向量论文:向量在空间角中的运用

合集下载

用空间向量研究距离、夹角问题全文

用空间向量研究距离、夹角问题全文

MN ( 1 1 )2 (0 1 )2 ( 1 0)2 2 .
22
22
2
y
x
【巩固训练3】如图,正方体ABCD和ABEF的边长都是1,且它们所在平面互相垂 直,点M在AC上,点N在BF上,若CM = BN = 2,求MN的长.
2
解2:设 AB a, AD b, AF c . 则
2. 如图,在棱长为1的正方体ABCD-A1B1C1D1中,E为线段DD1的中点,F为线段BB1
的中点.
z
(4) 求直线FC1到平面AB1E的距离.
D1
C1
解 : FC1 //平面AB1E,直线FC1到平面AB1E的距离 A1
B1
等于点C1到平面AB1 E的距离.
E
由(3)知平面AB1E的一个法向量为n (1, 2, 2). 易知C1(0,1,1), B1(1,1,1),C1B1 (1,0,0).
D1 A1
E
D
C1 B1
F
C
A
B
2. 如图,在棱长为1的正方体ABCD-A1B1C1D1中,E为线段DD1的中点,F为线段BB1
的中点.
z
(1) 求点A1到直线B1E的距离;
D1
C1
解 : 如图示,以D为原点建立空间直角坐标系, 则有
A1
B1
1 A1(1, 0,1), B1(1,1,1), E(0, 0, 2).
z0 ,
0
取y
1, 则z
1,
x
1.
∴平面D1CB1的一个法向量为n (1,1,1).
D
A x
C y
B
点B到平面D1CB1
的距离为
|
BC n |n|

用空间向量解决空间角和距离问题

用空间向量解决空间角和距离问题

0,π2
二面角
设二面角α-l-β为θ,平面α,β的法向量分别为n1,
n2,则|cos
θ|=
|cos〈n1,n2〉|

|n1·n2| |n1||n2|
[0,π]
知识点二 利用空间向量求距离(※) 点到平面的距离:用空间向量法求点到平面的距离具体步骤如下: 先确定平面的法向量,再求点与平面内一点的连线形成的斜线段在平面 的 法 向 量 上 的 射 影 长 . 如 图 , 设 n = (a , b , c) 是 平 面 α 的 一 个 法 向 量 , P0(x0,y0,z0)为α外一点,P(x,y,z)是平面α内的任意一点,则点P0到 平面 α 的距离 d=|P→P|n0|·n|=|ax0-x+ab2+y0-b2+y+c2 cz0-z|.
证明
②若平面ABC⊥平面AA1B1B,AB=CB,求直线A1C与平面BB1C1C所成角 的正弦值.
解答
类型二 求二面角问题 例2 如图所示,正三棱柱ABC-A1B1C1的所有棱长都为2,D为CC1的中点, 求二面角A-A1D-B的余弦值.
解答
反思与感悟 求角二面角时,可以用方向向量法,也可以采用法向量 法求解.
2.向量法求距离(※) (1)求 P,Q 两点间的距离,可转化为求P→Q的模. (2)点到平面距离的求法:设 n 是平面 α 的法向量,B 是平面 α 外一点,A 是平面 α 内一点,AB 是平面 α 的一条斜线,则点 B 到平面 α 的距离为
→ d=|A|Bn·|n|.
(3)线面距离、面面距离均可转化为点面距离,利用(2)中的方法求解.
4 2×2
2=12,
且〈P→B,D→B〉∈[0,π],∴〈P→B,D→B〉=π3, ∴BD 与平面 ADMN 所成的角为π6.

利用向量解决空间角问题

利用向量解决空间角问题


A

B
D1
CD, AB 与的关系?
DC, AB 与的关系?
结论: cos
•引入 •复习
| cos CD, AB |
•线面角 •二面角 •小结
•线线角
题型一:线线角
例一:Rt ABC中,BCA 900 , 现将 ABC沿着
平面ABC的法向量平移到A1B1C1位置,已知
•引入 •复习 •线线角
A
y
x
B
C
2 5 5
•二面角 •小结
•线面角
题型二:线面角
练习: 正方体 ABCD A1B1C1D1 的棱长为1.
求B1C1与面AB1C 所成的角.
A1 B1
A B
D1
C1
D
C
•引入
•复习
•线线角
•线面角
•二面角
•小结
题型三:二面角
二面角的范围:

O
[0, ]
a b 夹角公式: cos a b
2.若A( x1, y1, z1 ), B( x2 , y2 , z2 ),则:
AB ( x2 x1 , y2 y1 , z2 z1 )
•引入 •复习 •线线角 •线面角 •二面角 •小结
题型一:线线角
异面直线所成角的范围: 0, 2 C D 思考:
30 所以 BD1 与 AF1 所成角的余弦值为 10
题型一:线线角 练习: 在长方体 ABCD A AB= 5,AD 8, 1B 1C1D 1 中,
AA1 4, M 为B1C1上的一点,且B1M 2,点N在线段A1D上,
A1D AN. (1)求证:A1D AM .

2021高考数学题源探究——立体几何空间向量在求空间角及距离中的应用

2021高考数学题源探究——立体几何空间向量在求空间角及距离中的应用

空间向量在求空间角及距离中的应用【考点梳理】1.异面直线所成的角设a ,b 分别是两异面直线l 1,l 2的方向向量,则a 与b 的夹角β l 1与l 2所成的角θ范围(0,π) 求法 cos β=a ·b |a ||b | cos θ=|cos β|=|a ·b ||a ||b | 2.求直线与平面所成的角设直线l 的方向向量为a ,平面α的法向量为n ,直线l 与平面α所成的角为θ,则sin θ=|cos 〈a ,n 〉|=|a ·n ||a ||n |.3.求二面角的大小(1)如图①,AB ,CD 是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈AB→,CD →〉.(2)如图②③,n 1,n 2 分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=|cos 〈n 1,n 2〉|,二面角的平面角大小是向量n 1与n 2的夹角(或其补角).4.利用空间向量求距离(1)两点间的距离设点()111,,x y z A ,点()222,,x y z B ,则AB =AB()()()222121212x x y y z z =-+-+-(2)点到平面的距离 如图所示,设AB 为平面α的一条斜线段,n 为平面α的法向量,则点B 到平面α的距离n dnAB⋅=.【教材改编】1.(选修2-1 P111A组T1改编)在正方体ABCD-A1B1C1D1中,点M为棱CC1上的中点,则A1M与D1C所成的角为()A.30°B.45°C.60°D.90°[答案] B[解析] 以D A,DC,1DD为x,y,z轴正方向建立空间直角坐标系,设正方体棱长为2,则D1(0,0,2),C(0,2,0),A1(2,0,2),M(0,2,1),∴1A M=(-2,2,-1),1D C=(0,2,-2),设A1M与D1C所成角为θ,∴cos θ=|cos〈1A M,1D C〉|=1111D CD CA M⋅A M=63×22=22,∴θ=45°.2. (选修2-1 P118A组T10改编)如图,棱长为a的正方体OEAC-BFGD中,P是AB上的一点,Q是CD上的一点.当点P为对角线AB的中点,点Q在棱CD上运动时,则PQ的最小值为()A.a B.22aC.32aD.52a[答案] B[解析] 建立如图所示的空间直角坐标系O -xyz ,当点P 为对角线AB 的中点时,点P 的坐标是⎝⎛⎭⎫a 2,a 2,a 2.因为点Q 在线段CD 上,设Q (0,a ,z ). PQ =⎝⎛⎭⎫a 22+⎝⎛⎭⎫a 2-a 2+⎝⎛⎭⎫a 2-z 2 = ⎝⎛⎭⎫z -a 22+12a 2. 当z =a 2时,PQ 的最小值为22a . 即点Q 在棱CD 的中点时,PQ 有最小值22a .故选B.3.(选修2-1 P 112A 组T 4改编)在正方体ABCD -A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为( )A.12B.23C.33D.22[答案] B[解析] 以A 为原点建立如图所示的空间直角坐标系A -xyz ,设棱长为1,则A 1(0,0,1),E (1,0,12),D (0,1,0), ∴1D A =(0,1,-1),1A E =⎝⎛⎭⎫1,0,-12,所以有1111D 00n n ⎧A ⋅=⎪⎨A E⋅=⎪⎩,即⎩⎪⎨⎪⎧ y -z =0,1-12z =0,解得⎩⎪⎨⎪⎧y =2,z =2. ∴1n =(1,2,2).∵平面ABCD 的一个法向量为2n =(0,0,1),∴cos 〈1n ,2n 〉=23×1=23. 即所成的锐二面角的余弦值为23.4.(选修2-1 P 97练习T 3改编)如图,正方体ABCD -A 1B 1C 1D 1中,点M 是AB 的中点,则D 1B 与CM 所成角的余弦值为( )A.105 B.1510 C.1515 D.155[答案] C[解析] 建立如图所示的空间直角坐标系D -xyz .设正方体棱长为2,则M (2,1,0),C (0,2,0),B (2,2,0),D 1(0,0,2),∴C M=(2,-1,0),1D B=(2,2,-2),cos〈C M,1D B〉=11C DC DM⋅BM B=25×23=1515.∴D1B与CM所成角的余弦值为1515,故选C.5.(选修2-1 P111练习T3改编)如图,在正方体ABCD-A1B1C1D1中,E为BC1的中点,则DE与平面BCC1B1所成角的正切值为()A.62 B.63C. 2D.22[答案] C[解析] 设正方体ABCD-A1B1C1D1的棱长为2,以D为原点,以DA为x轴,DC为y轴,DD1为z轴,建立如图所示的空间直角坐标系,∵E为BC1的中点,∴D(0,0,0),E(1,2,1),∴D E=(1,2,1),设DE与平面BCC1B1所成角的平面角为θ,∵平面BCC1B1的法向量n=(0,1,0),∴sin θ=|cos〈D E,n〉|=⎪⎪⎪⎪26=63,∴cos θ=1-23=33,∴tan θ=6333=2,故选 C.6.(选修2-1 P 98A 组T 4改编)正四面体ABCD 棱长为2,E ,F 分别为BC ,AD 中点,则EF 的长为________.[答案] 2[解析] |F E |2=F E 2=(C E +CD +DF )2=C E 2+CD 2+DF 2+2(C E ·CD +C E ·DF +CD ·DF ) =12+22+12+2(1×2×cos 120°+0+2×1×cos 120°)=2,∴|F E |=2,∴EF 的长为 2.7.(选修2-1 P 118A 组T 12改编)如图将正方形纸片ABCD 沿对角线AC 折成直二面角,点E 、F 分别为AD 、BC 的中点,O 是原正方形ABCD 的中心,则折叠后∠EOF 的大小为________.[答案] 120[解析] 如图所示,以OA ,OB ,D O 方向为x ,y ,z 轴正方向建立空间直角坐标系, 设正方形边长为22,则A (2,0,0),B (0,2,0),C (-2,0,0),D (0,0,2)∴E (1,0,1),F (-1,1,0),∴OE =(1,0,1),F O =(-1,1,0),∴cos 〈OE ,F O 〉=F F OE ⋅O OE O =-12×2=-12, ∴∠EOF =120°.8.(选修2-1 P 117A 组T 5改编)已知三点A (0,2,3),B (-2,1,6),C (1,-1,5),则△ABC 的面积为________.[答案] 73 [解析] AB =(-2,-1,3),C A =(1,-3,2),∴|AB |=14,|C A |=14.∴cos 〈AB ,C A 〉=CCAB⋅A AB A =714=12. 则sin 〈AB ,C A 〉=32. ∴S △ABC =12|AB |·|C A |sin 〈AB ,C A 〉=12×14×14×32=732. 9. (选修2-1 P 112A 组T 6改编)如图,△BCD 与△MCD 都是边长为2的正三角形,平面MCD ⊥平面BCD ,AB ⊥平面BCD ,AB =23,则点A 到平面MBC 的距离为________,平面ACM 与平面BCD 所成二面角的正弦值为________.[答案] 215 25[解析] 取CD的中点O,连接OB,OM,则OB⊥CD,OM⊥CD,又平面MCD⊥平面BCD,则MO⊥平面BCD.以O为原点,直线OC,BO,OM为x轴,y轴,z轴,建立如图所示的空间直角坐标系,OB=OM =3,则各点的坐标分别为O(0,0,0),C(1,0,0),M(0,0,3),B(0,-3,0),A(0,-3,23).①设n=(x,y,z)是平面MBC的法向量,则CB=(1,3,0),BM=(0,3,3).由n⊥CB,得x+3y=0;由n⊥BM,得3y+3z=0.取n=(3,-1,1),BA=(0,0,23),则距离d=nnBA⋅=2155.②C M=(-1,0,3),C A=(-1,-3,23).设平面ACM的法向量为1n=(x,y,z),由11CCnn⎧⊥M⎪⎨⊥A⎪⎩得⎩⎨⎧-x+3z=0,-x-3y+23z=0,解得x=3z,y=z,取1n=(3,1,1).平面BCD的法向量为2n=(0,0,1),则cos〈1n,2n〉=1212n nn n⋅=15.设所求二面角为θ,则sin θ=1-⎝⎛⎭⎫152=255.10.(选修2-1 P118A组T11改编)某几何体ABC-A1B1C1的三视图和直观图如图所示.(1)求证:A1C⊥平面AB1C1;(2)求二面角C 1-AB 1-C 的余弦值.[解析] (1)证明:由三视图可知,在三棱柱ABC -A 1B 1C 1中,AA 1⊥底面A 1B 1C 1, B 1C 1⊥A 1C 1,且|AA 1|=|AC |=4,|BC |=3.以点C 为原点,分别以CA 、CB 、CC 1所在的直线为x 轴、y 轴、z 轴建立空间直角坐标系,如图所示.由已知可得A (4,0,0),B (0,3,0),C (0,0,0),A 1(4,0,4),B 1(0,3,4),C 1(0,0,4). ∴1C A =(-4,0,-4),1C A =(4,0,-4),11C B =(0,3,0). ∴1C A ·1C A =0,1C A ·11C B =0.∴A 1C ⊥C 1A ,A 1C ⊥C 1B 1.又C 1A ∩C 1B 1=C 1,∴A 1C ⊥平面AB 1C 1.(2)由(1)得,C A =(4,0,0),1C B =(0,3,4).设平面AB 1C 的法向量为n =(x ,y ,z ),则1C B ⊥n ,C A ⊥n . ∴1C 0C 0n n ⎧B ⋅=⎪⎨A⋅=⎪⎩,即⎩⎪⎨⎪⎧3y +4z =04x =0. 令y =4,得平面AB 1C 的一个法向量为n =(0,4,-3). 由(1)知,1C A 是平面AB 1C 1的一个法向量.∴cos 〈n ,1C A〉=11C C n n ⋅AA =12202=3210. 故二面角C 1-AB 1-C 的余弦值为3210. 11.(选修2-1 P 119B 组T 3改编)在四棱锥S -ABCD 中,底面ABCD 是直角梯形,∠DAB =∠CDA =90°,SA ⊥平面ABCD ,CD =2AB ,E 为SC 中点.(1)求证:BE ∥平面SAD ;(2)若SA =AD =2,且平面SBC 与平面SAD 所成的二面角的余弦值为63,求四棱锥S -ABCD 的体积.[解析] (1)证明:设点F 为SD 的中点,连接AF ,EF , ∵E 点为SC 的中点,∴EF 为△SDC 的中位线,∴EF //12DC , 又∵∠DAB =∠CDA =90°且CD =2AB ,∴AB //12CD , ∴AB //EF ,∴四边形ABEF 为平行四边形,∴BE ∥AF ,又∵AF ⊂平面SAD ,BE ⊄平面SAD ,∴BE ∥平面SAD .(2)∵SA ⊥平面ABCD ,则可建以A 为原点的空间直角坐标系(如图所示),SA =AD =2,∴A (0,0,0),D (-2,0,0),S (0,0,2),设B (0,m,0),∴C (-2,2m,0),∴S B =(0,m ,-2),C B =(-2,m,0),设平面SBC 的法向量为n =(x ,y ,z )且SB ∩BC =B ,∴SB 0C 0n n ⎧⋅=⎪⎨B ⋅=⎪⎩,∴n =(m 2,1,m 2), 显然,平面SAD 的法向量为AB =(0,m,0),又∵平面SBC 与平面SAD 所成的二面角的余弦值为63,∴|cos 〈AB ,n 〉|=n nAB ⋅AB , ∴⎪⎪⎪⎪⎪⎪⎪⎪m |m | m 22+1=63,∴m =1,∴|AB |=1,|CD |=2, ∴S 直角梯形ABCD =3,∴V 四棱锥S -ABCD =13×3×2=2.。

向量在空间几何中的作用

向量在空间几何中的作用

向量在空间几何中的作用
作者:陈娜娜
来源:《中学课程辅导·教师教育(上、下)》2017年第11期
摘要:本文重点介绍向量在空间几何的作用,用向量解决空间几何的位置关系和角度问题,可为高中数学的空间问题提供新的解题方法。

关键词:向量;垂直;平行;角度
中图分类号:G633.63文献标识码:A 文章编号:1992-7711(2017)11-014-1
空间向量是高中数学中的重要内容之一,是处理空间线线、线面、面面位置关系和夹角的重要工具,同时也是高考考查的重要内容之一。

运用向量方法研究立体几何问题思路简单,模式固定,避免了几何法中作辅助线的问题,从而降低了立体几何问题的难度。

下面本文通过一些高考题来分析向量代数在空间几何中的作用。

一、利用空间向量证明空间垂直问题
利用空间向量证明空间线线、线面、面面垂直问题是高中考查的重点内容,考查形式灵活多样,常与探索性问题、平行问题、空间角问题结合。

如下面两道例题:
综上所述,我们会发现向量代数贯穿了代数与几何的内容,同时将一些有难度的空间几何证明变得简单化。

向量也体现了数学中的数形结合的思想,也可以显而易见地发现向量代数在高中数学教学中占据重要的地位。

[参考文献]
[1]张家瑞.用平面法向量解决立体几何问题.中等数学,2006(04).
[2]赵振威.中学数学教材教法.华东师范大学出版社,2003.。

向量法求空间的距离和角

向量法求空间的距离和角

所以异面直线BD与D1A间的距离为
3 。 3
(2) A1 B1 = (0,1, 0), 设n = ( x, y, z )是平面A1DB的一 个法向量,因为DA1 = (1, 0,1), DB = (1,1, 0), ì ì x +z = 0 nDA1 = 0 镲 由眄 即 取x = - 1, 镲 î x+y =0 î nDB = 0 | nA1 B1 | 1 2 于是n = (-1,1,1, ),且 = = 。 2 |n| 2 2 所以点B1到平面A1 BD的距离为 。 2
例1:如图1所示: 三棱柱ABC - A1 B1C1中,CA=CB, AB = AA1, ? BAA1 60o, ( 1)求证:AB^ A1C (2)若平面ABC ^ 平面AA1 B1 B, AB =CB,求直线A1C与平面BB1C1C 所成角的正弦值。
C C1
B A A1
B1
图1
C
C1
O
B A1
Z
解:由(1)知OC ^ AB,OA1 ^ AB, 又平面ABC ^ 平面AA1 B1 B,交线 为AB,所以OC ^ 平面AA1 B1 B, 故OA、OA1、OC两两相互垂直。 建立如图所示的空间直角坐标系 A
O
C
C1
B A1
B1 图1-2
X o - xyz 设AB = 2,由题设知A(1, 0, 0)、B(- 1, 0, 0)、C (0, 0, 3)、A1 (0, 3, 0), 则BC = (1, 0, 3)、 BB1 = AA1 = (- 1, 3, 0)、 A1C = (0, - 3, 3). 设n = ( x, y, z )是平面BBCC的法向量,则 ì x + 3z = 0 ì nBC = 0 镲 即 可取n = ( 3,1, -1), 眄 镲 î nBB1 = 0 î - x + 3y = 0 nA1C 10 故 cos < n, A1C >= =. 5 | n | ×| A1C |

利用向量法求空间角》教案

利用向量法求空间角》教案

利用向量法求空间角一、教学目标1. 让学生掌握空间向量的基本概念和性质。

2. 让学生学会使用向量法求解空间角。

3. 培养学生解决实际问题的能力。

二、教学内容1. 空间向量的基本概念和性质。

2. 向量法求解空间角的基本步骤。

3. 实际问题中的应用案例。

三、教学方法1. 采用讲授法,讲解空间向量的基本概念和性质。

2. 采用演示法,展示向量法求解空间角的步骤。

3. 采用案例教学法,分析实际问题中的应用。

四、教学步骤1. 引入空间向量的概念,讲解其基本性质。

2. 讲解向量法求解空间角的基本步骤。

3. 分析实际问题中的应用案例,引导学生运用向量法解决问题。

五、课后作业1. 复习本节课所学内容,整理笔记。

2. 完成课后练习题,巩固所学知识。

3. 选择一个实际问题,尝试运用向量法解决。

六、教学评价1. 课堂讲解:观察学生对空间向量概念和性质的理解程度。

2. 课后作业:检查学生对向量法求解空间角的掌握情况。

3. 实际问题解决:评估学生在实际问题中的应用能力。

七、教学资源1. 教案、PPT、教材等相关教学资料。

2. 计算机、投影仪等教学设备。

3. 实际问题案例库。

八、教学时间1课时(45分钟)九、教学重点与难点1. 空间向量的基本概念和性质。

2. 向量法求解空间角的基本步骤。

3. 实际问题中的应用案例。

十、教学PPT内容1. 空间向量的基本概念和性质。

2. 向量法求解空间角的基本步骤。

3. 实际问题中的应用案例。

十一、教学案例案例一:求解空间直角坐标系中两向量的夹角。

案例二:求解空间四边形的对角线夹角。

案例三:求解空间旋转体的主轴与旋转轴的夹角。

十二、教学反思本节课结束后,教师应认真反思教学效果,针对学生的掌握情况,调整教学策略,以提高学生对空间向量法的理解和应用能力。

十三、教学拓展1. 研究空间向量在几何中的应用。

2. 探索向量法在物理学、工程学等领域的应用。

十四、教学建议1. 注重学生空间想象能力的培养。

2. 鼓励学生积极参与课堂讨论,提高课堂氛围。

利用向量方法求空间角 知识点+例题+练习

利用向量方法求空间角 知识点+例题+练习

教学内容利用向量方法求空间角教学目标1.掌握各种空间角的定义,弄清它们各自的取值范围.2.掌握异面直线所成的角,二面角的平面角,直线与平面所成的角的联系和区别,体会求空间角中的转化思想.重点1.掌握各种空间角的定义,弄清它们各自的取值范围.2.掌握异面直线所成的角,二面角的平面角,直线与平面所成的角的联系和区别,体会求空间角中的转化思想.难点1.掌握各种空间角的定义,弄清它们各自的取值范围.2.掌握异面直线所成的角,二面角的平面角,直线与平面所成的角的联系和区别,体会求空间角中的转化思想.教学准备教学过程自主梳理1.两条异面直线的夹角①定义:设a,b是两条异面直线,在直线a上任取一点作直线a′∥b,则a′与a的夹角叫做a与b的夹角.②范围:两异面直线夹角θ的取值范围是_____________________.③向量求法:设直线a,b的方向向量为a,b,其夹角为φ,则有cos θ=________=_______________.2.直线与平面的夹角①定义:直线和平面的夹角,是指直线与它在这个平面内的射影的夹角.②范围:直线和平面夹角θ的取值范围是________________________.③向量求法:设直线l的方向向量为a,平面的法向量为u,直线与平面所成的角为θ,a与u的夹角为φ,则有sin θ=|cos φ|或cos θ=sin φ.3.二面角(1)二面角的取值范围是____________.(2)二面角的向量求法:①若AB、CD分别是二面角α—l—β的两个面内与棱l垂直的异面直线,则二面角的大小就是向量AB→与CD→的夹角(如图①).②设n1,n2分别是二面角α—l—β的两个面α,β的法向量,则向量n1与n2的夹角(或其补角)的大小就是二面角的平面角的大小(如图②③).自我检测1.已知两平面的法向量分别为m=(0,1,0),n=(0,1,1),则两平面所成的二面角为________.2.若直线l1,l2的方向向量分别为a=(2,4,-4),b=(-6,9,6),则l1与l2所成的角等于________.3.若直线l的方向向量与平面α的法向量的夹角等于120°,则直线l与平面α所成的角等于________.4.二面角的棱上有A、B两点,直线AC、BD分别在这个二面角的两个半平面内,且都垂直于AB.已知AB=4,AC=6,BD=8,CD=217,则该二面角的大小为_______________________________________.5.(2010·铁岭一模)已知直线AB、CD是异面直线,AC⊥CD,BD⊥CD,且AB=2,CD=1,则异面直线AB与CD所成的角的大小为________.教学效果分析教学过程探究点一利用向量法求异面直线所成的角例1已知直三棱柱ABC—A1B1C1,∠ACB=90°,CA=CB=CC1,D为B1C1的中点,求异面直线BD和A1C所成角的余弦值.变式迁移1如图所示,在棱长为a的正方体ABCD—A1B1C1D1中,求异面直线BA1和AC所成的角.探究点二利用向量法求直线与平面所成的角例2如图,已知平面ABCD⊥平面DCEF,M,N分别为AB,DF的中点,求直线MN与平面DCEF所成的角的正弦值.变式迁移2如图所示,在几何体ABCDE中,△ABC是等腰直角三角形,∠ABC=90°,BE和CD都垂直于平面ABC,且BE=AB=2,CD=1,点F是AE的中点.求AB与平面BDF所成的角的正弦值.教学效果分析教学过程探究点三利用向量法求二面角例3如图,ABCD是直角梯形,∠BAD=90°,SA⊥平面ABCD,SA=BC=BA=1,AD=12,求面SCD与面SBA所成角的余弦值大小.变式迁移3如图,在三棱锥S—ABC中,侧面SAB与侧面SAC均为等边三角形,∠BAC=90°,O为BC中点.(1)证明:SO⊥平面ABC;(2)求二面角A—SC—B的余弦值.探究点四综合应用例4如图所示,在三棱锥A—BCD中,侧面ABD、ACD是全等的直角三角形,AD是公共的斜边,且AD=3,BD=CD=1,另一个侧面ABC是正三角形.(1)求证:AD⊥BC;(2)求二面角B-AC-D的余弦值;(3)在线段AC上是否存在一点E,使ED与面BCD成30°角?若存在,确定点E的位置;若不存在,说明理由.教学效果分析教学过程变式迁移4 (2011·山东,19)在如图所示的几何体中,四边形ABCD为平行四边形,∠ACB=90°,EA⊥平面ABCD,EF∥AB,FG∥BC,EG∥AC,AB=2EF.(1)若M是线段AD的中点,求证:GM∥平面ABFE;(2)若AC=BC=2AE,求二面角A-BF-C的大小.1.求两异面直线a、b的所成的角θ,需求出它们的方向向量a,b的夹角,则cos θ=|cos〈a,b〉|.2.求直线l与平面α所成的角θ.可先求出平面α的法向量n与直线l的方向向量a的夹角.则sin θ=|cos〈n,a〉|.3.求二面角α—l—β的大小θ,可先求出两个平面的法向量n1,n2所成的角.则θ=〈n1,n2〉或π-〈n1,n2〉.)一、填空题(每小题6分,共48分)1.在正方体ABCD—A1B1C1D1中,M是AB的中点,则sin〈DB1→,CM→〉的值等于________.2.已知长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=2,E是侧棱BB1的中点,则直线AE与平面A1ED1所成的角的大小为________.3.如图,在正四面体ABCD中,E、F分别是BC和AD的中点,则AE与CF所成的角的余弦值为________.教学效果分析教学过程4.(2011·南通模拟) 如图所示,在长方体ABCD—A1B1C1D1中,已知B1C,C1D与上底面A1B1C1D1所成的角分别为60°和45°,则异面直线B1C和C1D所成的余弦值为________.5.P是二面角α—AB—β棱上的一点,分别在α、β平面上引射线PM、PN,如果∠BPM=∠BPN=45°,∠MPN=60°,那么二面角α—AB—β的大小为________.6.(2011·无锡模拟)已知正四棱锥P—ABCD的棱长都相等,侧棱PB、PD的中点分别为M、N,则截面AMN与底面ABCD所成的二面角的余弦值是________.7.如图,P A⊥平面ABC,∠ACB=90°且P A=AC=BC=a,则异面直线PB与AC所成角的正切值等于________.8.如图,已知正三棱柱ABC—A1B1C1的所有棱长都相等,D是A1C1的中点,则直线AD与平面B1DC所成的角的正弦值为________.二、解答题(共42分)9.(14分) 如图所示,AF、DE分别是⊙O、⊙O1的直径,AD与两圆所在的平面均垂直,AD=8.BC是⊙O的直径,AB=AC=6,OE∥AD.(1)求二面角B-AD-F的大小;(2)求直线BD与EF所成的角的余弦值.10.(14分)(2011·大纲全国,19)如图,四棱锥S-ABCD中,AB∥CD,BC⊥CD,侧面SAB为等边三角形,AB=BC=2,CD=SD=1.(1)证明:SD⊥平面SAB;(2)求AB与平面SBC所成角的正弦值.教学效果分析教学过程11.(14分)(2011·湖北,18)如图,已知正三棱柱ABC-A1B1C1各棱长都是4,E是BC的中点,动点F在侧棱CC1上,且不与点C重合.(1)当CF=1时,求证:EF⊥A1C;(2)设二面角C-AF-E的大小为θ,求tan θ的最小值.自主梳理1.②⎝⎛⎦⎤0,π2③|cos φ|⎪⎪⎪⎪a·b|a|·|b| 2.②⎣⎡⎦⎤0,π2 3.(1)[0,π]教学效果分析自我检测 1.45°或135° 2.90° 3.30° 4.60° 5.60° 课堂活动区例1 解题导引 (1)求异面直线所成的角,用向量法比较简单,若用基向量法求解,则必须选好空间的一组基向量,若用坐标求解,则一定要将每个点的坐标写正确.(2)用异面直线方向向量求两异面直线夹角时,应注意异面直线所成的角的范围是⎝⎛⎦⎤0,π2 解如图所示,以C 为原点,直线CA 、CB 、CC 1分别为x 轴、y 轴、z 轴建立空间直角坐标系.设CA =CB =CC 1=2,则A 1(2,0,2),C (0,0,0),B (0,2,0),D (0,1,2), ∴BD →=(0,-1,2),A 1C →=(-2,0,-2),∴cos 〈BD →,A 1C →〉=BD →·A 1C →|BD →||A 1C →|=-105.∴异面直线BD 与A 1C 所成角的余弦值为105.变式迁移1 解 ∵BA 1→=BA →+BB 1→,AC →=AB →+BC →, ∴BA 1→·AC →=(BA →+BB 1→)·(AB →+BC →) =BA →·AB →+BA →·BC →+BB 1→·AB →+BB 1→·BC →. ∵AB ⊥BC ,BB 1⊥AB ,BB 1⊥BC , ∴BA →·BC →=0,BB 1→·AB →=0, BB 1→·BC →=0,BA →·AB →=-a 2, ∴BA 1→·AC →=-a 2. 又BA 1→·AC →=|BA 1→|·|AC →|·cos 〈BA 1→,AC →〉,∴cos 〈BA 1→,AC →〉=-a 22a ×2a =-12.∴〈BA 1→,AC →〉=120°.∴异面直线BA 1与AC 所成的角为60°.例2 解题导引 在用向量法求直线OP 与α所成的角(O ∈α)时,一般有两种途径:一是直接求〈OP →,OP ′→〉,其中OP ′为斜线OP 在平面α内的射影;二是通过求〈n ,OP →〉进而转化求解,其中n 为平面α的法向量.解设正方形ABCD ,DCEF 的边长为2,以D 为坐标原点,分别以射线DC ,DF ,DA 为x ,y ,z 轴正半轴建立空间直角坐标系如图.则M (1,0,2),N (0,1,0),可得MN →=(-1,1,-2).又DA →=(0,0,2)为平面DCEF 的法向量,可得cos 〈MN →,DA →〉=MN →·DA →|MN →||DA →|=-63.所以MN 与平面DCEF 所成的角的正弦值为|cos 〈MN →,DA →〉|=63.变式迁移2 解 以点B 为原点,BA 、BC 、BE 所在的直线分别为x ,y ,z 轴,建立如图所示的空间直角坐标系,则B (0,0,0),A (2,0,0),C (0,2,0),D (0,2,1),E (0,0,2),F (1,0,1). ∴BD →=(0,2,1),DF →=(1,-2,0). 设平面BDF 的一个法向量为 n =(2,a ,b ),∵n ⊥DF →,n ⊥BD →, ∴⎩⎪⎨⎪⎧n ·DF →=0,n ·BD →=0.即⎩⎪⎨⎪⎧(2,a ,b )·(1,-2,0)=0,(2,a ,b )·(0,2,1)=0. 解得a =1,b =-2.∴n =(2,1,-2). 设AB 与平面BDF 所成的角为θ,则法向量n 与BA →的夹角为π2-θ,∴cos ⎝⎛⎭⎫π2-θ=BA →·n |BA →||n |=(2,0,0)·(2,1,-2)2×3=23, 即sin θ=23,故AB 与平面BDF 所成的角的正弦值为23.例3 解题导引 图中面SCD 与面SBA 所成的二面角没有明显的公共棱,考虑到易于建系,从而借助平面的法向量来求解.解建系如图,则A (0,0,0), D ⎝⎛⎭⎫12,0,0,C (1,1,0), B (0,1,0),S (0,0,1), ∴AS →=(0,0,1),SC →=(1,1,-1),SD →=⎝⎛⎭⎫12,0,-1,AB →=(0,1,0),AD →=⎝⎛⎭⎫12,0,0. ∴AD →·AS →=0,AD →·AB →=0. ∴AD →是面SAB 的法向量,设平面SCD 的法向量为n =(x ,y ,z ),则有n ·SC →=0且n ·SD →=0.即⎩⎪⎨⎪⎧x +y -z =0,12x -z =0.令z =1,则x =2,y =-1.∴n =(2,-1,1).∴cos 〈n ,AD →〉=n ·AD →|n ||AD →|=2×126×12=63.故面SCD 与面SBA 所成的二面角的余弦值为63. 变式迁移3 (1)证明 由题设AB =AC =SB =SC =SA . 连结OA ,△ABC 为等腰直角三角形,所以OA =OB =OC =22SA , 且AO ⊥BC .又△SBC 为等腰三角形,故SO ⊥BC ,且SO =22SA .从而OA 2+SO 2=SA 2,所以△SOA 为直角三角形,SO ⊥AO . 又AO ∩BC =O ,所以SO ⊥平面ABC . (2)解以O 为坐标原点,射线OB 、OA 、OS 分别为x 轴、y 轴、z 轴的正半轴,建立如图的空间直角坐标系O -xyz ,如图.设B (1,0,0),则C (-1,0,0), A (0,1,0),S (0,0,1).SC 的中点M ⎝⎛⎭⎫-12,0,12, MO →=⎝⎛⎭⎫12,0,-12,MA →=⎝⎛⎭⎫12,1,-12, SC →=(-1,0,-1), ∴MO →·SC →=0,MA →·SC →=0.故MO ⊥SC ,MA ⊥SC ,〈MO →,MA →〉等于二面角A —SC —B 的平面角.cos 〈MO →,MA →〉=MO →·MA →|MO →||MA →|=33,所以二面角A —SC —B 的余弦值为33.例4 解题导引 立体几何中开放性问题的解决方式往往是通过假设,借助空间向量建立方程,进行求解.(1)证明作AH ⊥面BCD 于H ,连结BH 、CH 、DH ,则四边形BHCD 是正方形,且AH =1,将其补形为如图所示正方体.以D 为原点,建立如图所示空间直角坐标系.则B (1,0,0),C (0,1,0),A (1,1,1). BC →=(-1,1,0),DA →=(1,1,1), ∴BC →·DA →=0,则BC ⊥AD .(2)解 设平面ABC 的法向量为n 1=(x ,y ,z ),则由n 1⊥BC →知:n 1·BC →=-x +y =0,同理由n 1⊥AC →知:n 1·AC →=-x -z =0, 可取n 1=(1,1,-1),同理,可求得平面ACD 的一个法向量为n 2=(1,0,-1). 由图可以看出,二面角B -AC -D 即为〈n 1,n 2〉,∴cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=1+0+13×2=63.即二面角B -AC -D 的余弦值为63. (3)解 设E (x ,y ,z )是线段AC 上一点, 则x =z >0,y =1,平面BCD 的一个法向量为n =(0,0,1),DE →=(x,1,x ),要使ED 与平面BCD 成30°角,由图可知DE →与n 的夹角为60°,所以cos 〈DE →,n 〉=DE →·n |DE →||n |=x 1+2x 2 =cos 60°=12.则2x =1+2x 2,解得x =22,则CE =2x =1.故线段AC 上存在E 点,且CE =1时,ED 与面BCD 成30°. 变式迁移4(1)证明 方法一 因为EF ∥AB ,FG ∥BC ,EG ∥AC ,∠ACB =90°, 所以∠EGF =90°, △ABC ∽△EFG . 由于AB =2EF , 因此BC =2FG . 连结AF ,由于FG ∥BC ,FG =12BC ,在▱ABCD 中,M 是线段AD 的中点,则AM ∥BC ,且AM =12BC ,因此FG ∥AM 且FG =AM ,所以四边形AFGM 为平行四边形, 因此GM ∥F A .又F A ⊂平面ABFE ,GM ⊄平面ABFE ,方法二 因为EF ∥AB ,FG ∥BC ,EG ∥AC ,∠ACB =90°, 所以∠EGF =90°, △ABC ∽△EFG . 由于AB =2EF , 所以BC =2FG .取BC 的中点N ,连结GN ,因此四边形BNGF 为平行四边形, 所以GN ∥FB .在▱ABCD 中,M 是线段AD 的中点,连结MN , 则MN ∥AB .因为MN ∩GN =N , 所以平面GMN ∥平面ABFE .又GM ⊂平面GMN ,所以GM ∥平面ABFE .(2)解 方法一 因为∠ACB =90°,所以∠CAD =90°. 又EA ⊥平面ABCD ,所以AC ,AD ,AE 两两垂直.分别以AC ,AD ,AE 所在直线为x 轴,y 轴和z 轴,建立如图所示的空间直角坐标系,不妨设AC =BC =2AE =2,则由题意得A (0,0,0),B (2,-2,0),C (2,0,0),E (0,0,1),所以AB →=(2,-2,0),BC →=(0,2,0).又EF =12AB ,所以F (1,-1,1),BF →=(-1,1,1).设平面BFC 的法向量为m =(x 1,y 1,z 1),则m ·BC →=0,m ·BF →=0,所以⎩⎪⎨⎪⎧y 1=0,x 1=z 1,取z 1=1,得x 1=1,所以m =(1,0,1).设平面向量ABF 的法向量为n =(x 2,y 2,z 2),则n ·AB →=0,n ·BF →=0,所以⎩⎪⎨⎪⎧x 2=y 2,z 2=0,取y 2=1,得x 2=1.则n =(1,1,0).所以cos 〈m ,n 〉=m ·n |m |·|n |=12.因此二面角A -BF -C 的大小为60°.方法二 由题意知,平面ABFE ⊥平面ABCD . 取AB 的中点H ,连结CH . 因为AC =BC , 所以CH ⊥AB ,过H 向BF 引垂线交BF 于R ,连结CR ,则CR ⊥BF , 所以∠HRC 为二面角A -BF -C 的平面角. 由题意,不妨设AC =BC =2AE =2,在直角梯形ABFE 中,连结FH ,则FH ⊥AB . 又AB =22,所以HF =AE =1,BH =2,因此在Rt △BHF 中,HR =63.由于CH =12AB =2,所以在Rt △CHR 中,tan ∠HRC =263= 3.因此二面角A -BF -C 的大小为60°. 课后练习区 1.21015 2.90°解析 ∵E 是BB 1的中点且AA 1=2,AB =BC =1, ∴∠AEA 1=90°,又在长方体ABCD -A 1B 1C 1D 1中, A 1D 1⊥平面ABB 1A 1,∴A 1D 1⊥AE ,∴AE ⊥平面A 1ED 1. ∴AE 与面A 1ED 1所成的角为90°. 3.23解析 设四面体的棱长为a , AB →=p ,AC →=q ,AD →=r ,则AE →=12(p +q ),CF →=12(r -2q ).∴AE →·CF →=-12a 2.又|AE →|=|CF →|=32a ,∴cos 〈AE →,CF →〉=AE →,CF →|AE →|·|CF →|=-23.即AE 和CF 所成角的余弦值为23.4.64 5.90° 解析不妨设PM =a ,PN =b ,作ME ⊥AB 于E ,NF ⊥AB 于F , 如图:∵∠EPM =∠FPN =45°,∴PE =22a ,PF =22b ,∴EM →·FN →=(PM →-PE →)·(PN →-PF →) =PM →·PN →-PM →·PF →-PE →·PN →+PE →·PF →=ab cos 60°-a ×22b cos 45°-22ab cos 45°+22a ×22b=ab 2-ab 2-ab 2+ab2=0, ∴EM →⊥FN →,∴二面角α—AB —β的大小为90°. 6.255解析 如图建立空间直角坐标系,设正四棱锥的棱长为2,则PB =2,OB =1,OP =1. ∴B (1,0,0),D (-1,0,0), A (0,1,0),P (0,0,1), M ⎝⎛⎭⎫12,0,12, N ⎝⎛⎭⎫-12,0,12, AM →=⎝⎛⎭⎫12,-1,12, AN →=⎝⎛⎭⎫-12,-1,12, 设平面AMN 的法向量为n 1=(x ,y ,z ),由⎩⎨⎧n ·AM →=12x -y +12z =0,n ·AN →=-12x -y +12z =0,解得x =0,z =2y ,不妨令z =2,则y =1.∴n 1=(0,1,2),平面ABCD 的法向量n 2=(0,0,1),则cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=25=255.7. 2解析 PB →=P A →+AB →,故PB →·AC →=(P A →+AB →)·AC →=P A →·AC →+AB →·AC →=0+a ×2a ×cos 45°=a 2.又|PB →|=3a ,|AC →|=a .∴cos 〈PB →,AC →〉=33,sin 〈PB →,AC →〉=63,∴tan 〈PB →,AC →〉= 2. 8.45解析 不妨设正三棱柱ABC —A 1B 1C 1的棱长为2,建立如图所示的空间直角坐标系,则C (0,0,0),A (3,-1,0),B 1(3,1,2),D ⎝⎛⎭⎫32,-12,2.则CD →=⎝⎛⎭⎫32,-12,2,CB 1→=(3,1,2),设平面B 1DC 的法向量为 n =(x ,y,1),由⎩⎪⎨⎪⎧n ·CD →=0,n ·CB 1→=0,解得n =(-3,1,1).又∵DA →=⎝⎛⎭⎫32,-12,-2,∴sin θ=|cos 〈DA →,n 〉|=45.9.解 (1)∵AD 与两圆所在的平面均垂直, ∴AD ⊥AB ,AD ⊥AF ,故∠BAF 是二面角B —AD —F 的平面角.(2分) 依题意可知,ABFC 是正方形,∴∠BAF =45°. 即二面角B —AD —F 的大小为45°.(5分)(2)以O 为原点,CB 、AF 、OE 所在直线为坐标轴,建立空间直角坐标系(如图所示),则O (0,0,0),A (0,-3 2,0),B (3 2,0,0),D (0,-3 2,8),E (0,0,8),F (0,3 2,0),(8分)∴BD →=(-3 2,-3 2,8), EF →=(0,3 2,-8).cos 〈BD →,EF →〉=BD →·EF →|BD →||EF →|=0-18-64100×82=-8210.(12分)设异面直线BD 与EF 所成角为α,则cos α=|cos 〈BD →,EF →〉|=8210.即直线BD 与EF 所成的角的余弦值为8210.(14分) 10.方法一 (1)证明 取AB 中点E ,连结DE ,则四边形BCDE 为矩形,DE =CB =2,连结SE ,则SE ⊥AB ,SE = 3.又SD =1,故ED 2=SE 2+SD 2,所以∠DSE 为直角,即SD ⊥SE .(4分) 由AB ⊥DE ,AB ⊥SE ,DE ∩SE =E , 得AB ⊥平面SDE , 所以AB ⊥SD .由SD 与两条相交直线AB 、SE 都垂直,所以SD ⊥平面SAB .(7分)(2)解 由AB ⊥平面SDE 知,平面ABCD ⊥平面SDE .(10分)作SF ⊥DE ,垂足为F ,则SF ⊥平面ABCD ,SF =SD ·SE DE =32.作FG ⊥BC ,垂足为G ,则FG =DC =1. 连结SG ,又BC ⊥FG ,BC ⊥SF ,SF ∩FG =F , 故BC ⊥平面SFG ,平面SBC ⊥平面SFG . 作FH ⊥SG ,H 为垂足,则FH ⊥平面SBC .FH =SF ·FG SG =37,则F 到平面SBC 的距离为217.由于ED ∥BC ,所以ED ∥平面SBC ,E 到平面SBC 的距离d 为217.(12分)设AB 与平面SBC 所成的角为α,则sin α=d EB =217,即AB 与平面SBC 所成的角的正弦值为217.(14分)方法二 以C 为坐标原点,射线CD 为x 轴正半轴,建立如图所示的空间直角坐标系C -xyz .设D (1,0,0),则A (2,2,0)、B (0,2,0).(2分) 又设S (x ,y ,z ),则x >0,y >0,z >0.(1)证明 AS →=(x -2,y -2,z ),BS →=(x ,y -2,z ), DS →=(x -1,y ,z ), 由|AS →|=|BS →|得(x -2)2+(y -2)2+z 2=x 2+(y -2)2+z 2, 故x =1. 由|DS →|=1得y 2+z 2=1.①又由|BS →|=2得x 2+(y -2)2+z 2=4, 即y 2+z 2-4y +1=0.②联立①②得⎩⎨⎧y =12,z =32.(4分)于是S (1,12,32),AS →=(-1,-32,32),BS →=(1,-32,32),DS →=(0,12,32).因为DS →·AS →=0,DS →·BS →=0, 故DS ⊥AS ,DS ⊥BS .又AS ∩BS =S ,所以SD ⊥平面SAB .(7分) (2)解 设平面SBC 的法向量a =(m ,n ,p ),则a ⊥BS →,a ⊥CB →,a ·BS →=0,a ·CB →=0.又BS →=(1,-32,32),CB →=(0,2,0),故⎩⎪⎨⎪⎧m -32n +32p =0,2n =0.取p =2得a =(-3,0,2).(10分) 又AB →=(-2,0,0),cos 〈AB →,a 〉=|AB →·a ||AB →||a |=217,所以AB 与平面SBC 所成角的正弦值为217.(14分) 11.(1)证明 建立如图所示的空间直角坐标系,则由已知可得A (0,0,0),B (23,2,0),C (0,4,0),A 1(0,0,4),E (3,3,0),F (0,4,1).(2分)于是CA 1→=(0,-4,4), EF →=(-3,1,1). 则CA 1→·EF →=(0,-4,4)·(-3,1,1)=0-4+4=0, 故EF ⊥A 1C .(8分)(2)解 设CF =λ(0<λ≤4),平面AEF 的一个法向量为m =(x ,y ,z ), 则由(1)得F (0,4,λ).(8分) AE →=(3,3,0),AF →=(0,4,λ),于是由m ⊥AE →,m ⊥AF →可得⎩⎪⎨⎪⎧m ·AE →=0,m ·AF →=0,即⎩⎨⎧3x +3y =0,4y +λz =0.取m =(3λ,-λ,4).又由直三棱柱的性质可取侧面AC 1的一个法向量为n =(1,0,0),于是由θ的锐角可得cos θ=|m ·n ||m |·|n |=3λ2λ2+4,sin θ=λ2+162λ2+4,所以tan θ=λ2+163λ=13+163λ2.(10分) 由0<λ≤4,得1λ≥14,即tan θ≥13+13=63. 故当λ=4,即点F 与点C 1重合时,tan θ取得最小值63.(14分)。

向量法在求空间角中的应用

向量法在求空间角中的应用
设正方体棱长为2以d为坐标原点da221cos二向量法求直线与平面所成的角设直线与平面所成的角为在应用向量法求线面角时先求出直线的方向向量的夹角再通过互余关系来得到相应的线面角若平面的法向量与直线的方向向量的夹角满足sin侧棱sd的中点且sood则直线bc与平面pac解析
语数外学 习
No . 1 0. 2 0 1 3
即 , . 。 ,
-1 , 得


1 . 1 . o ) 一 (
> =

3.

二 面 角 G - 一 的 平 面 角 的 余 弦 值 为 孚
、 化 难 为 易 的特 黑
用 向量 的方法 求 空 间角 时 , 避 免 繁 琐 的推 理 论 证 , 只要 进行
向量 簋 即可 . 寺 收 化 隐
, -
0 。,



即 { ~。
厄 ,
令 = 一 1 , 得r n . =( √ , 0 , 一I ) . 设平 面 P A c的一 个 法 向量 为 n=( , , , , , z ) . =( 0 , 0 , 一
2 ) , = ( , 一 . 0 ) 堋 { , - - - k : : :
求 出二 面角 口 一 卜 的两 个半 平面 a与 卢的法 向量 r / , 。 , n . 2 , 若
若异面直线 口 , b 的方向向量分别为 , 5 , 异面直线所成 的角
为 , 则c o s O =I c o s 【 , 5 ] I =
一卜 所成的角 为锐角 , 则c o s O :- = , 但应注意用 向量法求两 二面角a
7 7
二、 向量法 求直线 与平面 所成 的角

向量法求空间角(含解析)

向量法求空间角(含解析)

高中数学 ︵ 向量法求空间角︶培优篇考点1:异面直线所成的角若异面直线l 1,l 2所成的角为θ,其方向向量分别是u ,v ,则cos θ=|cos 〈u ,v 〉|=|u·v||u||v|.考点2:直线与平面所成的角如图,直线AB 与平面α相交于点B ,设直线AB 与平面α所成的角为θ,直线AB 的方向向高中数学 ︵ 向量法求空间角︶培优篇量为u ,平面α的法向量为n ,则sin θ=|cos 〈u ,n 〉|= u ·n |u ||n |=|u·n||u||n|.考点3:平面与平面的夹角如图,平面α与平面β相交,形成四个二面角,我们把这四个二面角中不大于90°的二面角称为平面α与平面β的夹角.若平面α,β的法向量分别是n 1和n 2,则平面α与平面β的夹角即为向量n 1和n 2的夹角或其补角.设平面α与平面β的夹角为θ,则cos θ=|cos 〈n 1,n 2〉|=|n 1·n 2||n 1||n 2|.【常用结论总结】1.线面角θ的正弦值等于直线的方向向量a 与平面的法向量n 所成角的余弦值的绝对值,即sin θ=|cos 〈a ,n 〉|,不要误记为cos θ=|cos 〈a ,n 〉|. 2.二面角的范围是[0,π],两个平面夹角的范围是0,2.【例1】 直三棱柱ABC -A 1B 1C 1如图所示,AB =4,BC=3,AC =5,D 为棱AB 的中点,三棱柱的各顶点在同一球面上,且球的表面积为61π,则异面直线A 1D 和B 1C 所成的角的余弦值为( )高中数学 ︵ 向量法求空间角︶培优篇A .5B .25C .5D .25【例2】 如图,四棱锥P −ABCD 中,底面ABCD 为正方形,△PAD 是正三角形,AB =2,平面PAD ⊥平面ABCD ,则PC 与BD 所成角的余弦值为( )A .14B .4C .13D 【例3】 如图四棱锥P -ABCD 中,底面ABCD 为正方形,各棱长均相等,E 是PB 的中点,则异面直线AE 与PC 所成角的余弦值为()A 6B C .13D .12学霸笔记用向量法求异面直线所成的角的一般步骤(1)建立空间直角坐标系;(2)用坐标表示两异面直线的方向向量; (3)利用向量的夹角公式求出向量夹角的余弦值;(4)注意两异面直线所成角的范围是(0,],即两异面直线所成角的余弦值等于两向量夹角的余弦值的绝对值.高中数学 ︵ 向量法求空间角︶培优篇【对点训练1】 如图,在三棱柱ABC -A 1B 1C 1中,底面边长和侧棱长均相等,∠BAA 1=∠CAA 1=60°,则异面直线AB 1与BC 1所成角的余弦值为()AB .13C .4D 【对点训练2】 “曲池”是《九章算术》记载的一种几何体,该几何体是上、下底面均为扇环形的柱体(扇环是指圆环被扇形截得的部分).现有一个如图所示的曲池,AA ⊥面ABCD ,AA 1=4,底面扇环所对的圆心角为π2,AD 的长度是BC 长度的2倍,CD =1,则异面直线A 1D 1与BC 1所成角的正弦值为()A .3B .13C .3D .4【对点训练3】 如图,在直三棱柱ABC -A 1B 1C 1中,AA 1=AC=AB=2,BC =2√2,Q 为A 1B 1的中点,E 为AQ 的中点,F 为BC 1的中点,则异面直线BE 与AF所成角的余弦值为( )A. BC .D高中数学 ︵ 向量法求空间角︶培优篇【例4】 在正方体ABCD −A B C D 中,如图E 、F 分别是BB 1、CD 的中点. (1)求证:平面AD F ⊥平面ADE ; (2)求直线EF 与AD F 所成角的正弦值.【例5】 如图,在四棱锥P -ABCD 中,底面ABCD 是平行四边形,P A ⊥平面ABCD ,P A=AD=2AB=8,点M 在棱PD 上,且PA =PM ⋅PD ,AM ⊥MC.(1)求证:CD ⊥平面P AD ;(2)求BM 与平面ACM 所成角的余弦值.高中数学 ︵ 向量法求空间角︶培优篇 学霸笔记利用空间向量求线面角的解题步骤【对点训练4】 如图,正方体ABCD -A 1B 1C 1D 1中,E 、F 分别为棱BC 、CD 的中点. (1)求证:D 1 F ∥平面A 1EC1;(2)求直线AC 1与平面A 1EC 1所成角的正弦值.高中数学 ︵ 向量法求空间角︶培优篇 【对点训练5】 如图所示,在直四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 为菱形,∠ABC =60°,AB =2,AA 1=2√3,E 为线段DD 1上一点.(1)求证:AC ⊥B 1D ;(2)若平面AB 1E 与平面ABCD 的夹角的余弦值为25,求直线BE与平面AB 1E 所成角的正弦值.高中数学 ︵ 向量法求空间角︶培优篇【例6】 在如图所示的空间几何体中,△ACD 与△ACB 均是等边三角形,直线ED ⊥平面ACD ,直线EB ⊥平面ABC ,DE ⊥BE . (1)求证:平面ABC ⊥平面ADC ;(2)求平面ACE 与平面BCE 夹角的余弦值.【例7】 如图,三棱锥A −BCD 中,DA =DB =DC ,BD ⊥CD ,∠ADB =∠ADC =60∘,E 为BC 的中点. (1)证明:BC ⊥DA ;(2)点F满足EF⃗=DA ⃗,求二面角D −AB −F 的正弦值.高中数学 ︵ 向量法求空间角︶培优篇学霸笔记利用空间向量求平面与平面夹角的解题步骤【对点训练6】 直三棱柱ABC −A B C 中,AA =AB =AC =2,AA ⊥AB,AC ⊥AB ,D 为A B 的中点,E 为AA 的中点,F 为CD 的中点. (1)求证:EF ∥平面ABC ;(2)求直线BE 与平面CCD所成角的正弦值; (3)求平面A CD 与平面CC D 夹角的余弦值.高中数学 ︵ 向量法求空间角︶培优篇 【对点训练7】 如图,在棱长为2的正方体ABCD −A B C D 中,E 为棱BC 的中点,F 为棱CD 的中点.(1)求证:D 1F ∥平面A EC ;(2)求直线AC 与平面A EC 所成角的正弦值. (3)求二面角A −A C −E 的正弦值.【对点训练8】 如图,PO 是三棱锥P −ABC 的高,PA =PB ,AB ⊥AC ,E 是PB 的中点. (1)证明:OE ∥平面PAC ;(2)若∠ABO=∠CBO =30°,PO =3,PA =5,求二面角C −AE −B 的正弦值.。

高中数学空间向量与立体几何立体几何中的向量方法利用空间向量求空间角空间距离问题数学.doc

高中数学空间向量与立体几何立体几何中的向量方法利用空间向量求空间角空间距离问题数学.doc

3.2.3 利用空间向量求空间角、空间距离问题1.空间角及向量求法(1)两异面直线所成的角与两直线的方向向量所成的角相等.( )(2)直线l∥平面α,则直线l到平面α的距离就是直线l上的点到平面α的距离.( )(3)若平面α∥β,则两平面α,β的距离可转化为平面α内某条直线到平面β的距离,也可转化为平面α内某点到平面β的距离.( )答案 (1)× (2)√ (3)√2.做一做(请把正确的答案写在横线上)(1)已知两平面的法向量分别为m =(0,1,0),n =(0,1,1),则两平面所成的二面角的大小为________.(2)(教材改编P 111A 组T 11)如图,在正方体ABCD -A 1B 1C 1D 1中,M 是C 1C 的中点,O 是底面ABCD 的中点,P 是A 1B 1上的任意点,则直线BM 与OP 所成的角为________.(3)已知平面α的一个法向量为n =(-2,-2,1),点A (-1,3,0)在平面α内,则点P (-2,1,4)到平面α的距离为________.答案 (1)45°或135° (2)π2 (3)103解析 (2)建立如图所示的空间直角坐标系,设正方体棱长为2 ,则O (1,1,0),P (2,x,2),B (2,2,0),M (0,2,1),则OP→=(1,x -1,2),BM →=(-2,0,1).所以OP →·BM →=0,所以直线BM 与OP 所成角为π2. 探究1 利用空间向量求线线角例1 如图1,已知两个正四棱锥P -ABCD 与Q -ABCD 的高分别为1和2,AB =4.求异面直线AQ 与PB 所成角的余弦值.[解] 由题设知,ABCD 是正方形,连接AC ,BD ,交于点O ,则AC ⊥BD .连接PQ ,则PQ 过点O .由正四棱锥的性质知PQ ⊥平面ABCD ,故以O 为坐标原点,以直线CA,DB,QP分别为x轴、y轴、z轴建立空间直角坐标系(如图2),则P(0,0,1),A(22,0,0),Q(0,0,-2),B(0,22,0),∴AQ→=(-22,0,-2),PB→=(0,22,-1).于是cos〈AQ→,PB→〉=AQ→·PB→|AQ→||PB→|=39,∴异面直线AQ与PB所成角的余弦值为3 9 .拓展提升两异面直线所成角的求法(1)平移法:即通过平移其中一条(也可两条同时平移),使它们转化为两条相交直线,然后通过解三角形获解.(2)取定基底法:在一些不适合建立坐标系的题型中,我们经常采用取定基底的方法,这是小技巧.在由公式cos〈a,b〉=a·b|a||b|求向量a、b的夹角时,关键是求出a·b及|a|与|b|,一般是把a、b用一组基底表示出来,再求有关的量.(3)用坐标法求异面直线的夹角的方法①建立恰当的空间直角坐标系;②找到两条异面直线的方向向量的坐标形式;③利用向量的夹角公式计算两直线的方向向量的夹角;④结合异面直线所成角的范围得到异面直线所成的角.【跟踪训练1】如图,在三棱锥V-ABC中,顶点C在空间直角坐标系的原点处,顶点A,B,V分别在x,y,z轴上,D是线段AB 的中点,且AC =BC =2,∠VDC =θ.当θ=π3时,求异面直线AC 与VD 所成角的余弦值.解 由于AC =BC =2,D 是AB 的中点,所以C (0,0,0),A (2,0,0),B (0,2,0),D (1,1,0).当θ=π3时,在Rt △VCD 中,CD =2,故有V (0,0,6).所以AC →=(-2,0,0),VD →=(1,1,-6).所以cos 〈AC →,VD →〉=AC →·VD→|AC →||VD →|=-22×22=-24.所以异面直线AC 与VD 所成角的余弦值为24.探究2 利用空间向量求线面角例2 正三棱柱ABC -A 1B 1C 1的底面边长为a ,侧棱长为2a ,求AC 1与侧面ABB 1A 1所成的角.[解] 建立如下图所示的空间直角坐标系,则A (0,0,0),B (0,a,0),A 1(0,0, 2a ),C 1⎝⎛⎭⎪⎪⎫-32a ,a2, 2a , 取A 1B 1的中点M ,则M ⎝⎛⎭⎪⎫0,a2,2a ,连接AM ,MC 1,有MC 1→=⎝ ⎛⎭⎪⎪⎫-32a ,0,0, AB →=(0,a,0),AA1→=(0,0,2a ).∴MC 1→·AB →=0,MC 1→·AA 1→=0, ∴MC 1→⊥AB →,MC1→⊥AA 1→, 即MC 1⊥AB ,MC 1⊥AA 1,又AB ∩AA 1=A , ∴MC 1⊥平面ABB 1A 1 .∴∠C 1AM 是AC 1与侧面A 1ABB 1所成的角.由于AC 1→=⎝ ⎛⎭⎪⎪⎫-32a ,a 2,2a ,AM →=⎝ ⎛⎭⎪⎫0,a 2,2a ,∴AC 1→·AM →=0+a 24+2a 2=9a 24,|AC 1→|=3a 24+a 24+2a 2=3a , |AM →|=a 24+2a 2=32a , ∴cos 〈AC1→,AM →〉=9a 243a ×3a 2=32. ∴〈AC 1→,AM →〉=30°,即AC 1与侧面ABB 1A 1所成的角为30°. [解法探究] 此题有没有其他解法?解 与原解建立相同的空间直角坐标系,则AB →=(0,a,0),AA1→=(0,0,2a ),AC 1→=⎝ ⎛⎭⎪⎪⎫-32a ,a 2,2a . 设侧面ABB 1A 1的法向量n =(λ,x ,y ),∴n ·AB →=0且n ·AA1→=0.∴ax =0且2ay =0.∴x =y =0.故n =(λ,0,0).∵AC 1→=⎝ ⎛⎭⎪⎪⎫-32a ,a 2,2a , ∴cos 〈AC 1→,n 〉=n ·AC1→|n ||AC 1→|=-λ2|λ|.∴|cos 〈AC 1→,n 〉|=12. ∴AC 1与侧面ABB 1A 1所成的角为30°.[条件探究] 此题中增加条件“E ,F ,G 为AB ,AA 1,A 1C 1的中点”,求B 1F 与平面GEF 所成角的正弦值.解 建立如图所示的空间直角坐标系,则B 1(0,a ,2a ),E ⎝ ⎛⎭⎪⎫0,a 2,0,F ⎝ ⎛⎭⎪⎪⎫0,0,22a ,G ⎝⎛⎭⎪⎪⎫-34a ,a 4,2a , 于是B 1F →=⎝ ⎛⎭⎪⎪⎫0,-a ,-22a ,EF →=⎝ ⎛⎭⎪⎪⎫0,-a 2,22a , EG →=⎝ ⎛⎭⎪⎪⎫-34a ,-a 4,2a . 设平面GEF 的法向量n =(x ,y ,z ),则⎩⎨⎧n ·EF →=0,n ·EG →=0,即⎩⎪⎨⎪⎧-a 2y +22az =0,-34ax -a 4y +2az =0,所以⎩⎪⎨⎪⎧y =2z ,x =6z ,令z =1,得x =6,y =2,所以平面GEF 的一个法向量为n =(6,2,1), 所以|cos 〈B 1F →,n 〉|=|n ·B 1F →||n ||B 1F →|=⎪⎪⎪⎪⎪⎪⎪⎪-2a -22a 9×a 2+a 22=33. 所以B 1F 与平面GEF 所成角的正弦值为33.拓展提升求直线与平面的夹角的方法与步骤思路一:找直线在平面内的射影,充分利用面与面垂直的性质及解三角形知识可求得夹角(或夹角的某一三角函数值).思路二:用向量法求直线与平面的夹角可利用向量夹角公式或法向量.利用法向量求直线与平面的夹角的基本步骤:(1)建立空间直角坐标系; (2)求直线的方向向量AB →; (3)求平面的法向量n ;(4)计算:设线面角为θ,则sin θ=|n ·AB→||n ||AB→|.【跟踪训练2】 如图,四棱锥P -ABCD 中,PA ⊥底面ABCD ,AD ∥BC ,AB =AD =AC =3,PA =BC =4,M 为线段AD 上一点,AM =2MD ,N 为PC 的中点.(1)证明:MN ∥平面PAB ;(2)求直线AN 与平面PMN 所成角的正弦值.解 (1)证明:由已知得AM =23AD =2.取BP 的中点T ,连接AT ,TN .由N 为PC 的中点知TN ∥BC ,TN =12BC =2.又AD ∥BC ,故TN 綊AM ,四边形AMNT 为平行四边形,于是MN ∥AT .因为AT ⊂平面PAB ,MN ⊄平面PAB ,所以MN ∥平面PAB .(2)取BC 的中点E ,连接AE .由AB =AC 得AE ⊥BC ,从而AE ⊥AD ,且AE =AB 2-BE 2=AB2-⎝ ⎛⎭⎪⎫BC 22= 5.以A 为坐标原点,AE →的方向为x 轴正方向,建立如图所示的空间直角坐标系Axyz .由题意知,P (0,0,4),M (0,2,0),C (5,2,0),N ⎝⎛⎭⎪⎪⎫52,1,2, PM →=(0,2,-4),PN →=⎝ ⎛⎭⎪⎪⎫52,1,-2,AN →=⎝ ⎛⎭⎪⎪⎫52,1,2. 设n =(x ,y ,z )为平面PMN 的法向量,则⎩⎨⎧n ·PM →=0,n ·PN →=0,即⎩⎪⎨⎪⎧2y -4z =0,52x +y -2z =0,可取n =(0,2,1).于是|cos 〈n ,AN →〉|=|n ·AN →||n ||AN →|=8525,则直线AN 与平面PMN所成角的正弦值为8525.探究3 利用空间向量求二面角例3 如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,面ABEF 为正方形,AF =2FD ,∠AFD =90°,且二面角D -AF -E 与二面角C -BE -F 都是60°.(1)证明:平面ABEF⊥平面EFDC;(2)求二面角E-BC-A的余弦值.[解] (1)证明:由已知可得AF⊥DF,AF⊥FE,所以AF⊥平面EFDC.又AF⊂平面ABEF,故平面ABEF⊥平面EFDC.(2)过D作DG⊥EF,垂足为G,由(1)知DG⊥平面ABEF.以G为坐标原点,GF→的方向为x轴正方向,|GF→|为单位长,建立如图所示的空间直角坐标系Gxyz.由(1)知∠DFE为二面角D-AF-E的平面角,故∠DFE=60°,则DF=2,DG=3,可得A(1,4,0),B(-3,4,0),E(-3,0,0),D(0,0,3).由已知,AB∥EF,AB⊄平面EFDC,EF⊂平面EFDC,所以AB∥平面EFDC.又平面ABCD∩平面EFDC=CD,故AB∥CD,CD∥EF.由BE∥AF,可得BE⊥平面EFDC,所以∠CEF为二面角C-BE -F的平面角,∠CEF=60°.从而可得C(-2,0,3).连接AC,则EC→=(1,0,3),EB→=(0,4,0),AC→=(-3,-4,3),AB→=(-4,0,0).设n=(x,y,z)是平面BCE的法向量,则⎩⎨⎧n ·EC →=0,n ·EB →=0,即⎩⎪⎨⎪⎧x +3z =0,4y =0,所以可取n =(3,0,-3).设m 是平面ABCD 的法向量,则⎩⎨⎧m ·AC →=0,m ·AB →=0,同理可取m =(0,3,4).则cos 〈n ,m 〉=n ·m |n ||m |=-21919.故二面角E -BC -A 的余弦值为-21919.拓展提升二面角的向量求法(1)若AB ,CD 分别是二面角α-l -β的两个半平面内与棱l 垂直的异面直线,则二面角的大小就是向量AB →与CD →的夹角(如图①).(2)利用坐标法求二面角的步骤设n 1,n 2分别是平面α,β的法向量,则向量n 1与n 2的夹角(或其补角)就是两个平面夹角的大小,如图②.用坐标法的解题步骤如下:①建系:依据几何条件建立适当的空间直角坐标系. ②求法向量:在建立的坐标系下求两个面的法向量n 1,n 2.③计算:求n1与n2所成锐角θ,cosθ=|n1·n2| |n1||n2|.④定值:若二面角为锐角,则为θ;若二面角为钝角,则为π-θ.【跟踪训练3】若PA⊥平面ABC,AC⊥BC,PA=AC=1,BC =2,求二面角A-PB-C的余弦值.解 解法一:如下图所示,取PB 的中点D ,连接CD .∵PC =BC =2,∴CD ⊥PB .∴作AE ⊥PB 于E ,那么二面角A -PB -C 的大小就等于异面直线DC 与EA 所成的角θ的大小.∵PD =1,PE =PA 2PB =12,∴DE =PD -PE =12,又∵AE =AP ·AB PB =32,CD =1,AC =1,AC →=AE →+ED →+DC →,且AE →⊥ED →,ED →⊥DC→,∴|AC →|2=|AE →|2+|ED →|2+|DC →|2+2|AE →|·|DC →|·cos(π-θ), 即1=34+14+1-2×32×1×cos θ,解得cos θ=33.故二面角A -PB -C 的余弦值为33.解法二:由解法一可知,向量DC →与EA →的夹角的大小就是二面角A -PB -C 的大小,如图,建立空间直角坐标系Cxyz ,则A (1,0,0),B (0,2,0),C (0,0,0),P (1,0,1),D 为PB的中点,D ⎝⎛⎭⎪⎪⎫12,22,12. ∵PE EB =AP 2AB 2=13,即E 分PB →的比为13,∴E ⎝⎛⎭⎪⎪⎫34,24,34,EA →=⎝ ⎛⎭⎪⎪⎫14,-24,-34, DC →=⎝ ⎛⎭⎪⎪⎫-12,-22,-12,|EA →|=32,|DC →|=1,EA →·DC →=14×⎝ ⎛⎭⎪⎫-12+⎝ ⎛⎭⎪⎪⎫-24×⎝ ⎛⎭⎪⎪⎫-22+⎝ ⎛⎭⎪⎫-34×⎝ ⎛⎭⎪⎫-12=12.∴cos 〈EA →,DC →〉=EA →·DC →|EA →||DC →|=33. 故二面角A -PB -C 的余弦值为33.解法三:如右图所示,建立空间直角坐标系,则A (0,0,0),B (2,1,0),C (0,1,0),P (0,0,1),AP →=(0,0,1),AB →=(2,1,0),CB →=(2,0,0),CP →=(0,-1,1),设平面PAB 的法向量为m =(x ,y ,z ),则⎩⎨⎧m ·AP →=0,m ·AB →=0⇒⎩⎪⎨⎪⎧x ,y ,z ·0,0,1=0,x ,y ,z ·2,1,0=0⇒⎩⎪⎨⎪⎧y =-2x ,z =0,令x =1,则m =(1,-2,0),设平面PBC 的法向量为n =(x ′,y ′,z ′),则⎩⎨⎧n ·CB →=0,n ·CP →=0⇒⎩⎪⎨⎪⎧x ′,y ′,z ′·2,0,0=0,x ′,y ′,z ′·0,-1,1=0⇒⎩⎪⎨⎪⎧x ′=0,y ′=z ′.令y ′=-1,则n =(0,-1,-1),∴cos 〈m ,n 〉=m ·n |m ||n |=33.∴二面角A -PB -C 的余弦值为33.探究4 利用空间向量求距离例4 已知正方形ABCD 的边长为1,PD ⊥平面ABCD ,且PD =1,E ,F 分别为AB ,BC 的中点.(1)求点D 到平面PEF 的距离; (2)求直线AC 到平面PEF 的距离.[解] 解法一:(1)建立如图所示的空间直角坐标系,则D (0,0,0),P (0,0,1),A (1,0,0),C (0,1,0),E ⎝ ⎛⎭⎪⎫1,12,0,F ⎝ ⎛⎭⎪⎫12,1,0.设DH ⊥平面PEF ,垂足为H ,则DH →=xDE →+yDF →+zDP →=⎝ ⎛⎭⎪⎫x +12y ,12x +y ,z ·(x +y +z =1),PE →=⎝ ⎛⎭⎪⎫1,12,-1,PF →=⎝ ⎛⎭⎪⎫12,1,-1.∴DH →·PE →=x +12y +12⎝ ⎛⎭⎪⎫12x +y -z =54x +y -z =0.同理,DH →·PF →=x +54y -z =0,又x +y +z =1,∴可解得x =y =417,z =917.∴DH →=317(2,2,3).∴|DH →|=31717.因此,点D 到平面PEF 的距离为31717.(2)设AH ′⊥平面PEF ,垂足为H ′,则AH ′→∥DH →,设AH ′→=λ(2,2,3)=(2λ,2λ,3λ)(λ≠0),则EH ′→=EA →+AH ′→=⎝ ⎛⎭⎪⎫0,-12,0+(2λ,2λ,3λ)=⎝ ⎛⎭⎪⎫2λ,2λ-12,3λ.∴AH ′→·EH ′→=4λ2+4λ2-λ+9λ2=0,即λ=117.∴AH ′→=117(2,2,3),|AH ′→|=1717, 又AC ∥平面PEF ,∴AC 到平面PEF 的距离为1717.解法二:(1)由解法一建立的空间直角坐标系知EF →=⎝ ⎛⎭⎪⎫-12,12,0,PE →=⎝ ⎛⎭⎪⎫1,12,-1,DE →=⎝ ⎛⎭⎪⎫1,12,0,设平面PEF 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧-12x +12y =0,x +12y -z =0,解得⎩⎪⎨⎪⎧y =x ,z =32x ,令x =2,则n =(2,2,3), ∴点D 到平面PEF 的距离d =|DE →·n ||n |=|2+1|4+4+9=31717.(2)∵AC ∥EF ,∴直线AC 到平面PEF 的距离也即是点A 到平面PEF 的距离.又AE →=⎝ ⎛⎭⎪⎫0,12,0,∴点A 到平面PEF 的距离为 d =|AE →·n ||n |=117=1717.拓展提升1.向量法求点到直线的距离的两种思路(1)将求点到直线的距离问题转化为求向量模的问题,即利用待定系数法求出垂足的坐标,然后求出向量的模,这是求各种距离的通法.(2)直接套用点线距公式求解,其步骤为直线的方向向量a →所求点到直线上一点的向量PP ′→及其在直线的方向向量a 上的投影→代入公式.注意平行直线间的距离与点到直线的距离之间的转化. 2.点面距、线面距、面面距的求解方法线面距、面面距实质上都是求点面距,求直线到平面、平面到平面的距离的前提是线面、面面平行.点面距的求解步骤:(1)求出该平面的一个法向量;(2)找出从该点出发的平面的任一条斜线段对应的向量; (3)求出法向量与斜线段对应向量的数量积的绝对值,再除以法向量的模,即可求出点到平面的距离.【跟踪训练4】 正方体ABCD -A 1B 1C 1D 1的棱长为2,E ,F ,G 分别是C 1C ,D 1A 1,AB 的中点,求点A 到平面EFG 的距离.解 如图,建立空间直角坐标系,则A (2,0,0),E (0,2,1),F (1,0,2),G (2,1,0),∴EF →=(1,-2,1),EG →=(2,-1,-1),GA →=(0,-1,0). 设n =(x ,y ,z )是平面EFG 的法向量,则⎩⎨⎧n ·EF →=0,n ·EG →=0,∴⎩⎪⎨⎪⎧x -2y +z =0,2x -y -z =0,∴x =y =z ,可取n =(1,1,1), ∴d =|GA →·n ||n |=13=33,即点A 到平面EFG 的距离为33.探究5 与空间有关的探索性问题例5 如图,矩形ABCD 和梯形BEFC 所成的平面互相垂直,BE ∥CF ,∠BCF =∠CEF =90°,AD =3,EF =2.(1)求证:AE ∥平面DCF ;(2)当AB 的长为何值时,二面角A -EF -C 的大小为60°?[解] 如图,以点C 为坐标原点,以CB ,CF 和CD 所在直线分别作为x 轴、y 轴和z 轴,建立空间直角坐标系Cxyz .设AB =a ,BE =b ,CF =c ,则C (0,0,0),A (3,0,a ),B (3,0,0),E (3,b,0),F (0,c,0).(1)证明:AE →=(0,b ,-a ),CB →=(3,0,0),BE →=(0,b,0),∴CB →·AE →=0,CB →·BE →=0, 从而CB ⊥AE ,CB ⊥BE . 又AE ∩BE =E , ∴CB ⊥平面ABE . ∵CB ⊥平面DCF ,∴平面ABE ∥平面DCF .又AE ⊂平面ABE , 故AE ∥平面DCF .(2)∵EF →=(-3,c -b,0),CE →=(3,b,0), 且EF →·CE →=0,|EF→|=2, ∴⎩⎪⎨⎪⎧-3+b c -b =0,3+c -b2=2,解得b =3,c =4.∴E (3,3,0),F (0,4,0).设n =(1,y ,z )与平面AEF 垂直, 则n ·AE →=0,n ·EF →=0,即⎩⎪⎨⎪⎧1,y ,z ·0,3,-a =0,1,y ,z ·-3,1,0=0,解得n =⎝⎛⎭⎪⎪⎫1,3,33a.又∵BA ⊥平面BEFC ,BA →=(0,0,a ),∴|cos 〈n ,BA →〉|=|n ·BA →||n ||BA →|=334a 2+27=12, 解得a =92或a =-92(舍去).∴当AB =92时,二面角A -EF -C 的大小为60°.拓展提升利用向量解决存在性问题的方法策略求解存在性问题的基本策略是:首先,假定题中的数学对象存在;其次,构建空间直角坐标系;再次,利用空间向量法把存在性问题转化为求参数是否有解问题;最后,解方程,下结论.利用上述思维策略,可使此类存在性难题变为常规问题.【跟踪训练5】 在长方体ABCD -A 1B 1C 1D 1中,AD =AA 1=12AB ,点E 是棱AB 上一点,且AEEB=λ. (1)证明:D 1E ⊥A 1D ;(2)是否存在λ,使得二面角D 1-EC -D 的平面角为π4?并说明理由.解 (1)证明:以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴建立空间直角坐标系,如图所示.不妨设AD =AA 1=1,AB =2,则D (0,0,0),A (1,0,0),B (1,2,0),C (0,2,0),A 1(1,0,1),B 1(1,2,1),C 1(0,2,1),D 1(0,0,1).因为AEEB =λ,所以E ⎝⎛⎭⎪⎫1,2λ1+λ,0, 于是D 1E →=⎝ ⎛⎭⎪⎫1,2λ1+λ,-1,A 1D →=(-1,0,-1),所以D 1E →·A 1D →=⎝ ⎛⎭⎪⎫1,2λ1+λ,-1·(-1,0,-1)=-1+0+1=0,故D 1E ⊥A 1D .(2)因为DD 1⊥平面ABCD ,所以平面DEC 的一个法向量为n =(0,0,1),设平面D 1EC 的法向量为n 1=(x ,y ,z ),又CE →=⎝ ⎛⎭⎪⎫1,2λ1+λ-2,0,CD 1→=(0,-2,1), 则⎩⎨⎧n 1·CE →=0,n 1·CD 1→=0,即⎩⎪⎨⎪⎧n 1·⎝ ⎛⎭⎪⎫1,2λ1+λ-2,0=0,n 1·0,-2,1=0,整理得⎩⎪⎨⎪⎧x -y ·21+λ=0,-2y +z =0,取y =1,则n 1=⎝ ⎛⎭⎪⎫21+λ,1,2. 因为二面角D 1-EC -D 的平面角为π4,所以22=|n ·n 1||n ||n 1|,即22=21+4+⎝⎛⎭⎪⎫21+λ2,解得λ=233-1. 故存在λ=233-1,使得二面角D 1-EC -D 的平面角为π4.1.用空间向量解决立体几何问题的“三步曲”(1)建立立体图形与空间向量的联系,用空间向量表示问题中涉及的点、直线,把立体几何问题转化为向量问题.(2)通过向量运算,研究点、直线、平面之间的位置关系以及相应的距离和夹角等问题.(3)把向量的运算结果“翻译”成相应的几何意义. 2.利用法向量求直线AB 与平面α所成的角θ的步骤 (1)求平面α的法向量n .(2)利用公式sin θ=|cos 〈AB →,n 〉|=|AB →·n ||AB →||n |,注意直线和平面所成角的取值范围为⎣⎢⎡⎦⎥⎤0,π2.3.利用法向量求二面角的余弦值的步骤 (1)求两平面的法向量.(2)求两法向量的夹角的余弦值.(3)由图判断所求的二面角是锐角、直角,还是钝角,从而下结论.在用法向量求二面角的大小时应注意:平面的法向量有两个相反的方向,取的方向不同求出来的角度当然就不同,所以最后还应该根据这个二面角的实际形态确定其大小.4.点面距的求解步骤(1)求出该平面的一个法向量.(2)找出从该点出发的平面的任一条斜线段对应的向量. (3)求出法向量与斜线段对应向量的数量积的绝对值,再除以法向量的模,即可求出点到平面的距离.1.若两异面直线l 1与l 2的方向向量分别为a =(0,4,-3),b =(1,2,0),则直线l 1与l 2的夹角的余弦值为( )A.32B.8525C.4315D.33答案 B解析 设l 1,l 2的夹角为θ,则cos θ=|cos 〈a ,b 〉|=0×1+4×2+-3×05×5=8525.2.直角△ABC 的两条直角边BC =3,AC =4,PC ⊥平面ABC ,PC =95,则点P 到斜边AB 的距离是( )A .5B .3C .3 2 D.125答案 B解析 以C 为坐标原点,CA ,CB ,CP 所在直线为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系.则A (4,0,0),B (0,3,0),P ⎝ ⎛⎭⎪⎫0,0,95,所以AB →=(-4,3,0),AP →=⎝⎛⎭⎪⎫-4,0,95, 所以AP →在AB →上的投影长为|AP →·AB →||AB →|=165,所以点P 到AB 的距离为d =|AP →|2-⎝ ⎛⎭⎪⎫1652=16+8125-25625=3.故选B.3.把正方形ABCD 沿对角线AC 折起成直二面角,点E ,F 分别是AD ,BC 的中点,O 是正方形中心,则折起后,∠EOF 的大小为( )A .(0°,90°)B .90°C .120°D .(60°,120°)答案 C解析 OE →=12(OA →+OD →),OF →=12(OB →+OC →),∴OE →·OF →=14(OA →·OB →+OA →·OC →+OD →·OB →+OD →·OC →)=-14|OA →|2.又|OE →|=|OF →|=22|OA →|,∴cos 〈OE →,OF →〉=-14|OA →|212|OA →|2=-12.∴∠EOF =120°.故选C. 4.平面α的法向量n 1=(1,0,-1),平面β的法向量n 2=(0,-1,1),则平面α与β所成二面角的大小为________.答案π3或2π3解析 设二面角的大小为θ,则cos 〈n 1,n 2〉=1×0+0×-1+-1×12·2=-12,所以cos θ=12或-12,∴θ=π3或2π3.5.如图,在长方体AC 1中,AB =BC =2,AA 1=2,点E ,F 分别是平面A 1B 1C 1D 1、平面BCC 1B 1的中心.以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x ,y ,z 轴建立空间直角坐标系.试用向量方法解决下列问题:(1)求异面直线AF 和BE 所成的角;(2)求直线AF 和平面BEC 所成角的正弦值.解 (1)由题意得A (2,0,0),F ⎝ ⎛⎭⎪⎪⎫1,2,22,B (2,2,0),E (1,1,2),C (0,2,0).∴AF →=⎝⎛⎭⎪⎪⎫-1,2,22,BE →=(-1,-1,2), ∴AF →·BE →=1-2+1=0.∴直线AF 和BE 所成的角为90°.(2)设平面BEC 的法向量为n =(x ,y ,z ),又BC→=(-2,0,0),BE →=(-1,-1,2),则n ·BC →=-2x =0,n ·BE →=-x -y +2z =0,∴x =0,取z =1,则y =2,∴平面BEC 的一个法向量为n =(0,2,1).∴cos 〈AF →,n 〉=AF →·n|AF →||n |=522222×3=53333.设直线AF 和平面BEC 所成的角为θ,则sin θ=53333,即直线AF 和平面BEC 所成角的正弦值为53333.。

用向量方法求空间角和距离

用向量方法求空间角和距离

用向量方法求空间角和距离向量方法是利用向量的性质和运算,来求解空间角和距离的方法。

在几何学中,向量可以用来表示位置、方向和大小,因此可以通过向量的定义和运算来求解空间角和距离。

一、空间角的求解空间角是指两个平面或者两个直线之间的夹角。

我们可以通过向量的点积来求解空间角。

对于两个平面,可以先求出它们的法向量,然后计算法向量的夹角即可得到空间角。

设两个平面的法向量分别为n1和n2,则它们的夹角θ为:θ = arccos((n1·n2) / (,n1,n2,))其中,·表示向量的点积,n1,和,n2,分别表示向量n1和n2的模。

对于两个直线,可以先求出它们的方向向量,然后计算方向向量的夹角即可得到空间角。

设两个直线的方向向量分别为u和v,则它们的夹角θ为:θ = arccos((u·v) / (,u,v,))其中,·表示向量的点积,u,和,v,分别表示向量u和v的模。

二、距离的求解距离是指空间中两个点之间的长度。

我们可以通过向量的运算来求解空间中两点之间的距离。

设空间中两个点A(x1,y1,z1)和B(x2,y2,z2),则点A到点B的距离d为:d=,AB,=√((x2-x1)²+(y2-y1)²+(z2-z1)²)其中,AB,表示向量AB的模,即两点之间的距离。

通过向量方法求解空间角和距离的步骤如下:1.对于求解空间角,先计算出两个平面或者两个直线的法向量或方向向量。

2.根据向量的点积定义,计算法向量或方向向量的点积。

3.根据向量的模定义,计算法向量或方向向量的模。

4.将点积和模代入空间角的计算公式,求解空间角。

5.对于求解距离,先计算出两个点的坐标。

6.根据向量的运算规则,计算两个坐标点之间的差向量。

7.根据向量的模定义,计算差向量的模,即两个点之间的距离。

通过向量方法求解空间角和距离的优点是简单、直观,并且适用于各种空间问题。

向量在空间角中的运用

向量在空间角中的运用

此题也可以由c ( ,>= 得所求B o 商 ,:一 s l: B 与平
AD E和平 面 DE C的法 向量 .
n 瓦 耽 ・ 一o 1 l- j I
— 0;
A D 所成角的正弦值为I ,>= , 平 C < ,I 再由 。商 l
方关 系 求 得 B 与 平 面 AC B D 所 成 角 的 余 弦 值 为
菌 一
一 一譬 一,
于s √ ( )譬 是n > 1一 2 . i 一 一 譬: < 商,
即直线 B B 与平 面 A D C 所成角 的余弦值为 , 故
选 D.
4 9
D : k1 o z @ c m
中学教学 参考
解 题方 法 与技 巧 … …… ・ …… … …… ……

( ,,), 一n 0 n
一( , ,) 于是 o口 口 ,
, l 上
,・ l
一。
— —o;
cos
窳 一 蔷 一 一. 号
) 6 。 - 0.
, 商 , 一 + 一 . l 上 l ・ 。 z0
令 z , U -1 一一1 此时 , 1 1 一1. =1 贝 y , , l 一( ,, )
c s — lo ( , > . oO s a 6 1 c
丽’
【 2 ( 0 0 全 国 , , ) 方 体 AB D — 例 】 21, 理 7 正 C
A1 l 中 , B 与平 面 AC 所成 的角 的余 弦值 为 B C Dl B , D
( ) .
【 1 (0 0 全 国 , , ) 例 1 21 , 文 6
图1
系 , 出直线 B 求 B 与平 面 AC 所成角 的余弦值. D

向量在求各种空间角和距离中的运用

向量在求各种空间角和距离中的运用

2 2 求点 P到面 a的距离 d . 先求出面 a的一个法 向量 , 取一个 向量 ( A是面 a 再 P
的斜线, 是任一斜足)则a - 在 方向 AA ,  ̄P i t 上的 射影的 模。
即 d:
I n I

例 5 如 图4, 在三棱柱 A C— l c 中 , B A ll 侧面 AA B 面 lB l

窟=j ’ ,o)0 0 ( ( 一0 1 ,=
- = j( ,・ ,,)0J 0 z (号号 = ,) 0 y

(。一 , ( 一 ,・ D所 的 。,。魔=。 手0. c E 成 角 , ) , )J 与 ・ 4
IA1 ・ C D I
c。 。 。
维普资讯
第2 2卷 第 2期 20 07年 6月
景德镇高专学报
J un lo ig eh n C mp e e sv o e e o r a f n d z e o rh nieC l g J
Vo .2 .2 1 2 No
Jn 07 u .2 0
( a)( , a ) 间点 标 式, , ,o 0 , ( 中坐 公 ) ,, 丁 口 空 0 _ +一
令 面 J 的法向 4

:( yz 上 , ,)


解 : J为 原点 , 图建 立空间直 角坐标 系。 正 方体 以点 4 如 设
棱长 为 口 则 A ( , ,) C a 口 0 , o 口 0 , ( , , ) , 。0 0 口 , ( , ,) o( , ,) E a — 0 。
例2 设线。 方 向 痴 , 面 一 向 , 的 向 量 求出 的 个法
妙避开这一难题 , 杂的几何 问题代数化。 使复

谈谈空间向量在角度问题中的应用

谈谈空间向量在角度问题中的应用

( 因 n D ,c — — 而 ) 为c < Hc ’ s >
、 /

X  ̄

2 x 0+lx l 2
0 , = ' 争, ( l )c , 丽 ( 0 )A ’ ,= )0≥ , 一 ' 一 争

( 1 , 1 一 , 一 ) 0
‘ .

MO・ C= 0. S MA ・ C=O。 S

cs o <DH , DC>
丁 ×孚 × X ( 0 / 】 2+ +
1X V
1 =

所以< D > 6。 6 Cz 0
可得 D P与平 面 A D A D所成 的角为 3 。. 0
二 、 向量 求 二 面 角 用
方法 t转化为分别是在二面角 的两个半平 面内且与棱都 : 垂直的两条直线上 的两个 向量的夹角 。 方法 2 先求 出二面角一个面 内一点到 另 个面 的距离及 : 到棱的距离 , 然后通过解直角三角形求角。 方法 3 ( 向量法)I、n : 法 T 分别是平 面 C I g和平面 B 的法 向 量, 那么 < n ( m,>或者其补角) 与二面角 一1 B 的大小相等 。 一 例 2(0 : 0 7海南 、 2 宁夏理) 如图 3 在三棱锥 s B , —A c中 , 侧 面 S B与侧 面 S C均 为等边 三角形 , A A A /B C=9 。 , 0 O为 B C 中点 。() 明 :O上平 面 A C; ) 1 证 S B ( 求二面角 A-S —B的余 弦 2 - C 值。
新 校 删 论
XniYaL u ; a l1 L X o j in 1
学海导航
谈谈空问向量在角度问题中的应用
周柳 娟

向量在几何中的应用

向量在几何中的应用

向量在几何中的应用一、向量的概念和表示向量是几何中的重要概念,它可以用来表示物体的位移、速度、加速度等量。

在几何中,向量通常用箭头表示,箭头的长度表示向量的大小,箭头的方向表示向量的方向。

向量可以在平面内或空间中进行运算,包括向量的相加、相减、数量乘法等。

二、向量的加法和减法向量的加法是指将两个向量相加得到一个新的向量。

向量的减法是指将一个向量减去另一个向量得到一个新的向量。

在向量的加法和减法中,可以利用向量的四边形法则或三角形法则进行计算。

四边形法则是指将两个向量的起点相连,形成一个四边形,以对角线的矢量作为向量的和或差。

三角形法则是指将两个向量的起点相连,形成一个三角形,以它的第三条边作为向量的和或差。

三、向量的数量乘法向量的数量乘法是指将一个向量乘以一个标量得到一个新的向量。

标量可以是实数或复数,乘积的结果是将向量的大小乘以标量,并保持向量的方向不变。

四、向量的点积和叉积向量的点积和叉积是向量在几何中的两种重要运算。

点积是指两个向量之间的数量积,其结果是一个标量。

叉积是指两个向量之间的向量积,其结果是一个新的向量。

点积和叉积在几何中有着广泛的应用,可以用来计算向量的夹角、判断向量的垂直关系以及求解平面和直线的方程等。

五、向量在几何中的应用举例1. 位移向量在几何中的应用:位移向量可以用来表示物体在空间中的位移,通过对位移向量的运算,可以计算出物体的位置、速度和加速度等信息。

2. 力向量在几何中的应用:力向量可以用来表示物体所受到的力的大小和方向,通过对力向量的运算,可以计算出力的合成、分解和平衡条件等。

3. 法向量在几何中的应用:法向量可以用来表示平面的法线方向,通过对法向量的运算,可以求解平面的方程、判断直线与平面的关系以及计算平面的面积等。

4. 速度向量在几何中的应用:速度向量可以用来表示物体的运动速度和方向,通过对速度向量的运算,可以计算出物体的加速度、轨迹和运动规律等。

5. 坐标向量在几何中的应用:坐标向量可以用来表示点在坐标系中的位置,通过对坐标向量的运算,可以计算点的距离、中点和比例等。

用空间向量研究距离夹角问题

用空间向量研究距离夹角问题

用空间向量研究距离夹角问题空间向量是数学中一个重要的概念,可以用于描述三维空间中点的坐标。

在空间向量的基础上,我们可以研究距离和角度等问题。

下面是一些用空间向量研究距离和角度问题的方法:1. 空间向量的计算空间向量可以通过点积、叉积等方式进行计算。

点积和叉积都是空间向量运算的一种方法,可以用来计算两个向量之间的距离和角度。

例如,假设我们有两个向量 $v_1$ 和 $v_2$,它们的点积可以表示为:$$v_1 times v_2 = begin{vmatrix} v_1 v_2 end{vmatrix} = v_1^T v_2$$ 其中,$begin{vmatrix} v_1 v_2 end{vmatrix}$ 表示 $v_1$ 和 $v_2$ 的内积,$v_1^T v_2$ 表示 $v_1$ 和 $v_2$ 的外积。

2. 空间向量在几何中的应用空间向量在几何中有着广泛的应用。

例如,我们可以使用空间向量来计算两个点之间的距离。

另外,空间向量还可以用于计算两个平面之间的夹角。

例如,假设我们有两个点 $P$ 和 $Q$,它们之间的距离可以用空间向量 $P - Q$ 来计算:$$d = |P - Q| = sqrt{(P_x - Q_x)^2 + (P_y - Q_y)^2 + (P_z - Q_z)^2}$$ 其中,$(P_x - Q_x)^2 + (P_y - Q_y)^2 + (P_z - Q_z)^2$ 表示点 $P$ 和点 $Q$ 的内积。

另外,空间向量还可以用于计算两个平面之间的夹角。

假设我们有两个平面$P_1$ 和 $P_2$,它们之间的夹角可以用空间向量 $P_1 - P_2$ 来计算:$$theta = frac{angle(P_1 - P_2)}{|P_1 - P_2|}$$其中,$angle(P_1 - P_2)$ 表示 $P_1$ 和 $P_2$ 之间的夹角,$|P_1 - P_2|$ 表示 $P_1$ 和 $P_2$ 之间的距离。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

向量论文:向量在空间角中的运用
用空间向量处理某些立体几何问题,为解决立体几何问题增加了一种代数工具,它的实用性是传统方法无法比拟的.下面将在三类空间角的求法过程中体现空间向量的优越性.
一、异面直线所成的角设两异面直线所成的角为θ,利用公式cos〈a,b〉=ab|a||b|,借助这两条直线的方向向量的夹角来求得.但要注意,异面直线所成角的范围为(0,π2].故实质上有cosθ=|cos〈a,b〉|.
图1
【例1】(2010,全国,文,6)直三棱柱abc–a
1b1c1中,若∠bac=90°,ab=ac=aa1,则异面直线ba1与ac1所成的角等于().
a.30°
b.45°
c.60°
d.90°
分析:利用ba1ac1=|ba1||ac1|cos〈ba1,ac1〉,求出向量ba1与ac1的夹角〈ba1,ac1〉,再根据异面直线ba1、ac1所成角的范围确定所求异面直线所成的角.
解:如图1,建立空间坐标系a–xyz,设ab=ac=aa
1=a,
则a(0,0,0),b(a,0,0),a1(0,0,a),c1(0,a,a).
ba1=(-a,0,a),ac1=(0,a,a),于是cos〈ba1,ac1〉=ba1ac 1|ba1||ac1|=a22a2a=12.
∴〈ba1,ac1〉=60° .因为异面直线所成角范围是(0,90°],所以所求异面直线ba1与ac
1所成的角等于60°,即选c.
评注:异面直线所成角的求法,常用的是平移法,此法一般需作辅助线,难度较大.而选用向量知识解决,则比较简单.
图2
二、直线与平面所成的角设直线与平面所成的角为θ,通过直线方向向量与平面法向量的夹角φ求得,即sinθ=|cosφ|或cosθ=sinφ.设n是平面α的法向量,ab
为直线的方向向量,则直线l与平面α所成角的正弦值为sinθ=|ab n||ab||n|
.
【例2】(2010,全国,理,7)正方体abcd-a1b
1c1d1中,bb1与平面acd1所成的角的余弦值为().
a.23
b.33
c.23
d.63
分析:利用向量的夹角公式,先求出bb1与平面acd1的法向量n所成角的余弦值,再根据互余关系,求出bb1与平面acd1的法向量n所成角的余弦值等于直线bb1与平面acd1所成角的正弦值,最后用平方关系,求出直线bb1与平面acd1所成角的余弦值.
图3
解:如图3,建立空间坐标系b-xyz.设正方体棱长为a,则b(0,0,0),b1(0,0,a),a(0,a,0),c(a,0,0),d
1(a,a,a),bb1=(0,0,a),ac=(a,-a,0),
ad1=(a,0,a).
设平面acd1的法向量为n=(x,y,z),则
n⊥ac n ac=0x-y=0;
n⊥ad1n ad1=0x+z=0.
令x=1,则y=1,z=-1,此时n=(1,1,-1).
cos〈bb1,n〉=bb1n|bb1||n|=-aa3=-33,
于是sin〈bb1,n〉=1-(-33)2=63.
即直线bb1与平面acd1所成角的余弦值为63,故选d.
此题也可以由cos〈bb1,n〉=-33得所求bb
1与平面acd1所成角的正弦值为|cos〈bb1,n〉|=33,再由平方关系求得bb1与平面acd1所成角的余弦值为1-(33)2=63.但需注意直线bb1与平面acd1所成角的范围,从而取决于余弦值取正根或负根.
评注:本题考查空间线面角的问题,采用向量法解决,避免了定义法中找出(或者作出)直线在平面内射影的麻烦.但应注意线面角的范围是[0,π2].
三、二面角①ab、cd分别是二面角α-l-β的两个面内与棱l垂直的异面直线,则二面角大小为〈ab,cd 〉.
图4图5
②设n1,n2分别是二面角α-l-β的两个平面α、β的法向量,则cos〈n1,n2〉=n1n2|n 1||n2|.
〈n1,n2〉就是二面角的平面角或其补角:但二面角的大小更多是通过该二面角及两个面的法向量的夹角求得,它等于两个法向量的夹角或其补角.
【例3】(2010,全国,理,19)如图6,四棱锥s-abcd
中,sd⊥底面abcd,ab∥cd,ad⊥dc,ab=ad=1,dc=sd=2, e 为棱sb上的一点,平面edc⊥平面sbc.
求二面角a-de-c的大小.
分析:根据向量的夹角公式,先求出平面ade的法向量n1与平面dec的法向量n2的夹角,最后结合原图形判断所求二面角的范围,从而得知所求二面角大小为〈n
1,n2〉的补角.
解:如图6,建立空间坐标系 d-xyz,易知se=2eb,
图6
则d(0,0,0),a(0,1,0),c(2,0,0),e(23,23,23),da=(0,1,0),de=(23,23,23),dc=(2,0,0).
设n1=(x1,y1,z1),n2=(x2,y2,z
2)
分别为平面ade和平面dec的法向量.
n1da n1da=0y1=0;
n1de n1de=0x1+y1+z 1=0;
n2de n2de=0x2+y2+z 2=0;
n2dc n2dc=0x2=0.
令x1=1,则z1=-1,此时n1=(1,0,-1);
令y2=1,则z2=-1,此时n2=(0,1,-1).
于是cos〈n1,n2〉=n1n2|n1||n
2|=12×2=12
,∴〈n1,n2〉=60°.
由两法向量方向可知,两向量的箭头相交,故二面角就是两法向量夹角的补角,即二面角a-de-c的大小为120°另外,二面角是锐角还是钝角,也可以从原图形中直接判断.
评注:求二面角的向量法:先求出两个平面的法向量,再求这两个法向量的夹角,最后判定二面角是锐角还是钝角,决定法向量及夹角(或夹角的补角)为所求的二面角.判定二面角是锐(或钝)角的方法:在两个面的同一边可以看到向量的箭头或箭尾相交,那么二面角就是上面求的法向量的夹角的补角;如果只能看成其中一个的箭头和另一个的箭尾相交,那么上面两向量的夹角就是所求.
纵观近几年各地的高考试卷,每份卷子基本都有一道立体几何解答题,而且基本都是以三或四棱柱、棱锥为背景,既可用传统方法又能用向量法解决.向量法的简便、快速性是传统方法所无法比拟的.但是学生真正运用起来还是会遇到很多困难,易产生一些典型错误:(1)建立坐标不合理;
(2)点坐标求错;(3)不会求法向量;(4)思路不清晰;(5)
计算错误等.因此,在学习中应加强运用向量方法解决几何问题的意识,提高使用向量的熟练程度和自觉性,掌握向量基本知识和技能,在把握传统方法的基础上,要有意识甚至创造性地运用向量解决立体几何问题.。

相关文档
最新文档