数字频率计课程设计报告材料.pdf
课程设计报告(频率计)
设计题目:数字频率计的设计与制作一、课程设计的主要内容与目的1. 主要内容:数字频率计的主要功能是测量周期信号的频率,频率是单位时间内信号发生周期变化的次数,如果我们能在给定的1S时间内对信号波形计数,并将计数结果显示出来,就能读取被测信号的频率。
数字频率计首先必须获得相对稳定与准确的时间,同时将被测信号转换成幅度与波形均能被数字电路识别的脉冲信号,然后通过计数器计算这一段时间间隔内的脉冲个数,将其换算后显示出来,这就是数字频率计的基本原理。
从数字频率计的基本原理出发,根据设计要求,得到如图1所示的电路框图。
图12. 设计目的:(1)掌握数字频率计的工作原理(2)根据课程设计,熟悉一般产品设计的流程和方法。
(3)重点掌握数字频率计设计的计数部分。
二、主要技术指标1.频率测量范围:10~9999HZ。
2.输入信号波形:任意周期信号,输入电压幅度>300mv.3.电源:220V,50HZ。
系统框图中各部分的功能及实现方法(1)电源与整流稳压电路框图中的电源采用50Hz的交流市电。
市电被降压、整流、稳压后为整个系统提供直流电源。
系统对电源的要求不高,可以采用串联式稳压电源电路来实现。
(2)全波整流与波形整形电路本频率计采用市电频率作为标准频率,以获得稳定的基准时间。
按国家标准,市电的频率漂移不能超过0.5Hz,即在1%的范围内。
用它作普通频率计的基准信号完全能满足系统的要求。
全波整流电路首先对50Hz交流市电进行全波整流,得到如图2(a)所示100Hz的全波整流波形。
波形整形电路对100Hz信号进行整形,使之成为如图2(b)所示100Hz的矩形波。
波形整形可以采用过零触发电路将全波整流波形变为矩形波,也可采用施密特触发器进行整形。
图2 全波整流与波形整形电路的输出波形(3)分频器分频器的作用是为了获得1S的标准时间。
电路首先对图2所示的100Hz信号进行100分频得到如图3(a)所示周期为1S的脉冲信号。
数字频率计课设报告
综合电子课程设计--基于FPGA的数字频率计班级: 0410101班作者:同组:2013年11月3日目录1.实验内容及要求 (3)2.实验原理 (3)2.1频率测量原理 (3)2.2周期测量原理 (3)3.试验方案介绍 (4)3.1系统整体逻辑框图 (4)3.2测试信号源模块 (4)3.3频率测试模块 (5)3.4频率测试模块 (5)3.4分频模块 (6)3.4.1系统50M时钟分频得到2HZ信号 (6)3.4.2系统50M时钟分频得到2MHZ信号 (6)3.5频率周期测试切换模块 (7)3.6系统显示模块 (8)4. FPGA的资源分配介绍 (9)4.1 FPGA的引脚资源分配 (9)4.2 FPGA的系统资源占用情况 (9)5. 课设收获及感想 (9)6. 附录 (10)6.1 Verilog语言程序源代码 (10)基于FPGA的数字频率计系统1.实验内容及要求信号频率和周期测量信号:脉冲波;频率:1Hz~100KHz2.实验原理2.1频率测量原理测量频率的基本方法是在单位时间(如2s)内统计待测信号的周期数。
本设计采用等精度测量法,使门控信号和被测信号同步,消除对被测信号计数产生的一个脉冲的误差,在测量过程中分别对被测信号和标准信号同时计数。
测量的具体方法是:首先给个闸门开启信号(预置闸门信号),此时计数器并不开始计数,而是等被测信号的上升沿到来时计数器才开始计数,然后预置闸门信号关闭信号(下降沿),计数器并不立即停止计数,而是等到被测信号上升沿来到时才停止计数,完成一次测量过程,过程如下图所示。
图2.1频率测试原理设计时,采用门控信号为2S,因此,测得的标准信号N s为1,故,被测信号Nx的值,即为实际的频率值,可以处理后直接显示。
2.2周期测量原理测量周期的基本方法是在待测信号一个周期内对高频脉冲信号(如2MHz)进行计数。
以待测信号作为闸门信号的开启,在待测信号的一个周期内高电平的期间对2MHZ标准信号进行计数,计出来的数为N,对应的信号周期即为N,单位为微秒。
数字频率计设计报告
电子线路课程设计报告:方正学号:110405221专业:电气工程及其自动化日期:2012-10-13目录1 概述 (2)2 方案论证………………………2.1 方案一 (3)2.2 方案二 (3)3.3方案选择 (4)3 数字频率计设计原理 (4)4、单元电路分析 (6)【2 (6)1、放大整形电路】【1 (6)2、时基电路】【1 (7)3、逻辑控制】4、锁存器 (8)六、调试电路板中出现的问题及解决办法 (10)七、课程设计体会 (10)八、集成芯片功能介绍 (11)1、74LS573 (11)2、74LS48 (12)3、74LS90 (13)4、555构成的单稳触发器和多谐振荡器 (13)参考文献 (14)附一:电路总图 (15)附二:电路PCB图 (16)附三:PCB-3D图 (17)附四:元件清单 (18)一、概述数字频率计是一种用十进制数字显示被测信号频率的数字测量仪器,它的基本功能是测量正弦信号、方波信号、尖脉冲信号以及其他各种单位时间变化的物理量,因此它的用途十分广泛:数字频率计是计算机、通讯设备、音频视频等科研生产领域不可缺少的测量仪器。
数字频率计的设计原理实际上是测量单位时间的周期数。
这种方法免去了实测以前的预测,同时节省了划分频段的时间,克服了原来高频段采用测频模式而低频段采用测周期模式的测量方法存在换挡速度慢的缺点。
通常情况下计算每秒待测信号的脉冲个数,此时我们称闸门时间为1秒。
闸门时间也可以大于或小于一秒。
闸门时间越长,得到的频率值就越准确,但闸门时间越长则每测一次频率的间隔就越长。
闸门时间越短,测的频率值刷新就越快,但测得的频率精度就受影响。
在电子技术中,频率是最基本的参数之一,并且与许多电参量的测量方案、测量结果都有十分密切的关系,因此,频率的测量就显得更为重要。
测量频率的方法有多种,其中电子计数器测量频率具有精度高、使用方便、测量迅速,以及便于实现测量过程自动化等优点,是频率测量的重要手段之一。
数字频率计课程设计报告
数字频率计课程设计报告一、课程目标知识目标:1. 让学生理解数字频率计的基本原理,掌握频率、周期等基本概念;2. 使学生掌握数字频率计的使用方法,能够正确操作仪器进行频率测量;3. 引导学生运用已学的数学知识,对测量数据进行处理,得出正确结论。
技能目标:1. 培养学生动手操作仪器的技能,提高实验操作能力;2. 培养学生运用数学知识解决实际问题的能力,提高数据分析处理技能;3. 培养学生团队协作能力,提高实验过程中的沟通与交流技巧。
情感态度价值观目标:1. 培养学生对物理实验的兴趣,激发学习热情;2. 培养学生严谨的科学态度,养成实验过程中认真观察、准确记录的好习惯;3. 引导学生认识到物理知识在实际应用中的价值,提高学以致用的意识。
课程性质:本课程为物理实验课,结合数字频率计的原理与应用,培养学生的实践操作能力和数据分析能力。
学生特点:六年级学生具备一定的物理知识和数学基础,对实验操作充满好奇,具备初步的团队合作能力。
教学要求:结合学生特点,注重理论与实践相结合,以学生为主体,引导学生主动参与实验过程,培养其动手能力和解决问题的能力。
通过课程目标的分解,使学生在实验过程中达到预期的学习成果,为后续教学设计和评估提供依据。
二、教学内容1. 数字频率计基本原理:- 频率、周期的定义与关系;- 数字频率计的工作原理;- 数字频率计的测量方法。
2. 实验操作技能:- 数字频率计的操作步骤;- 实验过程中的注意事项;- 数据记录与处理方法。
3. 教学大纲:- 第一课时:介绍数字频率计的基本原理,让学生了解频率、周期的概念及其关系;- 第二课时:讲解数字频率计的工作原理,引导学生掌握其操作方法;- 第三课时:分组进行实验操作,让学生动手测量不同频率的信号;- 第四课时:对测量数据进行处理与分析,培养学生数据分析能力;- 第五课时:总结实验结果,讨论实验过程中遇到的问题及解决办法。
4. 教材章节:- 《物理》六年级下册:第六章《频率与波长》;- 《物理实验》六年级下册:实验八《数字频率计的使用》。
数字频率计
数字频率计(51单片机)(总21页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--自动化与电子工程学院单片机课程设计报告课程名称:单片机原理与应用学院:自动化与电子工程院专业班级:学生姓名:完成时间:报告成绩:评阅意见:评阅教师日期目录第1章数字频率计概述 (1)数字频率计概述 0数字频率计的基本原理 0单脉冲测量原理 (1)第2章课程设计方案设计 (1)系统方案的总体论述 (1)系统硬件的总体设计 (2)处理方法 (2)第3章硬件设计 (3)单片机最小系统 (3)第4章软件设计 (4)系统的软件流程图 (4)程序清单 (6)第5章课程设计总结 (6)参考文献 (7)附录Ⅰ仿真截图 (8)附录Ⅱ程序清单 (14)第1章数字频率计概述数字频率计概述数字频率计又称为数字频率计数器,是一种专门对被测信号频率进行测量的电子测量仪器,是计算机、通讯设备、音频视频等科研生产领域不可缺少的测量仪器。
它是一种用十进制数字显示被测信号频率的数字测量仪器。
它的基本功能是测量方波信号及其他各种单位时间内变化的物理量。
本数字频率计将采用定时、计数的方法测量频率,采用6个数码管显示6位十进制数。
测量范围从10Hz—,精度为1%,用单片机实现自动测量功能。
基本设计原理是直接用十进制数字显示被测信号频率的一种测量装置。
它以测量频率的方法对方波的频率进行自动的测量。
数字频率计的基本原理数字频率计最基本的工作原理为:当被测信号在特定时间段T内的周期个数为N 时,则被测信号的频率f=N/T(如图所示)。
图频率测量原理频率的测量实际上就是在1s时间内对信号进行计数,计数值就是信号频率。
用单片机设计频率计通常采用的办法是使用单片机自带的计数器对输入脉冲进行计数;好处是设计出的频率计系统结构和程序编写简单,成本低廉,不需要外部计数器,直接利用所给的单片机最小系统就可以实现。
缺陷是受限于单片机计数的晶振频率,输入的时钟频率通常是单片机晶振频率的几分之一甚至是几十分之一,在本次设计使用的AT89C51单片机,由于检测一个由“1”到“0”的跳变需要两个机器周期,前一个机器周期测出“1”,后一个周期测出“0”。
数字频率计课程设计报告
一、课程设计题目数字频率计的设计与制作二、设计目的:本设计与制作项目可以进一步加深我们对数字电路应用技术方面的了解与认识,进一步熟悉数字电路系统设计、制作与调试的方法和步骤。
三、设计要求:设计并制作出一种数字频率计,其技术指标如下:( 1 )频率测量范围: 10 ~ 9999Hz 。
( 2 )输入电压幅度 >300mV 。
( 3 )输入信号波形:任意周期信号。
( 4 )显示位数: 4 位。
( 5 )电源: 220V 、 50Hz四、所需仪器设备与器件示波器、音频信号发生器、逻辑笔、万用表、数字集成电路测试仪、直流稳压电源。
五、设计内容、方法与步骤:1 .设计内容1 )数字频率计的基本原理数字频率计的主要功能是测量周期信号的频率。
频率是单位时间( 1S )内信号发生周期变化的次数。
如果我们能在给定的 1S 时间内对信号波形计数,并将计数结果显示出来,就能读取被测信号的频率。
数字频率计首先必须获得相对稳定与准确的时间,同时将被测信号转换成幅度与波形均能被数字电路识别的脉冲信号,然后通过计数器计算这一段时间间隔内的脉冲个数,将其换算后显示出来。
这就是数字频率计的基本原理。
2 )系统框图从数字频率计的基本原理出发,根据设计要求,得到如图 13.4 所示的电路框图。
图 13.4 数字频率计框图下面介绍框图中各部分的功能及实现方法( 1 )电源与整流稳压电路框图中的电源采用 50Hz 的交流市电。
市电被降压、整流、稳压后为整个系统提供直流电源。
系统对电源的要求不高,可以采用串联式稳压电源电路来实现。
( 2 )全波整流与波形整形电路本频率计采用市电频率作为标准频率,以获得稳定的基准时间。
按国家标准,市电的频率漂移不能超过0.5Hz ,即在 1 %的范围内。
用它作普通频率计的基准信号完全能满足系统的要求。
全波整流电路首先对50Hz 交流市电进行全波整流,得到如图 13.5 ( a )所示 100Hz 的全波整流波形。
简易数字频率计课程设计报告
简易数字频率计课程设计报告《简易数字频率计课程设计报告》一、设计目的和背景随着科技的不断发展和普及,计算机已经成为人们生活中不可或缺的一部分。
而数字频率计作为一种常见的电子测量仪器,在工业控制、电信通讯等领域有着广泛的应用。
本课程设计旨在通过设计一款简易的数字频率计,以帮助学生深入了解数字频率计的工作原理和设计方法。
二、设计内容和步骤1. 学习数字频率计的基本原理和工作方式:介绍数字频率计的基本功能、硬件组成和工作原理。
2. 设计数字频率计的主要电路:通过研究数字频率计的电路原理图,设计出适用于本设计要求的主要电路。
3. 制作数字频率计的原型:使用电子元器件将电路图中设计的电路进行实际制作,制作出数字频率计的原型。
4. 测试数字频率计的性能:通过对数字频率计进行各种频率波形的测试,验证其测量准确性和稳定性。
5. 优化和改进设计:根据测试结果和用户反馈,对数字频率计的电路和功能进行进一步优化和改进。
三、预期效果和评价标准通过本课程设计,预期学生能够掌握数字频率计的基本工作原理、主要电路设计和制作方法,并且能够针对实际需求进行优化和改进。
评价标准主要包括学生对数字频率计原理的理解程度、电路设计的准确性和创新性,以及对数字频率计性能进行测试和改进的能力。
四、开展方式和时间安排本课程设计可以结合理论学习和实践操作进行,建议分为以下几个阶段进行:1. 第一阶段(1周):学习数字频率计的基本原理和工作方式。
2. 第二阶段(1周):设计数字频率计的主要电路。
3. 第三阶段(2周):制作数字频率计的原型,并进行性能测试。
4. 第四阶段(1周):优化和改进数字频率计的设计。
总共需要约5周的时间来完成整个课程设计。
五、所需资源和设备1. 教材教辅资料:提供数字频率计的基本原理和电路设计方法的教材或教辅资料。
2. 实验设备和工具:数字频率计的主要电路所需的电子元器件、测试仪器和焊接工具等。
3. 实验环境:提供安全、稳定的实验室环境,以及必要的计算机软件支持。
数字频率计课程设计报告
THANKS
精度
精度是数字频率计的重要指标之一, 表示测量结果与真实值之间的接近程 度。提高精度的方法包括采用高精度 计数器、降低系统误差等。
分辨率
分辨率指数字频率计能够分辨的最小 频率间隔,与计数器的位数有关。
稳定性
稳定性指数字频率计在长时间使用过 程中保持其性能参数不变的能力。提 高稳定性的措施包括选用优质元器件 、优化电路设计等。
计数与显示
采用高速计数器对输入信号的脉冲进行计数,同 时将计数值实时显示在数码管或液晶屏幕上。
3
控制与处理
通过微处理器或单片机等控制核心,实现计数器 的启动、停止、清零等操作,并对计数值进行处 理,得到频率值。
关键技术参数
计数范围
数字频率计的计数范围决定了其能够 测量的频率范围,一般应满足实际需 求。
显示器
选用LED或LCD显示器,用于显示测量结果的频率值。
硬件电路图设计
电源电路
设计稳定的电源电路 ,为整个系统提供所 需的工作电压。
输入信号调理电路
根据实际需求设计输 入信号调理电路,包 括放大倍数、滤波截 止频率等参数的确定 。
微控制器电路
设计微控制器的最小 系统电路,包括晶振 、复位电路等。
02
数字频率计基本原理
频率定义及测量方法
频率定义
频率是单位时间内周期性信号重复的 次数,通常以赫兹(Hz)为单位表示 。
测量方法
频率的测量可以通过计数单位时间内 信号周期的个数来实现。常见的测量 方法包括直接计数法、测周法和等精 度测频法。
数字频率计工作原理
1 2
输入信号处理
数字频率计首先接收输入信号,经过放大、整形 等处理,将其转换为适合计数的脉冲信号。
数字频率计课程设计
一、课题的任务和要求二、总体方案设计1.设计思路2.设计方案比较(1)方案一本系统采用可控制的计数、锁存、译码显示系统,石英晶体振荡器及多级分频系统,带衰减器的放大整形系统和闸门电路四部分组成。
由晶体振荡器,多级分频系统及门控电路得到具有固定宽度T的方波脉冲做门控信号,当门控信号到来,闸门开启,周期为TX的信号脉冲和周期为T的门控信号相与通过闸门,在闸门输出端产生的脉冲信号送到计数器,计数器开始计数,知道门控信号结束,闸门关闭。
单稳1的哲态送入锁存器的使能端,锁存器将计数器结果锁存,计数器停止计数并被单稳2的暂态清零。
若取闸门的时间T内通过闸门的信号脉冲个数为N,则锁存器中的锁存计数。
测量频率可直接从数字显示器上读出。
(2)方案二纯硬件的实现方法,系统采用由时基电路、放大整形电路、逻辑控制电路和数码显示器四部分组成。
时基电路的作用是产生一个标准时间信号(高电平持续时间为1s),经过三极管与555构成的施密特整形电路放大整形,由74LS90十进制计数器和74LS273锁存器将所测的频率传给数码管,显示出来。
(3)方案比较方案一和方案二均可实现课题要求,且方案二可根据闸门时间选择量程范围。
而且方案二最大的特点就是全硬件电路实现,电路稳定性好、精度高、没有繁琐的软件调试过程,大大的缩短了测量周期。
根据实际实验现有的器件及我们所掌握的知识层面,我们选择采用方案二。
3.Xx电路原理框图数字频率计的原理框图计数器锁存器译码器多谐振荡器10进制分频器显示器放大整正弦波矩形波自检控制电路闸门1s0.001s图1-1 数字频率计原理框图4Xx电路原理图(1)总电路图图3-6-1 整体电路图三、单元电路设计1.xx电路工作原理1.放大整形电路(1)电路分析:对信号的放大功能由三极管构成放大电路来实现,对信号整形的功能由施密特触发器来实现。
施密特触发器电路是一种特殊的数字器件,一般的数字电路器件当输入起过一定的阈值,其输出一种状态,当输入小于这个阈值时,转变为另一个状态,而施密特触发器不是单一的阈值,而是两个阈值,一个是高电平的阈值,输入从低电平向高电平变化时,仅当大于这个阈值时才为高电平,而从高电平向低电平变化时即使小于这个阈值,其仍看成为高电平,输出状态不这;低电平阈值具有相同的特点。
数字频率计课程设计报告
数字频率计课程设计报告目录1方案的选择 (5)1.1 数字频率计的发展现状及研究概况 (5)1.2供选方案 (5)1.2.1方案一 (5)1.2.2方案二 (6)1.3方案选择 (8)2课程设计内容 (9)2.1数字频率计设计所用元件简单介绍 (9)2.1.1 BS202数码显示管 (9)2.1.2 74LS48芯片 (9)2.1.3 74LS273芯片简介: (10)2.1.4 74LS90简介 (11)2.1.5 74LS123芯片简介 (13)2.1.6 555定时器简介 (14)2.1.7 74LS00芯片简介 (15)2.2.2锁存器 (17)2.2.4脉冲形成电路 (19)2.2.5 放大整形电路 (20)2.3 数字频率计的整机电路 (21)3测量与分析 (23)3.1 调试、测量所需要的仪器 (23)3.2电路的调试 (23)3.2.1对频率计的测量 (23)3.2.2 对闸门电路的测量 (23)3.3 对仿真结果的分析 (24)3.4 电路出现故障及排除方法 (24)4设计小结 (25)摘要在电子技术中,频率是最基本的参数之一,并且与许多电参量的测量方案测量结果都有十分密切的关系,因此频率的测量就显得更为重要。
测量频率的方法有多种,其中电子计数器测量频率具有精度高、使用方便、测量迅速,以及便于实现测量过程自动化等优点,是频率测量的重要手段之一。
电子计数器测频有两种方式:一是直接测频法,即在一定闸门时间内测量被测信号的脉冲个数;二是间接测频法,如周期测频法。
直接测频法适用于高频信号的频率测量,间接测频法适用于低频信号的频率测量。
本文阐述了用数字电路设计了一个简单的数字频率计的过程。
频率测量中直接测量的数字频率计主要由四个部分构成:时基(T)电路、输入电路、计数显示电路以及控制电路。
在一个测量周期过程中,被测周期信号在输入电路中经过放大、整形、微分操作之后形成方波信号,加到与非门的另一个输入端上.该与非门起到主阀门的作用,在与非门第二个人输入端上加阀门控制信号,控制信号为低电平时阀门关闭,无信号进入计数器;控制信号为高电频时,阀门开启整形后的信号进入计数器,若阀门控制信号取1s,则在阀门时间1s内计数器得到的脉冲数N就是被测信号的频率。
课程设计数字频率计
课程设计数字频率计一、教学目标本课程旨在通过数字频率计的学习,让学生掌握以下知识目标:理解数字频率计的基本原理和构成;掌握数字频率计的各部分电路及其功能;了解数字频率计在工程和科学研究中的应用。
技能目标为:能够熟练使用数字频率计进行频率测量;能够分析并解决数字频率计使用中遇到的问题。
情感态度价值观目标为:培养学生对电子技术的兴趣和好奇心,激发学生探索科学的热情。
二、教学内容本课程的教学内容主要包括数字频率计的基本原理、构成及其各部分电路的功能,数字频率计的使用方法,以及数字频率计在实际工程和科学研究中的应用。
具体涉及教材的第三章“数字频率计”,内容涵盖数字频率计的定义、分类、工作原理、主要技术指标、使用方法等。
三、教学方法为了提高教学效果,将采用多种教学方法相结合的方式进行教学。
包括:讲授法,用于讲解数字频率计的基本原理、构成及使用方法;讨论法,用于分析数字频率计在实际应用中遇到的问题;实验法,用于让学生亲自动手操作数字频率计,加深对知识的理解。
四、教学资源教学资源包括教材、实验设备、多媒体资料等。
教材为《电子技术基础》第三版,实验设备包括数字频率计、示波器等,多媒体资料包括教学PPT、视频等。
这些资源将有助于支持教学内容和教学方法的实施,提高学生的学习兴趣和效果。
五、教学评估本课程的评估方式包括平时表现、作业、考试等。
平时表现主要评估学生在课堂上的参与度、提问回答等情况;作业包括课堂练习和课后作业,主要评估学生的理解和应用能力;考试包括期中考试和期末考试,主要评估学生对课程知识的掌握程度。
评估方式将客观、公正,全面反映学生的学习成果。
六、教学安排本课程的教学安排如下:共32课时,每周2课时,共计16周。
教学地点为教室。
教学进度安排合理、紧凑,确保在有限的时间内完成教学任务。
同时,教学安排还考虑学生的实际情况和需要,如学生的作息时间、兴趣爱好等,以提高学生的学习效果。
七、差异化教学根据学生的不同学习风格、兴趣和能力水平,本课程将设计差异化的教学活动和评估方式。
频率计课程设计报告
《可编程逻辑器件及其应用》课程设计——————数字频率计设计总结报告班级:自动1101学号111401101灿111401102斐汉111401218 东指导老师:于卫管旗日期:2013/12/23大学信息工程学院目录1 技术指标要求2 总体方案设计(说明:方框图、组成、各部分作用、连接关系、工作原理)3 可编程器件逻辑功能设计(1)可编程器件简介(2)顶层设计(顶层方框图、组成、各部分作用、连接关系、工作原理、顶层原理图、仿真结果图、器件选择、管脚锁定、下载测试)4 硬件制作及调试情况5设计结果情况6 心得体会器件清单参考文献1 技术指标要求1.设计1个6位数字频率计系统,频率围:1—999999Hz,分辨率:1Hz;2.输入测试信号为正负对称的幅度为1V—5V之间可调的正弦波、脉冲波、三角波;3.用动态扫描技术实现6位数字显示。
2 总体方案设计根据要求,设计出总体方案,画出系统总体框图,见图所示。
图10.1 频率计系统总体框图各部分的组成及作用如下:(1)CPLD器件:接收被测频率信号、1Hz标准信号和动态扫描信号,发出频率数字信号;(2)转换电路:将正负对称的幅度为1V—5V之间可调的正弦波、脉冲波、三角波转换为同频率的TTL脉冲波形;(3)反相驱动电路:加大由转换电路输出的TTL脉冲波形的驱动能力;(4)动态扫描显示电路:用数码管显示输出的频率值;(5)标准脉冲电路:产生1Hz的标准脉冲信号和2048Hz的动态扫描信号;(6)NE555 Hz电路和单位显示亮熄电路:使“Hz”单位一亮一熄;(7)直流稳压电源:给各部分电路提供电源。
3 可编程器件逻辑功能设计(1)可编程器件简介EPM7128是可编程的大规模逻辑器件,为ALTERA公司的MAX7000系列产品,具有高阻抗、电可擦等特点,可用门单元为2500个,管脚间最大延迟为5ns,工作电压为+5V。
(2)顶层设计(顶层方框图、组成、各部分作用、连接关系、工作原理、顶层原理图、仿真结果图、器件选择、管脚锁定、下载测试)顶层原理图其中:TESTCTL模块为测频控制器、T10模块为10进制加法计数器、REG4B为锁存器、动态扫描软件模块包括:BCD6模块(6进制加法计数器)、MUX461模块(数据选择器)、74138模块(3-8译码)和DECL7S模块(七段译码)。
数字频率计设计报告
课程设计(综合实验)报告(2014—2015年度第一学期)名称: 数字电路课程设计题目:数字频率计院系:电气与电子工程学院班级:电气1210学号:1121181028学生姓名:翟华阳指导教师:李月乔设计周数:1周成绩:日期:2015年 1月 22 日前言频率计又称为频率计数器,是一种专门对被测信号频率进行测量的电子测量仪器。
其最基本的工作原理为:当被测信号在特定时间段T内的周期个数为N时,则被测信号的频率f=N/T。
频率计主要由四个部分构成:时基(T)电路、输入电路、计数显示电路以及控制电路。
在一个测量周期过程中,被测周期信号在输入电路中经过放大、整形、微分操作之后形成特定周期的窄脉冲,送到主门的一个输入端。
主门的另外一个输入端为时基电路产生电路产生的闸门脉冲。
在闸门脉冲开启主门的期间,特定周期的窄脉冲才能通过主门,从而进入计数器进行计数,计数器的显示电路则用来显示被测信号的频率值,内部控制电路则用来完成各种测量功能之间的切换并实现测量设置。
在传统的电子测量仪器中,示波器在进行频率测量时测量精度较低,误差较大。
频谱仪可以准确的测量频率并显示被测信号的频谱,但测量速度较慢,无法实时快速的跟踪捕捉到被测信号频率的变化。
正是由于频率计能够快速准确的捕捉到被测信号频率的变化,因此,频率计拥有非常广泛的应用范围。
在传统的生产制造企业中,频率计被广泛的应用在产线的生产测试中。
频率计能够快速的捕捉到晶体振荡器输出频率的变化,用户通过使用频率计能够迅速的发现有故障的晶振产品,确保产品质量。
在计量实验室中,频率计被用来对各种电子测量设备的本地振荡器进行校准。
在无线通讯测试中,频率计既可以被用来对无线通讯基站的主时钟进行校准,还可以被用来对无线电台的跳频信号和频率调制信号进行分析。
常用的频率测量方法有测频法、测周法、测周期/频率法、F/V与A/D法。
本文阐述了用测频法构成的数字频率计。
一、设计任务与要求(1)利用555定时器设计秒时间基准发生器。