基于单片机的智能车设计作业4
基于单片机的智能小车的设计
基于单片机的智能小车的设计摘要:本文基于单片机的智能小车的设计,旨在介绍如何利用单片机构建一台可以具备自主移动、避障、计算机视觉等功能的智能小车。
设计方案中,我们使用了Arduino单片机、红外避障传感器、超声波测距模块、直流电机等部件。
通过编写C程序,实现了小车的自主移动、避障、根据环境反应等功能。
设计方案中的Arduino单片机具有高度的集成度、易于学习和操作等优点,为初学者提供了一个不错的学习平台。
关键词:单片机、智能小车、避障传感器、计算机视觉引言:智能小车是一种能够自主移动、避障、计算机视觉等功能的机器人。
具有良好的控制和感知能力,可以广泛应用于工业自动化、机器人研究、教育等领域。
本文基于单片机的智能小车的设计,将介绍如何构建一台具有自主移动、避障、计算机视觉等功能的智能小车。
设计方案:本文采用的单片机是Arduino单片机,它具有高度的集成度、易于学习和操作等优点。
通过编写C程序,实现小车的自主移动、避障、计算机视觉等功能。
下面我们将详细介绍设计方案中所用到的部件。
1、红外避障传感器红外避障传感器是一种检测环境障碍物的传感器。
它通过发射红外线和接收红外线来探测周围的障碍物,进而实现小车的避障功能。
在本设计方案中,我们采用了4个红外避障传感器,分别装在小车前、后、左、右四个方向。
2、超声波测距模块超声波测距模块是一种测量距离的传感器。
它通过发射超声波并接收反射回来的波来测量与障碍物的距离。
在本设计方案中,我们使用超声波测距模块来帮助小车判断前方障碍物的距离。
3、直流电机直流电机是小车的驱动部分。
通过控制电机的正反转来实现小车的前进、后退和转向。
在本设计方案中,我们采用了两个直流电机来驱动小车。
编程实现:在编程的实现过程中,我们利用C语言编写了控制程序。
程序中通过Arduino单片机读取四个红外避障传感器、超声波测距模块的数据,并根据这些数据实时调整小车的运动状态。
下面是程序的主要流程:1、启动程序,初始化各个部件2、获取红外避障传感器的数据3、将传感器数据转换成小车需要控制的运动方向4、判断前方是否有障碍物5、根据判断结果调整小车运动方向6、重复执行2-5步,实现小车的自主移动和避障功能。
基于单片机智能遥控小车的设计
基于单片机智能遥控小车的设计引言:一、硬件设计:智能遥控小车的硬件设计包括机械结构和电子模块两个方面。
1.机械结构设计:机械结构设计为小车提供了良好的稳定性和移动能力。
首先,选取适合的底盘结构,确保小车的稳固性和均衡性。
其次,选择合适的电机和轮子,以实现小车的前进、后退和转向功能。
最后,在机械结构中添加传感器支架和摄像头支架,方便后续的传感器和摄像头模块的安装。
2.电子模块设计:电子模块设计包括主控模块、通信模块和电源模块三个部分。
(1)主控模块:主控模块是整个智能遥控小车的核心,它负责接收遥控命令、控制电机的转动并实时处理传感器数据。
选择一款性能较强的单片机作为主控芯片,如STM32系列,以满足小车处理复杂任务的需求。
(2)通信模块:(3)电源模块:电源模块为智能遥控小车提供稳定的电源,要保证小车的正常工作需要满足一定的电流和电压要求。
选取合适的锂电池组或者干电池组作为电源,通过适当的电压调节和保护电路,保证电源的稳定性和安全性。
二、软件设计:智能遥控小车的软件设计包括底层驱动程序的编写和上层应用程序的开发。
1.底层驱动程序:底层驱动程序主要用于控制电机和监测传感器数据。
通过编写合适的电机驱动程序,实现小车的前进、后退和转向功能。
同时,编写传感器驱动程序获取传感器的数据,如超声波测距、红外线检测和摄像头采集等,为上层应用程序提供数据支持。
2.上层应用程序:三、功能拓展:智能遥控小车的功能可以通过添加各种传感器和模块进行拓展,如以下几个功能:1.环境检测功能:通过添加温湿度传感器、二氧化碳传感器等,实时监测环境数据,可以应用于室内空气质量、温湿度调节等应用。
2.避障功能:通过添加超声波传感器、红外线传感器等,在小车前方进行信号检测,实现小车的避障功能。
3.图像识别功能:通过添加摄像头模块,对图像进行处理和分析,实现小车的图像识别功能,如人脸识别、物体识别等。
结论:基于单片机的智能遥控小车设计通过合理的硬件结构和软件设计,实现了远程遥控和实时传输数据的功能。
基于单片机的智能小车设计
基于单片机的智能小车设计基于单片机的智能小车设计一、引言本文档旨在介绍一个基于单片机的智能小车设计。
智能小车是一种能够自主感知环境、做出决策并执行动作的。
本设计将通过单片机控制小车的移动与感知功能,使其能够自主避障、跟随线路、遥控操作等。
二、需求分析2.1 功能需求●小车应能够通过避障传感器、红外线传感器等感知器件检测周围环境,自主避开障碍物。
●小车应能够根据预设的线路进行自主导航,并能跟随或保持在线路上运行。
●小车应支持遥控操作,用户可以通过遥控器控制小车的运动。
●小车应能够通过摄像头等视觉传感器获取实时图像并进行图像处理。
2.2 硬件需求●单片机控制模块。
●电机驱动模块。
●避障传感器模块。
●红外线传感器模块。
●摄像头模块。
●遥控器模块。
2.3 软件需求●单片机控制程序。
●图像处理算法。
●遥控器控制程序。
三、系统设计3.1 硬件设计3.1.1 单片机控制模块●选择合适的单片机控制模块,如Arduino、Raspberry Pi等。
●连接电机驱动模块、避障传感器模块、红外线传感器模块、摄像头模块等。
3.1.2 电机驱动模块●选择适合的电机驱动模块,如直流电机驱动器、步进电机驱动器等。
●连接电机驱动器与电机,控制小车的运动。
3.1.3 避障传感器模块●选择合适的避障传感器模块,如超声波传感器、红外线传感器等。
●连接避障传感器与单片机,实现避障功能。
3.1.4 红外线传感器模块●选择合适的红外线传感器模块,用于检测线路。
●连接红外线传感器与单片机,实现跟随线路功能。
3.1.5 摄像头模块●选择合适的摄像头模块,如USB摄像头、树莓派摄像头等。
●连接摄像头与单片机,获取实时图像。
3.1.6 遥控器模块●选择合适的遥控器模块,如无线遥控器等。
●连接遥控器与单片机,实现遥控操作功能。
3.2 软件设计3.2.1 单片机控制程序●编写控制程序,根据传感器的信号进行相应的处理,并控制电机驱动模块控制小车的运动。
基于单片机的智能小车的设计
基于单片机的智能小车的设计智能小车在当今社会中得到越来越广泛的应用,它不仅可以为人们的生活带来方便,还能在工业生产和科研领域发挥关键作用。
而基于单片机的智能小车设计是其中的一个重要方面,它通过利用单片机的高度集成和强大功能,实现智能小车的自主控制和感知任务。
本文将深入探讨基于单片机的智能小车设计的关键技术和发展趋势,为读者提供一些有益的参考和启发。
智能小车的设计中,传感器是至关重要的一环。
而对于基于单片机的智能小车来说,选择合适的传感器和设计有效的传感器数据采集方案显得尤为重要。
在传感器选择方面,常用的传感器有红外传感器、超声波传感器、光电传感器等,它们可以实现对障碍物的检测和环境信息的感知。
在传感器数据采集方案设计上,需要考虑到传感器数据的采集频率、传感器数据的处理方式以及传感器数据与单片机的接口方式等。
通过合理设计传感器的选择和数据采集方案,可以有效提高智能小车的感知能力和控制精度。
除了传感器外,基于单片机的智能小车设计还需要考虑到智能控制算法的设计。
智能控制算法是实现智能小车自主行驶和避障的核心,它可以通过对传感器数据的处理和分析,实现对小车行驶方向和速度的实时控制。
常用的智能控制算法包括PID算法、模糊控制算法和神经网络控制算法等,它们分别适用于不同的应用场景和控制需求。
在智能控制算法的选择和设计中,需要考虑到算法的实时性、稳定性和可调节性,以实现对智能小车的精确控制和智能决策。
在设计基于单片机的智能小车时,硬件设计也是一个不可忽视的方面。
合理的硬件设计可以有效提高智能小车的性能和稳定性,为控制算法的实现提供良好的硬件支持。
常用的硬件设计包括电机驱动电路设计、电源管理电路设计和通信接口电路设计等。
其中,电机驱动电路设计是最为关键的一环,它可以实现对小车电机的精确控制和驱动,保证小车的行驶稳定性和速度调节精度。
电源管理电路设计则是保证小车电路的稳定供电和功耗管理,避免因电路供电不稳定导致小车控制系统工作异常。
单片机的智能小车设计
单片机的智能小车设计
单片机的智能小车设计是将单片机应用于智能小车的研发。
它的主要目的是让智能小车可以智能地运动,例如自动导航,路径规划和跟随功能等。
为了使智能小车具有智能行走的能力,需要将单片机应用于智能小车设计。
单片机作为一种嵌入式多功能控制器,具有体积小、速度快、功耗低和可靠性高等特点,它可以正确地执行指定程序,从而控制智能小车的运动。
使用单片机来控制智能小车,我们必须安装有电机驱动控制子系统、传感器子系统以及单片机的CPU子系统。
这三个子系
统之间非常重要,并能够协同工作。
电机驱动子系统包括驱动电机,用来控制智能小车的前进后退运动;传感器子系统主要用于检测外界环境信息,以便对智能小车的运动做出反应;CPU子系统能根据由传感器子系统检
测到的外界环境信息,结合人工写好的控制程序,实时给出正确的控制信号,以实现智能小车的自动行走。
此外,智能小车还可以安装有相关的软件,例如避障软件,路径规划软件,声控软件等。
这些软件能够根据实际情况为智能小车提供正确的智能指导,以便使智能小车更加智能地行走。
通过以上这些子系统的配合,单片机智能小车就可以实现自动识别路径、避障、跟随等功能,从而达到智能行走的目的。
可以说,单片机智能小车设计已经大大提高了智能小车的功能性、
实用性以及可靠性,它不仅提高了智能小车的功能,而且简化了智能小车的控制方式,同时也降低了设计成本。
基于单片机的红外遥控智能小车设计
基于单片机的红外遥控智能小车设计引言:随着科技的不断发展,智能物联网已经走进了我们的生活。
智能小车作为一种智能化的产品,能够实现远程遥控、自动避障等功能,受到了广大消费者的青睐。
本文就基于单片机的红外遥控智能小车设计进行详细介绍。
一、设计目标本设计的目标是通过红外遥控,实现对智能小车的远程控制,小车能够根据收到的指令进行行驶、避障等操作。
二、设计原理1.主控芯片:本设计使用单片机作为主控芯片,常用的单片机有51系列、AVR系列等,可根据实际需求选择合适的芯片型号。
2.红外遥控模块:红外遥控模块是实现红外通信的设备,可以将遥控器发出的红外信号解码成数据,实现遥控操作。
3.电机驱动模块:电机驱动模块可将单片机的PWM信号转化为电机的动力驱动信号,控制小车的行驶方向和速度。
4.超声波传感器:超声波传感器可以感知到小车前方的障碍物距离,根据测得的距离,进行相应的避障操作。
5.电源模块:小车需要使用适当的电源,通常是锂电池或者直流电源供应。
三、系统设计1.硬件设计:(1)搭建小车底盘:根据所选择的底盘,搭建小车结构,并安装好电机驱动模块、电源模块等硬件设备。
(2)连接电路:将红外遥控模块、超声波传感器等硬件设备与主控芯片进行连接,确保每个模块正常工作。
2.软件设计:(1)红外遥控程序设计:通过红外遥控模块接收红外信号,并解码成相应的指令。
根据指令控制电机驱动模块,实现小车的行驶方向和速度控制。
(2)超声波避障程序设计:根据超声波传感器测得的距离,判断是否有障碍物,如果有障碍物就停止或者转向。
四、实验结果和讨论经过实验验证,本设计的红外遥控智能小车能够准确接收红外信号,并根据指令控制小车的行驶方向和速度。
同时,超声波传感器能够及时感知到前方的障碍物,并进行相应的避障操作。
然而,该设计仍然存在一些不足之处,比如超声波传感器的测距范围有限,可能无法感知到较小的障碍物。
此外,红外遥控信号的传输距离也有一定限制,需要保持遥控器与小车之间的距离不过远。
基于单片机的智能小车设计_毕业设计论文
摘要AT89C51单片机是一款八位单片机,他的易用性和多功能性受到了广大使用者的好评。
本系统以设计题目的要求为目的,采用AT89C51单片机为控制核心,利用超声波传感器检测道路上的障碍,控制电动小汽车的自动避障,快慢速行驶,以及自动停车,并可以自动记录时间、里程和速度,自动寻迹和寻光功能。
整个系统的电路结构简单,可靠性能高。
实验测试结果满足要求,本文着重介绍了该系统的硬件设计方法及测试结果分析。
在智能小车控制系统的设计中,以AT89C51为核心,用L293D驱动两个直流电机,当产生信号驱动小车前进时,是通过寻迹模块里的红外对管是否寻到黑线产生的电平信号通过LM393再返回到单片机,单片机根据程序设计的要求做出相应的判断送给电机驱动模块,让小车来实现前进、左转、右转、停车等基本功能。
寻白线时,外部环境光线的强弱对小车的运动会产生很大的影响,基于此原因,本实验中的寻迹是指在白色地板上寻黑线。
寻迹是指通过红外发射管和接收管识别路径。
采用的技术主要有:(1)通过编程来控制小车的速度;(2)传感器的有效应用;(3)新型显示芯片的采用;该设计报告共分为五章:第一章是智能小车总体概况。
介绍了小车的功能及展示了小车模型。
第二章是系统要求。
介绍了小车设计的要求及原理。
详细阐述了各功能模块的方案比较与论证,最后得出最终方案。
第三章是硬件实现及单元电路实现。
详细阐述了各部分电路的设计,并给出了原理图。
第四章是软件设计。
介绍了设计思想、程序流程图及具体程序设计。
第五章是系统调试。
介绍了调试软件WAVE ,以及软件调试过程;硬件测试及测试仪器和设备等。
最后是参考文献和附录。
关键词: AT89C51单片机;光电传感器;PWM调速;电动小车Smart cars designtheAT89C51 microcontroller is one of eight, his versatility and usability is the user high praise. This system to design for the purpose of the topic request, AT89C51 microcontroller as control core, ultrasonic sensor detection road barriers, the automatic control of electric car obstacle-avoidance, speed, and speed, and can be automatically stop recording time,mileage and speed, automatic tracing and light function. The whole system of the circuit structure is simple, reliable performance. The test results, this paper introduces the hardware design method of system analysis and test results.In the design of the control system of intelligent car, USES AT89C51 as the core, with L293D drive two dc motor driving car, when the signal generation, is going through tracing module of the infrared tubes are found by the black level signal generated LM393 single-chip microcontroller, return again according to the requirement of design procedure of judgment for motor driver module, let the car to achieve progress, left, right, the basic function such as parking. Find the white line, and the external environment of the strength of the light of sports car produce very big effect, this based on the experiments of tracing refers to the white striped floor found. Tracing is through infrared tubes and receive tube recognition path. Using the technology mainly include:(1) through programming to control the speed of the car,(2) sensor effective application,(3) new display chip USES,This design report is divided into five chapters:The first chapter is intelligent car overview. Introduces thefunction and the car show car model.Chapter 2 is the system requirements. Introduces the design requirement and the principle of car. Expounds the functional modules of the scheme comparison and argumentation, the final solution.The third chapter is hardware realization and unit circuit implementation. Expounds each part of the circuit design, and gives the principle diagram.Chapter four is a software design. Introduces the design idea and program flow chart and design program.The fifth chapter is debugging systems. Introduces the WAVE, and software testing software debugging process, Hardware testing and testing instruments and equipment, etc.The references and appendix.Keywords:AT89C51, photoelectric sensors, PWM control, electric cars目录绪论........................................................ (5)第一章智能小车总体概况 (6)1. 1 概况 (6)1. 2 总体结构图 (6)第二章系统方案设计 (7)2. 1 方案论证 (7)2.1.1 系统原理图 (7)2.1.2 路面情况检测方案的选择 (8)2.1.3 电动机的选择 (9)2.1.4 电动机驱动方案的选择 (9)2.1. 5 路程检测方案的选择 (9)2.1.6 障碍物探测方案的选择 (10)2.1.7 供电电源方案的选择 (10)第三章系统硬件电路设计 (11)3.1 系统硬件设计 (11)3.1.1 路面黑线检测设计与实现 (11)3.1.2 电动机驱动电路设计与实现 (11)3.1.3 车轮检速与路程计算 (13)3.1.4 红外避障电路 (15)3.1.5 电源电路 (15)第四章主控芯片介绍 (16)4.1. 1 AT89C51主控芯片介绍 (16)4.1. 2 电动机驱动芯片L293D (18)4.1. 3 串口电路芯片MAX232 (19)第五章软件设计 (19)5.1. 1 软件设计思想 (19)5.1. 2 主程序设计 (20)5.1. 3 显示子程序设计 (24)5.1. 4 避障子程序设计 (25)5.1. 5 寻迹模块软件程序设计 (26)第六章系统调试与结论 (29)6. 1 硬件调试 (29)6.1. 1 测试方法与仪器 (29)6.1. 2 软件程序调试 (30)6.1. 3 测试经验总结 (31)参考文献........................................................31致谢........................................................ . (31)附录A ........................................................ .33附录B......................................................... .34绪论随着汽车工业的迅速发展,关于汽车的研究也就越来越受人关注。
基于单片机的智能车辆导航系统的毕业设计
基于单片机的智能车辆导航系统的毕业设计摘要本文介绍了一个基于单片机的智能车辆导航系统的毕业设计。
智能车辆导航系统是一个利用车载设备和导航算法,在车辆行驶过程中提供导航功能的系统。
本设计使用单片机作为控制核心,通过接收来自GPS模块的信号,实时获取车辆的位置信息,并根据预设的目的地,计算最佳的行驶路线。
引言随着社会的发展和人们生活水平的不断提高,汽车成为人们出行的重要方式之一。
在城市拥堵的交通环境下,车辆导航系统的需求日益增长。
智能车辆导航系统能够为驾驶员提供准确、实时的导航信息,帮助驾驶员规划最佳的行驶路线,避开拥堵区域,提高行驶效率。
设计目标本毕业设计的主要目标是设计和实现一个基于单片机的智能车辆导航系统。
具体的设计目标包括:1. 使用GPS模块获取车辆的位置信息,实时监控车辆位置;2. 设计导航算法,根据车辆位置和目的地,计算最佳的行驶路线;3. 通过车载显示屏向驾驶员提供导航信息,包括路线指示、距离信息等。
设计过程本设计的基本思路如下:1. 选取合适的GPS模块,通过串口或其他方式连接到单片机;2. 编写单片机程序,控制GPS模块接收和解析卫星信号,提取车辆的位置信息;3. 设计导航算法,包括路径规划、路线选择等;4. 将导航结果通过车载显示屏展示给驾驶员。
预期结果预期的设计结果是一个功能完善、稳定可靠的基于单片机的智能车辆导航系统。
该系统能够准确获取车辆位置信息,并根据目的地提供最佳的行驶路线。
通过指示和距离信息的展示,驾驶员能够方便地按照导航提示进行行驶,提高驾驶效率和安全性。
结论本文介绍了一个基于单片机的智能车辆导航系统的毕业设计。
通过使用GPS模块和导航算法,该系统能够实时获取车辆位置,并计算最佳的行驶路线。
预期的设计结果将是一个稳定可靠的车辆导航系统,为驾驶员提供准确、实时的导航信息,提高行驶效率。
基于单片机的智能小车的设计与制作
基于单片机的智能小车的设计与制作一、引言:智能小车的概念和应用背景(100字)近年来,随着科技的快速发展,智能小车成为了智能化领域一个备受关注的研究方向。
智能小车作为一种能够自主感知环境、进行智能决策和灵活运动的机器人平台,广泛应用于诸多场景,如仓储物流、智能家居、无人驾驶等。
本文主要介绍了一种,以期能够提供一种参考和借鉴。
二、硬件设计与制作过程(600字)在硬件设计与制作过程中,首先需要明确小车的核心模块,包括电路板、传感器模块和执行器模块等。
其中,单片机是智能小车的“大脑”,其选择和连接是关键一步。
根据实际需求,本文选用了广泛应用的Arduino单片机,并将其与各类传感器(如红外线传感器、超声波传感器等)和执行器(如电机、舵机等)进行连接。
接下来,需要组装小车的机械部分。
通过设计和制作合适的底盘结构,进行电动机的安装和连线,以及舵机和轮子的连接。
这一步需要充分考虑小车的稳定性和灵活性,以确保小车能够平稳运行和方便操作。
为了实现小车的智能化控制,还需要进行编程。
以Arduino作为平台,通过编写相应的代码,实现小车的功能,如环境感知、路径规划、动作执行等。
在编程过程中,需要结合传感器的输入和执行器的输出,使得小车能够根据不同的场景而做出相应的反应和决策。
最后,完成电路板和机械部分的组装后,还需要对整体进行调试和测试。
通过连接电源和运行程序,可以对小车进行上电测试和功能测试,以确保各模块能够正常工作,并进行适当的调整和优化。
三、软件设计与功能实现(200字)在软件设计方面,本文使用Arduino IDE进行编程,采用C/C++语言。
通过对传感器的数据采集和处理,结合运动控制算法,使得小车能够在不同场景下做出智能决策。
例如,在遇到障碍物时,利用超声波传感器测距,通过程序控制小车避开障碍物;在追踪线路时,利用红外线传感器进行线路识别和导航等。
根据实际需求,还可以加入其他功能。
例如,通过无线模块实现与远程设备的通信,利用摄像头实现图像识别和物体跟踪等。
基于51单片机智能小车的设计
智能小车的设计单片机课程设计设计名称:智能小车及温度显示所在学院:电气与控制工程学院专业班级:测控技术与仪器0902学生姓名:学生学号:********** ********** ********** 指导老师:完成时间:2012/07/06目录1.方案论证与比较 (4)1.1 课程实现 (4)1.2 电机驱动模块 (4)1.3 温度测量模块 (5)1.4 显示模块 (5)1.5遥控 (6)2.单片机最小应用系统 (6)2.1 时钟电路 (7)2.2 复位电路 (8)3.控制部分 (9)3.1电机驱动 (9)3.2.温度检测及显示模块 (9)3.3.遥控 (10)4.流程图 (10)4.1 主程序流程图 (10)4.2遥控器解码程序流程图 (11)4.3 温度显示流程图 (11)5.参考文献 (11)6. 设计心得体会 (12)6.1设计心得体会(魏璐) (12)6.2设计心得体会(雷军) (12)6.3设计心得体会(陈志伟) (13)7.附录 (14)7.1元件清单: (14)7.2程序清单: (14)智能小车的设计摘要:智能作为现代的新发明,是以后的发展方向,他可以按照预先设定的模式在一个环境里自动的运作,不需要人为的管理,可应用于科学勘探等等的用途。
智能小车就是其中的一个体现。
本设计采用STC89C52单片机为主要控制核心,STC89C52是一款高速低功耗的新一代8051单片机,我们利用红外接收遥控器对小车的控制信号,对小车实现无线遥控,利用DS18B20检测小车所在环境的温度,并利用12864液晶显示模块将其显示出来。
关键词:STC89C52 单片机DS18B20检测温度液晶显示Abstract:Smart as a modern invention, the direction of development in the future, he can in an environment where automatic operation in accordance with the pre-set pattern, no human management can be applied to the use of scientific exploration. The smart car is one of expression. This design uses STC89C52 microcontroller core as the main control STC89C52 is a new generation of high-speed low-power 8051, we use the infrared receiver remote control signals of the car, wireless remote control car using the DS18B20 test car where the temperature of the environment and use 12864 LCD module will be displayed.Keyword:STC89C52 single-chip DS18B20 detection temperature LCD1.方案论证与比较1.1 课程实现方案1:采用各类数字电路来组成小车的控制系统,对外围避障信号,各路趋光信号进行处理,车库拦栅上升下降控制,温度显示等。
基于单片机的智能小车设计-无删减范文
基于单片机的智能小车设计基于单片机的智能小车设计简介本文档旨在介绍一种基于单片机的智能小车设计。
智能小车是一种能够通过程序控制和感知周围环境的车辆,通常具备自主导航、避障、跟随等功能。
基于单片机的设计方案被广泛应用于智能小车,本文将介绍设计方案的硬件搭建与软件实现。
硬件搭建1.主控板智能小车的主控板使用单片机作为处理器,常见的单片机包括Arduino、Raspberry Pi等。
选择适合的单片机型号时,需考虑处理器性能、GPIO口数量和扩展性等因素。
2.电机驱动模块电机驱动模块用于控制小车的运动,一般包括直流电机和对应的驱动芯片。
选择合适的电机驱动芯片时,需根据电机的额定电压和电流来确定芯片的驱动能力。
3.传感器模块智能小车需要通过传感器感知周围环境,常见的传感器模块包括红外线传感器、超声波传感器、陀螺仪、加速度计等。
这些传感器能够帮助小车实现避障、跟随等功能。
4.通信模块通信模块用于与上位机或其他外部设备进行数据交互。
通常可以选择WiFi模块、蓝牙模块、无线模块等。
通过通信模块,智能小车可以实现远程控制或与其他设备进行协作。
5.电源模块电源模块提供电力支持,为智能小车的各个模块供电。
在选择电源模块时,需考虑小车所需的电压和电流,并确保电源稳定可靠。
软件实现1.编程语言选择基于单片机的智能小车可以使用多种编程语言来实现,例如C、C++、Python等。
选择合适的编程语言时,需考虑单片机的支持情况、编程难度和功能需求等因素。
2.底层驱动编写在设计智能小车时,需要编写底层驱动程序来控制电机、传感器等模块的操作。
通过与硬件设备进行交互,底层驱动程序可以实现对小车的控制和感知。
3.高级功能实现智能小车的高级功能通常包括自主导航、避障、跟随等。
实现这些功能需要根据具体情况编写对应算法和逻辑,并结合传感器数据进行决策和控制。
4.通信与远程控制通过通信模块,智能小车可以与上位机或其他设备进行数据交互。
可以使用串口通信、网络通信等方式实现数据传输,实现远程控制或与其他设备进行协作。
基于单片机的简易智能电动小车毕业设计
目录第一部分设计任务与调研 (1)第二部分设计说明 (3)第三部分设计成果 (5)第四部分结束语 (21)第五部分致谢 (22)第六部分参考文献 (23)第一部分设计任务与调研1. 研究背景伴随着机械自动化的不断发展,人类在生活的各个领域都希望能够利用自动化技术的操作来提高工作效率,使生产能够得到一直不断的提高。
近年来,在轨迹跟踪方面的话题研究也不断引起人们的关注,国内外更是开展了一系列的智能轨迹跟踪系统的竞赛活动。
在实际生活应用中,具有智能化的机器人能在人们无法触及到的工作场合下大显身手,例如各种形式的军事机器人、勘探机器人等。
在我们平时日常生活中更为接近的有医疗机器人、汽车自动泊位机器人、自动驾驶系统机器人。
轨迹跟踪系统的特殊设计在机器人领域有着重要的地位,可以说是机器人实现智能化的一个重要的指标。
无论什么机器人想要实现智能化就必须要实现对外部的环境自我感知与判断并做出相对的反应,最终完成人们所需布置的任务。
2. 研究意义智能小车,也就是轮式机器人,最适合在那些人类无法工作的环境中工作,该技术可应用于无人驾驶机动车,无人生产线,仓库,服务机器人等领域。
以下列举了机器人的一些应用,所有这些用途正逐步渗入到工业和社会的各个层面。
在产品检测方面,对零部件、线路板及其它类似产品的检测是机器人比较常见的应用。
一般来说,监测系统中还集成有其它一些设备,他们是视觉系统、X射线装置、超声波探测仪或其它类似仪器。
在瓦斯、地压检测方面,瓦斯和冲击地压是井下作业中的两个不安全的自然因素,一旦发生突然事故,是相当危险和严重的。
但瓦斯和冲击地压在形成突发事故前,都会表现出种种迹象,如岩石破裂等。
采用带有专用新型传感器的移动是机器人连续监视采矿状态,以便及早发现事故突发的先兆,采取相应的预防措施。
在智能轮椅领域,随着社会的发展和人类文明程度的提高,人们特别是残疾人愈来愈需要运用现代高新科技技术来改善他们的生活质量和生活自由度。
基于单片机的智能小车设计
基于单片机的智能小车设计基于单片机的智能小车设计引言智能小车是近年来快速发展的一种智能设备,它可以根据程序控制自主地移动、避障、遥控等,具有广泛的应用前景。
本文将介绍基于单片机的智能小车的设计方案,包括硬件设计和软件实现。
硬件设计主控模块智能小车的主控模块采用单片机,常见的选择有Arduino、Raspberry Pi等。
在本设计中,我们选择了Arduino Uno作为主控模块,因为它价格实惠,易于上手,且具有丰富的扩展模块。
电源模块智能小车的电源模块可以选择直流电池,输入电压需符合主控模块和驱动模块的工作电压范围。
为了保证电池寿命和安全性,建议加装合适的电池保护模块,以防止过充、过放等问题。
驱动模块智能小车需要具备前进、后退、左转、右转等动作,因此需要使用驱动模块控制电机的转动。
常见的驱动模块有L298N、TB6612FNG等,可以根据实际需求选择合适的驱动模块。
传感器模块为了实现智能小车的避障功能,需要添加传感器模块来检测前方障碍物。
常见的选择有红外传感器、超声波传感器等。
在本设计中,我们选择了HC-SR04超声波传感器,它具有较高的测距精度和稳定性。
编码器模块为了实现智能小车的精确控制和位置监测,可以添加编码器模块来监测电机的转速和转向。
编码器模块可以是光电编码器、磁编码器等。
软件实现智能小车的软件实现主要涉及以下几个方面:控制算法智能小车的控制算法可以使用PID算法、模糊算法等。
PID算法是一种经典的控制算法,通过对速度和位置误差进行调节,实现小车的平稳运动。
遥控功能为了方便用户操作,可以添加无线遥控模块,实现对智能小车的遥控功能。
常见的无线遥控模块有蓝牙、Wi-Fi等。
避障功能智能小车的避障功能可以利用传感器模块实现。
通过检测前方障碍物的距离,如果距离过近,则停车或转向避开障碍物,保证小车的安全运行。
数据通信如果需要将智能小车的状态数据传输到其他设备,可以添加数据通信模块,如串口、无线模块等。
基于单片机的智能小车设计
基于单片机的智能小车设计前言随着汽车工业的迅速发展,关于汽车的研究也就越来越受人关注。
全国电子大赛和省内电子大赛几乎每次都有智能小车这方面的题目,全国各高校也都很重视该题目的研究。
可见其研究意义很大。
本设计就是在这样的背景下提出的。
本题目是结合科研项目而确定的设计类课题,设计的智能电动小车应该能够实时显示时间、速度、里程,具有自动寻迹、寻光、避障功能,可程控行驶速度、准确定位停车。
根据题目的要求,确定如下方案:在现有玩具电动车的基础上,加装光电、红外线、超声波传感器及金属探测器,实现对电动车的速度、位置、运行状况的实时测量,并将测量数据传送至单片机进行处理,然后由单片机根据所检测的各种数据实现对电动车的智能控制。
这种方案能实现对电动车的运动状态进行实时控制,控制灵活、可靠,精度高,可满足对系统的各项要求。
本设计采用MCS-51系列中的80C51单片机。
以80C51为控制核心,利用超声波传感器检测道路上的障碍,控制电动小汽车的自动避障,快慢速行驶,以及自动停车,并可以自动记录时间、里程和速度,自动寻迹和寻光功能。
方案设计与论证根据题目的要求,在智能小车上加装光电检测器,实现对智能小车的速度、位置、运行状况的实时测量,并将测量数据传送至单片机进行处理,然后由单片机根据所检测的各种数据实现对电动车的智能控制。
这种方案能实现对电动车的运动状态进行实时控制,控制灵活、可靠,精度高,可满足对系统的各项要求。
调速系统采用晶闸管的直流斩波器基本原理与整流电路不同的是,在这里晶闸管不受相位控制,而是工作在开关状态。
当晶闸管被触发导通时,电源电压加到电动机上,当晶闸管关断时,直流电源与电动机断开,电动机经二极管续流,两端电压接近于零。
脉冲宽度调制(Pulse Width Modulation),简称PWM。
脉冲周期不变,只改变晶闸管的导通时间,即通过改变脉冲宽度来进行直流调速。
检测系统检测系统主要实现光电检测,即利用各种传感器对电动车的避障、位置、行车状态进行测量。
基于单片机控制的智能自动往返小汽车设计
基于单片机控制的智能自动往返小汽车设计随着现代科技的发展和自动化水平的提高,智能小汽车作为生活中的常用工具,人们对其智能性、可靠性等提出了越来越高的要求,因此需要对智能小汽车进行优化设计. 本文对硬件系统和主要功能模块进行了规划,设计了一个基于单片机控制的自动往返小汽车系统,以STC89C52 单片机为核心器件,可实现电动小汽车的速度控制、自动停车、往返控制等功能,从而满足人们对小汽车智能化功能的要求.1 系统总体设计系统设计以单片机STC89C52 芯片为核心控制部件,LG9110 作为电机驱动芯片,利用传感器检测技术原理、AD 画图、KEIL 软件编程,将程序烧录到单片机中,实现各个子模块的功能. 此外,系统采用红外探测法来检测实时路况信息,并通过PWM 调制自动调节电机转速. 系统总体设计框图如图1 所示.图1 系统总体设计框图2 系统硬件设计系统硬件模块设计主要包含电机驱动模块、路况检测模块、智能防撞报警模块、寻迹模块等.2.1 电机驱动模块电机驱动模块是目前遥控小车普遍采用的驱动模块[3]. 直流电机有两个控制端,通过设置输入电平值来改变电机的运转,单片机通过控制引脚电平的高低来控制直流电机的转速. 由于单片机自身管脚输出的高电平电压很小,不足以驱动电机进而带动整个小车运行,因此最适合小车驱动的是运用电机驱动芯片来完成,我们采用的是电机驱动芯片LG9110.2.2 路况检测模块该模块使用红外探测法. 由于黑线和白纸对光线的反射系数不同,故可根据接收到反射光的强弱来判断路面情况和前方是否存在障碍物. 红外发射管发射红外信号,经路面反射后传给红外接收管进行判断处理. 上电后,红外发射管导通,向地面以及前方发射红外信号,当遇到白色路面时,红外信号经白色路面进行漫反射,这时红外接收探头刚好接收到红外信号,探头导通,将低电平送给单片机进行判断处理.2.3 智能防撞报警模块智能小车能够自动识别前方的障碍物,如果有障碍物则调节小车的运动轨迹来避开障碍物,同时在遇到障碍物时,能够报警提示.2.4 寻迹模块所谓寻迹,就是在一条有弯曲黑线的白纸跑道上,利用红外线在不同颜色的物理表面具有不同的反射性质的特点来改变小车的运行轨迹. 小车在行驶过程中不断地向地面发射红外光,当红外光遇到白色地面时发生漫发射,而当红外光遇到黑色地面时,不产生反射. 如果小车右边稍微跑出黑色跑道,发出的红外光就会遇到白色地面而产生漫反射,这时旁边的黑色接收探头接收到反射信号后会导通. 探头接收到红外信号,会产生一个低电平,送给单片机处理,使小车进行左转操作;同理,当小车左边跑出黑线时,左侧探头识别之后给小车低电平,提示小车右转,这样就完成了小车的自动寻迹功能.3 系统软件设计在系统软件设计时,我们将所有的模块程序嵌入到单片机中,这种嵌入式设计主要是为了便于控制,且不占用CPU 资源,因为寻迹模块以及避障模块等都同时用到了实时检测扫描,这样不仅占CPU,而且多个程序同时运行还会产生冲突. 系统程序设计流程图如图2 所示.软件设计主要子模块介绍:(1) 红外解码的实现红外解码是实现小车的自动寻迹功能的前提条件,因此单片机的红外解码是贯穿整个程序设计的主线,在整个系统中起着重要作用.(2) 电机驱动从实际情况来说,在整个系统中,电机的驱动在小车运行中占据主导地位,是很重要的一部分,同时也是小车在接收到控制命令之后单片机的最终输出部分,是所有模块在执行控制命令时的外在表现.图2 系统程序设计流程(3) 小车寻迹寻迹的基本原理:黑白跑道对红外光的反射不同. 所以通过编写扫描单片机管脚值的程序,来实现相应功能. 小车寻迹模块的程序流程如图3 所示.(4) 小车防撞报警开启小车防撞功能时,主程序调用防撞报警子函数,当道路前方遇到障碍物时,小车内部的防撞函数将调用电机驱动子函数来调节小车的运行轨迹,避免小车撞击障碍物,同时报警提示.图3 寻迹程序流程图4 系统功能实现4.1 硬件作品(1) 对基于单片机控制的自动往返小汽车主要的STC89C52 核心主控模块、电机驱动模块、显示模块、避障模块进行组装,确保接线无误,完成实物的制作. 硬件作品如图4 所示.(2) 接通电源,整个小车处于启动状态,由于小车头部下方的红外探头未接收到自身发出的红外光,小车不运动,处于静止状态. 启动状态如图5 所示.图4 作品实物图5 小车启动状态(3) 在接通电源的状态下,将手放在左红外探头的下方,红外探头发出的红外光由于碰到手指发生漫反射而被探头接收,从而驱动电机驱动模块,左电机处于运行状态,左轮向前转动. 同理,右轮向前转动. 运动状态如图6 所示.图6 小车运动状态4.2 功能实现本系统实现的主要功能如下:(1)实现小汽车自动往返;(2)当小汽车偏离行驶轨道时,会及时转向,返回跑道;(3)当检测到障碍物时,能自动报警.STC89C52 芯片可以发挥数据处理与实时控制的功能,提高整个系统灵敏度. 当要驱动自动小车前进时,可以通过寻迹模块返回给单片机的信号,使单片机做出相应的控制判断,进而控制电机驱动模块,同时还需要进行PID 算法的测试,精准地控制自动小车在黑线上实现前进、后退和转向,从而实现小车自动往返.4.3 系统实现效果评价对系统功能进行了分析、拓展和延伸,其根本目的是为了实现小汽车的智能化. 通过系统调试,本设计可实现小汽车的自动寻迹和报警功能,且系统设计稳定. 实验结果与理论分析吻合较好,表明该设备在技术上有一定智能性和可靠性.5 总结本文采用的是以STC89C52 为核心的单片机,LG9110 为电机驱动芯片,利用传感器检测技术,结合硬件AD 画图及软件KEIL 的编译与烧录[5],使单片机控制的小汽车能自动寻迹、防撞报警,从而实现小车的自动往返功能. 本设计最大的特色:无需有线或者无线遥控来控制小车的往返,只需要装上电源,其他功能都可以由单片机来实现,消除了一般玩具小车需无线或有线控制的弊端,是未来玩具小车发展的趋势;同时也可以推广至公交车,实现无人驾驶,降低安全事故的发生,既环保又安全,因此具有一定的应用价值.。
基于单片机的多功能智能小车设
鉴于单片机的多功能智能小车设(实物制作)纲要跟着社会的发展,智能化愈来愈遇到人们的关注。
本设计经过模拟汽车的自动行驶及避障功能,来实现智能化。
本设计主要有三个模块包含信号检测模块、主控模块、电机驱动模块。
在此设计中,用 STC89C51单片机作为主控芯片,办理接收到的各样信号,并作出相应的反应;用红外对管来进行黑线检测,进而达到循迹和避障的目的;经过编写的程序,保证了电机的左右转动,进而达到小车设计时预约的目标。
因为小车在设计过程中,采纳了模块化的设计思路,所以在进行调试时特别方便。
我们能够分别对每一个功能部分来进行调试,驱动部分调试时,只需给电机向前或许向后的信号,就能够调试出其功能。
循迹部分调试时,只需经过检测到黑线,判断能否沿黑线行驶,即能够调试出。
在进行避障调试中,我们能够把阻碍物放在小车前面,而后看小车两个轮子的转向。
这类模块化的设计思想不单简化了设计过程,并且对我们此后的设计也会有必定启迪。
ABSTRACTAlong with the development of society, more and more intelligent attention. This design by simulating a cardriving and automatic obstacle avoidance, to achieve intelligent. This design has three main modulesincluding drive module, signal detection module, maincontrol module, motor. In this design, with STC89C51SCM as the master chip, processing various signals received, and make corresponding feedback; usingInfrared to tube to detect the black line, so as toachieve the purpose of tracking; Through the program,ensure the motor rotation, so as to achieve the designof the car when the scheduled target.As the car in the design process, using a modulardesign concept, so very convenient during debugging.We were part of each function for debugging, debugging driving part, as long as the motor forward or backwardsignal, you can debug the functionality.Whendebugging tracking part, simply by detecting the black line, todetermine whether the black line running along, thatyou can debug a. Avoidance during commissioning, we can put an obstacle in front of the car, and then look atthe car two steering wheels. This modular design notonly simplifies the design, but also for our futuredesigns also have some inspiration.Key Words : Intelligent,SCM,Infrared to tube ,Obstacle avoidance tracking目录一、绪论智能小车的研究与意义智能小车的现状论文研究内容与主要构造二、方案选型设计车体设计电机驱动选择PWM 调速技术循迹模块技术避障模块技术2. 6驱动模块2. 7控制系统模块2. 8电源选择三、硬件设计整体设计电源电路设计驱动电路设计循迹部分电路避障部分电路主控电路设计四、软件设计主程序设计概括主程序流程图驱动程序流程图循迹程序流程图避障程序流程图五、制作安装与调试小车的安装小车运动模式调试小车循迹调试小车避障调试小车的功能六、结论七、参照文件八、道谢第1章绪论智能小车的研究意义跟着计算机、微电子、信息技术的迅速发展,智能化技术的发展速度也愈来愈快,智能化与人们生产生活的联系愈来愈密切,智能化将是未来社会发展的必定趋向。
基于单片机的智能车设计
for(counter=1;counter<=30;counter++)//向左转1/4圈 { P1_1=1; delay_nus(1300); P1_1=0; P1_0=1; delay_nus(1300); P1_0=0; delay_nms(20); } for(j = 0; j < 18; j++ ) { for(counter=1;counter<=26;counter++)//直走两米 { P1_1=1; delay_nus(1700); P1_1=0; P1_0=1; delay_nus(1300); P1_0=0; delay_nms(20); } }
for(j = 0; j < 21; j++ ) { for(counter=1;counter<=26;counter++)//直走2米 { P1_1=1; delay_nus(1700); P1_1=0; P1_0=1; delay_nus(1300); P1_0=0; delay_nms(20); } } for(j = 0; j <58; j++ ) { for(counter=1;counter<=26;counter++)//270度 { P1_1=1; delay_nus(1700); P1_1=0; P1_0=1; delay_nus(1414); P1_0=0; delay_nms(20); } }
for(counter=1;counter<=30;counter++)//向右转1/4圈 { P1_1=1; delay_nus(1700); P1_1=0; P1_0=1; delay_nus(1700); P1_0=0; delay_nms(20); } for(j = 0; j < 10; j++ ) { for(counter=1;counter<=26;counter++)//走一米 { P1_1=1; delay_nus(1700); P1_1=0; P1_0=1; delay_nus(1300); P1_0=0; delay_nms(20); } }
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于单片机的智能车设计:利用英文全文数据库——Elsevier 进行文献信息检索示例1、检索课题名称:基于单片机的智能车设计2、课题分析:中文关键词:1智能车 2单片机英文主题词:(1)Intelligent Vehicle(2)Single-Chip Microcomputer3、选择检索工具:Elsevier 数据库4、构建检索策略:Intelligent Vehicle and Single-Chip Microcomputer5、简述检索过程:选定在 Elsevier 中期刊、图书、文摘数据库等全部文献资源中检索 2008 年以后的关于基于单片机的智能车设计的相关文献。
利用确定的检索策略(Intelligent Vehicle and Single-Chip Microcomputer),文献全文(含文献题目、摘要、关键词)中检索,检到 14 篇相关文献;在文献题目、摘要和关键词中检索,检索到 9 篇相关文献;在文献关键词中检索到 7 篇相关文献;在文献题目中检索到 8 篇相关文献。
6、整理检索结果:从以上文献中选择出3 条切题文献1.Yan Liu, Dan Zhao, Study of Intelligent Track-searching Vehicle Control System Based on Vision, Procedia Engineering, Volume 15, 2011, Pages 1219-1223, ISSN 1877-7058, 10.1016/j.proeng.2011.08.225.(/science/article/pii/S1877705811017267) Keywords: intelligent track-searching vehicle; control system; driveway identification based on vision; speed control; steering control2.Adel Mellit, Soteris A. Kalogirou, Artificial intelligence techniques for photovoltaic applications: A review, Progress in Energy and Combustion Science, Volume 34, Issue 5, October 2008, Pages 574-632, ISSN 0360-1285,10.1016/j.pecs.2008.01.001.(/science/article/pii/S0360128508000026) Keywords: Artificial intelligence; Neural network; Fuzzy logic; Genetic algorithm; Expert system; Hybrid system; DSP; FPGA; VHDL; Photovoltaic systems; Meteorological data; Modeling; Forecasting; Optimization3.Feng Qing-Dong, Shuai Jian, Jiao Zhong-Liang, Xu Xue-Rui, The Automatic Control System of Mining Truck, Energy Procedia, Volume 13, 2011, Pages 8267-8275, ISSN 1876-6102, 10.1016/j.egypro.2011.12.584.(/science/article/pii/S1876610211040008) Keywords: Mining Truck; Safety Monitoring System; CAN Bus Technology; GPS; Unmanned Technology6、全文摘录选择一篇:1. Study of Intelligent Track-searching Vehicle Control System Based on Vision一、篇名Study of Intelligent Track-searching Vehicle Control System Based on Vision二、著者Yan Liua, , , Dan Zhaob三、著者机构a XiAn eurasia University,Xi’an, 710061, Chinab C hang’an University, Xi’an, 710064, ChinaAvailable online 6 December 2011.四、文摘AbstractIn order to improve the ability of intelligent track-searching vehicle accurately identifying driveway and heighten its driving rapidity and system stability, though the analysis of intelligent track-searching vehicle control system, an intelligent track-searching vehicle control system based on vision is designed completed in this paper. The hardware control system mainly includes single-chipmicrocomputer control module, path detection module, steering gear steering module, motor driver module, speed detection module and power management module. On this basis, path identification algorithm based on vision, steering control algorithm and speed control algorithm of intelligent track-searching vehicle are researched. Experimental results show that the system has accurate driveway recognizing ability, flexible steering control and speed control, better adaptability to different driving environment, making intelligent track-searching vehicle accurately running along different path rapidly and stably.五、关键词Keywordsintelligent track-searching vehicle;control system;driveway identification based on vision;speed control;steering control六、正文1. Introduction and objectives(首段)In order to improve the ability of intelligent track-searching vehicle accurately identifying driveway and heighten its driving rapidity and system stability, though the analysis of intelligent track-searching vehicle control system, an intelligent track-searching vehicle control system based on vision is designed completed in this paper. The hardware control system mainly includes single-chipmicrocomputer control module, path detection module, steering gear steering module, motor driver module, speed detection module and power management module.(末段)On this basis, path identification algorithm based on vision, steering control algorithm and speed control algorithm of intelligent track-searching vehicle are researched. Experimental results show that the system has accurate driveway recognizing ability, flexible steering control and speed control, better adaptability to different driving environment, making intelligent track-searching vehicle accurately running along different path rapidly and stably.七、参考文献References[1]H.K. Xu, X.Z. Guo, C.C. Ma, C.B. WenContinuous Path Detection Method of Intelligent Track-Searching Vehicle Based on Photoelectric SensorThe 8th World Congress on Intelligent Control and Automation (2010), pp. 5279–5282View Record in Scopus|Full Text via CrossRef| Cited By in Scopus (2)[2]Chen Wuwei, in: Simulation Study on Tracking Control Strategy of Automatic Guided Vehicle, edited by Journal of University of Science and Technology of China. 2003,26(3):154-161.[3]ZhuoQing, Huang KaiSheng, Huang BeiBei et al.Learn to do intelligent car-challenges “freescale” cupBeijing Aerospace Press, Beijing (2007)[4]Liu Yingchun, in: Design Principle of Sensor and Application, edited by National Univer-sity of Defense Technology Press.[5]Chen YongFuInfrared radiation infrared devices and typical applicationElectronic Industry Press, Beijing (1999)[6]Chen Jie, Huang HongSensor and testing technologyHigher Education Press, Beijing (2002)[7]Zhou Bin, Li LiGuo, Huang KinShengStudy of intelligent car photoelectric sensor arrangement influence of path recognitionElectronics World (2006), pp. 139–140View Record in Scopus| Cited By in Scopus (1)[8]Liu. YingChunPrinciples of sensor design and applicationnational university of defense technology press, ChangSha (1992。