos α=0时,由α是第二象限角, 得α=3π4+2k π,k ∈Z ,此时,cos α-sin α=- 2.当sin α+cos α≠0时,(cos α-sin α)2=54.由α是第二象限角,得cos α-sin α<0,此时cos α-sin α=-52. 综上所述,cos α-sin α=-2或-52. 17.,,,[2014·四川卷] 一款击鼓小游戏的规则如下:每盘游戏都需击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得-200分).设每次击鼓出现音乐的概率为12,且各次击鼓出现音乐相互独立.(1)设每盘游戏获得的分数为X ,求X 的分布列.(2)玩三盘游戏,至少有一盘出现音乐的概率是多少?(3)玩过这款游戏的许多人都发现,若干盘游戏后,与最初的分数相比,分数没有增加反而减少了.请运用概率统计的相关知识分析分数减少的原因.17.解:(1)X 可能的取值为10,20,100,-200. 根据题意,有P (X =10)=C 13×⎝⎛⎭⎫121×⎝⎛⎭⎫1-122=38,P (X =20)=C 23×⎝⎛⎭⎫122×⎝⎛⎭⎫1-121=38, P (X =100)=C 33×⎝⎛⎭⎫123×⎝⎛⎭⎫1-120=18, P (X =-200)=C 03×⎝⎛⎭⎫120×⎝⎛⎭⎫1-123=18. 所以X 的分布列为:X 10 20 100 -200 P38381818(2)设“第i 盘游戏没有出现音乐”为事件A i (i =1,2,3),则 P (A 1)=P (A 2)=P (A 3)=P (X =-200)=18.所以“三盘游戏中至少有一盘出现音乐”的概率为1-P (A 1A 2A 3)=1-⎝⎛⎭⎫183=1-1512=511512.因此,玩三盘游戏至少有一盘出现音乐的概率是511512.(3)由(1)知,X 的数学期望为EX =10×38+20×38+100×18-200×18=-54.这表明,获得分数X 的均值为负.因此,多次游戏之后分数减少的可能性更大. 18.,,,[2014·四川卷] 三棱锥A - BCD 及其侧视图、俯视图如图1-4所示.设M ,N 分别为线段AD ,AB 的中点,P 为线段BC 上的点,且MN ⊥NP .(1)证明:P 是线段BC 的中点; (2)求二面角A - NP - M 的余弦值.图1-418.解:(1)如图所示,取BD 的中点O ,连接AO ,CO . 由侧视图及俯视图知,△ABD ,△BCD 为正三角形,所以AO ⊥BD ,OC ⊥BD .因为AO ,OC ⊂平面AOC ,且AO ∩OC =O , 所以BD ⊥平面AOC .又因为AC ⊂平面AOC ,所以BD ⊥AC . 取BO 的中点H ,连接NH ,PH .又M ,N ,H 分别为线段AD ,AB ,BO 的中点,所以MN ∥BD ,NH ∥AO , 因为AO ⊥BD ,所以NH ⊥BD . 因为MN ⊥NP ,所以NP ⊥BD .因为NH ,NP ⊂平面NHP ,且NH ∩NP =N ,所以BD ⊥平面NHP . 又因为HP ⊂平面NHP ,所以BD ⊥HP .又OC ⊥BD ,HP ⊂平面BCD ,OC ⊂平面BCD ,所以HP ∥OC . 因为H 为BO 的中点,所以P 为BC 的中点.(2)方法一:如图所示,作NQ ⊥AC 于Q ,连接MQ .由(1)知,NP ∥AC ,所以NQ ⊥NP .因为MN ⊥NP ,所以∠MNQ 为二面角A - NP - M 的一个平面角.由(1)知,△ABD ,△BCD 为边长为2的正三角形,所以AO =OC = 3. 由俯视图可知,AO ⊥平面BCD .因为OC ⊂平面BCD ,所以AO ⊥OC ,因此在等腰直角△AOC 中,AC = 6. 作BR ⊥AC 于R因为在△ABC 中,AB =BC ,所以R 为AC 的中点, 所以BR =AB 2-⎝⎛⎭⎫AC 22=102.因为在平面ABC 内,NQ ⊥AC ,BR ⊥AC , 所以NQ ∥BR .又因为N 为AB 的中点,所以Q 为AR 的中点, 所以NQ =BR 2=104.同理,可得MQ =104. 故△MNQ 为等腰三角形, 所以在等腰△MNQ 中, cos ∠MNQ =MN 2NQ =BD 4NQ =105.故二面角A - NP - M 的余弦值是105. 方法二:由俯视图及(1)可知,AO ⊥平面BCD .因为OC ,OB ⊂平面BCD ,所以AO ⊥OC ,AO ⊥OB . 又OC ⊥OB ,所以直线OA ,OB ,OC 两两垂直.如图所示,以O 为坐标原点,以OB ,OC ,OA 的方向为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系O -xyz .则A (0,0,3),B (1,0,0),C (0,3,0),D (-1,0,0). 因为M ,N 分别为线段AD ,AB 的中点, 又由(1)知,P 为线段BC 的中点,所以M ⎝⎛⎭⎫-12,0,32,N ⎝⎛⎭⎫12,0,32,P ⎝⎛⎭⎫12,32,0,于是AB =(1,0,-3),BC =(-1,3,0),MN =(1,0,0),NP =⎝⎛⎭⎫0,32,-32. 设平面ABC 的一个法向量n 1=(x 1,y 1,z 1),由⎩⎪⎨⎪⎧n 1⊥AB ,n 1⊥BC ,得⎩⎪⎨⎪⎧n 1·AB =0,n 1·BC =0,即⎩⎨⎧(x 1,y 1,z 1)·(1,0,-3)=0,(x 1,y 1,z 1)·(-1,3,0)=0, 从而⎩⎨⎧x 1-3z 1=0,-x 1+3y 1=0.取z 1=1,则x 1=3,y 1=1,所以n 1=(3,1,1). 设平面MNP 的一个法向量n 2=(x 2,y 2,z 2),由,⎩⎪⎨⎪⎧n 2⊥MN ,n 2⊥NP ,得⎩⎪⎨⎪⎧n 2·MN =0,n 2·NP =0, 即⎩⎪⎨⎪⎧(x 2,y 2,z 2)·(1,0,0)=0,(x 2,y 2,z 2)·⎝⎛⎭⎫0,32,-32=0, 从而⎩⎪⎨⎪⎧x 2=0,32y 2-32z 2=0. 取z 2=1,则y 2=1,x 2=0,所以n 2=(0,1,1). 设二面角A - NP - M 的大小为θ,则cos θ=⎪⎪⎪⎪⎪⎪n 1·n 2|n 1|·|n 2|=⎪⎪⎪⎪⎪⎪(3,1,1)·(0,1,1)5×2=105. 故二面角A -NP -M 的余弦值是105. 19.,[2014·四川卷] 设等差数列{a n }的公差为d ,点(a n ,b n )在函数f (x )=2x 的图像上(n ∈N *).(1)若a 1=-2,点(a 8,4b 7)在函数f (x )的图像上,求数列{a n }的前n 项和S n ;(2)若a 1=1,函数f (x )的图像在点(a 2,b 2)处的切线在x 轴上的截距为2-1ln 2,求数列⎩⎨⎧⎭⎬⎫a nb n 的前n 项和T n .19.解:(1)由已知得,b 7=2a 7,b 8=2a 8=4b 7,所以 2a 8=4×2a 7=2a 7+2,解得d =a 8-a 7=2,所以S n =na 1+n (n -1)2d =-2n +n (n -1)=n 2-3n .(2)函数f (x )=2x 在点(a 2,b 2)处的切线方程为y -2a 2=(2a 2ln 2)(x -a 2), 其在x 轴上的截距为a 2-1ln 2.由题意有a 2-1ln 2=2-1ln 2,解得a 2=2.所以d =a 2-a 1=1.从而a n =n ,b n =2n ,所以数列{a n b n }的通项公式为a n b n =n2n ,所以T n =12+222+323+…+n -12n -1+n 2n ,2T n =11+22+322+…+n2n -1,因此,2T n -T n =1+12+122+…+12n -1-n 2n =2-12n -1-n 2n =2n +1-n -22n .所以,T n =2n +1-n -22n.20.,,[2014·四川卷] 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.(1)求椭圆C 的标准方程.(2)设F 为椭圆C 的左焦点,T 为直线x =-3上任意一点,过F 作TF 的垂线交椭圆C 于点P ,Q .①证明:OT 平分线段PQ (其中O 为坐标原点);②当|TF ||PQ |最小时,求点T 的坐标.20.解:(1)由已知可得⎩⎨⎧a 2+b 2=2b ,2c =2a 2-b 2=4,解得a 2=6,b 2=2,所以椭圆C 的标准方程是x 26+y 22=1.(2)①证明:由(1)可得,F 的坐标是(-2,0),设T 点的坐标为(-3,m ), 则直线TF 的斜率k TF =m -0-3-(-2)=-m .当m ≠0时,直线PQ 的斜率k PQ =1m .直线PQ 的方程是x =my -2.当m =0时,直线PQ 的方程是x =-2,也符合x =my -2的形式.设P (x 1,y 1),Q (x 2,y 2),将直线PQ 的方程与椭圆C 的方程联立,得⎩⎪⎨⎪⎧x =my -2,x 26+y 22=1.消去x ,得(m 2+3)y 2-4my -2=0,其判别式Δ=16m 2+8(m 2+3)>0. 所以y 1+y 2=4mm 2+3,y 1y 2=-2m 2+3,x 1+x 2=m (y 1+y 2)-4=-12m 2+3.设M 为PQ 的中点,则M 点的坐标为⎝ ⎛⎭⎪⎫-6m 2+3,2m m 2+3.所以直线OM 的斜率k OM =-m3,又直线OT 的斜率k OT =-m3,所以点M 在直线OT 上,因此OT 平分线段PQ .②由①可得,|TF |=m 2+1,|PQ |=(x 1-x 2)2+(y 1-y 2)2=(m 2+1)[(y 1+y 2)2-4y 1y 2]=(m 2+1)⎣⎢⎡⎦⎥⎤⎝⎛⎭⎫4m m 2+32-4·-2m 2+3 =24(m 2+1)m 2+3. 所以|TF ||PQ |=124·(m 2+3)2m 2+1= 124⎝⎛⎭⎫m 2+1+4m 2+1+4≥124(4+4)=33. 当且仅当m 2+1=4m 2+1,即m =±1时,等号成立,此时|TF ||PQ |取得最小值. 故当|TF ||PQ |最小时,T 点的坐标是(-3,1)或(-3,-1). 21.,[2014·四川卷] 已知函数f (x )=e x -ax 2-bx -1,其中a ,b ∈R ,e =2.718 28…为自然对数的底数.(1)设g (x )是函数f (x )的导函数,求函数g (x )在区间[0,1]上的最小值;(2)若f (1)=0,函数f (x )在区间(0,1)内有零点,求a 的取值范围.21.解:(1)由f (x )=e x -ax 2-bx -1,得g (x )=f ′(x )=e x -2ax -b .所以g ′(x )=e x -2a .当x ∈[0,1]时,g ′(x )∈[1-2a ,e -2a ].当a ≤12时,g ′(x )≥0,所以g (x )在[0,1]上单调递增, 因此g (x )在[0,1]上的最小值是g (0)=1-b ;当a ≥e 2时,g ′(x )≤0,所以g (x )在[0,1]上单调递减, 因此g (x )在[0,1]上的最小值是g (1)=e -2a -b ;当12<a <e 2时,令g ′(x )=0,得x =ln(2a )∈(0,1),所以函数g (x )在区间[0,ln(2a )]上单调递减,在区间(ln(2a ),1]上单调递增,于是,g (x )在[0,1]上的最小值是g (ln(2a ))=2a -2a ln(2a )-b .综上所述,当a ≤12时,g (x )在[0,1]上的最小值是g (0)=1-b ; 当12<a <e 2时,g (x )在[0,1]上的最小值是g (ln(2a ))=2a -2a ln(2a )-b ; 当a ≥e 2时,g (x )在[0,1]上的最小值是g (1)=e -2a -b . (2)设x 0为f (x )在区间(0,1)内的一个零点,则由f (0)=f (x 0)=0可知,f (x )在区间(0,x 0)上不可能单调递增,也不可能单调递减. 则g (x )不可能恒为正,也不可能恒为负.故g (x )在区间(0,x 0)内存在零点x 1.同理g (x )在区间(x 0,1)内存在零点x 2.故g (x )在区间(0,1)内至少有两个零点.由(1)知,当a ≤12时,g (x )在[0,1]上单调递增,故g (x )在(0,1)内至多有一个零点; 当a ≥e 2时,g (x )在[0,1]上单调递减,故g (x )在(0,1)内至多有一个零点,都不合题意. 所以12<a <e 2. 此时g (x )在区间[0,ln(2a )]上单调递减,在区间(ln(2a ),1]上单调递增.因此x 1∈(0,ln(2a )],x 2∈(ln(2a ),1),必有g (0)=1-b >0,g (1)=e -2a -b >0.由f (1)=0得a +b =e -1<2,则g (0)=a -e +2>0,g (1)=1-a >0,解得e -2<a <1.当e -2<a <1时,g (x )在区间[0,1]内有最小值g (ln(2a )).若g (ln(2a ))≥0,则g (x )≥0(x ∈[0,1]),从而f (x )在区间[0,1]内单调递增,这与f (0)=f (1)=0矛盾,所以g (ln(2a ))<0. 又g (0)=a -e +2>0,g (1)=1-a >0.故此时g (x )在(0,ln(2a ))和(ln(2a ),1)内各只有一个零点x 1和x 2.由此可知f (x )在[0,x 1]上单调递增,在(x 1,x 2)上单调递减,在[x 2,1]上单调递增. 所以f (x 1)>f (0)=0,f (x 2)<f (1)=0,故f (x )在(x 1,x 2)内有零点.综上可知,a 的取值范围是(e -2,1).。

2014年四川高考理科数学试题及答案(word版)

2014年四川高考理科数学试题及答案(word版)

2014年四川高考理科数学试题及答案(word版)D直线30mx y m --+=交于点(,)P x y ,则||||PA PB ⋅的最大值是 。

15.以A 表示值域为R 的函数组成的集合,B 表示具有如下性质的函数()x ϕ组成的集合:对于函数()x ϕ,存在一个正数M ,使得函数()x ϕ的值域包含于区间[,]M M -。

例如,当31()x x ϕ=,2()sin x x ϕ=时,1()x A ϕ∈,2()x B ϕ∈。

现有如下命题: ①设函数()f x 的定义域为D ,则“()f x A ∈”的充要条件是“b R ∀∈,a D ∃∈,()f a b =”;②学科网函数()f x B ∈的充要条件是()f x 有最大值和最小值;③若函数()f x ,()g x 的定义域相同,且()f x A ∈,()g x B ∈,则()()f x g x B +∉;④若函数2()ln(2)1x f x a x x =+++(2x >-,a R ∈)有最大值,则()f x B ∈。

其中的真命题有 。

(写出所有真命题的序号)三.解答题:本大题共6小题,共 75分。

解答须写出文字说明,证明过程或演算步骤。

16.已知函数()sin(3)4f x x π=+。

(1)求()f x 的单调递增区间;(2)若α是第二象限角,4()cos()cos 2354f απαα=+,求cos sin αα-的值。

17.一款击鼓小游戏的规则如下:每盘游戏都需要击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得200-分)。

学科网设每次击鼓出现音乐的概率为12,且各次击鼓出现音乐相互独立。

(1)设每盘游戏获得的分数为X ,求X 的分布列;(2)玩三盘游戏,至少有一盘出现音乐的概率是多少?(3)玩过这款游戏的许多人都发现,若干盘游戏后,与最初的分数相比,分数没有增加反而减少了。

2014年四川省高考数学试卷(理科)

2014年四川省高考数学试卷(理科)

C. 向左平 D.向右平 行移动1 行一定1 个单位 个单位 长度 长度 4.(5分)(2014•四川)若a>b>0,c<d<0,则一定有( ) A. B. C. D.




5.(5分)(2014•四川)执行如图所示的程序框图,若输入的x, y∈R,那么输出的S的最大值为( )
A. 0 B. 1 C. 2 D. 3 6.(5分)(2014•四川)六个人从左至右排成一行,最左端只能排甲 或乙,最右端不能排甲,则不同的排法共有( ) A. 192种 B. 216种 C. 240种 D. 288种 7.(5分)(2014•四川)平面向量 =(1,2), =(4,2), =m + (m∈R),且 与 的夹角等于
专 计算题;算法和程序框图. 题: 分 算法的功能是求可行域 析: 内,目标还是S=2x+y的最
大值,画出可行域,求得取 得最大值的点的坐标,求出 最大值. 解 解:由程序框图知:算法的 答: 功能是求可行域
内,目标还是S=2x+y的最 大值, 画出可行域如图:
当 时,S=2x+y的值最大,且 最大值为2. 故选:C. 点 本题借助选择结构的程序框 评: 图考查了线性规划问题的解 法,根据框图的流程判断算 法的功能是解题的关键. 6.(5分)(2014•四川)六个人从左至右排成一行,最左端只能排甲 或乙,最右端不能排甲,则不同的排法共有( ) A. 192种 B. 216种 C. 240种 D. 288种 考点: 排列、组合
菁优网版权所有
专 二项式定理. 题: 分 利用二项展开式的 析: 通项公式求出 (1+x)6的第r+1 项,令x的指数为2 求出展开式中x2的 系数.然后求解即
可. 解 解:(1+x)6展开 答: 式中通项 Tr+1=C6rxr, 令r=2可得, T3=C62x2=15x2, ∴(1+x)6展开式 中x2项的系数为 15, 在x(1+x)6的展 开式中,含x3项的 系数为:15. 故选:C. 点 本题考查二项展开 评: 式的通项的简单直 接应用.牢记公式 是基础,计算准确 是关键. 3.(5分)(2014•四川)为了得到函数y=sin(2x+1)的图象,只需把 y=sin2x的图象上所有的点( ) A.向左平 B. 向右平 行移动 行移动 个单位 长度 个单位 长度

2014年高考理科数学四川卷答案及解析(word版)

2014年高考理科数学四川卷答案及解析(word版)

2014四川理科卷一、选择题1. 答案:A解析:{|12},{1,0,1,2}A x x AB =-≤≤∴=-,选A.【考点定位】集合的基本运算.2. 答案:C 解析:623456(1)(161520156)x x x x x x x x x +=++++++,所以含3x 项的系数为15.选C【考点定位】二项式定理.3. 答案:A 解析:1sin(21)sin 2()2y x x =+=+,所以只需把sin 2y x =的图象上所有的点向左平移12个单位.选A. 【考点定位】三角函数图象的变换.4. 答案:D 解析:110,0,0c d c d d c <<∴->->->->,又0,0,a b a b a b d c d c>>∴->->∴<.选D 【考点定位】不等式的基本性质.5. 答案:C解析:该程序执行以下运算:已知001x y x y ≥⎧⎪≥⎨⎪+≤⎩,求2S x y =+的最大值.作出001x y x y ≥⎧⎪≥⎨⎪+≤⎩表示的区域如图所示,由图可知,当10x y =⎧⎨=⎩时,2S x y =+最大,最大值为202S =+=.选C.【考点定位】线性规划6. 答案:B解析:最左端排甲,有5!120=种排法;最左端排乙,有44!96⨯=种排法,共有12096216+=种排法.选B.【考点定位】排列组合.7. 答案: D.解析:由题意得:25c ac bc ac bm c a c b a b ⋅⋅⋅⋅=⇒=⇒=⇒=⋅⋅,选D.【考点定位】向量的夹角及向量的坐标运算.8. 答案:B解析:设正方体的棱长为1,则11111,,A C A C A O OC ==,所以1111332122cos ,sin 3322AOC AOC +-∠==∠=⨯,11313cos AOC AOC +-∠==∠=.所以sin α的范围为3,选B. 【考点定位】空间直线与平面所成的角.9. 答案:C解析:对①,()ln(1)ln(1)()f x x x f x -=--+=-,成立;对②,左边的x 可以取任意值,而右边的(1,1)x ∈-,故不成立;对③,作出图易知③成立【考点定位】1、函数的奇偶性;2、对数运算;3、函数与不等式.10. 答案:B 解析:据题意得1(,0)4F ,设1122(,),(,)A x y B x y ,则221122,x y x y ==,221212122,2y y y y y y +==-或121y y =,因为,A B 位于x 轴两侧所以.所以122y y =-两面积之和为12211111224S x y x y y =-+⨯⨯111218y y y =++⨯112938y y =+≥. 【考点定位】1、抛物线;2、三角形的面积;3、重要不等式.二、填空题11. 答案:2i -. 解析:2222(1)21(1)(1)i i i i i i --==-++-. 【考点定位】复数的基本运算.12. 答案:1 解析:311()()421224f f =-=-⨯+=. 【考点定位】周期函数及分段函数.13. 答案:60解析:92AC =,46cos 67AB =,sin 37,60sin 30sin 37sin 30AB BC AB BC =∴=≈. 【考点定位】解三角形.14. 答案:解析:易得(0,0),(1,3)A B .设(,)P x y ,则消去m 得:2230x y x y +--=,所以点P 在以AB 为直径的圆上,PA PB ⊥,所以2||||||52AB PA PB ⨯≤=. 法二、因为两直线的斜率互为负倒数,所以PA PB ⊥,点P 的轨迹是以AB 为直径的圆.以下同法一.【考点定位】1、直线与圆;2、重要不等式.15. 答案:①③④解析:对①,若对任意的b R ∈,都a D ∃∈,使得()f a b =,则()f x 的值域必为R ;反之,()f x 的值域为R ,则对任意的b R ∈,都a D ∃∈,使得()f a b =.故正确.对②,比如函数()(11)f x x x =-<<属于B ,但是它既无最大值也无最小值.故错误. 对③正确,对④正确.【考点定位】命题判断。

2014年四川高考理科数学试卷(带详解)

2014年四川高考理科数学试卷(带详解)

14四川理第I 卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.已知集合2{|20}A x x x =--…,集合B 为整数集,则A B = ( ) A.{1,0,1,2}- B.{2,1,0,1}-- C.{0,1} D.{1,0}-【测量目标】集合的基本运算(交集),一元二次不等式.【考查方式】综合考查一元二次不等式的求解和交集运算. 【难易程度】容易. 【参考答案】A【试题解析】由题意可知,集合{|12}A x x =-剟,其中的整数有-1,0,1,2,故A B ={-1,0,1,2},故选A.2.在6(1)x x +的展开式中,含3x 项的系数为( )A.30B.20C.15D.10 【测量目标】二项式定理.【考查方式】考查二项式定理的某项指数为定值时,此项的系数. 【难易程度】容易. 【参考答案】C【试题解析】6(1)x x +的展开式中3x 项的系数与6(1)x +的展开式中2x 项的系数相同,故其系数为26C 15=.故选C.3.为了得到函数sin(21)y x =+的图象,只需把函数sin 2y x =的图象上所有的点( )A.向左平行移动12个单位长度 B.向右平行移动12个单位长度 C.向左平行移动1个单位长度 D.向右平行移动1个单位长度【测量目标】函数图像的变换.【考查方式】考查为了达到目标函数的图像,需要将原图像所做的变换.. 【难易程度】容易. 【参考答案】A【试题解析】因为1=sin(2+1)=sin22y x x ⎛⎫+ ⎪⎝⎭,所以为得到函数sin(21)y x =+的图像,只需要将sin 2y x =的图像向左平行移动12个单位长度,故选A.4.若0a b >>,0c d <<,则一定有( ) A.a b c d > B.a b c d < C.a b d c > D.a b d c< 【测量目标】分式不等式.【考查方式】由已知不等关系判断分式不等式是否成立. 【难易程度】容易. 【参考答案】D【试题解析】因为0c d <<,所以11<<0d c ,即11>>0d c --,与0a b >>对应相乘得,>>0a bd c--,所以<a bd c.故选D. 5.执行如图1所示的程序框图,如果输入的,x y ∈R ,则输出的S 的最大值为( ) A.0 B.1 C.2 D.3第5题图 SCL01【测量目标】程序框图,判断语句,选择语句,线性规划. 【考查方式】当输入值不确定时,求最大的输出值. 【难易程度】容易. 【参考答案】C【试题解析】题中程序输出的是在100x y x y +⎧⎪⎨⎪⎩………的条件下2S x y =+的最大值与1中较大的数.结合图像可得,当1x =,0y =时,2S x y =+取得最大值2,2>1,故选C.6.六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有( ) A.192种 B.216种 C.240种 D.288种 【测量目标】排列组合.【考查方式】考查将特殊元素优先排列的排列组合思想. 【难易程度】容易. 【参考答案】B【试题解析】当甲在最左端时,有55A =120 (种)排法;当甲不在最左端时,乙必须在最左端,且甲也不在最右端,有114144A A A =424=96⨯ (种)排法,共计120+96=216(种)排法.故选B.7.平面向量a =(1,2), b =(4,2), c ma b =+ (m ∈R ),且c 与a 的夹角等于c 与b的夹角,则m =( )A.2-B.1-C.1D.2 【测量目标】向量的运算.【考查方式】通过中间参数夹角的公式将夹角联系在一起,解出未知数. 【难易程度】容易. 【参考答案】D【试题解析】c ma b =+ =(m +4,2m +2),由题意知a c b ca cb c,即221(4)2(22)12m m ++++ 224(4)2(22)42m m +++=+ ,即8205+8=2m m +,解得m =2,故选D. 8.如图,在正方体1111ABCD A B C D -中,点O 为线段BD 的中点.设点P 在线段1CC 上,直线OP 与平面1A BD 所成的角为α,则sin α的取值范围是( ) A.3[,1]3 B.6[,1]3 C.622[,]33 D.22[,1]3第8题图SCL02【测量目标】直线与平面的夹角.【考查方式】考查分类讨论思想和三角函数. 【难易程度】容易. 【参考答案】B【试题解析】连接1A O ,OP 和1PA ,不难知1POA ∠就是直线OP 与平面1A BD 所成的角(或其补角)设正方体棱长为2,则1=6A O .(1)当P 点与C 点重合时,2PO =,123A P =,且66123c o s =3262α+-=-⨯⨯,此时1AOP α∠=为钝角26sin = 1cos 3αα-=;(2)当P 点与1C 点重合时,16PO AO ==,122A P =,且6681cos =3266α+-=⨯⨯,此时1AOP α∠=为锐角,222sin = 1cos 3αα-=;(3)在α从钝角到锐角逐渐变化的过程中,1CC 上一定存在一点P ,使得190A OP α∠︒==.又因为62233α<<,故sin α的取值范围是6,13⎡⎤⎢⎥⎣⎦,故选B. 9.已知()ln(1)ln(1)f x x x =+--,(1,1)x ∈-.现有下列命题:①()()f x f x -=-; ②22()2()1xf f x x =+;③|()|2||f x x ….其中的所有正确命题的序号是( ) A.①②③ B.②③ C.①③ D.①② 【测量目标】函数的奇偶性,对数函数.【考查方式】考查判断函数可能具有的某些性质的方法. 【难易程度】中等. 【参考答案】A【试题解析】()=ln(1)ln(1+)=f x x x ---1ln =1x x -+[]1ln =ln(1)ln(1)=()1xx x f x x +--+----,故①正确;当x ∈(-1,1)时,221+x x ∈(-1,1),且222222=ln 1+ln 11+1+1x x x f x x x ⎛⎫⎛⎫⎛⎫- ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭-=222221121ln =ln 21211xx x x x x x x +++++--+ =211ln =2ln 11x x x x ++⎛⎫⎪--⎝⎭()2[ln(1)ln(1)]2x x f x =+--=,故②正确;由①知,f (x )为奇函数,所以()f x 为偶函数,则只需判断当x ∈ [0,1)时,f (x )与2x 的大小关系即可.记g (x )=f (x )-2x ,01x <…,即()ln(1)ln(1)2g x x x x =+---,01x <…,22112()=+21+11x g x x x x '-=--,01x <….当0≤x <1时,()g x '≥0,即g (x )在[0,1)上为增函数,且g (0)=0,所以g (x )≥0,即f (x )-2x ≥0,x ∈[0,1),于是()2f x x …正确.综上可知,①②③都为真命题,故选A.10.已知F 是抛物线2y x =的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,2OA OB ⋅=(其中O 为坐标原点),则ABO △与AFO △面积之和的最小值是( )A.2B.3C.1728D.10 【测量目标】向量的运算,最小值问题.【考查方式】考察向量的数量积,点到直线距离等,围成图形的面积等. 【难易程度】中等. 【参考答案】B【试题解析】设直线AB 的方程为:x =ty +m ,点A (1x ,1y ),B (2x ,2y ),直线AB 与x 轴的交点为M (m ,0),由2x ty my x =+⎧⎨=⎩⇒2y -ty -m =0,根据韦达定理有1y •2y =-m ,∵OA •OB =2,∴1x •2x +1y •2y =2,从而()212y y ⋅+1y •2y −2=0,∵点A ,B 位于x 轴的两侧,∴1y •2y =-2,故m =2.不妨令点A 在x 轴上方,则1y >0,又F (14,0), ∴ABO S +AFO S =12×2×(1y −2y )+12×14×1y =198y +12y ≥119228y y ⋅=3.当且仅当198y =12y , 即1y =43时,取“=”号,∴△ABO 与△AFO 面积之和的最小值是3,故选B. 第II 卷(非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分.11.复数22i1i-=+ .【测量目标】含有分式的复数基本运算.【考查方式】考查带有分式的复数的分母实数化. 【难易程度】容易. 【参考答案】-2i 【试题解析】原式=2(22i)(1i)(1i)2i (1i)(1i)--=-=-+-12.设()f x 是定义在R 上的周期为2的函数,当[1,1)x ∈-时,242,10,(),01,x x f x x x ⎧-+-<=⎨<⎩……,则3()2f = . 【测量目标】分段函数和周期函数.【考查方式】给出分段函数的表示形式和某些性质,求在某点的函数值. 【难易程度】容易. 【参考答案】1【试题解析】由已知得,2311()()4()2 1.222f f =-=--+=13.如图,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为67 ,30 ,此时气球的高是46m ,则河流的宽度BC 约等于 m .(用四舍五入法将结果精确到个位.参考数据:sin 670.92≈ ,cos 670.39≈ ,sin 370.60≈ ,cos370.80≈ ,3 1.73≈)第13题图SCL03【测量目标】三角函数,正弦定理.【考查方式】考察对三角函数和正弦定理的应用以及利用公共边求解未知数. 【难易程度】容易. 【参考答案】60【试题解析】过A 点向地面作垂线,记垂足为D ,则在Rt ADB △中,ABD ∠=67°,AD =46 m ,∴46AB==50sin670.92AD =(m),在ABC △中,30ACB ∠︒=,673037BAC ∠︒︒︒=-=,AB =50 m ,由正弦定理得,sin37==60sin30AB BC(m),故河流的宽度BC 约为60 m.14.设m ∈R ,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB ⋅的最大值是 .【测量目标】线段长度乘积的最值问题.【考查方式】考察了动直线的定点,两直线关系的判定以及均值不等式的应用. 【难易程度】中等. 【参考答案】5【试题解析】由题意可知,定点A (0,0),B (1,3),且两条直线互相垂直,则其交点P (x ,y )落在以AB 为直径的圆周上,所以22210PA PB AB +==,∴22||+|||PA||PB|=52PA PB …,当且仅当|PA PB =|时等号成立.15.以A 表示值域为R 的函数组成的集合,B 表示具有如下性质的函数()x ϕ组成的集合:对于函数()x ϕ,存在一个正数M ,使得函数()x ϕ的值域包含于区间[,]M M -.例如,当31()x x ϕ=,2()sin x x ϕ=时,1()x A ϕ∈,2()x B ϕ∈.现有如下命题:①设函数()f x 的定义域为D ,则“()f x A ∈”的充要条件是“b R ∀∈,a D ∃∈,()f a b =”;②函数()f x B ∈的充要条件是()f x 有最大值和最小值;③若函数()f x ,()g x 的定义域相同,且()f x A ∈,()g x B ∈,则()()f x g x B +∉;④若函数2()ln(2)1xf x a x x =+++(2x >-,a ∈R )有最大值,则()f x B ∈.其中的真命题有 .(写出所有真命题的序号)【测量目标】充要条件,最值,定义域,复合函数,真假命题. 【考查方式】综合考查函数和简单逻辑用语. 【难易程度】中等. 【参考答案】①③④【试题解析】若()f x A ∈,则f (x )的值域为R ,于是,对任意的b ∈R ,一定存在a ∈D ,使得f (a )=b ,故①正确.取函数f (x )=x (-1<x <1),其值域为(-1,1),于是,存在M =1,使得f (x )的值域包含于[-M ,M ]=[-1,1],但此时f (x )没有最大值和最小值,故②错误.当f (x )∈A 时,由①可知,对任意的b ∈R ,存在a ∈D ,使得f (a )=b ,所以,当g (x )∈B 时,对于函数f (x )+g (x ),如果存在一个正数M ,使得f (x )+g (x )的值域包含于[-M ,M ],那么对于该区间外的某一个0b ∈R ,一定存在一个0a ∈D ,使得f (0a )=b -g (0a ),即f (0a )+g (0a )∈ [-M ,M ],故③正确.对于2()=ln(+2)++1xf x a x x (x >-2),当a >0或a<0时,函数f (x )都没有最大值.要使得函数f (x )有最大值,只有a =0,此时2()=+1xf x x (x >-2).易知f (x )∈11,22⎡⎤-⎢⎥⎣⎦,所以存在正数M =12,使得f (x )∈[-M ,M ],故④正确.三、解答题:本大题共6小题,共 75分.解答应写出文字说明、证明过程或演算步骤.16.(本小题满分12分)已知函数()sin(3)4f x x π=+.(1)求()f x 的单调递增区间;(2)若α是第二象限角,4()cos()cos 235f ααα=+π4,求cos sin αα-的值.【测量目标】正弦函数的性质,三角恒等变换.【考查方式】考查正弦型函数的性质,简单的三角恒等变换等基础知识,考察运算求解能力,考察分类与整合,化归与转化等数学思想. 【难易程度】中等.【试题解析】(1)由πππ2π32π242k x k -++剟⇒2ππ2ππ34312k k x -+剟,所以()f x 的单调递增区间为2ππ2ππ[,]34312k k -+(k ∈Z ).(2)由4π()cos()cos 2354f ααα=+⇒4πsin()cos()cos 2454αααπ+=+,因为πcos 2sin(2)sin[2()]24πααα=+=+ππ2sin()cos()44αα=++,所以2π8ππsin()cos ()sin()4544ααα+=++,又α是第二象限角,所以πsin()04α+=或2π5cos ()48α+=.①由πsin()04α+=⇒π3π2ππ2π44k k αα+=+⇒=+(k ∈Z ),所以33cos sin cos sin 244ππαα-=-=-;②由2π5π5cos ()cos()48422αα+=⇒+=-15(cos sin )222αα⇒-=-,所以5cos sin 2αα-=-;综上,cos sin 2αα-=-或5cos sin 2αα-=-. 17.一款击鼓小游戏的规则如下:每盘游戏都需要击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得200-分).设每次击鼓出现音乐的概率为12,且各次击鼓出现音乐相互独立.(1)设每盘游戏获得的分数为X ,求X 的分布列; (2)玩三盘游戏,至少有一盘出现音乐的概率是多少?(3)玩过这款游戏的许多人都发现,若干盘游戏后,与最初的分数相比,分数没有增加反而减少了.请运用概率统计的相关知识分析分数减少的原因.【测量目标】排列组合,古典概型,分布列,用期望分析问题. 【考查方式】考查排列组合,古典概型,分布列的综合运用. 【难易程度】中等.【试题解析】(1)X 可能取值有-200,10,20,100,0033111(200)C ()(1)228P X =-=-=,1123113(10)C ()(1)228P X ==-=,2213113(20)C ()(1)228P X ==-=,3303111(100)C ()(1)228P X ==-=,故分布列为: X-2001020100P1838 38 18 (2)由(1)知:每盘游戏出现音乐的概率是33178888p =++=,则玩三盘游戏,至少有一盘出现音乐的概率是00313775111C ()(1)88512p =--=.(3)由(1)知,每盘游戏获得的分数为X 的数学期望是133110()(200)102010088888E X =-⨯+⨯+⨯+⨯=-分.这说明每盘游戏平均得分是负分,由概率统计的相关知识可知:许多人经过若干盘游戏后,与最初的分数相比,分数没有增加反而会减少.18.三棱锥A BCD -及其侧视图、俯视图如图所示.设M ,N 分别为线段AD ,AB 的中点,P 为线段BC 上的点,且MN NP ⊥. (1)证明:P 为线段BC 的中点; (2)求二面角A NP M --的余弦值.第18题图SCL04【测量目标】三视图,二面角的余弦值,证明题.【考查方式】考查了几何体的三视图,由三视图求出几何体尺寸,建立立体坐标系求二面角. 【难易程度】中等. 【试题解析】(1)由三棱锥A BCD -及其侧视图、俯视图可知,在三棱锥A BCD -中:平面ABD ⊥平面CBD ,2AB AD BD CD CB =====,设O 为BD 的中点,连接OA ,OC ,于是OA BD ⊥,OC BD ⊥ 所以BD ⊥平面OAC ⇒BD AC ⊥,因为M ,N 分别为线段AD ,AB 的中点,所以//MN BD ,又MN NP ⊥,故BD NP ⊥,假设P 不是线段BC 的中点,则直线NP 与直线AC 是平面ABC 内相交直线,从而BD ⊥平面ABC ,这与60DBC ∠= 矛盾,所以P 为线段BC 的中点.(2)以O为坐标原点,OB 、OC 、OA 分别为x 、y 、z 轴建立空间直角坐标系,则(0,0,3)A ,13(,0,)22M -,13(,0,)22N ,13(,,0)22P ,于是13(,0,)22AN =- ,33(0,,)22PN =- ,(1,0,0)MN = ,设平面ANP 和平面NPM 的法向量分别为111(,,)m x y z = 和222(,,)n x y z =,由00AN m PN m ⎧⋅=⎪⎨⋅=⎪⎩⇒11111302233022x z y z ⎧-=⎪⎪⎨⎪-+=⎪⎩,设11z =,则(3,1,1)m = ,由00MN n PN n ⎧⋅=⎪⎨⋅=⎪⎩ ⇒222033022x y z =⎧⎪⎨-+=⎪⎩,设21z =,则(0,1,1)n = , 210cos ,5||||52m n m n m n ⋅===⋅⋅,所以二面角A NP M --的余弦值105. 19.设等差数列{}n a 的公差为d ,点(,)n n a b 在函数()2xf x =的图象上(*n ∈N ).(1)若12a =-,点87(,4)a b 在函数()f x 的图象上,求数列{}n a 的前n 项和n S ; (2)若11a =,函数()f x 的图象在点22(,)a b 处的切线在x 轴上的截距为12ln 2-,求数列{}n na b 的前n 项和n T .【测量目标】等数数列,导函数的应用,复合数列前n 项和的求解. 【考查方式】数列和函数综合考查. 【难易程度】较难.【试题解析】(1)点(,)n n a b 在函数()2xf x =的图象上,所以2n an b =,又等差数列{}n a 的公差为d ,所以1112222n n n n a a a d n a n b b ++-+===,因为点87(,4)a b 在函数()f x 的图象上,所以87842a b b ==,所以8724d b b ==2d ⇒=,又12a =-,所以221(1)232n n n S na d n n n n n -=+=-+-=-.(2)由()2()2ln 2x x f x f x '=⇒=,函数()f x 的图象在点22(,)a b 处的切线方程为222(2ln 2)()a y b x a -=-,所以切线在x 轴上的截距为21ln 2a -,从而2112ln 2ln 2a -=-,故22a =,从而n a n =,2n nb =,2n n n a nb =,231232222n n n T =++++ ,2341112322222n n n T +=++++ ,所以23411111112222222n n n n T +=+++++- 111211222n n n n n +++=--=-,故222n n n T +=-. 20.已知椭圆C :22221x y a b+=(0a b >>)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.(1)求椭圆C 的标准方程;(2)设F 为椭圆C 的左焦点,T 为直线3x =-上任意一点,过F 作TF 的垂线交椭圆C 于点P ,Q . (i)证明:OT 平分线段PQ (其中O 为坐标原点); (ii)当||||TF PQ 最小时,求点T 的坐标. 【测量目标】椭圆的方程,椭圆和直线的关系,均值不等式.【考查方式】考查数形结合思想,几何条件和代数关系的相互转化,曲线和直线联立求解的方法,均值不等式的应用. 【难易程度】较难.【试题解析】(1)依条件2222226324c a a b b a b c =⎧⎧=⎪⎪=⇒⎨⎨=⎪⎩⎪-==⎩,所以椭圆C 的标准方程为22162x y +=.(2)设(3,)T m -,11(,)P x y ,22(,)Q x y ,又设PQ 中点为00(,)N x y .(i)因为(2,0)F -,所以直线PQ 的方程为:2x my =-,22222(3)420162x my m y my x y =-⎧⎪⇒+--=⎨+=⎪⎩,所以222122122168(3)24(1)04323m m m m y y m y y m ⎧⎪∆=++=+>⎪⎪+=⎨+⎪-⎪=⎪+⎩,于是1202223y y m y m +==+, 20022262233m x my m m -=-=-=++,所以2262(,)33m N m m -++.因为3OT ON mk k =-=,所以O ,N ,T三点共线,即OT 平分线段PQ (其中O 为坐标原点).(ii)2||1TF m =+,22212224(1)||||113m PQ y y m m m +=-+=++, 所以222222||13||24(1)24(1)13TF m m PQ m m m m ++==++++,令21m x +=(1x …), 则2||2123()||32626TF x x PQ x x +==+…(当且仅当22x =时取“=”), 所以当||||TF PQ 最小时,22x =即1m =或1-,此时点T 的坐标为(3,1)-或(3,1)--.21.已知函数2()1x f x e ax bx =---,其中,a b ∈R , 2.71828e = 为自然对数的底数. (1)设()g x 是函数()f x 的导函数,求函数()g x 在区间[0,1]上的最小值; (2)若(1)0f =,函数()f x 在区间(0,1)内有零点,求a 的取值范围【测量目标】函数的导函数,极值,最值,函数的零点.【考查方式】考查函数的求导,单调区间的确定,分类讨论思想,数形结合思想的应用. 【难易程度】较难.【试题解析】(1)因为2()1xf x e ax bx =--- 所以()()2xg x f x e ax b '==-- 又()2xg x e a '=-,因为[0,1]x ∈,1xee 剟,所以:①若12a …,则21a …,()20xg x e a '=-…,所以函数()g x 在区间[0,1]上单增,min ()(0)1g x g b ==-;②若122ea <<,则12a e <<,于是当0ln(2)x a <<时()20x g x e a '=-<,当ln(2)1a x <<时()20x g x e a '=->,所以函数()g x 在区间[0,ln(2)]a 上单减,在区间[ln(2),1]a 上单增,min ()[ln(2)]22ln(2)g x g a a a a b ==--;③若2ea …,则2a e …,()20x g x e a '=-…,所以函数()g x 在区间[0,1]上单减,min ()(1)2g x g e a b ==--;综上:()g x 在区间[0,1]上的最小值为min 11,,21()22ln(2),222,,2b a e g x a a a b a e e a b a ⎧-⎪⎪⎪=--<<⎨⎪⎪--⎪⎩…….(2)由(1)0f =⇒10e a b ---=⇒1b e a =--,又(0)0f =,若函数()f x 在区间(0,1)内有零点,则函数()f x 在区间(0,1)内至少有三个单调区间,由(1)知当12a …或2ea …时,函数()g x 即()f x '在区间[0,1]上单调,不可能满足“函数()f x 在区间(0,1)内至少有三个单调区间”这一要求.若122ea <<,则min ()22ln(2)32ln(2)1g x a a ab a a a e =--=--+, 令3()ln 12h x x x x e =--+(1x e <<),则1()ln 2h x x '=-.由1()ln 02h x x x e '=->⇒<,所以()h x 在区间(1,)e 上单增,在区间(,)e e 上单减,max 3()()ln 1102h x h e e e e e e e ==--+=-+<即min ()0g x <恒成立,于是,函数()f x 在区间(0,1)内至少有三个单调区间⇔(0)20(1)10g e a g a =-+>⎧⎨=-+>⎩21a e a >-⎧⇒⎨<⎩,又122ea <<, 所以21e a -<<,综上,a 的取值范围为(2,1)e -.。

2014年四川高考理科数学试题及答案

2014年四川高考理科数学试题及答案

2014年普通高等学校招生全国统一考试(四川卷)理科综合能力测试第I卷(选择题,共126分)本试卷分第I卷(选择題)和第n卷(非选择題)两部分,第I卷1-3页,第II卷4-8页。

满分300分,考试时间150分钟。

考试结束将机读答題卡和第II卷答题卷一并收回。

注意事项.1. 答題前:考生务必将自己的姓名、考号用0.5毫米的黑色签字笔分别填写在机读答超卡和笫II卷答題卷上2. 选备题使用2B铅笔填涂在机读答题卡对应超目标号的位里上,并将考号和科目填涂,其它试题用0.5毫米黑色签字笔书写在第II卷答題卷对应題框内,不得超越題框区城。

在草稿纸或试卷上答題无效。

3. 考试结束后,监考人员将机读答題卡和第II卷答題卷分别收回并装袋。

可能用到的相对原子质量:H—1 C—12 0—16 Na—23 Mg—24 Al—27 Cl-35.5 Fe - 56 Cu -64一、选择题(本题包含13小题,每小题6分,共78分。

每小题只有一个选项符合题意。

1. 下列关于生物工程的叙述,正确的是A. 将甲乙两种植物的体细胞混合后,可获得大量体细胞杂种B. 筛选产生抗体的杂交瘤细胞需要使用特定的选择性培养基C. 应用基因诊断技术,可检测受体细胞中的目的基因是否表达D. 由于连续培养延长了培养周期,因此能提髙微生物的代谢产物量2. 下列有关高中生物学实验的叙述,其中正确的是A. 用光学显微镜观察洋葱根尖,可看到某个细胞进行分裂的完整过程B. 将适量的二苯胺试剂注人盛有DNA溶液的试管后,结果就会出现蓝色C. 验证酵母菌种群数量的动态变化规律,应使用液体培养基培养酵母菌D. 提髙蔗糖溶液的浓度,可降低洋葱鳞片叶表皮细胞的质壁分离速率3. 右图表示人体内的体液免疫过程,下列有关叙述错误的是A. ①②过程都有细胞膜上糖蛋白的参与,⑤过程主要发生在内环境中B. 图中各种细胞都是免疫细胞,它们均由受稍卵经细胞的分裂和分化而来C. 大多数抗体是与相应抗原发生沉淀或凝集反应,进而被吞噬细胞吞噬消化D. 抗原与抗体发生反应,可导致人体出现过敏反应、自身免疫病和免疫缺陷病4. 下列有关细胞的叙述中,正确的是A. 内质网与细胞膜中蛋白质和磷脂等成分的更新有关B. 酵母菌细胞内的mRNA只能在细胞核和线粒体中合成C. 处于分裂期的细胞不进行DNA的复制和蛋白质的合成D. 人体内精细胞变成为精子的过程不厲于细胞分化的过程5. 对下列四图的有关描述中,正确的是A. 图.甲中造成cd段下降的原因在细胞的有丝分裂和减数分裂中是不同的B. 图乙中①的一条链的碱基序列与④的碱基序列相同,②的种类共有61种C. 图丙中,当酶浓度增加而其他条件不变时,图中虚线不能表示生成物量的变化D. 图丁中,若C点对应浓度为茎背光侧的生长素浓度,则茎向光侧的生长索浓度不可能为A点对应浓度6.化学与人类生活、生产、环塊密切相关,下列说法正确的是A. 聚乙烯无毒,但丢弃在环塊中,会造成环塊污染B. 二氧化硫可用于制作馊头的增白剂C. 加酶洗衣粉,为增强其去污能力,使用前用沸水溶解D. 用天然气代替煤作燃料,可减少温室气体的排放7. 设为阿伏加德罗常数,下列叙述错误的是A. 在标准状况下,22.4L空气中约含有个气体分子B. 含个氧原子的O 2与含个氧原子的03的质量之比为3:2C. 28 g乙烯和28 g丙烯中均含有6对共用甩子对D. 12 g石墨晶体^中碳碳键的数目为1.58. 下列各组离子,在指定条件下,一定能大量共存的是A. 室温下,水电离产生的的溶液中:B. 无色透明的酸性溶液中:C. 加人过量NaOH溶液后可得到澄淸溶液:D. 酸性高锰酸钾溶液中:9. 巳知。

2014年四川高考理科数学试题及标准答案(word版)

2014年四川高考理科数学试题及标准答案(word版)

2014年四川数学高考试题一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的。

1.已知集合2{|20}A x x x =--≤,集合B 为整数集,则A B ⋂=A.{1,0,1,2}- B .{2,1,0,1}-- C .{0,1} D .{1,0}-2.在6(1)x x +的展开式中,含3x 项的系数为A.30 B.20 C.15 D.103.为了得到函数sin(21)y x =+的图象,只需把函数sin 2y x =的图象上所有的点A .向左平行移动12个单位长度B .向右平行移动12个单位长度C .向左平行移动1个单位长度 D.向右平行移动1个单位长度4.若0a b >>,0x d <<,则一定有A.a b c d > B .a b c d < C.a b d c > D .a b d c< 5.执行如图1所示的程序框图,如果输入的[2,2]t ∈-,则输出的S 的最大值为A .0B .1 C.2 D .36.六个人从左至右排成一行,最左端只能排甲或乙,最右端不能拍甲,则不同的排法共有A.192种 B .216种 C.240种 D .288种7.平面向量(1,2)a =,(4,2)b =,c ma b =+(m R ∈),且c 与a 的夹角等于c 与b 的夹角,则m = A.2- B .1- C.1 D.28.如图,在正方体1111ABCD A B C D -中,点O 为线段BD 的中点。

设点P 在线段1CC 上,直线OP 与平面1A BD 所成的角为α,则sin α的取值范围是A .3[,1]3 B.6[,1]3 C.622[,]33 D .22[,1]39.已知()ln(1)ln(1)f x x x =+--,(1,1)x ∈-。

现有下列命题:①()()f x f x -=-;②22()2()1x f f x x =+;③|()|2||f x x ≥。

2014年四川高考数学试卷(理科)(含答案解析)

2014年四川高考数学试卷(理科)(含答案解析)

2014年四川高考数学试卷(理科)(含答案解析)2014年四川省高考数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给处的四个选项中,只有一项是符合题目要求的. 1.(5分)(2014•四川)已知集合A={x|x 2﹣x ﹣2≤0},集合B 为整数集,则A ∩B=( ) A . {﹣1,0,1,2} B . {﹣2,﹣1,0,1}C . {0,1}D . {﹣1,0}2.(5分)(2014•四川)在x (1+x )6的展开式中,含x 3项的系数为( ) A . 30 B . 20C . 15D . 103.(5分)(2014•四川)为了得到函数y=sin (2x+1)的图象,只需把y=sin2x 的图象上所有的点( ) A . 向左平行移动个单位长度 B . 向右平行移动个单位长度 C . 向左平行移动1个单位长度 D . 向右平行一定1个单位长度4.(5分)(2014•四川)若a >b >0,c <d <0,则一定有( ) A . > B . < C . > D . <5.(5分)(2014•四川)执行如图所示的程序框图,若输入的x,y∈R,那么输出的S的最大值为()A.0B.1C.2D.36.(5分)(2014•四川)六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有()A.192种B.216种C.240种D.288种7.(5分)(2014•四川)平面向量=(1,2),=(4,2),=m+(m∈R),且与的夹角等于与的夹角,则m=()A.﹣2 B.﹣1 C.1D.28.(5分)(2014•四川)如图,在正方体ABCD﹣A1B1C1D1中,点O为线段BD的中点,设点P在线段CC1上,直线OP与平面A1BD所成的角为α,则sinα的取值范围是()A.[,1]B.[,1]C.[,]D.[,1]9.(5分)(2014•四川)已知f(x)=ln(1+x)﹣ln(1﹣x),x∈(﹣1,1).现有下列命题:①f(﹣x)=﹣f(x);②f()=2f(x)③|f(x)|≥2|x|其中的所有正确命题的序号是()A.①②③B.②③C.①③D.①②10.(5分)(2014•四川)已知F为抛物线y2=x的焦点,点A,B在该抛物线上且位于x轴的两侧,•=2(其中O为坐标原点),则△ABO与△AFO面积之和的最小值是()A.2B.3C.D.二、填空题:本大题共5小题,每小题5分,共25分11.(5分)(2014•四川)复数=_________.12.(5分)(2014•四川)设f(x)是定义在R上的周期为2的函数,当x∈[﹣1,1)时,f(x)=,则f()=_________.13.(5分)(2014•四川)如图,从气球A上测得正前方的河流的两岸B,C的俯角分别为67°,30°,此时气球的高是46m,则河流的宽度BC约等于_________m.(用四舍五入法将结果精确到个位.参考数据:sin67°≈0.92,cos67°≈0.39,sin37°≈0.60,cos37°≈0.80,≈1.73)14.(5分)(2014•四川)设m∈R,过定点A的动直线x+my=0和过定点B的动直线mx﹣y﹣m+3=0交于点P(x,y).则|PA|•|PB|的最大值是_________.15.(5分)(2014•四川)以A表示值域为R的函数组成的集合,B表示具有如下性质的函数φ(x)组成的集合:对于函数φ(x),存在一个正数M,使得函数φ(x)的值域包含于区间[﹣M,M].例如,当φ1(x)=x3,φ2(x)=sinx 时,φ1(x)∈A,φ2(x)∈B.现有如下命题:①设函数f(x)的定义域为D,则“f(x)∈A”的充要条件是“∀b∈R,∃a∈D,f(a)=b”;②函数f(x)∈B的充要条件是f(x)有最大值和最小值;③若函数f(x),g(x)的定义域相同,且f(x)∈A,g(x)∈B,则f(x)+g(x)∉B.④若函数f(x)=aln(x+2)+(x>﹣2,a∈R)有最大值,则f(x)∈B.其中的真命题有_________.(写出所有真命题的序号)三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(12分)(2014•四川)已知函数f(x)=sin(3x+).(1)求f(x)的单调递增区间;(2)若α是第二象限角,f()=cos(α+)cos2α,求cosα﹣sinα的值.17.(12分)(2014•四川)一款击鼓小游戏的规则如下:每盘游戏都需要击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐:每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得﹣200分).设每次击鼓出现音乐的概率为,且各次击鼓出现音乐相互独立.(1)设每盘游戏获得的分数为X,求X的分布列;(2)玩三盘游戏,至少有一盘出现音乐的概率是多少?(3)玩过这款游戏的许多人都发现.若干盘游戏后,与最初分数相比,分数没有增加反而减少了.请运用概率统计的相关知识分析分数减少的原因.18.(12分)(2014•四川)三棱锥A﹣BCD及其侧视图、俯视图如图所示,设M,N分别为线段AD,AB的中点,P为线段BC上的点,且MN⊥NP.(1)证明:P是线段BC的中点;(2)求二面角A﹣NP﹣M的余弦值.19.(12分)(2014•四川)设等差数列{a n}的公差为d,点(a n,b n)在函数f(x)=2x的图象上(n∈N*).(1)若a1=﹣2,点(a8,4b7)在函数f(x)的图象上,求数列{a n}的前n项和S n;(2)若a1=1,函数f(x)的图象在点(a2,b2)处的切线在x轴上的截距为2﹣,求数列{}的前n项和T n.20.(13分)(2014•四川)已知椭圆C:+=1(a>b>0)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.(1)求椭圆C的标准方程;(2)设F为椭圆C的左焦点,T为直线x=﹣3上任意一点,过F作TF的垂线交椭圆C于点P,Q.①证明:OT平分线段PQ(其中O为坐标原点);②当最小时,求点T的坐标.21.(14分)(2014•四川)已知函数f(x)=e x﹣ax2﹣bx﹣1,其中a,b∈R,e=2.71828…为自然对数的底数.(1)设g(x)是函数f(x)的导函数,求函数g(x)在区间[0,1]上的最小值;(2)若f(1)=0,函数f(x)在区间(0,1)内有零点,求a的取值范围.2014年四川省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给处的四个选项中,只有一项是符合题目要求的. 1.(5分)(2014•四川)已知集合A={x|x 2﹣x ﹣2≤0},集合B 为整数集,则A ∩B=( ) A . {﹣1,0,1,2} B . {﹣2,﹣1,0,1}C . {0,1}D . {﹣1,0}考点:交集及其运算.专题: 计算题.分析: 计算集合A 中x 的取值范围,再由交集的概念,计算可得.解答: 解:A={x|﹣1≤x ≤2},B=Z , ∴A ∩B={﹣1,0,1,2}.故选:A . 点评:本题属于容易题,集合知识是高中部分的基础知识,也是基础工具,高考中涉及到对集合的基本考查题,一般都比较容易,且会在选择题的前几题,考生只要够细心,一般都能拿到分.2.(5分)(2014•四川)在x(1+x)6的展开式中,含x3项的系数为()A.30 B.20 C.15 D.10考点:二项式系数的性质.专题:二项式定理.分析:利用二项展开式的通项公式求出(1+x)6的第r+1项,令x的指数为2求出展开式中x2的系数.然后求解即可.解答:解:(1+x)6展开式中通项T r+1=C6r x r,令r=2可得,T3=C62x2=15x2,∴(1+x)6展开式中x2项的系数为15,在x(1+x)6的展开式中,含x3项的系数为:15.故选:C.点评:本题考查二项展开式的通项的简单直接应用.牢记公式是基础,计算准确是关键.3.(5分)(2014•四川)为了得到函数y=sin(2x+1)的图象,只需把y=sin2x的图象上所有的点()A.向左平行移动个单位长度B.向右平行移动个单位长度C.向左平行移动1个单位长D.向右平行一定1个单位长度度考点:函数y=Asin(ωx+φ)的图象变换.专题:三角函数的图像与性质.分析:根据y=sin(2x+1)=sin2(x+),利用函数y=Asin (ωx+φ)的图象变换规律,得出结论.解答:解:∵y=sin(2x+1)=sin2(x+),∴把y=sin2x的图象上所有的点向左平行移动个单位长度,即可得到函数y=sin(2x+1)的图象,故选:A .点评:本题主要考查函数y=Asin (ωx+φ)的图象变换规律,属于基础题.4.(5分)(2014•四川)若a>b>0,c<d<0,则一定有()A.>B.<C.>D.<考点:不等式比较大小;不等关系与不等式.专题:不等式的解法及应用.分析:利用特例法,判断选项即可.解答:解:不妨令a=3,b=1,c=﹣3,d=﹣1,则,,∴A、B不正确;,=﹣,∴C不正确,D正确.故选:D.点评:本题考查不等式比较大小,特值法有效,导数计算正确.5.(5分)(2014•四川)执行如图所示的程序框图,若输入的x,y∈R,那么输出的S的最大值为()A.0B.1C.2D.3考点:程序框图.专题:计算题;算法和程序框图.分析:算法的功能是求可行域内,目标还是S=2x+y的最大值,画出可行域,求得取得最大值的点的坐标,求出最大值.解答:解:由程序框图知:算法的功能是求可行域内,目标还是S=2x+y的最大值,画出可行域如图:当时,S=2x+y的值最大,且最大值为2.故选:C.点评:本题借助选择结构的程序框图考查了线性规划问题的解法,根据框图的流程判断算法的功能是解题的关键.6.(5分)(2014•四川)六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有()A.192种B.216种C.240种D.288种考点:排列、组合及简单计数问题.专题:应用题;排列组合.分分类讨论,最左端排甲;最左端只排乙,最右端不能排析:甲,根据加法原理可得结论.解答:解:最左端排甲,共有=120种,最左端只排乙,最右端不能排甲,有=96种,根据加法原理可得,共有120+96=216种.故选:B.点评:本题考查排列、组合及简单计数问题,考查学生的计算能力,属于基础题.7.(5分)(2014•四川)平面向量=(1,2),=(4,2),=m+(m∈R),且与的夹角等于与的夹角,则m=()A.﹣2 B.﹣1 C.1D.2考点:数量积表示两个向量的夹角.专题:平面向量及应用.分析:由已知求出向量的坐标,再根据与的夹角等于与的夹角,代入夹角公式,构造关于m的方程,解方程可得答案.解答:解:∵向量=(1,2),=(4,2),∴=m +=(m+4,2m+2),又∵与的夹角等于与的夹角,∴=,∴=,∴=,解得m=2,故选:D点评:本题考查的知识点是数量积表示两个向量的夹角,难度中档.8.(5分)(2014•四川)如图,在正方体ABCD﹣A1B1C1D1中,点O为线段BD的中点,设点P在线段CC1上,直线OP与平面A1BD所成的角为α,则sinα的取值范围是()A.[,1]B .[,1]C .[,]D.[,1]考点:直线与平面所成的角.专题:空间角.分析:由题意可得:直线OP于平面A1BD所成的角α的取值范围是∪.再利用正方体的性质和直角三角形的边角关系即可得出.解答:解:由题意可得:直线OP 于平面A 1BD 所成的角α的取值范围是∪.不妨取AB=2.在Rt△AOA1中,==.sin∠C1OA 1=sin(π﹣2∠AOA1)=sin2∠AOA1=2sin∠AOA 1cos∠AOA1=,=1.∴sinα的取值范围是.故选:B.点评:本题考查了正方体的性质和直角三角形的边角关系即可、线面角的求法,考查了推理能力,属于中档题.9.(5分)(2014•四川)已知f(x)=ln(1+x)﹣ln(1﹣x),x ∈(﹣1,1).现有下列命题:①f(﹣x)=﹣f(x);②f()=2f(x)③|f(x)|≥2|x|其中的所有正确命题的序号是()A.①②③B.②③C.①③D.①②考点:命题的真假判断与应用.专题:函数的性质及应用.分析:根据已知中函数的解析式,结合对数的运算性质,分别判断三个结论的真假,最后综合判断结果,可得答案.解答:解:∵f(x)=ln(1+x)﹣ln(1﹣x),x∈(﹣1,1),∴f(﹣x)=ln(1﹣x)﹣ln(1+x)=﹣f(x),即①正确;f()=ln(1+)﹣ln(1﹣)=ln()﹣ln()=ln()=ln[()2]=2ln()=2[ln (1+x)﹣ln(1﹣x)]=2f(x),故②正确;当x∈[0,1)时,|f(x)|≥2|x|⇔f(x)﹣2x≥0,令g (x)=f(x)﹣2x=ln(1+x)﹣ln(1﹣x)﹣2x(x∈[0,1))∵g′(x)=+﹣2=≥0,∴g(x)在[0,1)单调递增,g(x)=f(x)﹣2x≥g(0)=0,又f(x)≥2x,又f(x)与y=2x为奇函数,所以丨f (x)丨≥2丨x丨成立,故③正确;故正确的命题有①②③,故选:A点评:本题以命题的真假判断为载体,考查了对数的运算性质,代入法求函数的解析式等知识点,难度中档.10.(5分)(2014•四川)已知F为抛物线y2=x的焦点,点A,B在该抛物线上且位于x轴的两侧,•=2(其中O为坐标原点),则△ABO与△AFO面积之和的最小值是()A.2B .3C.D.考点:直线与圆锥曲线的关系.专题:圆锥曲线中的最值与范围问题.分析:可先设直线方程和点的坐标,联立直线与抛物线的方程得到一个一元二次方程,再利用韦达定理及•=2消元,最后将面积之和表示出来,探求最值问题.解答:解:设直线AB 的方程为:x=ty+m,点A(x1,y1),B (x2,y2),直线AB与x轴的交点为M((0,m),由⇒y 2﹣ty﹣m=0,根据韦达定理有y1•y2=﹣m,∵•=2,∴x1•x2+y1•y 2=2,从而,∵点A,B位于x轴的两侧,∴y1•y 2=﹣2,故m=2.不妨令点A在x轴上方,则y1>0,又,∴S△ABO+S△AFO==.当且仅当,即时,取“=”号,∴△ABO与△AFO面积之和的最小值是3,故选B.点评:求解本题时,应考虑以下几个要点:1、联立直线与抛物线的方程,消x或y后建立一元二次方程,利用韦达定理与已知条件消元,这是处理此类问题的常见模式.2、求三角形面积时,为使面积的表达式简单,常根据图形的特征选择适当的底与高.3、利用基本不等式时,应注意“一正,二定,三相等”.二、填空题:本大题共5小题,每小题5分,共25分11.(5分)(2014•四川)复数=﹣2i.考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:利用两个复数代数形式的乘除法法则化简所给的复数,可得结果.解答:解:复数===﹣2i,故答案为:﹣2i.点评:本题主要考查两个复数代数形式的乘除法法则的应用,属于基础题.12.(5分)(2014•四川)设f(x)是定义在R上的周期为2的函数,当x∈[﹣1,1)时,f(x)=,则f()=1.考点:函数的值.专题:计算题.分析:由函数的周期性f(x+2)=f(x),将求f()的值转化成求f()的值.解答:解:∵f(x)是定义在R上的周期为2的函数,∴=1.故答案为:1.点评:本题属于容易题,是考查函数周期性的简单考查,学生在计算时只要计算正确,往往都能把握住,在高考中,属于“送分题”.13.(5分)(2014•四川)如图,从气球A上测得正前方的河流的两岸B,C的俯角分别为67°,30°,此时气球的高是46m,则河流的宽度BC约等于60m.(用四舍五入法将结果精确到个位.参考数据:sin67°≈0.92,cos67°≈0.39,sin37°≈0.60,cos37°≈0.80,≈1.73)考点:余弦定理的应用;正弦定理;正弦定理的应用.专题:应用题;解三角形.分析:过A点作AD垂直于CB的延长线,垂足为D,分别在Rt△ACD、Rt△ABD中利用三角函数的定义,算出CD、BD的长,从而可得BC,即为河流在B、C两地的宽度.解答:解:过A点作AD垂直于CB的延长线,垂足为D,则Rt △ACD中,∠C=30°,AD=46m∴CD==46≈79.58m.又∵Rt△ABD中,∠ABD=67°,可得BD==≈19.5m∴BC=CD﹣BD=79.58﹣19.5=60.08≈60m故答案为:60m点评:本题给出实际应用问题,求河流在B、C两地的宽度,着重考查了三角函数的定义、正余弦定理解三角形的知识,属于中档题.14.(5分)(2014•四川)设m∈R,过定点A的动直线x+my=0和过定点B的动直线mx﹣y﹣m+3=0交于点P(x,y).则|PA|•|PB|的最大值是5.考点:点到直线的距离公式.专题:直线与圆.分析:先计算出两条动直线经过的定点,即A和B,注意到两条动直线相互垂直的特点,则有PA⊥PB;再利用基本不等式放缩即可得出|PA|•|PB|的最大值.解答:解:有题意可知,动直线x+my=0经过定点A(0,0),动直线mx﹣y﹣m+3=0即m(x﹣1)﹣y+3=0,经过点定点B(1,3),注意到动直线x+my=0和动直线mx﹣y﹣m+3=0始终垂直,P又是两条直线的交点,则有PA⊥PB,∴|PA|2+|PB|2=|AB|2=10.故|PA|•|PB|≤=5(当且仅当时取“=”)故答案为:5点评:本题是直线和不等式的综合考查,特别是“两条直线相互垂直”这一特征是本题解答的突破口,从而有|PA|2+|PB|2是个定值,再由基本不等式求解得出.直线位置关系和不等式相结合,不容易想到,是个灵活的好题.15.(5分)(2014•四川)以A表示值域为R的函数组成的集合,B表示具有如下性质的函数φ(x)组成的集合:对于函数φ(x),存在一个正数M,使得函数φ(x)的值域包含于区间[﹣M,M].例如,当φ1(x)=x3,φ2(x)=sinx 时,φ1(x)∈A,φ2(x)∈B.现有如下命题:①设函数f(x)的定义域为D,则“f(x)∈A”的充要条件是“∀b∈R,∃a∈D,f(a)=b”;②函数f(x)∈B的充要条件是f(x)有最大值和最小值;③若函数f(x),g(x)的定义域相同,且f(x)∈A,g(x)∈B,则f(x)+g(x)∉B.④若函数f(x)=aln(x+2)+(x>﹣2,a∈R)有最大值,则f(x)∈B.其中的真命题有①③④.(写出所有真命题的序号)考点:命题的真假判断与应用;充要条件;函数的值域.专题:新定义;极限思想;函数的性质及应用;不等式的解法及应用.分析:根据题中的新定义,结合函数值域的概念,可判断出命题①②③是否正确,再利用导数研究命题④中函数的值域,可得到其真假情况,从而得到本题的结论.解答:解:(1)对于命题①“f(x)∈A”即函数f(x)值域为R,“∀b∈R,∃a∈D,f(a)=b”表示的是函数可以在R中任意取值,故有:设函数f(x)的定义域为D,则“f(x)∈A”的充要条件是“∀b∈R,∃a∈D,f(a)=b”∴命题①是真命题;(2)对于命题②若函数f(x)∈B,即存在一个正数M,使得函数f(x)的值域包含于区间[﹣M,M].∴﹣M≤f(x)≤M.例如:函数f(x)满足﹣2<f(x)<5,则有﹣5≤f(x)≤5,此时,f(x)无最大值,无最小值.∴命题②“函数f(x)∈B的充要条件是f(x)有最大值和最小值.”是假命题;(3)对于命题③若函数f(x),g(x)的定义域相同,且f(x)∈A,g (x)∈B,则f(x)值域为R,f(x)∈(﹣∞,+∞),并且存在一个正数M,使得﹣M≤g(x)≤M.∴f(x)+g(x)∈R.则f(x)+g(x)∉B.∴命题③是真命题.(4)对于命题④∵函数f(x)=aln(x+2)+(x>﹣2,a∈R)有最大值,∴假设a>0,当x→+∞时,→0,ln(x+2)→+∞,∴aln(x+2)→+∞,则f(x)→+∞.与题意不符;假设a<0,当x→﹣2时,→,ln(x+2)→﹣∞,∴aln(x+2)→+∞,则f(x)→+∞.与题意不符.∴a=0.即函数f(x)=(x>﹣2)当x>0时,,∴,即;当x=0时,f(x)=0;当x<0时,,∴,即.∴.即f(x)∈B.故命题④是真命题.故答案为①③④.点评:本题考查了函数值域的概念、基本不等式、充要条件,还考查了新定义概念的应用和极限思想.本题计算量较大,也有一定的思维难度,属于难题.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(12分)(2014•四川)已知函数f(x)=sin(3x+).(1)求f(x)的单调递增区间;(2)若α是第二象限角,f()=cos(α+)cos2α,求cosα﹣sinα的值.考点:两角和与差的余弦函数;正弦函数的单调性.专题:三角函数的求值.分析:(1)令2k π﹣≤3x+≤2kπ+,k∈z ,求得x的范围,可得函数的增区间.(2)由函数的解析式可得f ()=sin (α+),又f()=cos(α+)cos2α,可得sin(α+)=cos(α+)cos2α,化简可得(cosα﹣sinα)2=.再由α是第二象限角,cosα﹣sinα<0,从而求得cos α﹣sinα的值.解答:解:(1)∵函数f(x)=sin(3x+),令2k π﹣≤3x+≤2kπ+,k∈z,求得﹣≤x≤+,故函数的增区间为[﹣,+],k∈z.(2)由函数的解析式可得f()=sin(α+),又f()=cos(α+)cos2α,∴sin(α+)=cos(α+)cos2α,即sin(α+)=cos(α+)(cos2α﹣sin2α),∴sinαcos+cosαsin=(cos2α﹣sin2α)(sinα+cosα).又∵α是第二象限角,∴cosα﹣sinα<0,当sinα+cosα=0时,此时cosα﹣sin α=﹣.当sinα+cosα≠0时,此时cosα﹣sinα=﹣.综上所述:cosα﹣sinα=﹣或﹣.点评:本题主要考查正弦函数的单调性,三角函数的恒等变换,属于中档题.17.(12分)(2014•四川)一款击鼓小游戏的规则如下:每盘游戏都需要击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐:每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得﹣200分).设每次击鼓出现音乐的概率为,且各次击鼓出现音乐相互独立.(1)设每盘游戏获得的分数为X,求X的分布列;(2)玩三盘游戏,至少有一盘出现音乐的概率是多少?(3)玩过这款游戏的许多人都发现.若干盘游戏后,与最初分数相比,分数没有增加反而减少了.请运用概率统计的相关知识分析分数减少的原因.考点:离散型随机变量及其分布列;离散型随机变量的期望与方差.专题:概率与统计.分(1)设每盘游戏获得的分数为X,求出对应的概率,即析:可求X的分布列;(2)求出有一盘出现音乐的概率,独立重复试验的概率公式即可得到结论.(3)计算出随机变量的期望,根据统计与概率的知识进行分析即可.解答:解:(1)X可能取值有﹣200,10,20,100.则P (X=﹣200)=,P (X=10)==P(X=20)==,P(X=100)==,故分布列为:X ﹣200 10 20 100P由(1)知,每盘游戏出现音乐的概率是p=+=,则至少有一盘出现音乐的概率p=1﹣.由(1)知,每盘游戏或得的分数为X的数学期望是E (X)=(﹣200)×+10×+20××100=﹣=.这说明每盘游戏平均得分是负分,由概率统计的相关知识可知:许多人经过若干盘游戏后,入最初的分数相比,分数没有增加反而会减少.点评:本题主要考查概率的计算,以及离散型分布列的计算,以及利用期望的计算,考查学生的计算能力.18.(12分)(2014•四川)三棱锥A﹣BCD及其侧视图、俯视图如图所示,设M,N分别为线段AD,AB的中点,P为线段BC上的点,且MN⊥NP.(1)证明:P是线段BC的中点;(2)求二面角A﹣NP﹣M的余弦值.考点:二面角的平面角及求法;直线与平面平行的判定;用空间向量求平面间的夹角.专题:空间向量及应用.分析:(1)用线面垂直的性质和反证法推出结论,(2)先建空间直角坐标系,再求平面的法向量,即可求出二面角A﹣NP﹣M的余弦值.解答:解:(1)由三棱锥A﹣BCD及其侧视图、俯视图可知,在三棱锥A﹣BCD中:平面ABD⊥平面CBD,AB=AD=BD=CD=CB=2设O为BD的中点,连接OA,OC于是OA⊥BD,OC⊥BD 所以BD⊥平面OAC⇒BD⊥AC因为M,N分别为线段AD,AB的中点,所以MN∥BD,MN∥NP,故BD ⊥NP假设P 不是线段BC的中点,则直线NP 与直线AC是平面ABC内相交直线从而BD ⊥平面ABC,这与∠DBC=60°矛盾,所以P 为线段BC的中点(2)以O为坐标原点,OB,OC ,OA分别为x,y ,z 轴建立空间直角坐标系,则A(0,0,),M (,O,),N(,0,),P (,,0)于是,,设平面ANP和平面NPM的法向量分别为和由,则,设z1=1,则由,则,设z2=1,则cos===所以二面角A﹣NP﹣M的余弦值点评:本题考查线线的位置关系,考查二面角知识的应用,解题的关键是掌握用向量的方法求二面角大小的步骤,属于中档题.19.(12分)(2014•四川)设等差数列{a n}的公差为d,点(a n,b n)在函数f(x)=2x的图象上(n∈N*).(1)若a1=﹣2,点(a8,4b7)在函数f(x)的图象上,求数列{a n}的前n项和S n;(2)若a1=1,函数f(x)的图象在点(a2,b2)处的切线在x轴上的截距为2﹣,求数列{}的前n项和T n.考点:数列的求和;数列与函数的综合.专题:函数的性质及应用;等差数列与等比数列.分析:(1)由于点(a8,4b7)在函数f(x)=2x的图象上,可得,又等差数列{a n}的公差为d,利用等差数列的通项公式可得=2d.由于点(a8,4b7)在函数f(x)的图象上,可得=b8,进而得到=4=2d,解得d.再利用等差数列的前n项和公式即可得出.(2)利用导数的几何意义可得函数f(x)的图象在点(a2,b2)处的切线方程,即可解得a2.进而得到a n,b n.再利用“错位相减法”即可得出.解答:解:(1)∵点(a8,4b7)在函数f(x)=2x的图象上,∴,又等差数列{a n}的公差为d,∴==2d,∵点(a8,4b7)在函数f(x)的图象上,∴=b8,∴=4=2d,解得d=2.又a1=﹣2,∴S n==﹣2n+=n2﹣3n.(2)由f(x)=2x,∴f′(x)=2x ln2,∴函数f(x)的图象在点(a2,b2)处的切线方程为,又,令y=0可得x=,∴,解得a2=2.∴d=a2﹣a1=2﹣1=1.∴a n=a1+(n﹣1)d=1+(n﹣1)×1=n,∴b n=2n.∴.∴T n=+…++,∴2T n=1+++…+,两式相减得T n=1++…+﹣=﹣==.点评:本题综合考查了指数函数的运算性质、导数的几何意义、等差数列与等比数列的通项公式及其前n项和公式等基础知识与基本技能方法,考查了推理能力、计算能力、“错位相减法”,属于难题.20.(13分)(2014•四川)已知椭圆C:+=1(a>b>0)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.(1)求椭圆C的标准方程;(2)设F为椭圆C的左焦点,T为直线x=﹣3上任意一点,过F作TF的垂线交椭圆C于点P,Q.①证明:OT平分线段PQ(其中O为坐标原点);②当最小时,求点T的坐标.考点:直线与圆锥曲线的关系;椭圆的标准方程.专题:圆锥曲线中的最值与范围问题.分析:第(1)问中,由正三角形底边与高的关系,a2=b2+c2及焦距2c=4建立方程组求得a 2,b2;第(2)问中,先设点的坐标及直线PQ的方程,利用两点间距离公式及弦长公式将表示出来,由取最小值时的条件获得等量关系,从而确定点T的坐标.解解:(1)依题意有解得答:所以椭圆C的标准方程为+=1.(2)设T(﹣3,m),P(x1,y1),Q(x2,y2),PQ的中点为N(x0,y0),①证明:由F(﹣2,0),可设直线PQ的方程为x=my﹣2,由⇒(m2+3)y2﹣4my﹣2=0,所以于是,从而,即,则,所以O,N,T三点共线,从而OT平分线段PQ,故得证.②由两点间距离公式得,由弦长公式得==,所以,令,则(当且仅当x2=2时,取“=”号),所以当最小时,由x2=2=m2+1,得m=1或m=﹣1,此时点T的坐标为(﹣3,1)或(﹣3,﹣1).点评:本题属相交弦问题,应注意考虑这几个方面:1、设交点坐标,设直线方程;2、联立直线与椭圆方程,消去y或x,得到一个关于x 或y一元二次方程,利用韦达定理;3、利用基本不等式或函数的单调性探求最值问题.21.(14分)(2014•四川)已知函数f(x)=e x﹣ax2﹣bx﹣1,其中a,b∈R,e=2.71828…为自然对数的底数.(1)设g(x)是函数f(x)的导函数,求函数g(x)在区间[0,1]上的最小值;(2)若f(1)=0,函数f(x)在区间(0,1)内有零点,求a的取值范围.考点:导数在最大值、最小值问题中的应用;函数的零点.专题:导数的综合应用.分析:(1)求出f(x)的导数得g(x),再求出g(x)的导数,对它进行讨论,从而判断g(x)的单调性,求出g(x)的最小值;(2)利用等价转换,若函数f(x)在区间(0,1)内有零点,则函数f(x)在区间(0,1)内至少有三个单调区间,所以g(x)在(0,1)上应有两个不同的零点.解答:解:∵f(x)=e x﹣ax2﹣bx﹣1,∴g(x)=f′(x)=e x﹣2ax﹣b,又g′(x)=e x﹣2a,x∈[0,1],∴1≤e x≤e,∴①当时,则2a≤1,g′(x)=e x﹣2a≥0,∴函数g(x)在区间[0,1]上单调递增,g(x)min=g (0)=1﹣b;②当,则1<2a<e,∴当0<x<ln(2a)时,g′(x)=e x﹣2a<0,当ln(2a)<x<1时,g′(x )=e x﹣2a>0,∴函数g(x)在区间[0,ln(2a)]上单调递减,在区间[ln(2a),1]上单调递增,g(x)min=g[ln(2a)]=2a﹣2aln(2a)﹣b;③当时,则2a≥e,g′(x)=e x﹣2a≤0,∴函数g(x)在区间[0,1]上单调递减,g(x)min=g(1)=e﹣2a﹣b,综上:函数g(x)在区间[0,1]上的最小值为;(2)由f(1)=0,⇒e﹣a﹣b﹣1=0⇒b=e﹣a﹣1,又f(0)=0,若函数f(x)在区间(0,1)内有零点,则函数f (x)在区间(0,1)内至少有三个单调区间,由(1)知当a≤或a≥时,函数g(x)在区间[0,1]上单调,不可能满足“函数f(x)在区间(0,1)内至少有三个单调区间”这一要求.若,则g min(x)=2a ﹣2aln(2a)﹣b=3a﹣2aln(2a)﹣e+1令h(x)=(1<x<e)则.由>0⇒x<∴h(x)在区间(1,)上单调递增,在区间(,e)上单调递减,=+<0,即g min(x)<0 恒成立,∴函数f(x)在区间(0,1)内至少有三个单调区间⇔⇒,又,所以e﹣2<a<1,综上得:e﹣2<a<1.点评:本题考查了,利用导数求函数的单调区间,分类讨论思想,等价转换思想,函数的零点等知识点.是一道导数的综合题,难度较大.参与本试卷答题和审题的老师有:任老师;王老师;孙佑中;刘长柏;qiss;尹伟云;翔宇老师;szjzl;caoqz;清风慕竹;静定禅心;maths(排名不分先后)菁优网2014年6月24日。

2014年全国高考理科数学试题和答案-四川卷

2014年全国高考理科数学试题和答案-四川卷

2014年普通高等学校招生全国统一考试理科参考答案(四川卷)一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的。

1.已知集合2{|20}A x x x =--≤,集合B 为整数集,则A B ⋂=A .{1,0,1,2}-B .{2,1,0,1}--C .{0,1}D .{1,0}- 【答案】A【解析】{|12}A x x =-≤≤,B Z =,故A B ⋂={1,0,1,2}- 2.在6(1)x x +的展开式中,含3x 项的系数为 A .30 B .20 C .15 D .10 【答案】C【解析】含3x 项为24236(1)15x C x x ⋅=3.为了得到函数sin(21)y x =+的图象,只需把函数sin 2y x =的图象上所有的点A .向左平行移动12个单位长度B .向右平行移动12个单位长度 C .向左平行移动1个单位长度 D .向右平行移动1个单位长度【答案】A【解析】因为1sin(21)sin[2()]2y x x =+=+,故可由函数sin 2y x =的图象上所有的点向左平行移动12个单位长度得到 4.若0a b >>,0c d <<,则一定有A .a b c d >B .a b c d <C .a b d c >D .a b d c<【答案】D【解析】由1100c d d c <<⇒->->,又0a b >>,由不等式性质知:0a bd c->->,所以a bd c< 5.执行如图1所示的程序框图,如果输入的,x y R ∈,则输出的S 的最大值为 A .0 B .1 C .2 D .3 【答案】C【解析】当001x y x y ≥⎧⎪≥⎨⎪+≤⎩时,函数2S x y =+的最大值为2,否则,S 的值为1.6.六个人从左至右排成一行,最左端只能排甲或乙,最右端不能拍甲,则不同的排法共有A .192种B .216种C .240种D .288种 【答案】B【解析】当最左端为甲时,不同的排法共有55A 种;当最左端为乙时,不同的排法共有14C 44A 种。

2014年四川省高考数学试卷(理科)

2014年四川省高考数学试卷(理科)

年四川省高考数学试卷(理科)2014年四川省高考数学试卷(理科)一、选择题:本大题共 小题,每小题 分,共 分.在每小题给处的四个选项中,只有一项是符合题目要求的..( 分)( ❿四川)已知集合✌⌧⌧ ﹣⌧﹣ ♎❝,集合 为整数集,则✌✆()✌. ﹣ , , , ❝ . ﹣ ,﹣ , , ❝ . , ❝ . ﹣ , ❝.( 分)( ❿四川)在⌧( ⌧) 的展开式中,含⌧ 项的系数为()✌. . . ..( 分)( ❿四川)为了得到函数⍓♦♓⏹( ⌧)的图象,只需把⍓♦♓⏹⌧的图象上所有的点()✌.向左平行移动个单位长度 .向右平行移动个单位长度.向左平行移动 个单位长度 .向右平行一定 个单位长度.( 分)( ❿四川)若♋>♌> ,♍<♎< ,则一定有()✌.> .< .> .<.( 分)( ❿四川)执行如图所示的程序框图,若输入的⌧,⍓ ,那么输出的 的最大值为()✌. . . ..( 分)( ❿四川)六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有()✌. 种 . 种 . 种 . 种.( 分)( ❿四川)平面向量 ( , ), ( , ), ❍ (❍ ),且与的夹角等于与的夹角,则❍()✌.﹣ .﹣ . ..( 分)( ❿四川)如图,在正方体✌﹣✌ 中,点 为线段 的中点,设点 在线段  上,直线 与平面✌ 所成的角为↑,则♦♓⏹↑的取值范围是()✌.☯,  .☯,  .☯, .☯, .( 分)( ❿四川)已知♐(⌧) ●⏹( ⌧)﹣●⏹( ﹣⌧),⌧ (﹣ , ).现有下列命题:♊♐(﹣⌧) ﹣♐(⌧);♋♐() ♐(⌧)♌♐(⌧) ♏⌧其中的所有正确命题的序号是()✌.♊♋♌ .♋♌ .♊♌ .♊♋.( 分)( ❿四川)已知☞为抛物线⍓ ⌧的焦点,点✌, 在该抛物线上且位于⌧轴的两侧,❿ (其中 为坐标原点),则 ✌与 ✌☞面积之和的最小值是()✌. . . .二、填空题:本大题共 小题,每小题 分,共 分.( 分)( ❿四川)复数 ♉♉♉♉♉♉♉♉♉..( 分)( ❿四川)设♐(⌧)是定义在 上的周期为 的函数,当⌧ ☯﹣ , )时,♐(⌧) ,则♐() ♉♉♉♉♉♉♉♉♉..( 分)( ❿四川)如图,从气球✌上测得正前方的河流的两岸 , 的俯角分别为 , ,此时气球的高是 ❍,则河流的宽度 约等于♉♉♉♉♉♉♉♉♉❍.(用四舍五入法将结果精确到个位.参考数据:♦♓⏹☟,♍☐♦☟,♦♓⏹☟,♍☐♦☟,☟).( 分)( ❿四川)设❍ ,过定点✌的动直线⌧❍⍓和过定点 的动直线❍⌧﹣⍓﹣❍交于点 (⌧,⍓).则 ✌❿的最大值是♉♉♉♉♉♉♉♉♉..( 分)( ❿四川)以✌表示值域为 的函数组成的集合, 表示具有如下性质的函数 (⌧)组成的集合:对于函数 (⌧),存在一个正数 ,使得函数 (⌧)的值域包含于区间☯﹣ , .例如,当 (⌧) ⌧ , (⌧) ♦♓⏹⌧时, (⌧)✌, (⌧) .现有如下命题:♊设函数♐(⌧)的定义域为 ,则❽♐(⌧)✌❾的充要条件是❽ ♌ ,♋ ,♐(♋) ♌❾;♋函数♐(⌧) 的充要条件是♐(⌧)有最大值和最小值;♌若函数♐(⌧),♑(⌧)的定义域相同,且♐(⌧)✌,♑(⌧) ,则♐(⌧) ♑(⌧) .♍若函数♐(⌧) ♋●⏹(⌧) (⌧>﹣ ,♋ )有最大值,则♐(⌧) .其中的真命题有♉♉♉♉♉♉♉♉♉.(写出所有真命题的序号)三、解答题:本大题共 小题,共 分.解答应写出文字说明、证明过程或演算步骤..( 分)( ❿四川)已知函数♐(⌧) ♦♓⏹( ⌧).( )求♐(⌧)的单调递增区间;( )若↑是第二象限角,♐() ♍☐♦(↑)♍☐♦↑,求♍☐♦↑﹣♦♓⏹↑的值..( 分)( ❿四川)一款击鼓小游戏的规则如下:每盘游戏都需要击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐:每盘游戏击鼓三次后,出现一次音乐获得 分,出现两次音乐获得 分,出现三次音乐获得 分,没有出现音乐则扣除 分(即获得﹣ 分).设每次击鼓出现音乐的概率为,且各次击鼓出现音乐相互独立.( )设每盘游戏获得的分数为✠,求✠的分布列;( )玩三盘游戏,至少有一盘出现音乐的概率是多少?( )玩过这款游戏的许多人都发现.若干盘游戏后,与最初分数相比,分数没有增加反而减少了.请运用概率统计的相关知识分析分数减少的原因..( 分)( ❿四川)三棱锥✌﹣ 及其侧视图、俯视图如图所示,设 ,☠分别为线段✌,✌的中点, 为线段 上的点,且 ☠☠.( )证明: 是线段 的中点;( )求二面角✌﹣☠﹣ 的余弦值..( 分)( ❿四川)设等差数列 ♋⏹❝的公差为♎,点(♋⏹,♌⏹)在函数♐(⌧) ⌧的图象上(⏹ ☠✉).( )若♋ ﹣ ,点(♋ , ♌ )在函数♐(⌧)的图象上,求数列 ♋⏹❝的前⏹项和 ⏹;( )若♋ ,函数♐(⌧)的图象在点(♋ ,♌ )处的切线在⌧轴上的截距为 ﹣,求数列 ❝的前⏹项和❆⏹..( 分)( ❿四川)已知椭圆 : (♋>♌> )的焦距为 ,其短轴的两个端点与长轴的一个端点构成正三角形.( )求椭圆 的标准方程;( )设☞为椭圆 的左焦点,❆为直线⌧﹣ 上任意一点,过☞作❆☞的垂线交椭圆 于点 ,✈.♊证明: ❆平分线段 ✈(其中 为坐标原点);♋当最小时,求点❆的坐标..( 分)( ❿四川)已知函数♐(⌧) ♏⌧﹣♋⌧ ﹣♌⌧﹣ ,其中♋,♌ ,♏⑤为自然对数的底数.( )设♑(⌧)是函数♐(⌧)的导函数,求函数♑(⌧)在区间☯, 上的最小值;( )若♐( ) ,函数♐(⌧)在区间( , )内有零点,求♋的取值范围.年四川省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共 小题,每小题 分,共 分.在每小题给处的四个选项中,只有一项是符合题目要求的..( 分)( ❿四川)已知集合✌⌧⌧ ﹣⌧﹣ ♎❝,集合 为整数集,则✌✆()✌. ﹣ , , , ❝ . ﹣ ,﹣ , , ❝ . , ❝ . ﹣ , ❝考点:交集及其运算.专题:计算题.分析:计算集合✌中⌧的取值范围,再由交集的概念,计算可得.解答:解:✌⌧﹣ ♎⌧♎❝, ☪,✌✆﹣ , , , ❝.故选:✌.点评:本题属于容易题,集合知识是高中部分的基础知识,也是基础工具,高考中涉及到对集合的基本考查题,一般都比较容易,且会在选择题的前几题,考生只要够细心,一般都能拿到分..( 分)( ❿四川)在⌧( ⌧) 的展开式中,含⌧ 项的系数为()✌. . . .考点:二项式系数的性质.专题:二项式定理.分析:利用二项展开式的通项公式求出( ⌧) 的第❒项,令⌧的指数为 求出展开式中⌧ 的系数.然后求解即可.解答:解:( ⌧) 展开式中通项❆❒  ❒⌧❒,令❒可得,❆  ⌧ ⌧ ,( ⌧) 展开式中⌧ 项的系数为 ,在⌧( ⌧) 的展开式中,含⌧ 项的系数为: .故选: .点评:本题考查二项展开式的通项的简单直接应用.牢记公式是基础,计算准确是关键..( 分)( ❿四川)为了得到函数⍓♦♓⏹( ⌧)的图象,只需把⍓♦♓⏹⌧的图象上所有的点()✌.向左平行移动个单位长度 .向右平行移动个单位长度.向左平行移动 个单位长度 .向右平行一定 个单位长度考点:函数⍓✌♦♓⏹(▫⌧)的图象变换.专题:三角函数的图像与性质.分析:根据 ⍓♦♓⏹( ⌧) ♦♓⏹(⌧),利用函数⍓✌♦♓⏹(▫⌧)的图象变换规律,得出结论.解答:解: ⍓♦♓⏹( ⌧) ♦♓⏹(⌧), 把⍓♦♓⏹⌧的图象上所有的点向左平行移动个单位长度,即可得到函数⍓♦♓⏹( ⌧)的图象,故选:✌.点评:本题主要考查函数⍓✌♦♓⏹(▫⌧)的图象变换规律,属于基础题..( 分)( ❿四川)若♋>♌> ,♍<♎< ,则一定有()✌.> .< .> .<考点:不等式比较大小;不等关系与不等式.专题:不等式的解法及应用.分析:利用特例法,判断选项即可.解答:解:不妨令♋,♌,♍﹣ ,♎﹣ ,则,, ✌、 不正确;, ﹣,不正确, 正确.故选: .点评:本题考查不等式比较大小,特值法有效,导数计算正确..( 分)( ❿四川)执行如图所示的程序框图,若输入的⌧,⍓ ,那么输出的 的最大值为()✌. . . .考点:程序框图.专题:计算题;算法和程序框图.分析:算法的功能是求可行域内,目标还是 ⌧⍓的最大值,画出可行域,求得取得最大值的点的坐标,求出最大值.解答:解:由程序框图知:算法的功能是求可行域内,目标还是 ⌧⍓的最大值,画出可行域如图:当时, ⌧⍓的值最大,且最大值为 .故选: .点评:本题借助选择结构的程序框图考查了线性规划问题的解法,根据框图的流程判断算法的功能是解题的关键. .( 分)( ❿四川)六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有()✌. 种 . 种 . 种 . 种考点:排列、组合及简单计数问题.专题:应用题;排列组合.分析:分类讨论,最左端排甲;最左端只排乙,最右端不能排甲,根据加法原理可得结论.解答:解:最左端排甲,共有 种,最左端只排乙,最右端不能排甲,有 种,根据加法原理可得,共有 种.故选: .点评:本题考查排列、组合及简单计数问题,考查学生的计算能力,属于基础题..( 分)( ❿四川)平面向量 ( , ), ( , ), ❍ (❍ ),且与的夹角等于与的夹角,则❍()✌.﹣ .﹣ . .考点:数量积表示两个向量的夹角.专题:平面向量及应用.分析:由已知求出向量的坐标,再根据与的夹角等于与的夹角,代入夹角公式,构造关于❍的方程,解方程可得答案.解答:解: 向量 ( , ), ( , ),❍ (❍, ❍),又 与的夹角等于与的夹角,,,,解得❍,故选:点评:本题考查的知识点是数量积表示两个向量的夹角,难度中档..( 分)( ❿四川)如图,在正方体✌﹣✌ 中,点 为线段 的中点,设点 在线段  上,直线 与平面✌ 所成的角为↑,则♦♓⏹↑的取值范围是()✌.☯,  .☯,  .☯, .☯, 考点:直线与平面所成的角.专题:空间角.分析:由题意可得:直线 于平面✌ 所成的角↑的取值范围是✉.再利用正方体的性质和直角三角形的边角关系即可得出.解答:解:由题意可得:直线 于平面✌ 所成的角↑的取值范围是✉.不妨取✌.在 ♦✌✌ 中, .♦♓⏹  ✌ ♦♓⏹(⇨﹣ ✌✌ )♦♓⏹ ✌✌ ♦♓⏹ ✌✌ ♍☐♦ ✌✌ ,.♦♓⏹↑的取值范围是.故选: .点评:本题考查了正方体的性质和直角三角形的边角关系即可、线面角的求法,考查了推理能力,属于中档题..( 分)( ❿四川)已知♐(⌧) ●⏹( ⌧)﹣●⏹( ﹣⌧),⌧ (﹣ , ).现有下列命题:♊♐(﹣⌧) ﹣♐(⌧);♋♐() ♐(⌧)♌♐(⌧) ♏⌧其中的所有正确命题的序号是()✌.♊♋♌ .♋♌ .♊♌ .♊♋考点:命题的真假判断与应用.专题:函数的性质及应用.分析:根据已知中函数的解析式,结合对数的运算性质,分别判断三个结论的真假,最后综合判断结果,可得答案.解答:解: ♐(⌧) ●⏹( ⌧)﹣●⏹( ﹣⌧),⌧ (﹣ , ),♐(﹣⌧) ●⏹( ﹣⌧)﹣●⏹( ⌧) ﹣♐(⌧),即♊正确;♐() ●⏹( )﹣●⏹( ﹣) ●⏹()﹣●⏹() ●⏹()●⏹☯() ●⏹() ☯●⏹( ⌧)﹣●⏹( ﹣⌧) ♐(⌧),故♋正确;当⌧ ☯, )时, ♐(⌧) ♏⌧♐(⌧)﹣ ⌧♏,令♑(⌧) ♐(⌧)﹣ ⌧●⏹( ⌧)﹣●⏹( ﹣⌧)﹣ ⌧(⌧ ☯, ))♑(⌧) ﹣ ♏, ♑(⌧)在☯, )单调递增,♑(⌧) ♐(⌧)﹣ ⌧♏♑( ) ,又♐(⌧)♏⌧,又♐(⌧)与⍓⌧为奇函数,所以丨♐(⌧)丨♏丨⌧丨成立,故♌正确;故正确的命题有♊♋♌,故选:✌点评:本题以命题的真假判断为载体,考查了对数的运算性质,代入法求函数的解析式等知识点,难度中档..( 分)( ❿四川)已知☞为抛物线⍓ ⌧的焦点,点✌, 在该抛物线上且位于⌧轴的两侧,❿ (其中 为坐标原点),则 ✌与 ✌☞面积之和的最小值是()✌. . . .考点:直线与圆锥曲线的关系.专题:圆锥曲线中的最值与范围问题.分析:可先设直线方程和点的坐标,联立直线与抛物线的方程得到一个一元二次方程,再利用韦达定理及❿ 消元,最后将面积之和表示出来,探求最值问题.解答:解:设直线✌的方程为:⌧♦⍓❍,点✌(⌧ ,⍓ ), (⌧ ,⍓ ),直线✌与⌧轴的交点为 (( ,❍),由 ⍓ ﹣♦⍓﹣❍,根据韦达定理有⍓ ❿⍓ ﹣❍,❿ , ⌧ ❿⌧ ⍓ ❿⍓ ,从而,点✌, 位于⌧轴的两侧, ⍓ ❿⍓ ﹣ ,故❍.不妨令点✌在⌧轴上方,则⍓ > ,又, ✌  ✌☞ .当且仅当,即时,取❽❾号,✌与 ✌☞面积之和的最小值是 ,故选 .点评:求解本题时,应考虑以下几个要点:、联立直线与抛物线的方程,消⌧或⍓后建立一元二次方程,利用韦达定理与已知条件消元,这是处理此类问题的常见模式.、求三角形面积时,为使面积的表达式简单,常根据图形的特征选择适当的底与高.、利用基本不等式时,应注意❽一正,二定,三相等❾.二、填空题:本大题共 小题,每小题 分,共 分.( 分)( ❿四川)复数 ﹣ ♓.考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:利用两个复数代数形式的乘除法法则化简所给的复数,可得结果.解答:解:复数 ﹣ ♓,故答案为:﹣ ♓.点评:本题主要考查两个复数代数形式的乘除法法则的应用,属于基础题..( 分)( ❿四川)设♐(⌧)是定义在 上的周期为 的函数,当⌧ ☯﹣ , )时,♐(⌧) ,则♐() .考点:函数的值.专题:计算题.分析:由函数的周期性♐(⌧) ♐(⌧),将求♐()的值转化成求♐()的值.解答:解: ♐(⌧)是定义在 上的周期为 的函数,.故答案为: .点评:本题属于容易题,是考查函数周期性的简单考查,学生在计算时只要计算正确,往往都能把握住,在高考中,属于❽送分题❾..( 分)( ❿四川)如图,从气球✌上测得正前方的河流的两岸 , 的俯角分别为 , ,此时气球的高是 ❍,则河流的宽度 约等于 ❍.(用四舍五入法将结果精确到个位.参考数据:♦♓⏹☟,♍☐♦☟,♦♓⏹☟,♍☐♦☟,☟)考点:余弦定理的应用;正弦定理;正弦定理的应用.专题:应用题;解三角形.分析:过✌点作✌垂直于 的延长线,垂足为 ,分别在 ♦✌、 ♦✌中利用三角函数的定义,算出 、 的长,从而可得 ,即为河流在 、 两地的宽度.解答:解:过✌点作✌垂直于 的延长线,垂足为 ,则 ♦✌中, ,✌❍ ☟❍.又 ♦✌中, ✌,可得  ☟❍﹣ ﹣ ☟❍故答案为: ❍点评:本题给出实际应用问题,求河流在 、 两地的宽度,着重考查了三角函数的定义、正余弦定理解三角形的知识,属于中档题..( 分)( ❿四川)设❍ ,过定点✌的动直线⌧❍⍓和过定点 的动直线❍⌧﹣⍓﹣❍交于点 (⌧,⍓).则 ✌❿的最大值是 .考点:点到直线的距离公式.专题:直线与圆.分析:先计算出两条动直线经过的定点,即✌和 ,注意到两条动直线相互垂直的特点,则有 ✌;再利用基本不等式放缩即可得出 ✌❿的最大值.解答:解:有题意可知,动直线⌧❍⍓经过定点✌( , ),动直线❍⌧﹣⍓﹣❍即 ❍(⌧﹣ )﹣⍓,经过点定点 ( , ),注意到动直线⌧❍⍓和动直线❍⌧﹣⍓﹣❍始终垂直, 又是两条直线的交点,则有 ✌, ✌  ✌ .故 ✌❿♎ (当且仅当时取❽❾)故答案为:点评:本题是直线和不等式的综合考查,特别是❽两条直线相互垂直❾这一特征是本题解答的突破口,从而有 ✌  是个定值,再由基本不等式求解得出.直线位置关系和不等式相结合,不容易想到,是个灵活的好题..( 分)( ❿四川)以✌表示值域为 的函数组成的集合, 表示具有如下性质的函数 (⌧)组成的集合:对于函数 (⌧),存在一个正数 ,使得函数 (⌧)的值域包含于区间☯﹣ , .例如,当 (⌧) ⌧ , (⌧) ♦♓⏹⌧时, (⌧)✌, (⌧) .现有如下命题:♊设函数♐(⌧)的定义域为 ,则❽♐(⌧)✌❾的充要条件是❽ ♌ ,♋ ,♐(♋) ♌❾;♋函数♐(⌧) 的充要条件是♐(⌧)有最大值和最小值;♌若函数♐(⌧),♑(⌧)的定义域相同,且♐(⌧)✌,♑(⌧) ,则♐(⌧) ♑(⌧) .♍若函数♐(⌧) ♋●⏹(⌧) (⌧>﹣ ,♋ )有最大值,则♐(⌧) .其中的真命题有♊♌♍.(写出所有真命题的序号)考点:命题的真假判断与应用;充要条件;函数的值域.专题:新定义;极限思想;函数的性质及应用;不等式的解法及应用.分析:根据题中的新定义,结合函数值域的概念,可判断出命题♊♋♌是否正确,再利用导数研究命题♍中函数的值域,可得到其真假情况,从而得到本题的结论.解答:解:( )对于命题♊❽♐(⌧)✌❾即函数♐(⌧)值域为 ,❽ ♌ ,♋ ,♐(♋) ♌❾表示的是函数可以在 中任意取值,故有:设函数♐(⌧)的定义域为 ,则❽♐(⌧)✌❾的充要条件是❽ ♌ ,♋ ,♐(♋) ♌❾ 命题♊是真命题;( )对于命题♋若函数♐(⌧) ,即存在一个正数 ,使得函数♐(⌧)的值域包含于区间☯﹣ , .﹣ ♎♐(⌧)♎.例如:函数♐(⌧)满足﹣ <♐(⌧)< ,则有﹣ ♎♐(⌧)♎,此时,♐(⌧)无最大值,无最小值.命题♋❽函数♐(⌧) 的充要条件是♐(⌧)有最大值和最小值.❾是假命题;( )对于命题♌若函数♐(⌧),♑(⌧)的定义域相同,且♐(⌧)✌,♑(⌧) ,则♐(⌧)值域为 ,♐(⌧)(﹣, ),并且存在一个正数 ,使得﹣ ♎♑(⌧)♎.♐(⌧) ♑(⌧) .则♐(⌧) ♑(⌧) .命题♌是真命题.( )对于命题♍函数♐(⌧) ♋●⏹(⌧) (⌧>﹣ ,♋ )有最大值,假设♋> ,当⌧❼ 时,❼,●⏹(⌧)❼ , ♋●⏹(⌧)❼ ,则♐(⌧)❼ .与题意不符;假设♋< ,当⌧❼﹣ 时,❼,●⏹(⌧)❼﹣, ♋●⏹(⌧)❼ ,则♐(⌧)❼ .与题意不符.♋.即函数♐(⌧) (⌧>﹣ )当⌧> 时,, ,即;当⌧时,♐(⌧) ;当⌧< 时,, ,即..即♐(⌧) .故命题♍是真命题.故答案为♊♌♍.点评:本题考查了函数值域的概念、基本不等式、充要条件,还考查了新定义概念的应用和极限思想.本题计算量较大,也有一定的思维难度,属于难题.三、解答题:本大题共 小题,共 分.解答应写出文字说明、证明过程或演算步骤..( 分)( ❿四川)已知函数♐(⌧) ♦♓⏹( ⌧).( )求♐(⌧)的单调递增区间;( )若↑是第二象限角,♐() ♍☐♦(↑)♍☐♦↑,求♍☐♦↑﹣♦♓⏹↑的值.考点:两角和与差的余弦函数;正弦函数的单调性.专题:三角函数的求值.分析:( )令 ⇨﹣♎⌧♎⇨, ,求得⌧的范围,可得函数的增区间.( )由函数的解析式可得 ♐() ♦♓⏹(↑),又♐() ♍☐♦(↑)♍☐♦↑,可得♦♓⏹(↑) ♍☐♦(↑)♍☐♦↑,化简可得(♍☐♦↑﹣♦♓⏹↑) .再由↑是第二象限角,♍☐♦↑﹣♦♓⏹↑< ,从而求得♍☐♦↑﹣♦♓⏹↑ 的值.解答:解:( ) 函数♐(⌧) ♦♓⏹( ⌧),令 ⇨﹣♎⌧♎⇨, ,求得﹣♎⌧♎ ,故函数的增区间为☯﹣, , .( )由函数的解析式可得 ♐() ♦♓⏹(↑),又♐() ♍☐♦(↑)♍☐♦↑,♦♓⏹(↑) ♍☐♦(↑)♍☐♦↑,即♦♓⏹(↑) ♍☐♦(↑)(♍☐♦ ↑﹣♦♓⏹ ↑), ♦♓⏹↑♍☐♦ ♍☐♦↑♦♓⏹ (♍☐♦ ↑﹣♦♓⏹ ↑)(♦♓⏹↑♍☐♦↑).又 ↑是第二象限角, ♍☐♦↑﹣♦♓⏹↑< ,当♦♓⏹↑♍☐♦↑时,此时♍☐♦↑﹣♦♓⏹↑﹣.当♦♓⏹↑♍☐♦↑♊时,此时♍☐♦↑﹣♦♓⏹↑﹣.综上所述:♍☐♦↑﹣♦♓⏹↑﹣或﹣.点评:本题主要考查正弦函数的单调性,三角函数的恒等变换,属于中档题..( 分)( ❿四川)一款击鼓小游戏的规则如下:每盘游戏都需要击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐:每盘游戏击鼓三次后,出现一次音乐获得 分,出现两次音乐获得 分,出现三次音乐获得 分,没有出现音乐则扣除 分(即获得﹣ 分).设每次击鼓出现音乐的概率为,且各次击鼓出现音乐相互独立.( )设每盘游戏获得的分数为✠,求✠的分布列;( )玩三盘游戏,至少有一盘出现音乐的概率是多少?( )玩过这款游戏的许多人都发现.若干盘游戏后,与最初分数相比,分数没有增加反而减少了.请运用概率统计的相关知识分析分数减少的原因.考点:离散型随机变量及其分布列;离散型随机变量的期望与方差.专题:概率与统计.分析:( )设每盘游戏获得的分数为✠,求出对应的概率,即可求✠的分布列;( )求出有一盘出现音乐的概率,独立重复试验的概率公式即可得到结论.( )计算出随机变量的期望,根据统计与概率的知识进行分析即可.解答:解:( )✠可能取值有﹣ , , , .则 (✠﹣ ) ,(✠)(✠) ,(✠) ,故分布列为:✠﹣    由( )知,每盘游戏出现音乐的概率是☐ ,则至少有一盘出现音乐的概率☐﹣.由( )知,每盘游戏或得的分数为✠的数学期望是☜(✠) (﹣ )  ﹣ .这说明每盘游戏平均得分是负分,由概率统计的相关知识可知:许多人经过若干盘游戏后,入最初的分数相比,分数没有增加反而会减少.点评:本题主要考查概率的计算,以及离散型分布列的计算,以及利用期望的计算,考查学生的计算能力..( 分)( ❿四川)三棱锥✌﹣ 及其侧视图、俯视图如图所示,设 ,☠分别为线段✌,✌的中点, 为线段 上的点,且 ☠☠.( )证明: 是线段 的中点;( )求二面角✌﹣☠﹣ 的余弦值.考点:二面角的平面角及求法;直线与平面平行的判定;用空间向量求平面间的夹角.专题:空间向量及应用.分析:( )用线面垂直的性质和反证法推出结论,( )先建空间直角坐标系,再求平面的法向量,即可求出二面角✌﹣☠﹣ 的余弦值.解答:解:( )由三棱锥✌﹣ 及其侧视图、俯视图可知,在三棱锥✌﹣ 中:平面✌平面 ,✌✌设 为 的中点,连接 ✌, 于是 ✌,  所以 平面 ✌✌因为 ,☠分别为线段✌,✌的中点,所以 ☠, ☠☠,故 ☠假设 不是线段 的中点,则直线☠与直线✌是平面✌内相交直线从而 平面✌,这与 矛盾,所以 为线段 的中点( )以 为坐标原点, , , ✌分别为⌧,⍓, 轴建立空间直角坐标系,则✌( , ,), (, ,),☠(, ,), (,, )于是,,设平面✌☠和平面☠的法向量分别为和由,则,设 ,则由,则,设 ,则♍☐♦所以二面角✌﹣☠﹣ 的余弦值点评:本题考查线线的位置关系,考查二面角知识的应用,解题的关键是掌握用向量的方法求二面角大小的步骤,属于中档题..( 分)( ❿四川)设等差数列 ♋⏹❝的公差为♎,点(♋⏹,♌⏹)在函数♐(⌧) ⌧的图象上(⏹ ☠✉).( )若♋ ﹣ ,点(♋ , ♌ )在函数♐(⌧)的图象上,求数列 ♋⏹❝的前⏹项和 ⏹;( )若♋ ,函数♐(⌧)的图象在点(♋ ,♌ )处的切线在⌧轴上的截距为 ﹣,求数列 ❝的前⏹项和❆⏹.考点:数列的求和;数列与函数的综合.专题:函数的性质及应用;等差数列与等比数列.分析:( )由于点(♋ , ♌ )在函数♐(⌧) ⌧的图象上,可得,又等差数列 ♋⏹❝的公差为♎,利用等差数列的通项公式可得 ♎.由于点(♋ , ♌ )在函数♐(⌧)的图象上,可得 ♌ ,进而得到 ♎,解得♎.再利用等差数列的前⏹项和公式即可得出.( )利用导数的几何意义可得函数♐(⌧)的图象在点(♋ ,♌ )处的切线方程,即可解得♋ .进而得到♋⏹,♌⏹.再利用❽错位相减法❾即可得出.解答:解:( ) 点(♋ , ♌ )在函数♐(⌧) ⌧的图象上,,又等差数列 ♋⏹❝的公差为♎,♎,点(♋ , ♌ )在函数♐(⌧)的图象上,♌ ,♎,解得♎.又♋ ﹣ , ⏹ ﹣ ⏹ ⏹ ﹣ ⏹.( )由♐(⌧) ⌧, ♐(⌧) ⌧●⏹,函数♐(⌧)的图象在点(♋ ,♌ )处的切线方程为,又,令⍓可得⌧,,解得♋ .♎♋ ﹣♋ ﹣ .♋⏹ ♋ (⏹﹣ )♎(⏹﹣ ) ⏹,♌⏹ ⏹..❆⏹ ⑤ ,❆⏹  ⑤,两式相减得❆⏹  ⑤﹣ ﹣.点评:本题综合考查了指数函数的运算性质、导数的几何意义、等差数列与等比数列的通项公式及其前⏹项和公式等基础知识与基本技能方法,考查了推理能力、计算能力、❽错位相减法❾,属于难题..( 分)( ❿四川)已知椭圆 : (♋>♌> )的焦距为 ,其短轴的两个端点与长轴的一个端点构成正三角形.( )求椭圆 的标准方程;( )设☞为椭圆 的左焦点,❆为直线⌧﹣ 上任意一点,过☞作❆☞的垂线交椭圆 于点 ,✈.♊证明: ❆平分线段 ✈(其中 为坐标原点);♋当最小时,求点❆的坐标.考点:直线与圆锥曲线的关系;椭圆的标准方程.专题:圆锥曲线中的最值与范围问题.分析:第( )问中,由正三角形底边与高的关系,♋ ♌ ♍ 及焦距 ♍建立方程组求得♋ ,♌ ;第( )问中,先设点的坐标及直线 ✈的方程,利用两点间距离公式及弦长公式将表示出来,由取最小值时的条件获得等量关系,从而确定点❆的坐标.解答:解:( )依题意有解得所以椭圆 的标准方程为 .( )设❆(﹣ ,❍), (⌧ ,⍓ ),✈(⌧ ,⍓ ), ✈的中点为☠(⌧ ,⍓ ),♊证明:由☞(﹣ , ),可设直线 ✈的方程为⌧❍⍓﹣ ,由 (❍ )⍓ ﹣ ❍⍓﹣ ,所以于是,从而,即,则,所以 ,☠,❆三点共线,从而 ❆平分线段 ✈,故得证.♋由两点间距离公式得,由弦长公式得,所以,令,则(当且仅当⌧ 时,取❽❾号),所以当最小时,由⌧ ❍ ,得❍或❍﹣ ,此时点❆的坐标为(﹣ , )或(﹣ ,﹣ ).点评:本题属相交弦问题,应注意考虑这几个方面:、设交点坐标,设直线方程;、联立直线与椭圆方程,消去⍓或⌧,得到一个关于⌧或⍓一元二次方程,利用韦达定理;、利用基本不等式或函数的单调性探求最值问题..( 分)( ❿四川)已知函数♐(⌧) ♏⌧﹣♋⌧ ﹣♌⌧﹣ ,其中♋,♌ ,♏⑤为自然对数的底数.( )设♑(⌧)是函数♐(⌧)的导函数,求函数♑(⌧)在区间☯, 上的最小值;( )若♐( ) ,函数♐(⌧)在区间( , )内有零点,求♋的取值范围.考点:导数在最大值、最小值问题中的应用;函数的零点.专题:导数的综合应用.分析:( )求出♐(⌧)的导数得♑(⌧),再求出♑(⌧)的导数,对它进行讨论,从而判断♑(⌧)的单调性,求出♑(⌧)的最小值;( )利用等价转换,若函数♐(⌧)在区间( , )内有零点,则函数♐(⌧)在区间( , )内至少有三个单调区间,所以♑(⌧)在( , )上应有两个不同的零点.解答:解: ♐(⌧) ♏⌧﹣♋⌧ ﹣♌⌧﹣ , ♑(⌧) ♐(⌧) ♏⌧﹣ ♋⌧﹣♌,又♑(⌧) ♏⌧﹣ ♋,⌧ ☯, , ♎♏⌧♎♏,♊当时,则 ♋♎,♑(⌧) ♏⌧﹣ ♋♏,函数♑(⌧)在区间☯, 上单调递增,♑(⌧)❍♓⏹ ♑( ) ﹣♌;♋当,则 < ♋<♏,当 <⌧<●⏹( ♋)时,♑(⌧) ♏⌧﹣ ♋< ,当●⏹( ♋)<⌧< 时,♑(⌧) ♏⌧﹣ ♋> ,函数♑(⌧)在区间☯,●⏹( ♋) 上单调递减,在区间☯●⏹( ♋), 上单调递增,♑(⌧)❍♓⏹ ♑☯●⏹( ♋) ♋﹣ ♋●⏹( ♋)﹣♌;♌当时,则 ♋♏♏,♑(⌧) ♏⌧﹣ ♋♎,函数♑(⌧)在区间☯, 上单调递减,♑(⌧)❍♓⏹ ♑( ) ♏﹣ ♋﹣♌,综上:函数♑(⌧)在区间☯, 上的最小值为;( )由♐( ) , ♏﹣♋﹣♌﹣ ♌♏﹣♋﹣ ,又♐( ) ,若函数♐(⌧)在区间( , )内有零点,则函数♐(⌧)在区间( , )内至少有三个单调区间,由( )知当♋♎或♋♏时,函数♑(⌧)在区间☯, 上单调,不可能满足❽函数♐(⌧)在区间( , )内至少有三个单调区间❾这一要求.若,则♑❍♓⏹(⌧) ♋﹣ ♋●⏹( ♋)﹣♌♋﹣ ♋●⏹( ♋)﹣♏令♒(⌧) ( <⌧<♏)则.由> ⌧<♒(⌧)在区间( ,)上单调递增,在区间(,♏)上单调递减,< ,即♑❍♓⏹(⌧)< 恒成立, 函数♐(⌧)在区间( , )内至少有三个单调区间 ,又,所以♏﹣ <♋< ,综上得:♏﹣ <♋< .点评:本题考查了,利用导数求函数的单调区间,分类讨论思想,等价转换思想,函数的零点等知识点.是一道导数的综合题,难度较大.参与本试卷答题和审题的老师有:任老师;王老师;孙佑中;刘长柏;❑♓♦♦;尹伟云;翔宇老师;♦●;♍♋☐❑;清风慕竹;静定禅心;❍♋♦♒♦(排名不分先后)菁优网年 月 日。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014四川高考数学试卷(理科)
一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的。

1.已知集合2{|20}A x x x =--≤,集合B 为整数集,则A B ⋂=
A .{1,0,1,2}-
B .{2,1,0,1}--
C .{0,1}
D .{1,0}-
2.在6(1)x x +的展开式中,含3x 项的系数为
A .30
B .20
C .15
D .10
3.为了得到函数sin(21)y x =+的图象,只需把函数sin 2y x =的图象上
所有的点
A .向左平行移动12个单位长度
B .向右平行移动12
个单位长度 C .向左平行移动1个单位长度 D .向右平行移动1个单位长度
4.若0a b >>,0x d <<,则一定有
A .a b c d >
B .a b c d <
C .a b d c >
D .a b d c
< 5.执行如图1所示的程序框图,如果输入的[2,2]t ∈-,则输出的S 的最
大值为
A .0
B .1
C .2
D .3
6.六个人从左至右排成一行,最左端只能排甲或乙,学科网最右端不能拍甲,则不同的排法共有
A .192种
B .216种
C .240种
D .288种
7.平面向量(1,2)a =,(4,2)b =,c ma b =+(m R ∈),且c 与a 的夹角等于c 与b 的夹角,则m =
A .2-
B .1-
C .1
D .2
8.如图,在正方体1111ABCD A BC D -中,点O 为线段
BD 的中点。

设点P 在线段 1CC 上,直线OP 与平面1A BD 所成的角为α,则sin α的取值范围是
A .
B .
C .3
D .[3
9.已知()ln(1)ln(1)f x x x =+--,(1,1)x ∈-。

现有下列命题:
①()()f x f x -=-;②22()2()1
x f f x x =+;③|()|2||f x x ≥。

其中的所有正确命题的序号是 A .①②③ B .②③ C .①③ D .①②
10.已知F 是抛物线2
y x =的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,2OA OB ⋅=(其中O 为
坐标原点),则ABO ∆与AFO ∆面积之和的最小值是
A .2
B .3
C
D 二.填空题:本大题共5小题,每小题5分,共25分。

11.复数221i i
-=+ 。

12.设()f x 是定义在R 上的周期为2的函数,当[1,1)x ∈-时,
242,10,()
,
01,x x f x x x ⎧-+-≤<=⎨≤<⎩,则3()2f = 。

13.如图,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为67,30,此时气球的高是46m ,则河流的宽度BC 约等于 m 。

(用四
舍五入法将结果精确到个位。

参考数据:sin 670.92≈,cos670.39≈,
sin 370.60≈,cos370.80≈ 1.73≈)
14.设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB ⋅的最大值是 。

15.以A 表示值域为R 的函数组成的集合,B 表示具有如下性质的函数()x ϕ组成的集合:对于函数()x ϕ,存在一个正数M ,使得函数()x ϕ的值域包含于区间[,]M M -。

例如,当31()x x ϕ=,2()sin x x ϕ=时,1()x A ϕ∈,2()x B ϕ∈。

现有如下命题:
①设函数()f x 的定义域为D ,则“()f x A ∈”的充要条件是“b R ∀∈,a D ∃∈,()f a b =”; ②学科网函数()f x B ∈的充要条件是()f x 有最大值和最小值;
③若函数()f x ,()g x 的定义域相同,且()f x A ∈,()g x B ∈,则()()f x g x B +∉; ④若函数2()ln(2)1
x f x a x x =+++(2x >-,a R ∈)有最大值,则()f x B ∈。

其中的真命题有 。

(写出所有真命题的序号)
三.解答题:本大题共6小题,共 75分。

解答须写出文字说明,证明过程或演算步骤。

16.已知函数()sin(3)4f x x π
=+。

(1)求()f x 的单调递增区间;
(2)若α是第二象限角,4()cos()cos 2354
f α
παα=+,求cos sin αα-的值。

17.一款击鼓小游戏的规则如下:每盘游戏都需要击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得200-分)。

学科网设每次击鼓出现音乐的概率为12
,且各次击鼓出现音乐相互独立。

(1)设每盘游戏获得的分数为X ,求X 的分布列;
(2)玩三盘游戏,至少有一盘出现音乐的概率是多少?
(3)玩过这款游戏的许多人都发现,若干盘游戏后,与最初的分数相比,分数没有增加反而减少了。

请运用概率统计的相关知识分析分数减少的原因。

18.三棱锥A BCD -及其侧视图、俯视图如图所示。

设M ,N 分别为线段AD ,AB 的中点,P 为线段BC 上的点,且MN NP ⊥。

(1)证明:P 为线段BC 的中点;
(2)求二面角A NP M --的余弦值。

19.设等差数列{}n a 的公差为d ,点(,)n n a b 在函数()2x f x =的图象上(*n N ∈)。

(1)若12a =-,点87(,4)a b 在函数()f x 的图象上,求数列{}n a 的前n 项和n S ;
(2)若11a =,学科网函数()f x 的图象在点22(,)a b 处的切线在x 轴上的截距为12ln 2-
,求数列{}n n
a b 的前n 项和n T 。

20.已知椭圆C:
22
22
1
x y
a b
+=(0
a b
>>)的焦距为4,其短轴的两个端点与长轴的一个端点构成正
三角形。

(1)求椭圆C的标准方程;
(2)设F为椭圆C的左焦点,T为直线3
x=-上任意一点,过F作TF的垂线交椭圆C于点P,Q。

(i)证明:OT平分线段PQ(其中O为坐标原点);
(ii)当||
||
TF
PQ
最小时,求点T的坐标。

21.已知函数2()1x f x e ax bx =---,其中,a b R ∈, 2.71828e =为自然对数的底数。

(1)设()g x 是函数()f x 的导函数,求函数()g x 在区间[0,1]上的最小值;
(2)若(1)0f =,函数()f x 在区间(0,1)内有零点,求a 的取值范围。

相关文档
最新文档