第8关一元二次方程的定义

合集下载

(中考数学复习)第8讲 一元二次方程 课件 解析

(中考数学复习)第8讲 一元二次方程 课件 解析

(1)证明:∵一元二次方程为x2-(2k+1)x+k2+k=0,
Δ=[-(2k+1)]2-4(k2+k)=1>0,∴此方程有两个不相等的
实数根.
(2)解:∵△ABC的两边AB、AC的长是这个方程的两个实数
根,由(1)知,AB≠AC,△ABC第三边BC的长为5,且
△ABC是等腰三角形,
基础知识 · 自主学习 题组分类 · 深度剖
=2 014.
3.(2013·日照)已知一元二次方程x2-x-3=0的较小根为x1,
则下面对x1的估计正确的是
( A )
A.-2<x1<-1
B.-3<x1<-2
C.2<x1<3
D.-1<x1<0
基础知识 · 自主学习 题组分类 · 深度剖 课堂回顾 · 巩固提升
浙派名师中考
题组三 利用根的判别式解决问题
基础知识 · 自主学习 题组分类 · 深度剖 课堂回顾 · 巩固提升
浙派名师中考 10
基础知识 · 自主学习 题组分类 · 深度剖 课堂回顾 · 巩固提升
基础知识 · 自主学习 题组分类 · 深度剖 课堂回顾 · 巩固提升
浙派名师中考
1.(2013·温州)方程x2-2x-1=0的根是____________. 2.(2013·聊城)若x1=-1是关于x的方程x2+mx-5=0的一个
根,则方程的另一个根x2=___5__.
6
A.x-6=-4 C.x+6=4
基础知识 · 自主学习 题组分类 · 深度剖 课堂回顾 · 巩固提升
浙派名师中考
=x1·(x1+2 013)+2 013x2+x2-2 013 =(x1+2 013)+2 013x1+2 013x2+x2-2 013 =x1+x2+2 013(x1+x2)+2 013-2 013 =1+2 013

泰安市中考数学一轮复习《第8讲:一元二次方程》课件

泰安市中考数学一轮复习《第8讲:一元二次方程》课件

解:(1)∵方程有两个不相等的实数根,
∴Δ=(2k+1)2-4k2=4k+1>0,解得
1 k>-4.
(2)当 k=1 时,方程为 x2+3x+1=0.
∵x1+x2=-3,x1x2=1, ∴x21+x22=(x1+x2)2-2x1x2=9-2=7.
类型3 一元二次方程的应用 【例3】 [2017·深圳中考]一个矩形(即长方形)周长为56厘米. (1)当矩形面积为180平方厘米时,长宽分别为多少? (2)能围成面积为200平方厘米的矩形吗?请说明理由.
6.[2013·泰安,27,11分]某商店购进600个旅游纪念 品,进价为每个6元,第一周以每个10元的价格售出200个 ,第二周若按每个10元的价格销售仍可售出200个,但商店 为了适当增加销量,决定降价销售(根据市场调查,单价每 降低1元,可多售出50个,但售价不得低于进价),单价降 低x元销售,销售一周后,商店对剩余旅游纪念品清仓处理 ,以每个4元的价格全部售出,如果这批旅游纪念品共获利 1250元,问第二周每个旅游纪念品的销售价格为多少元?
(2)3x(x-1)=2(x-1),移项,得 3x(x-1)-2(x-1)=0.提公因式 (x-1),
得(x-1)(3x-2)=0.解得 x=1 或 x=23.
(3)(x+3)2=(1-2x)2,两边开平方,得 x+3=±(1-2x). ∴x+3=1-2x, 或 x+3=-1+2x.解得 x=-23或 x=4.
(2)不能.理由如下: 设矩形的长为y厘米,则宽为(28-y)厘米.依题意,得 y(28-y)=200,即y2-28y+200=0. ∵Δ=282-4×200=-16<0, ∴原方程无解. ∴不能围成面积为200平方厘米的矩形.
技法点拨►用到的知识点为:矩形的宽=周长的一半-长. 解题的关键是读懂题目的意思,根据题目给出的条件,找出合 适的等量关系,列出方程,再求解.

一元二次方程的解法公式法

一元二次方程的解法公式法

一元二次方程的解法公式法
一元二次方程解法公式法:
(一)定义:
一元二次方程是由一个方程组成的形式,其中包含一个独立的变量以
及平方项和恒等于零的常数。

(二)解法:
1. 首先,我们要用一元二次方程解法公式法来求解一元二次方程问题。

公式为:
$$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$$
2. 其次,我们把方程中的变量代入到公式中。

一般来说,方程的形式为:$$ax^2+bx+c=0$$
3. 最后,根据公式,可以得出$$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$$
(三)特殊情况:
1. 一元二次方程的实数根有可能为两个相等的数,此时,解的形式会
变成$$x=\frac{-b}{2a}$$
2. 当$b^2-4ac=0$时,表示方程只有一个实数根,这时,解的形式可以
写作$$x=\frac{-b}{2a}$$
(四)应用:
1. 一元二次方程解法公式法可以用来求解各类一元或多元函数的极值。

例如,可以应用这一方法求解二次曲线的极值点、凸函数的极值点等。

2. 同时,一元二次方程解法公式法也可用于求解数学建模问题,包括
求解市场博弈问题、求解应用各类运筹学问题等等。

(五)益处:
1. 一元二次方程解法公式法比较简单明晰,容易理解,易于使用。

2. 可以让人们轻松地解决一元或多元函数求极值问题,以及市场博弈
问题和应用各类运筹学技术来解决复杂的数学问题。

3. 这种方法可以将复杂的数学问题转换为简单的方程,从而节省时间,提高工作效率。

一元二次方程讲义全

一元二次方程讲义全

一元二次方程讲义全一元二次方程讲义考点一、概念1)定义:只含有一个未知数,并且未知数的最高次数是2,这样的整式方程就是一元二次方程。

2)一般表达式:ax^2+bx+c=(a≠0)注:当b=0时可化为ax^2+c=0,这是一元二次方程的配方式。

3)四个特点:只含有一个未知数;且未知数次数最高次数是2;是整式方程。

要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理。

如果能整理为ax^2+bx+c=(a≠0)的形式,则这个方程就为一元二次方程。

4)将方程化为一般形式:ax^2+bx+c=0时,应满足(a≠0)。

4)难点:如何理解“未知数的最高次数是2”:①该项系数不为0;②未知数指数为2;③若存在某项指数为待定系数,或系数也有待定,则需建立方程或不等式加以讨论。

典型例题:例1、下列方程中是关于x的一元二次方程的是()A。

(x+1)^3=2(x+1)B。

2√x+1-11=0C。

ax^2+bx+c=0D。

x^2+2x=x^2+1变式:当k≠0时,关于x的方程kx^2+2x=x^2+3是一元二次方程。

例2、方程(m+2)x^m+3mx+1=0是关于x的一元二次方程,则m的值为。

考点二、方程的解⑴概念:使方程两边相等的未知数的值,就是方程的解。

⑵应用:利用根的概念求代数式的值;典型例题:例1、已知2y^2+y-3的值为2,则4y^2+2y+1的值为。

例2、关于x的一元二次方程(a-2)x^2+x+(a^2-4)=0的一个根为-2,则a的值为。

说明:任何时候,都不能忽略对一元二次方程二次项系数的限制。

例3、已知关于x的一元二次方程ax^2+bx+c=0(a≠0)的系数满足a+c=b,则此方程必有一根为-1.说明:本题的关键点在于对“代数式形式”的观察,再利用特殊根“-1”巧解代数式的值。

例4、已知a,b是方程x^2-4x+m=0的两个根,b,c是方程y^2-8y+5m=0的两个根,则m的值为。

一元二次方程

一元二次方程

一元二次方程知识梳理一、一元二次方程的概念1.一元二次方程的概念只含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程. 2.一元二次方程的一般形式()ax bx c a 2++=0≠0,a 为二次项系数,b 为一次项系数,c 为常数项. (1)要判断一个方程是一元二次方程,必须符合以下三个标准: ①一元二次方程是整式方程,即方程的两边都是关于未知数的整式. ②一元二次方程是一元方程,即方程中只含有一个未知数. ③一元二次方程是二次方程,也就是方程中未知数的最高次数是2.(2)任何一个关于x 的一元二次方程经过整理都可以化为一般式ax bx c 2++=0 (a ≠0).要特别注意对于关于x 的方程ax bx c 2++=0.当a ≠0时,方程是一元二次方程;当a =0且b ≠0时,方程是一元一次方程.(3)关于x 的一元二次方程式()ax bx c a 2++=0≠0的项与各项的系数.ax 2为二次项,其系数为a ;bx 为一次项,其系数为b ;c 为常数项. 二、一元二次方程的解法1.一元二次方程的解法(1)直接开平方法:适用于解形如()(),≥ax b c a c 2+=≠00的一元二次方程. (2)配方法:解形如()ax bx c a 2++=0≠0的一元二次方程, 运用配方法解一元二次方程的一般步骤是: ①二次项系数化为1; ②常数项右移;③配方(两边同时加上一次项系数一半的平方). ④化成()x m n 2+=的形式.⑤若≥n 0,直接开平方得出方程的解.(3)公式法:将()ax bx c a 2++=0≠0进行配方可以得到:b b ac x a a 222-4⎛⎫+= ⎪24⎝⎭.当≥b ac 2-40时,两个根为,x 12=,其中b ac 2-4=0时,两根相等为bx x a12-==2;当b ac 2-4<0时,没有实数根. 可以用△表示b ac 2-4,△称为根的判别式. 运用公式法解一元二次方程的一般步骤是: ①把方程化为一般形式; ②确定a 、b 、c 的值; ③计算b ac 2-4的值;④若≥b ac 2-40,则代入公式求方程的根; ⑤若b ac 2-4<0,则方程无实数根.(4)因式分解法:适用于方程一边是零,另一边是一个易于分解的多项式. 因式分解法的一般步骤:①将方程化为一元二次方程的一般形式; ②把方程的左边分解为两个一次因式的积; ③令每一个因式分别为零,得到两个一元一次方程; ④解出这两个一元一次方程的解可得到原方程的解. 2.一元二次方程解法的灵活运用直接开方法,配方法,公式法,因式分解法.在具体解题时,应当根据题目的特点选择适当的解法.(1)配方法:配方法是解一元二次方程的基本方法,把一元二次方程的一般形式ax bx c 2++=0(a 、b 、c 为常数,a ≠0)转化为它的简单形式()A x B C 2-=,这种转化方法就是配方,之后再用直接开平方法就可得到方程的解.(2)公式法:公式法是由配方法演绎得到的,同样适用于任何形式的一元二次方程,但必须先将方程化为一般形式,并计算b ac 2-4的值.(3)因式分解法:适用于右边为0(或可化为0),而左边易分解为两个一次因式积的方程,缺常数项或含有字母系数的方程用因式分解法较为简便,它是一种最常用的方法.模块一 一元二次方程的判别式 1.定义:在一元二次方程()ax bx c a 2++=0≠0中,只有当系数a 、b 、c 满足条件△≥b ac 2=-40时才有实数根.这里b ac 2-4叫做一元二次方程根的判别式,记作△. 2.判别式与根的关系:在实数范围内,一元二次方程()ax bx c a 2++=0≠0的根的情况由△b ac 2=-4确定. 设一元二次方程为()ax bx c a 2++=0≠0,其根的判别式为:△b ac 2=-4,则①△>0⇔方程()ax bx c a 2++=0≠0有两个不相等的实数根,x 12.②△=0⇔方程()ax bx c a 2++=0≠0有两个相等的实数根b x x a12==-2. ③△<0⇔方程()ax bx c a 2++=0≠0没有实数根. 特殊的:(1)若a ,b ,c 为有理数,且△为完全平方式,则方程的解为有理根;(2)若△为完全平方式,同时b -2a 的整数倍,则方程的根为整数根. 三、模块二 一元二次方程的根与系数关系1.韦达定理:如果()ax bx c a 2++=0≠0的两根是x 1,x 2,则b x x a 12+=-,cx x a12=.(使用前提:△≥0)特别地,当一元二次方程的二次项系数为1时,设x 1,x 2是方程x px q 2++=0的两个根,则x x p 12+=-,x x q 12=. 2.韦达定理的逆定理:如果有两个数x 1,x 2满足b x x a 12+=-,cx x a12=,那么x 1,x 2必定是()ax bx c a 2++=0≠0的两个根.特别地,以两个数x 1、x 2为根的一元二次方程(二次项系数为1)是()x x x x x x 21212-++=0. 3.韦达定理与根的符号关系:在△≥b ac 2=-40的条件下,我们有如下结论: (1)当ca<0时,方程的两根必一正一负.①若≥b a -0,则此方程的正根不小于负根的绝对值;②若ba-<0,则此方程的正根小于负根的绝对值. (2)当ca>0时,方程的两根同正或同负. ①若b a ->0,则此方程的两根均为正根;②若ba-<0,则此方程的两根均为负根.注意:(1)若ac <0,则方程()ax bx c a 2++=0≠0必有实数根. (2)若ac >0,方程()ax bx c a 2++=0≠0不一定有实数根.例题分析题型一 一元二次方程的概念例题1 下面关于x 的方程中:①ax bx c 2++=0;②()()x x 223-9-+1=1;③x x21++5=0;④x x 23-2+5-6=0;⑤||x x 2-3-3=0;⑥x kx 2++3=0(k 为常数)是一元二次方程_________.(2)若一元二次方程()()m x m x m 222-2+3+15+-4=0的常数项为零,则m 的值为_________.(3)若a b a b x x 2+--3+1=0是关于x 的一元二次方程,求a 、b 的值. 【解析】(1)②⑥.(2)由题意可知,m 2-4=0,m -2≠0,故m =-2 (3)分以下几种情况考虑: ①a b 2+=2,a b -=2,此时a 4=3,b 2=-3;②a b 2+=2,a b -=1,此时a =1,b =0; ③a b 2+=1,a b -=2,此时a =1,b =-1;【总结】这三道题主要考察学生们对一元二次方程的基本概念的理解,比较简单,但是第三 个小题容易犯错误。

一元二次方程8因式分解法

一元二次方程8因式分解法
结合计算机技术
随着计算机技术的不断发展,未来可以将因式分 解法与计算机技术相结合,开发出更加高效、便 捷的算法和软件,为实际应用提供更加有力的支 持。
THANKS FOR WATCHING
感谢您的观看
方程8的表达式及判别式
方程8的表达式为:$ax^2 + bx + c = 0$
判别式 $Delta = b^2 - 4ac$,用于判断方程的根的情况。
利用因式分解法求解方程
当 $Delta > 0$ 时,方程有两个不相等的实根,可以进 行因式分解。
将方程改写为 $(x + p)(x + q) = 0$ 的形式。
探讨因式分解法的适用范围
适用情况
当一元二次方程可以容易地分解为两个一次因式的乘积时,因式分解法是一种有效的解法。这通常发 生在方程的系数具有特定关系(如和为0、积为常数等)的情况下。
不适用情况
对于不能轻易分解为两个一次因式的乘积的一元二次方程,因式分解法可能不适用。此时,可以考虑 使用其他方法(如配方法、公式法)来求解。
分析因式分解法的优缺点
优点
因式分解法是一种直观的解法,能够将复杂的 一元二次方程简化为两个一元一次方程,便于
求解。
在某些情况下,因式分解法比其他方 法(如配方法、公式法)更简便。
缺点
因式分解法需要一定的观察能力和经验,对于 某些不易分解的方程,可能难以应用该方法。
当一元二次方程的系数较大或较复杂 时,因式分解法可能变得繁琐。
01
02
03
判别式 $Delta = b^2 4ac$ 用于判断方程的根 的情况。
当 $Delta > 0$ 时,方 程有两个不相等的实根。

一元二次方程的概念及其解法

一元二次方程的概念及其解法

一元二次方程的概念及解法和讲义知识点一:一元二次方程的概念 (1)定义:只含有一个未知数........,并且未知数的最高次数是.........2.,这样的整式方程....就是一元二次方程。

(2)一般表达式:)0(02≠=++a c bx ax(3)四个特点:(1)只含有一个未知数;(2)且未知数次数最高次数是2;(3)是整式方程.要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理.如果能整理为)0(02≠=++a c bx ax 的形式,则这个方程就为一元二次方程.(4)将方程化为一般形式:02=++c bx ax 时,应满足(a ≠0)例1:下列方程①x 2+1=0;②2y(3y-5)=6y 2+4;③ax 2+bx+c=0 ;④0351=--x x,其中是一元二次方程的有 。

变式:方程:①13122=-x x ②05222=+-y xy x ③0172=+x ④022=y 中一元二次程的是 。

例2:一元二次方程12)3)(31(2+=-+x x x 化为一般形式为: ,二次项系数为: ,一次项系数为: ,常数项为: 。

变式1:一元二次方程3(x —2)2=5x -1的一般形式是 ,二次项系数是 ,一次项系数是 ,常数项是 。

变式2:有一个一元二次方程,未知数为y ,二次项的系数为-1,一次项的系数为3,常数项为-6,请你写出它的一般形式______________。

例3:在关于x 的方程(m-5)x m-7+(m+3)x-3=0中:当m=_____时,它是一元二次方程;当m=_____时,它是一元一次方程。

变式1:已知关于x 的方程(m+1)x 2-mx+1=0,它是( ) A .一元二次方程 B .一元一次方程 C .一元一次方程或一元二次方程 D .以上答案都不对 变式2:当m 时,关于x 的方程5)3(72=---x x m m是一元二次方程知识点二:一元二次方程的解(1)概念:使方程两边相等的未知数的值,就是方程的解。

第8课 一元二次方程的意义及解法

第8课 一元二次方程的意义及解法

(2)解二元二次方程组的思想是“消元”,即把多元通过加减、
代入、换元等方法转化为一元方程来解,或“降次”利用因 式分解转化为二元一次方程组或一元一次方程来解.
[难点正本 疑点清源]
1.正确理解并掌握一元二次方程的概念 识别一元二次方程必须抓住三个条件: (1)整式方程;(2)含有一个未知数;(3)未知数的最高次数是2. 满足上述三个条件的方程才是一元二次方程,不满足其中任何一 个条件的方程都不是一元二次方程,即三个条件缺一不可. 在确定方程各项系数时,应把一元二次方程化成一般形式, 指明各项系数时不要漏掉前面的符号.一元二次方程的一般形式 不是唯一的,但习惯上把二次项系数化为正整数.
(2)x2+3x-4=0(用配方法);
解:x2+3x-4=0,x2+3x=4, 2+3x+ 9 =4+ 9 ,(x+ 3 )2= 25, x 4 4 4 2 3 5 3 5 x+ =± ,x=- ± , 2 2 2 2 ∴x1=1,x2=-4.
(3)x2-2x-8=0(用因式分解法);
解:x2-2x-8=0,(x-4)(x+2)=0,
探究提高 解一元二次方程要根据方程的特点选择合适的方法解题, 但一般顺序为:直接开平方法→因式分解法→公式法.一般 没有特别要求的不用配方法. 知能迁移1 解方程:
(1)(2x-1)2=9(用直接开平方法); 解:(2x-1)2=9,2x-1=±3, 1± 3 ∴x= ,x1=2,x2=-1. 2
3.公式: 一元二次方程ax2+bx+c=0的求根公式:
-b± b2-4ac (b2-4ac≥0). x= 2a
4.简单的高次方程、二次根式方程的概念、解法:
(1)高次方程:只含有一个未知数,并且未知数的最高次数大
于2的整式方程. (2)无理方程:根号内含有未知数的方程.

一元二次方程的意义

一元二次方程的意义
的条件。
在方程③中,一些有关知识必须记住 ax2叫做二次项,a叫做二次项系数; bx叫做次项,b叫做一次项系数; c叫做常数项。
1.不完全的一元二次方程 我们把缺一次项或常数的一元二次方程称为不完
全的一元二次方程。一元二次方程可分类如下:
一元二次方 程
ax2+bx+c=0 (a0)
完全的一元二次方程
课堂练习:
1.判断下列方程是否是关于x的一元二次方程
(1)5x2=3
()
(2)x2=0
()
(3)mx+m2x=7(m为实数)
()
(4)x2-8=3x
()
(5)bx+b2=8
()
(6)x2-27=0
()
(7)(m-3)x2+4x+=0
()
(8)
x2
1
2x

1
()
2.选择题
(1)一元二次方程-5x2+16x+3=0,把二次项系数 变为正值,且使方程的根不变的是( )
2.什么是一元一次方程的一般形式? 3.为什么在一元一次方程的一般形式
的定义里要注明 a0?
(一) 讲解新课 一元二次方程的概念及有关知识 1.在复习了前面的知识的基础上,请说出 一元二次方程的定义。
定义:只含有一个未知数,并且未知数 的最高次数是2的整式方程叫做一元二次 方程。
由此可见,一个一元二次方程必须满足以下 三个条件:
剪一块面积是150cm2的长方形铁片,使它 的长比宽多5cm,这块铁片应该怎样剪?
分析:要解决这个问题,就是要求出铁片的长和宽。
150cm2
(x+5)cm 图12-1
x cm

专题08一元二次方程(含解析)讲解

专题08一元二次方程(含解析)讲解

专题08 一元二次方程一、解读考点二、考点归纳归纳 1:一元二次的有关概念基础知识归纳:1. 一元二次方程:只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程.2. 一般形式:ax2+bx+c=0(其中a、b、c为常数,a≠0),其中ax2、bx、c分别叫做二次项、一次项和常数项,a、b分别称为二次项系数和一次项系数.3.一元二次方程的解:使方程左右两边相等的未知数的值就是这个一元二次方程的解,一元二次方程的解也叫做一元二次方程的根.基本方法归纳:一元二次方程必须具备三个条件:(1)必须是整式方程;(2)必须只含有1个未知数;(3)所含未知数的最高次数是2.注意问题归纳:在一元二次方程的一般形式中要注意a ≠0.因为当a =0时,不含有二次项,即不是一元二次方程.【例1】若x =﹣2是关于x 的一元二次方程225x ax a 02-+=的一个根,则a 的值为( )A . 1或4B . ﹣1或﹣4C . ﹣1或4D . 1或﹣4【答案】B .考点:一元二次方程的解和解一元二次方程. 归纳 2:一元一次方程的解法 基础知识归纳: 一元二次方程的解法1、直接开平方法:利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。

直接开平方法适用于解形如b a x =+2)(的一元二次方程。

根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b <0时,方程没有实数根.2、配方法:配方法是一种重要的数学方法,它不仅在解一元二次方程上有所应用,而且在数学的其他领域也有着广泛的应用。

配方法的理论根据是完全平方公式222)(2b a b ab a +=+±,把公式中的a 看做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±.3、公式法:公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法. 一元二次方程)0(02≠=++a c bx ax 的求根公式:)04(2422≥--±-=ac b aac b b x4、因式分解法:因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法.基本方法归纳:(1)若一元二次方程缺少常数项,且方程的右边为0,可考虑用因式分解法求解;(2)若一元二次方程缺少一次项,可考虑用因式分解法或直接开平方法求解;(3)若一元二次方程的二次项系数为1,且一次项的系数是偶数时或常数项非常大时,可考虑用配方法求解; (4)若用以上三种方法都不容易求解时,可考虑用公式法求解.注意问题归纳:用公式法求解时必须化为一般形式;用配方法求解时必须两边同时加上一次项的系数一半的平方.【例2】用配方法解关于x的一元二次方程ax2+bx+c=0.x x(其中b2﹣4ac≥0).【答案】12【解析】试题分析:应用配方法解一元二次方程,要把左边配成完全平方式,右边化为常数.考点:解一元二次方程-配方法.归纳 3:一元二次方程的根的判别式基础知识归纳:一元二次方程的根的判别式对于一元二次方程ax2+bx+c=0(a≠0):(1)b2-4ac>0⇔方程有两个不相等的实数根;(2)b2-4ac=0⇔方程有两个的实数根;(3)b2-4ac<0⇔方程没有实数根.基本方法归纳:若只是判断方程解得情况则根据一元二次方程的根的判别式判断即可.注意问题归纳:一元二次方程的根的判别式应用时必须满足a≠0;一元二次方程有解分两种情况:1、有两个相等的实数根;2、有两个不相等的实数根.【例3】下列方程没有实数根的是()A.x2+4x=10 B.3x2+8x-3=0C.x2-2x+3=0 D.(x-2)(x-3)=12【答案】C.【解析】试题分析:A、方程变形为:x2+4x-10=0,△=42-4×1×(-10)=56>0,所以方程有两个不相等的实数根,故A选项不符合题意;B、△=82-4×3×(-3)=100>0,所以方程有两个不相等的实数根,故B选项不符合题意;C、△=(-2)2-4×1×3=-8<0,所以方程没有实数根,故C选项符合题意;D、方程变形为:x2-5x-6=0,△=52-4×1×(-6)=49>0,所以方程有两个不相等的实数根,故D选项不符合题意.故选C.考点:根的判别式.归纳 4:根与系数的关系基础知识归纳:一元二次方程的根与系数的关系若一元二次方程ax2+bx+c=0(a≠0)的两根分别为x1,x2,则有x1+x2=ba,x1x2=ca.基本方法归纳:一元二次方程问题中,出现方程的解得和与积时常运用根与系数的关系.注意问题归纳:运用根与系数的关系时需满足:1、方程有解;2、a≠0.【例4】若α、β是一元二次方程x2+2x-6=0的两根,则α2+β2=()A. -8B. 32C. 16D. 40【答案】C.考点:根与系数的关系.归纳 5:一元二次方程的应用基础知识归纳:1、一元二次方程的应用1. 列一元二次方程解应用题的步骤和列一元一次方程(组)解应用题的步骤相同,即审、设、列、解、验答五步.2. 列一元二次方程解应用题中,经济类和面积类问题是常考类型,解决这些问题应掌握以下内容:(1)增长率等量关系:A.增长率=×100%;B.设a为原来量,m为平均增长率,n为增长次数,b为增长后的量,则a(1+m)n=b;当m为平均下降率,n 为下降次数,b为下降后的量时,则有a(1-m)n=b.(2)利润等量关系:A.利润=售价-成本;B.利润率=利润成本×100%.(3)面积问题3、解应用题的书写格式:设→根据题意→解这个方程→答.基本方法归纳:解题时先理解题意找到等量关系列出方程再解方程最后检验即可.注意问题归纳:找对等量关系最后一定要检验.【例5】如图,某小区规划在一个长30m、宽20m的长方形ABCD上修建三条同样宽的通道,使其中两条与AB平行,另一条与AD平行,其余部分种花草。

2013年中考数学专题复习第8讲:一元二次方程及应用(含答案)

2013年中考数学专题复习第8讲:一元二次方程及应用(含答案)

2013年中考数学专题复习第八讲:一元二次方程及应用【基础知识回顾】一、一元二次方程的定义:1、一元二次方程:含有 个未知数,并且未知数最 方程2、一元二次方程的一般形式: 其中二次项是 一次项是 , 是常数项【名师提醒:1、在一元二次方程的一般形式要特别注意强调a ≠o 这一条件2、将一元二次方程化为一般形式时要按二次项、一次项、常数项排列,并一般首项为正】二、一元二次方程的常用解法:1、直接开平方法:如果aX 2 =b 则X 2 = X 1= X 2=2、配方法:解法步骤:1、化二次项系数为 即方程两边都 二次项系数 2、移项:把 项移到方程的 边3、配方:方程两边都加上 把左边配成完全平方的形式4、解方程:若方程右边是非负数,则可用直接开平方法解方程3、公式法:如果方程aX 2 +bx +c =0(a ±0) 满足b 2-4ac ≥0,则方程的求根公式为4、因式分解法:一元二次方程化为一般形式式,如果左边分解因式,即产生A .B =0的形式,则可将原方程化为两个 方程,即 从而方程的两根【名师提醒:一元二次方程的四种解法应根据方程的特点灵活选用,较常用到的是 法和 法】三、一元二次方程根的判别式关于X 的一元二次方程aX 2 +bx +c =0(a ±0)根的情况由 决定,我们把它叫做一元二次方程根的判别式,一般用符号 表示 ①当 时,方程有两个不等的实数根 ②当 时,方程看两个相等的实数根 ③当 时,方程没有实数根【名师提醒:在使用根的判别式解决问题时,如果二次项系数中含有字母一定要保证二次项系数 】方程有两个实数跟,则一、 一元二次方程根与系数的关系:关于X 的一元二次方程aX 2 +bx +c =0(a ±0)有两个根分别为X 1X 2则X 1+X 2 = X 2 =二、 一元二次方程的应用:解法步骤同一元一次方程一样,仍按照审、设、列、解、验、答六步进行 常见题型1、 增长率问题:连续两率增长或降低的百分数Xa (1+X )2=b2、 利润问题:总利润= X 或利润 —3、 几个图形的面积、体积问题:按面积的计算公式列方程【名师提醒:因为通常情况下一元二次方程有两个根,所以解一元二次方程的应用题一定要验根,检验结果是否符合实际问题或是否满足题目中隐含的条件】【重点考点例析】考点一:一元二次方程的有关概念(意义、一般形式、根的概念等) 例1 (2012•兰州)下列方程中是关于x 的一元二次方程的是( ) A .x 2+21x=0 B .ax 2+bx +c =0 C .(x -1)(x +2)=1 D .3x 2-2xy -5y 2=0 思路分析:一元二次方程必须满足四个条件: (1)未知数的最高次数是2; (2)二次项系数不为0; (3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案. 解:A 、原方程为分式方程;故本选项错误;B 、当a =0时,即ax 2+bx +c =0的二次项系数是0时,该方程就不是一元二次方程;故本选项错误;C 、由原方程,得x 2+x -3=0,符合一元二次方程的要求;故本选项正确;D 、方程3x 2-2xy -5y 2=0中含有两个未知数;故本选项错误. 故选C .点评:本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.对应训练1.(2012•惠山区)一元二次方程(a+1)x2-ax+a2-1=0的一个根为0,则a= .解:∵一元二次方程(a+1)x2-ax+a2-1=0的一个根为0,∴a+1≠0且a2-1=0,∴a=1.故答案为1.点评:本题考查了一元二次方程的定义:含一个未知数,并且未知数的最高次数为2的整式方程叫一元二次方程,其一般式为ax2+bx+c=0(a≠0).也考查了一元二次方程的解的定义.考点二:一元二次方程的解法例2 (2012•安徽)解方程:x2-2x=2x+1.思路分析:先移项,把2x移到等号的左边,再合并同类项,最后配方,方程的左右两边同时加上一次项系数一半的平方,左边就是完全平方式,右边就是常数,然后利用平方根的定义即可求解.解:∵x2-2x=2x+1,∴x2-4x=1,∴x2-4x+4=1+4,(x-2)2=5,∴x-2=±5,∴x1=2+5,x2=2-5.点评:此题考查了配方法解一元二次方程,配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方;(4)选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.例3 (2012•黔西南州)三角形的两边长分别为2和6,第三边是方程x2-10x+21=0的解,则第三边的长为()A.7 B.3 C.7或3 D.无法确定思路分析:将已知的方程x2-10x+21=0左边分解因式,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程,求出一次方程的解得到原方程的解为3或7,利用三角形的两边之和大于第三边进行判断,得到满足题意的第三边的长.解:x2-10x+21=0,因式分解得:(x-3)(x-7)=0,解得:x1=3,x2=7,∵三角形的第三边是x2-10x+21=0的解,∴三角形的第三边为3或7,当三角形第三边为3时,2+3<6,不能构成三角形,舍去;当三角形第三边为7时,三角形三边分别为2,6,7,能构成三角形,则第三边的长为7.故选A点评:此题考查了利用因式分解法求一元二次方程的解,以及三角形的边角关系,利用因式分解法解方程时,首先将方程右边化为0,左边分解因式,然后利用两数相乘积为0,两因式中至少有一个为0转化两个一次方程来求解.对应训练2.(2012•台湾)若一元二次方程式x2-2x-3599=0的两根为a、b,且a>b,则2a-b之值为何?()A.-57 B.63 C.179 D.181解:x2-2x-3599=0,移项得:x2-2x=3599,x2-2x+1=3599+1,即(x-1)2=3600,x-1=60,x-1=-60,解得:x=61,x=-59,∵一元二次方程式x2-2x-3599=0的两根为a、b,且a>b,∴a=61,b=-59,∴2a-b=2×61-(-59)=181,故选D.3.(2012•南充)方程x(x-2)+x-2=0的解是()A.2 B.-2,1 C.-1 D.2,-1答案:D考点三:根的判别式的运用例3 (2012•襄阳)如果关于x的一元二次方程kx2-21k x+1=0有两个不相等的实数根,那么k的取值范围是()A.k<12B.k<12且k≠0 C.-12≤k<12D.-12≤k<12且k≠0思路分析:根据方程有两个不相等的实数根,则△>0,由此建立关于k的不等式,然后就可以求出k的取值范围.解:由题意知:2k+1≥0,k≠0,△=2k+1-4k>0,∴-12≤k<12且k≠0.故选D.点评:此题考查了一元二次方程根的判别式,一元二次方程根的判别式△=b2-4ac.一元二次方程根的情况与判别式△的关系为:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.例4 (2012•绵阳)已知关于x的方程x2-(m+2)x+(2m-1)=0.(1)求证:方程恒有两个不相等的实数根;(2)若此方程的一个根是1,请求出方程的另一个根,并求以此两根为边长的直角三角形的周长.思路分析:(1)根据关于x的方程x2-(m+2)x+(2m-1)=0的根的判别式的符号来证明结论;(2)根据一元二次方程的解的定义求得m值,然后由根与系数的关系求得方程的另一根.分类讨论:①当该直角三角形的两直角边是1、3时,由勾股定理得斜边的长度为:10;②当该直角三角形的直角边和斜边分别是1、3时,由勾股定理得该直角三角形的另一直角边为22;再根据三角形的周长公式进行计算.解:(1)证明:∵△=(m+2)2-4(2m-1)=(m-2)2+4,∴在实数范围内,m无论取何值,(m-2)2+4≥4,即△≥4,∴关于x的方程x2-(m+2)x+(2m-1)=0恒有两个不相等的实数根;(2)根据题意,得12-1×(m+2)+(2m-1)=0,解得,m=2,则方程的另一根为:3;①当该直角三角形的两直角边是1、3时,由勾股定理得斜边的长度为:10;该直角三角形的周长为1+3+10=4+10;②当该直角三角形的直角边和斜边分别是1、3时,由勾股定理得该直角三角形的另一直角边为22;则该直角三角形的周长为1+3+210=4+210.点评:本题综合考查了勾股定理、根的判别式、一元二次方程解的定义.解答(2)时,采用了“分类讨论”的数学思想.对应训练3.(2012•桂林)关于x的方程x2-2x+k=0有两个不相等的实数根,则k的取值范围是()A.k<1 B.k>1 C.k<-1 D.k>-1答案:A.4.(2012•珠海)已知关于x的一元二次方程x2+2x+m=0.(1)当m=3时,判断方程的根的情况;(2)当m=-3时,求方程的根.解:(1)∵当m=3时,△=b2-4ac=22-4×3=-8<0,∴原方程无实数根;(2)当m=-3时,原方程变为x2+2x-3=0,∵(x-1)(x+3)=0,∴x-1=0,x+3=0,∴x1=1,x2=-3.考点四:一元二次方程的应用例5 (2012•南京)某汽车销售公司6月份销售某厂家的汽车,在一定范围内,每部汽车的进价与销售量有如下关系:若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售出1部,所有售出的汽车的进价均降低0.1万元/部,月底厂家根据销售量一次性返利给销售公司,销售量在10部以内(含10部),每部返利0.5万元;销售量在10部以上,每部返利1万元.(1)若该公司当月售出3部汽车,则每部汽车的进价为万元;(2)如果汽车的售价为28万元/部,该公司计划当月返利12万元,那么需要售出多少部汽车?(盈利=销售利润+返利)思路分析:(1)根据若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售出1部,所有售出的汽车的进价均降低0.1万元/部,得出该公司当月售出3部汽车时,则每部汽车的进价为:27-0.1×2,即可得出答案;(2)利用设需要售出x部汽车,由题意可知,每部汽车的销售利润,根据当0≤x≤10,以及当x>10时,分别讨论得出即可.解:(1)∵若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售出1部,所有售出的汽车的进价均降低0.1万元/部,∴若该公司当月售出3部汽车,则每部汽车的进价为:27-0.1×2=26.8,故答案为:26.8;(2)设需要售出x部汽车,由题意可知,每部汽车的销售利润为:28-[27-0.1(x-1)]=(0.1x+0.9)(万元),当0≤x≤10,根据题意,得x•(0.1x+0.9)+0.5x=12,整理,得x2+14x-120=0,解这个方程,得x1=-20(不合题意,舍去),x2=6,当x>10时,根据题意,得x•(0.1x+0.9)+x=12,整理,得x2+19x-120=0,解这个方程,得x1=-24(不合题意,舍去),x2=5,因为5<10,所以x2=5舍去,答:需要售出6部汽车.点评:本题考查了一元二次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系并进行分段讨论是解题关键.对应训练5.(2012•乐山)菜农李伟种植的某蔬菜计划以每千克5元的单价对外批发销售,由于部分菜农盲目扩大种植,造成该蔬菜滞销.李伟为了加快销售,减少损失,对价格经过两次下调后,以每千克3.2元的单价对外批发销售.(1)求平均每次下调的百分率;(2)小华准备到李伟处购买5吨该蔬菜,因数量多,李伟决定再给予两种优惠方案以供选择:方案一:打九折销售;方案二:不打折,每吨优惠现金200元.试问小华选择哪种方案更优惠,请说明理由.5.解(1)设平均每次下调的百分率为x.由题意,得5(1-x)2=3.2.解这个方程,得x1=0.2,x2=1.8.因为降价的百分率不可能大于1,所以x2=1.8不符合题意,符合题目要求的是x1=0.2=20%.答:平均每次下调的百分率是20%.(2)小华选择方案一购买更优惠.理由:方案一所需费用为:3.2×0.9×5000=14400(元),方案二所需费用为:3.2×5000-200×5=15000(元).∵14400<15000,∴小华选择方案一购买更优惠.【聚焦山东中考】一、选择题1.(2012•日照)已知关于x的一元二次方程(k-2)2x2+(2k+1)x+1=0有两个不相等的实数根,则k的取值范围是()A.k>43且k≠2B.k≥43且k≠2C.k>34且k≠2D.k≥34且k≠2解:∵方程为一元二次方程,∴k-2≠0,即k≠2,∵方程有两个不相等的实数根,∴△>0,∴(2k+1)2-4(k-2)2>0,∴(2k+1-2k+4)(2k+1+2k-4)>0,∴5(4k-3)>0,k>34,故k>34且k≠2.故选C.3.(2012•潍坊)如图是某月的日历表,在此日历表上可以用一个矩形圈出3×3个位置相邻的9个数(如6,7,8,13,14,15,20,21,22).若圈出的9个数中,最大数与最小数的积为192,则这9个数的和为()A.32 B.126 C.135 D.144解:根据图象可以得出,圈出的9个数,最大数与最小数的差为16,设最小数为:x,则最大数为x+16,根据题意得出:x(x+16)=192,解得:x1=8,x2=-24,(不合题意舍去),故最小的三个数为:8,9,10,下面一行的数字分别比上面三个数大7,即为:15,16,17,第3行三个数,比上一行三个数分别大7,即为:22,23,24,故这9个数的和为:8+9+10+15+16+17+22+23+24=144.故选:D.5.(2012•日照)已知关于x的一元二次方程(k﹣2)2x2+(2k+1)x+1=0有两个不相等的实数根,则k的取值范围是()A.k>且k≠2B.k≥且k≠2C.k>且k≠2D.k≥且k≠2考点:根的判别式;一元二次方程的定义。

专题08一元二次方程及其应用(知识点总结例题讲解)-2021届中考数学一轮复习

专题08一元二次方程及其应用(知识点总结例题讲解)-2021届中考数学一轮复习

中考数学专题 08 一元二次方程及其应用(知识点总结+例题讲解)一、一元二次方程有关概念:1.一元二次方程定义:只含有一个未知数(一元),并且未知数的最高次数是 2(二次)的整式方程,叫做一元二次方程;2.一般形式:ax2+bx+c=0;(其中 a、b、c 为常数,a≠0)(1)其中 ax2、bx、c 分别叫做二次项、一次项和常数项;(2)a、b 分别称为二次项系数和一次项系数;(3)二次项系数:a≠0;(当 a=0 时,不含有二次项,即不是一元二次方程)3.一元二次方程必须具备三个条件:(1)必须是整式方程(等号两边都是整式);(2)必须只含有 1 个未知数;(3)所含未知数的最高次数是 2;4.一元二次方程的解:使方程左右两边相等的未知数的值就是这个一元二次方程的解;一元二次方程的解也叫做一元二次方程的根。

【例题1】(2020 秋•奉贤区期末)下列各方程中,一定是一元二次方程的是()A.1 + 1 −2 = 0 B.ax2+bx+c=0x2 xC.(x﹣2)2=2(x﹣2)D.x2+2y=3【答案】C【解析】利用一元二次方程定义进行解答即可.解:A、含有分式,不是一元二次方程,故此选项不符合题意;B、当 a=0 时,不是一元二次方程,故此选项不符合题意;C、是一元二次方程,故此选项符合题意;= D 、含有两个未知数,不是一元二次方程,故此选项不符合题意;故选:C .【变式练习 1】(2020 秋•丹阳市期末)关于 x 的方程(m+1)x 2+2mx ﹣3=0 是一元二次方程,则( )A .m≠±1B .m =1C .m≠1D .m≠﹣1【答案】D【解析】根据一元二次方程定义可得 m+1≠0,再解可得答案. 解:由题意得:m+1≠0,解得:m≠﹣1;故选:D .【例题 2】(2020 秋•郫都区期末)若 x =m 是方程 x 2+x ﹣1=0 的根,则 m 2+m+2020 的值为()A .2022B .2021C .2019D .2018【答案】B【解析】把 x =m 代入已知方程,可以求得 m 2+m =1,然后整体代入所求的代数式求值即可.解:∵x=m 是方程 x 2+x ﹣1=0 的根,∴m 2+m ﹣1=0,∴m 2+m =1,∴m 2+m+2020=1+2020=2021.故选:B .【变式练习 2】设 m 是方程 x 2﹣3x+1=0 的一个实数根,则m 4+m 2+18 . m 2【答案】8【解析】利用一元二次方程的解的意义得到 m 2﹣3m+1=0,两边除以 m 得到 m + 1=3,m再把原式变形得到原式=m 2+1+ 1m 2=(m + 1 )2﹣2+1,然后利用整体代入的方法计算. m解:∵m 是方程 x 2﹣3x+1=0 的一个实数根,∴m 2﹣3m+1=0,∴m + 1 =3,∴原式=m 2+1+ 1 =(m + 1)2﹣2+1=9﹣2+1=8.mm 2mq b 4ac ≥0 二、一元二次方程的解法:1.解一元二次方程的基本思想:转化思想,即把一元二次方程转化为一元一次方程来求解;2.常用方法:(1)直接开平方法:适用形式:x 2=p(p≥0),(x+n)2=p 或(mx+n)2=p(p≥0)的方程;(2)配方法:套用公式 a 2+2ab+b 2=(a+b)2;a 2-2ab+b 2=(a-b)2将一元二次方程ax 2+bx+c=0(a≠0)配方为(x+m)2=n 的形式,再用直接开平方法求解; 配方法解一元二次方程的一般步骤是: ①将已知方程化为一般形式;②化二次项系数为 1;③常数项移到右边;④方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式; 变形为(x+p)2=q 的形式:如果 q≥0,方程的根是 x=-p± ;如果 q <0,方程无实根;(3)公式法:利用求根公式 x = -b ±∆ = 2 -)解一元二次方程 ax 2+bx+c=0(a≠0); 2a(4)因式分解法:将一元二次方程通过分解因式变为(x-a)(x-b)=0 的形式;进而得到 x-a=0 或 x-b=0 来求解; 3.方法选择技巧:(1)若一元二次方程缺少常数项,且方程的右边为 0,可考虑用因式分解法求解;(2)若一元二次方程缺少一次项,可考虑用因式分解法或直接开平方法求解;(3)若一元二次方程的二次项系数为 1,且一次项的系数是偶数时或常数项非常大时,可考虑用配方法求解;(4)若用以上三种方法都不容易求解时,可考虑用公式法求解。

中考《一元二次方程》经典例题及解析

中考《一元二次方程》经典例题及解析

一元二次方程一、一元二次方程的概念1.一元二次方程:只含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程.2.一般形式:20ax bx c ++=(其中,,a b c 为常数,0a ≠),其中2,,ax bx c 分别叫做二次项、一次项和常数项,,a b 分别称为二次项系数和一次项系数.注意:(1)在一元二次方程的一般形式中要注意0a ≠,因为当0a =时,不含有二次项,即不是一元二次方程;(2)一元二次方程必须具备三个条件:①必须是整式方程;②必须只含有一个未知数;③所含未知数的最高次数是2.二、一元二次方程的解法1.直接开平方法:适合于2()()0x a b b ±=≥或22()()ax b cx d ±=±形式的方程.2.配方法:(1)化二次项系数为1;(2)移项,使方程左边只含有二次项和一次项,右边为常数项; (3)方程两边同时加上一次项系数一半的平方;(4)把方程整理成2()()0x a b b ±=≥的形式; (5)运用直接开平方法解方程.3.公式法:(1)把方程化为一般形式,即20ax bx c ++=;(2)确定,,a b c 的值;(3)求出24b ac -的值;(4)将,,a b c 的值代入x =即可. 4.因式分解法:基本思想是把方程化成()()0ax b cx d ++=的形式,可得0ax b +=或0cx d +=. 三、一元二次方程根的判别式及根与系数关系1.根的判别式:一元二次方程2(0)0ax bx c a ++=≠是否有实数根,由24b ac -的符号来确定,我们把24b ac -叫做一元二次方程根的判别式.2.一元二次方程根的情况与判别式的关系(1)当240b ac ->时,方程2(0)0ax bx c a ++=≠有两个不相等的实数根; (2)当240b ac -=时,方程2(0)0ax bx c a ++=≠有1个(两个相等的)实数根; (3)当240b ac -<时,方程2(0)0ax bx c a ++=≠没有实数根.3.根与系数关系:对于一元二次方程20ax bx c ++=(其中,,a b c 为常数,0a ≠),设其两根分别为1x ,2x ,则12b x x a +=-,12c x x a=. 四、利用一元二次方程解决实际问题列一元二次方程解应用题步骤和列一元一次方程(组)解应用题步骤一样,即审、设、列、解、验、答六步.列一元二次方程解应用题,经济类和面积类问题是常考内容.1.增长率等量关系(1)增长率=增长量÷基础量.(2)设为原当m 为平均下降率时,则有(1n a m -2.利润等量关系:(1)利润=售价-成本3.面积问题(1)类型1:如图1所示的矩形ABCD ()(22)a x b x --.(2)类型2:如图2所示的矩形ABCD (3)类型3:如图3所示的矩形ABCD 为()()a x b x --.图1 4. 碰面问题(循环问题)(1)重叠类型(双循环):n 支球队互相之∵1支球队要和剩下的(n -1)支球队比赛∵存在n 支这样的球队,∴比赛场次为:∵A 与B 比赛和B 与A 比赛是同一场比赛∴m =( −1)(2)不重叠类型(单循环):n 支球队,∵1支球队要和剩下的(n -1)支球队比赛∵存在n 支这样的球队,∴比赛场次为:∵A 与B 比赛在A 的主场,B 与A ∴m = ( −1)经典1.若关于x 的方程220x ax +-=有一个【答案】1【分析】根据一元二次方程的解的定义,【解析】解:把x=1代入方程2x ax +=a 为原来量,m 为平均增长率,n 为增长次数,b 为增长)b =.成本.(2)利润率=利润成本×100%. BCD 长为a ,宽为b ,空白“回形”道路的宽为x ,CD 长为a ,宽为b ,阴影道路的宽为x ,则空白部分的BCD 长为a ,宽为b ,阴影道路的宽为x ,则4块空 图2 图互相之间都要打一场比赛,总共比赛场次为m 。

一元二次方程的应用

一元二次方程的应用

一元二次方程的应用一元二次方程是数学中的基本内容之一,它在现实生活中有着广泛的应用。

本文将介绍一元二次方程的定义、特性以及其在不同领域的实际应用。

一、一元二次方程的定义与特性一元二次方程是指形式为ax^2 + bx + c = 0 的方程,其中a、b、c为已知系数,x为未知数。

一元二次方程的最高次数为2,且a≠0。

一元二次方程的解可以通过求根公式得到,即x = (-b ± √(b^2 -4ac))/(2a)。

如果方程的判别式D=b^2 - 4ac 大于0,则方程有两个不相等的实根;如果D等于0,则方程有两个相等的实根;如果D小于0,则方程无实根。

二、一元二次方程在不同领域的应用1. 物理学中的应用一元二次方程在物理学中有很多应用,例如在运动学中,当物体做匀加速直线运动时,可以利用一元二次方程来描述物体的位置和时间的关系。

根据运动方程,可以建立关于位移x和时间t的方程,从而求解物体的运动参数。

2. 经济学中的应用经济学中的许多问题可以转化为一元二次方程的求解问题,例如,在市场需求和供给的关系中,可以建立一元二次方程来描述价格和数量的关系,从而帮助经济学家研究市场的走势。

3. 工程学中的应用工程学中也广泛应用了一元二次方程,例如在桥梁设计中,可以通过建立一元二次方程来分析桥梁的强度和荷载的关系;在电路设计中,可以使用一元二次方程来分析电压和电流的关系。

4. 生物学中的应用生物学研究中,有一些生长、分化等现象可以用一元二次方程进行建模。

例如,细胞生长的速率与时间的关系可以用一元二次方程来描述。

5. 计算机科学中的应用在计算机科学中,运用一元二次方程可以解决图像处理、模拟和优化等问题。

例如,在图像处理中,一元二次方程被广泛应用于图像变形、旋转和缩放等操作。

三、结论一元二次方程是一种重要的数学工具,在实际生活和各个学科领域都有广泛的应用。

通过理解一元二次方程的定义和特性,并将其应用于实际问题中,可以帮助我们更好地分析和解决各种复杂的情况。

八年级数学一元二次方程

八年级数学一元二次方程

简要的一元二次方程1. 一元二次方程的概念:(1)注意一元二次方程定义中的三个条件:有一个未知数,含未知数的最高次是2,整式方程,是判断一个方程是否是一元二次方程的依据。

(2)强调:要先把一元二次方程化为一般形式ax 2+bx +c =0(a ≠0),才能确定a 、b 、c 的值。

2. 一元二次方程的解法: (1)直接开平方法:()它是以平方根的概念为基础,适合于形如,类型的方程。

ax b c a c +=≠≥200()(2)配方法:()先把二次项系数化为,再对进行配方,即在方程两边同时加上一次项系数一半的平方,就能配出一个含有未知数的一次式的完全平方式,变形为:的形式,再直接开平方解方程。

1x px p x m n n 22220+⎛⎝ ⎫⎭⎪+=≥() (3)公式法:用配方法推导求根公式,由此产生了第三种解法公式法,它是解一元二次方程的主要方法,是解一元二次方程的通法。

关键是把方程整理成一元二次方程的一般形式,确认、、的值(特别要注意正、负号),求出的值(以便决定有无必要代入求根公式),若,则代入求根公式。

a b c b ac b ac x b b aca∆=--≥=-±-22244042(4)因式分解法:适用于方程左边易于分解,而右边是零的方程。

我们在解一元二次方程时,要注意根据方程的特点,选择适当的解法,使解题过程简捷些。

一般先考虑直接开平方法,再考虑因式分解法,最后考虑公式法。

对于二次项系数含有字母系数的方程,要注意分类讨论。

3. 一元二次方程根的判别式()来判断。

即根的情况可以用判别式一元二次方程∆-≠=++ac b a c bx ax 400 22 当时,方程有两个不相等的实数根。

b ac 240-> 当时,方程有两个相等的实数根。

b ac 240-=当时,方程没有实数根。

b ac 240-<根的判别式△=b 2-4ac 的意义,在于不解方程可以判别根的情况,还可以根据根的情况确定未知系数的取值范围。

数学九上一元二次方程

数学九上一元二次方程

数学九上一元二次方程一元二次方程是数学九上的重要内容之一,它在数学中具有广泛的应用。

本文将围绕标题展开,详细介绍一元二次方程的定义、性质、解法以及实际应用。

一、一元二次方程的定义一元二次方程是指形如ax²+bx+c=0的方程,其中a、b、c为已知常数,且a≠0。

其中,x为未知数,²表示x的平方。

二、一元二次方程的性质1. 一元二次方程的次数为2,即方程中最高次项的指数为2。

2. 一元二次方程的解可以是实数或复数。

3. 一元二次方程的图像是抛物线,开口方向由a的正负决定。

4. 一元二次方程的解的个数与判别式Δ=b²-4ac的正负有关。

三、一元二次方程的解法1. 因式分解法:当一元二次方程可以因式分解时,可以通过因式分解的方法求解。

例如,对于方程x²-5x+6=0,可以因式分解为(x-2)(x-3)=0,从而得到x=2或x=3。

2. 公式法:一元二次方程的解可以通过求根公式得到。

求根公式为x=(-b±√Δ)/(2a),其中Δ=b²-4ac为判别式。

根据判别式的正负,可以得到方程的解的情况。

a) 当Δ>0时,方程有两个不相等的实数解。

b) 当Δ=0时,方程有两个相等的实数解。

c) 当Δ<0时,方程没有实数解,但可以有复数解。

四、一元二次方程的实际应用一元二次方程在实际生活中有广泛的应用,以下列举几个常见的应用场景:1. 物体自由落体运动:当物体自由落体时,其高度与时间之间的关系可以用一元二次方程来表示。

例如,一个物体从高度h0自由落下,经过t秒后的高度h可以用方程h=h0-1/2gt²来表示,其中g为重力加速度。

2. 抛体运动:抛体运动是指物体在一定初速度和抛射角度下的运动轨迹。

抛体运动的轨迹可以用一元二次方程来表示。

例如,一个物体以初速度v0和抛射角度θ抛出,其水平方向的位移x和垂直方向的位移y可以分别用方程x=v0cosθt和y=v0sinθt-1/2gt²来表示。

一元二次方程的概念及解法

一元二次方程的概念及解法

一元二次方程的概念及解法要点一、一元二次方程的概念1.一元二次方程只含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程. 2.一元二次方程的一般形式()ax bx c a 2++=0≠0,a 为二次项系数,b 为一次项系数,c 为常数项.3.要点归纳(1)要判断一个方程是一元二次方程,必须符合以下三个标准:①一元二次方程是整式方程,即方程的两边都是关于未知数的整式. ②一元二次方程是一元方程,即方程中只含有一个未知数. ③一元二次方程是二次方程,也就是方程中未知数的最高次数是2.(2)任何一个关于x 的一元二次方程经过整理都可以化为一般式ax bx c 2++=0 (a ≠0).要特别注意对于关于x 的方程ax bx c 2++=0.当a ≠0时,方程是一元二次方程;当a =0且b ≠0时,方程是一元一次方程.(3)关于x 的一元二次方程式()ax bx c a 2++=0≠0的项与各项的系数.ax 2为二次项,其系数为a ;bx 为一次项,其系数为b ;c 为常数项.【例1】下面关于x 的方程中:①ax bx c 2++=0;②()()x x 223−9−+1=1;③x x21++5=0;④x x 23−2+5−6=0;⑤||x x 2−3−3=0;⑥x kx 2++3=0(k 为常数)是一元二次方程_________. 【解析】(1)②⑥.【变式1】判断下列各式哪些是一元二次方程. ①;②;③;④; ⑤ ;⑥ ;⑦ .【答案】②③⑥.【解析】①不是方程;④不是整式方程;⑤ 含有2个未知数,不是一元方程;⑦ 化简后没有二次项,不是2次方程. ②③⑥符合一元二次方程的定义.【例2】关于x 的方程2x 2−(a +1)x =x (x −1)−1的一次项系数是-1,则a .【答案】原方程化简为x 2-ax+1=0,则-a=-1,a=1.21x x ++2960x x −=2102y =215402x x −+=2230x xy y +−=232y =2(1)(1)x x x +−=21x x ++215402x x −+=2230x xy y +−=2(1)(1)x x x +−=【变式2-1】若一元二次方程()()m x m x m 222−2+3+15+−4=0的常数项为零,则m 的值为_________.由题意可知,m 2−4=0,m −2≠0,故m =−2【变式2-2】若a b a b x x 2+−−3+1=0是关于x 的一元二次方程,求a 、b 的值.分以下几种情况考虑: ①a b 2+=2,a b −=2,此时a 4=3,b 2=−3;②a b 2+=2,a b −=1,此时a =1,b =0; ③a b 2+=1,a b −=2,此时a =1,b =−1;【例3】(1)已知关于x 的一元二次方程()m x x m 22−1+2+−1=0有一个根是x =0,则m 的值为_______.(1)由于为一元二次方程,∴m −1≠0,而x =0代回方程得到:m 2−1=0.综上可知m =−1.(2)x=1是x 2−ax +7=0的根,则a= .【答案】当x=1时,1-a+7=0,解得a=8.(3)已知关于x 的一元二次方程 有一个根是0,求m 的值. 由题意得【变式3-1】如果关于x 的一元二次方程x 2+px+q =0的两根分别为x 1=2,x 2=1,那么p ,q 的值分别是( ) A .-3,2 B .3,-2 C .2,-3 D .2,3 【答案】A ;【解析】∵ x =2是方程x 2+px+q =0的根,∴ 22+2p+q =0,即2p+q =-4 ①同理,12+p+q =0,即p+q =-1 ②联立①,②得 解之得:【变式3-2】已知a 是一元二次方程x x 2−2−1=0的根,求下列各式的值:①a a 1−;②a a221+;③a a a 22−3−3++52. (2)①由a a 2−2−1=0知,a ≠0,故a a 1−2−=0,即a a1−=2;②a a a a 22211⎛⎫+=−+2=6 ⎪⎝⎭;③由于a a 2=2+1,代入所求得,原式a a a 2+1−3=2+1−3++5=52. 22(1)210m x x m −++−=24,1,p q p q +=−⎧⎨+=−⎩3,2.p q =−⎧⎨=⎩【例4】关于x 的方程2()0a x m b ++=的解是12x =−,21x =,(a ,m ,b 均为常数,0a ≠),则方程2(2)0a x m b +++=的解是__________.(3)14x =−,21x =−.【变式4-1】关于x 的方程a (x+m )2+n=0(a ,m ,n 均为常数,m≠0)的解是x 1=﹣2,x 2=3,则方程a (x+m ﹣5)2+n=0的解是( )A .x 1=﹣2,x 2=3B .x 1=﹣7,x 2=﹣2C .x 1=3,x 2=﹣2D .x 1=3,x 2=8 【答案】D ;【思路点拨】把后面一个方程中的x ﹣5看作整体,相当于前面一个方程中的x 求解.【解析】∵关于x 的方程a (x+m )2+n=0的解是x 1=﹣2,x 2=3,(m ,n ,p 均为常数,m≠0), ∴方程a (x+m ﹣5)2+n=0变形为a[(x ﹣5)+m]2+n=0,即此方程中x ﹣5=﹣2或x ﹣5=3, 解得x=3或x=8.故选D .要点二、一元二次方程的解法1. 直接开平方法:适用于解形如()(),≥ax b c a c 2+=≠00的一元二次方程. 2. 配方法:解形如()ax bx c a 2++=0≠0的一元二次方程,运用配方法解一元二次方程的一般步骤是: ① 将二次项系数化为1. ② 将常数项右移.③配方(两边同时加上一次项系数一半的平方). ④化成()x m n 2+=的形式.⑤若≥n 0,直接开平方得出方程的解.【例5】解方程:(1)()x x x 22−6+9=5−2 (2)()()x x 224−2−3−1=0【解析】(1)()()x x 22−3=5−2,()x x −3=±5−2,x 1=2,x 28=3.(2)()()x x 224−2=3−1,()()x x 2−2=±3−1,x 1=−3,x 2=1【变式5】解方程: (1) 3x+2)2=4(x ﹣1)2;(2)(x-2)2=25.【答案】解:(1) 3x+2=±2(x ﹣1),∴3x+2=2x ﹣2或3x+2=﹣2x+2, ∴x 1=﹣4;x 2=0.(2) (x-2)=±5 ∴x-2=5或x-2=-5 ∴x 1=7,x 2=-3.【例6】用配方法解方程:(1)x x 2−4−1=0(2)x x 22−8−3=0(3)x x 24−6−4=0【解析】(1)x x 2−4−1=0,()x 2−2=5,x =2±,x 1=2x 2=2;(2)x x 22−8−3=0,()x 22−2=11,x =2,x 1=2x 2=2; (3)x x 24−6−4=0,x 2325⎛⎫−= ⎪416⎝⎭,x 1=2,x 11=−2.【变式6】用配方法解方程:(1)2x 2﹣4x ﹣3=0; (2)3x 2﹣12x ﹣3=0. 【思路点拨】方程(1) (2)的的次项系数不是1,必须先化成1,才能配方,这是关键的一步.配方时,方程左右两边同时加上一次项系数一半的平方,目的是把方程化为的形式,然后用直接开平方法求解. 【答案与解析】解:(1)∵2x 2﹣4x ﹣3=0,∴,∴,∴x ﹣1=±,∴.(2)3x 2﹣12x ﹣3=0,3x 2﹣12x=3, x 2﹣4x=1, x 2﹣4x+4=1+4,2()(0)mx n P P +=≥(x ﹣2)2=5, x ﹣2=, x 1=2+,x 2=2﹣;(3)2x 2+3=5x (4) 【答案】(3). (4)①当时,此方程有实数解,;②当时,此方程无实数解.3.公式法:将()ax bx c a 2++=0≠0进行配方可以得到:b b ac x a a 222−4⎛⎫+= ⎪24⎝⎭. 当≥b ac 2−40时,两个根为,x 12=b ac 2−4=0时,两根相等为bx x a12−==2;当b ac 2−4<0时,没有实数根.可以用△表示b ac 2−4,△称为根的判别式.20x px q ++=2235x x +=2253x x −=−25322x x −=−2225535()()2424x x −+=−+251()416x −=5144x −=±123,12x x ==20x px q ++=222()()22p px px q ++=−+224()24p p qx −+=240p q −≥12x x ==240p q −<运用公式法解一元二次方程的一般步骤是: ①把方程化为一般形式; ②确定a 、b 、c 的值; ③计算b ac 2−4的值;④若≥b ac 2−40,则代入公式求方程的根; ⑤若b ac 2−4<0,则方程无实数根. 【例7】解方程:(1)()x x 2−5=2+1(2)()x x x x 1⎛⎫6+1+4−3=22+ ⎪2⎝⎭【解析】(1)()x x x x 22−5=2+1⇒−2−7=0,()2=2−4⨯1⨯−7=32△,∴原方程的解为:x 1=1+,x 2=1−(2)()x x x x x x 21⎛⎫6+1+4−3=22+⇒6+−4=0 ⎪2⎝⎭,()△2=1−4⨯6⨯−4=97故,x 12,∴原方程的解为:x 1=,x 2=. 【教师备课提示】这道题主要是想让孩子们练习用公式法去解一元二次方程,牢记解一元二次方程的公式.4.因式分解法:适用于方程一边是零,另一边是一个易于分解的多项式.因式分解法的一般步骤:② 将方程化为一元二次方程的一般形式;③ 把方程的左边分解为两个一次因式的积,方程右边是零; ③令每一个因式分别为零,得到两个一元一次方程; ④解出这两个一元一次方程的解可得到原方程的解.【例8】解方程:(1)22320x x −−= (2)2(21)36x x −=−(3)26x −=−【解析】(1)22320x x −−=,(21)(2)0x x +−=,112x =−,22x =;(2)2(21)36x x −=−,2(21)3(12)x x −=−,2(21)(1)0x x −+=,112x =,21x =−.(3)1x =,2x =. 【教师备课提示】这道题主要是想让孩子们练习用因式分解的方法去解一元二次方程. 【变式8】解方程:(1)﹣3x 2+22x ﹣12=12.(2)3x 2﹣x ﹣4=0【思路点拨】先把方程变形,然后利用因式分解法解方程,注意对于二次项系数的分解. 【答案与解析】解:(1)原式变形得:3x 2﹣22x+24=0,(3x ﹣4)(x ﹣6)=0, 3x ﹣4=0或x ﹣6=0, ∴ x 1=,x 2=6. (2)3x 2﹣x ﹣4=0,分解因式得:(3x ﹣4)(x+1)=0, ∴(3x ﹣4)=0或(x+1)=0 ∴ x 1=,x 2=﹣1;【例9】选择合适的方法求解下列方程:(1)x x 2547−25−572=0(2)x 23=1【解析】(1)方程系数较大,公式法过于麻烦,考虑用因式分解,由于572−547=25,故可以简单分解为:()()x x 547−572+1=0,解为x 1=−1,x 2572=547.(2)公式法解决:()△2=−4⨯3⨯−1=18>0,所以由公式法知x =解为x 1,x 2【课后作业】1.(北京市第十三中学2010-2011九年级数学期中)如果关于x 的方程()a x x 2−1+5−6=0是一元二次方程,则( ) A .a >1 B .a =1 C .a <1 D .a ≠12.如果关于x 的方程()m m x x 2−7−3−+3=0是关于x 的一元二次方程,则m 的值为______.3.关于x 的一元二次方程x ax a 2++=0的一个根是x =3,则a =________.4.若实数a ,b ,c 满足a b c 4−2+=0,则关于x 的一元二次方程()ax bx c a 2++=0≠0一定有一个根_________.5.三角形两边的长是3和4,第三边的长是方程x x 2−12+35=0的根,则该三角形的周长为( ) A .14 B .12 C .12或14 D .以上都不对【解析】1.D ;2.−3;3.9−4;4.x =−2;5.B6.已知a 是方程x x 2+−1=0的根,求a a a 32−−3+1的值.【解析】由题意a a 2+−1=0,∴a a 2=−+1,∴原式()()a a a a a a 22=−+1−−3+1=−2++1=−1.7.解方程:(1)()x 22−4−6=03(2)x x 22−8−198=0 (3)()()x x −5−7=1【解析】(1)1x 1=,x 2=7;(2)x 1=2,x 2=2;(3)()()x x x x 2−5−7=1⇒−12+34=0,△2=12−4⨯1⨯34=8,故,x 1212±==628.解关于x 的方程:(1)x mx m n 222−2+−=0(2)x a ax a 22+3=4−2+1(3)()()a b c x ax a b c 2−++2++−=0【解析】(1)原式可以因式分解为:()()x m n x m n −−−+=0,解为x m n 1=+,x m n 2=−.(2)x a 1=3−1,x a 2=+1.(3)二次项系数中含有字母,所以要加以讨论, ①若a b c −+=0,则原方程成为()ax a b c 2++−=0若a =0,则c b −=0,原方程为x 0+0=0,x 可为一切实数. 若a ≠0,则a b c ax a a−−+−2===−122. ②若a b c −+≠0,则原方程成为[]()()()x a b c x a b c +1−+++−=0,得x 1=−1,c a bx a b c2−−=−+.9.解方程:()()x x x x 2222+−22+=3.【解析】设x x m 22+=,则原方程化为m m 2−2−3=0,即()()m m −3+1=0,代回可得:()()x x x x 222+−32++1=0,即x x 22+−3=0或x x 22++1=0.x x 22+−3=0,可化为()()x x 2+3−1=0,解得x 1=1,x 23=−2;x x 22++1=0,用公式法解决,△2=1−4⨯2⨯1=−7<0,故此方程无实数根.综上方程解为:x 1=1,x 23=−2.。

小学一元二次方程

小学一元二次方程

小学一元二次方程在小学数学教学中,一元二次方程是一个重要的内容。

它不仅在初中高中的数学课程中经常被提及,而且在实际生活中也有广泛的应用。

小学学生学习一元二次方程的意义在于,可以通过学习它来锻炼他们的逻辑思维和解决实际问题的能力。

本文将介绍小学一元二次方程的基础知识,以及如何通过练习来掌握它。

一、一元二次方程的定义一元二次方程,是指形如 ax²+bx+c=0 的代数式,其中 a、b、c 是已知常数,x 是未知数。

其中,a 不等于 0,称为一次项系数;b 称为二次项系数;c 称为常数项。

方程的解是满足式子成立的未知数 x 的值。

当然,并非所有的一元二次方程都有解,下面将详细探讨。

二、一元二次方程的解解一元二次方程的方法有很多,常见的有配方法、公式法、因式分解法等。

下面以配方法为例进行介绍。

1. 配方法使用配方法的前提是方程必须化为完全平方。

具体步骤如下:⑴. 将方程的二次项系数化为 1。

这可以通过将方程两边同时除以一次项系数来实现。

⑵. 将方程的常数项移到方程右边,使等式成为 x²+px=q 的形式。

其中,p 是二次项系数的相反数,q 是常数项的相反数。

⑶. 将左边的 x²+px 配成 (x+0.5p)²的形式,即加上 0.25p²。

⑷. 将方程两边同时加上 0.25p²,得到 (x+0.5p)²=q+0.25p²。

⑸. 开平方,即可解出方程的两个根。

2. 公式法公式法是解一元二次方程最常用的方法之一,根据求根公式可以直接得到方程的两个根。

如果一元二次方程 ax²+bx+c=0 有解,那么它的两个根的求根公式如下:x1 = (-b+√(b²-4ac))/2ax2 = (-b-√(b²-4ac))/2a3. 因式分解法当一元二次方程的三个系数 a、b、c 中有两个是相等的时,可以使用因式分解法,也称为二次完全平方公式。

一元二次方程的像与性质

一元二次方程的像与性质

一元二次方程的像与性质一元二次方程是数学中常见且重要的形式之一,它具有一些独特的性质与像。

本文将就一元二次方程的像以及相关的性质进行探讨。

一元二次方程的一般形式为ax^2 + bx + c = 0,其中a、b、c为已知实数,a ≠ 0。

我们先来了解一下一元二次方程的定义和一些基本概念。

1. 一元二次方程的定义一元二次方程是指在方程中只有一个未知数x,并且该未知数的最高次项系数为2。

这种方程的一般形式如前所述。

2. 一元二次方程的根与解一元二次方程的根是指能够使方程等式成立的未知数值。

解是指找出一元二次方程的根的过程。

根据韦达定理,一元二次方程的解可由以下公式得出:x = (-b ± √(b^2 - 4ac))/(2a)这里的±表示两个解,一个为加号,一个为减号。

了解了一元二次方程的定义和相关概念后,我们来探讨一下一元二次方程的像与性质。

1. 一元二次方程的像一元二次方程的像是指图像在平面坐标系中所呈现的形状。

一元二次方程的像是一个抛物线,可以是开口向上或开口向下的。

当a > 0时,方程y = ax^2 + bx + c的像是开口向上的抛物线。

抛物线的顶点是最小值点,也是方程的最小值。

当a < 0时,方程y = ax^2 + bx + c的像是开口向下的抛物线。

抛物线的顶点是最大值点,也是方程的最大值。

2. 一元二次方程的性质一元二次方程具有一些重要的性质,我们来逐一了解。

性质1:对称性一元二次方程的抛物线具有轴对称性,即关于抛物线的顶点对称。

性质2:判别式一元二次方程的判别式Δ = b^2 - 4ac可以用来求解方程的根的性质。

根据Δ的值,可以得到以下结论:a) 若Δ > 0,则方程有两个不同的实根;b) 若Δ = 0,则方程有两个相等的实根;c) 若Δ < 0,则方程无实根,但可以存在复数根。

性质3:顶点坐标一元二次方程的抛物线的顶点坐标可以通过以下公式求解:x = -b/(2a)y = -(Δ)/(4a)性质4:方程的图像与系数的关系通过调整一元二次方程的系数a、b、c的值,我们可以改变抛物线的开口方向、大小和位置。

六年级下册一元二次方程的意义,公式,定理

六年级下册一元二次方程的意义,公式,定理

六年级下册一元二次方程的意义,公式,定理
一元二次方程的定义:含有一个未知数,未知数的次数最高为2的整式方程叫做一元二次方程。

例如x^2-3x+1=0,但要注意方程要化简之后满足上述条件才行,比如x^2-3x=x^2+1,就不是一元二次方程。

二元一次方程的定义:含有两个未知数,未知项的次数为1的整式方程,例如2x-3y=1。

概念:只含有一个未知数(一元),并且未知数项的最高次数是2(二次)的整式方程叫做一元二次方程。

标准形式为:ax²+bx+c=0(a≠0)。

一元二次方程必须同时满足三个条件:
1.是整式方程,即等号两边都是整式,方程中如果有分母;且未知数在分母上,那么这个方程就是分式方程,不是一元二次方程,方程中如果有根号,且未知数在根号内,那么这个方程也不是一元二次方程(是无理方程)。

2.只含有一个未知数。

3.未知数项的最高次数是2。

一般形式
ax²+bx+c=0(a≠0)
其中ax²是二次项,a是二次项系数;bx是一次项;b 是一次项系数;c是常数项。

使方程左右两边相等的未知数的值就是这个一元二次方程的解,一元二次方程的解也叫做一元二次方程的根。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2)判断下列各式中,哪些是二次根式?哪些不是?为什么?
1 1 2 , 3 2 , , x (x>0), 0 , 4 2 ,- 2 , , x + y (x≥0,y≥0) x x+ y
二、二次根式中被开方数的取值范围 二次根式中被开方数的取值范围
⑴ 二次根式 1 − a 中,字母 a 的取值范围是( A. a < 1 B.a≤1 C.a≥1
老师,先别给我讲,让我试试自己是否能学会…
宜阳双语实验学校九年级数学第 宜阳双语实验学校九年级数学第 1 关预学案 班级
课题名称 制作人 二次根式的定义 二次根式的定义 初三数学组
学队
姓名
本课性质 ——总
一.二次根式的有关概念 形如 的式子叫二次根式 。举出几个二次根式。 判断一个式子是不是二次根式,一定要紧扣定义,看所给的式子是否同时具备如下两个特征: 第一练兵场: (1)下列式子中,是二次根式的是( ) A、- 7 B、 3 7 C、 x D、x
) D. a > 1同步训练: 同步训练: (2010 安徽芜湖 安徽芜湖)要使式子 1. A.a≠0 a+2 有意义,a 的取值范围是() a C.a>-2 或 a≠0 D.a≥-2 且 a≠0 ) )
D.
B.a>-2 且 a≠0
(2010 广东广州,9,3 分)若 a<1,化简 (a − 1) 2 − 1 =( 2.
9、 2010·绵阳) ( .要使 3 − x + A.
1 ≤x≤3 2
1 有意义,则 x 应满足( 2x −1 1 1 B.x≤3 且 x≠ C. <x<3 2 2
1 <x ≤3 2
1
相关文档
最新文档