学海大联考2018届高三名校模拟数学(理)试卷(六)

合集下载

山东省青岛市2018届高三5月第二次模拟考试数学(理)试题答案

山东省青岛市2018届高三5月第二次模拟考试数学(理)试题答案

x
a a 2 8 ,因为 a a 2 8 x 0 ,所以 x 4 4
a a 2 8 1 时,令 f (1) 3 a 0 ,解得 a 3 4 当 3 a 2 2 或 a 2 2 时,函数 f ( x ) 在 [1, 2] 上单调递增…………………3 分 9 a a 2 8 2°当 1 2 时,令 f (1) 3 a 0 , f (2) a 0 , 2 4 9 解得 a 3 2
(2)如图,设 AC 中点为 O ,作 OE OA ,以 OA , OE , OB 分别为 x , y , z 轴建 又 AD 面 ADC , AD / / 面 B1MN …………………………………………………6 分 立空间直角坐标系, BN
2 , AB BC 3 2 , AC 6 3 3 M (2, 0,1), N ( 1, 0, 2), A(3, 0, 0), B1(0, 4,3), D ( , 4, ) 2 2 MN (3, 0,1), B1M (2, 4, 2) 设平面 B1MN 的法向量为 n ( x, y , z ) ,则有 n MN , n B1M 3 x z 0 ,可得平面 B1MN 的一个法向量 n (1,1,3) ……………………10 分 2 x 4 y 2 z 0 4 14 n AD 9 3 又 AD ( , 4, ) , cos n, AD 2 2 77 | n || AD | 4 14 设直线 AD 与平面 B1MN 所成角为 , 则 sin | cos n, AD | ……………12 分 77
m 1 1 e a 0 m 所以 g (m) 0, g (m) 0, 则 …………………………………9 分 e m 1 ln m am a 0 m 1 1 1 m 1 m 1 m 1 m 1 0 则 e ln m (e )m (e ) 0 ,得 (2 m)e ln m m m m x 1 x 1 ( x 0) ,所以 p (m) 0, 令 p ( x ) (2 x )e ln x x 1 x 1 则 p( x ) (1 x )(e 2 ) ,所以 x (0,1), p ( x ) 0, x (1, ), p ( x ) 0 x 所以 p ( x ) 在 (1, ) 单调递减, e 1 1 e 1 (2 e)e e 1 0 因为 p (1) 1 0, p (e) (2 e)e 1 e e 所以 p ( x ) 在 (1, e) 上有一个零点,在 (e, ) 无零点 所以 m e …………………………………………………………………………………12 分

2018.5年青岛市高考模拟检测理科数学答案 精品

2018.5年青岛市高考模拟检测理科数学答案 精品

2018年青岛市高考模拟检测数学(理科)参考答案及评分标准一、选择题:本大题共12小题.每小题5分,共60分. C B C D C A B A C D A B二、填空题:本大题共4小题,每小题5分,共20分. 13.1- 14.3 15.20172018 16.1256π 三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17题~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求解答. (一)必考题:共60分.17. (本小题满分12分)解:(1)在ABC ∆中,由正弦定理得sin cos sin B A A C =, ………………2分又()C A B π=-+,所以sin cos sin()3B A A A B +=+,故sin cos sin cos cos sin B A A A B A B =+,…………………………………4分所以sin cos A B A =,又(0,)A π∈,所以sin 0A ≠,故cos B =6分(2)2D B ∠=∠,21cos 2cos 13D B ∴=-=-………………………………………7分又在ACD ∆中, 1AD =, 3CD =∴由余弦定理可得22212cos 1923()123AC AD CD AD CD D =+-⋅⋅=+-⨯⨯-=,∴AC = ………………………………………………………………………………9分在ABC ∆中, BC , AC = cos 3B =, ∴由余弦定理可得2222cos AC AB BC AB BC B =-+⋅,即21262AB AB =+-⋅,化简得260AB --=,解得AB =故AB 的长为12分18.(本小题满分12分)解:(1)当,M N 为各棱中点时,//AD 面1B MN 证明如下:连接CD 1//CN B D 且112CN B D BC ==∴四边形1B DCN 为平行四边形, 1//DC B N ∴ 又DC ⊄面1B MN ,1B N ⊂面1B MN ∴//DC 面1B MN …………………………3分 ,M N 为各棱中点 //AC MN ∴又AC ⊄面1B MN ,MN ⊂面1B MN ,∴//AC 面1B MN ……………………………5分DC AC C =,∴面//ADC 面1B MN又AD ⊂面ADC ,//AD ∴面1B MN …………………………………………………6分 (2)如图,设AC 中点为O ,作OE OA ⊥,以OA ,OE ,OB 分别为x ,y ,z 轴建立空间直角坐标系,2BN =AB BC ==,6AC ∴=133(2,0,1),(1,0,2),(3,0,0),(0,4,3),(,4,)22M N A B D ----1(3,0,1),(2,4,2)MN B M ∴=-=- ………………………………………………………8分设平面1B MN 的法向量为(,,)n x y z =,则有1,n MN n B M ⊥⊥302420x z x y z -+=⎧∴⎨+-=⎩,可得平面1B MN 的一个法向量(1,1,3)n = ……………………10分 又93(,4,)22AD =--,414cos ,||||n AD n AD n AD ⋅∴<>==设直线AD 与平面1B MN 所成角为α,则41s in |c o s ,|n AD α=<>=……………12分 19.(本小题满分12分) 解:(1)该市此次检测理科数学成绩平均成绩约为:0650.05750.08850.12950.15u =⨯+⨯+⨯+⨯1050.241150.181250.11350.051450.03103.2103+⨯+⨯+⨯+⨯+⨯=≈ …3分 (2)(ⅰ)记本次考试成绩达到自主招生分数要求的理科数学成绩约为1x ,根据题意,111103()1()1()0.419.3x u x P x x φφσ-->=-=-=,即1103()0.619.3x φ-=. 由(0.7257)0.6φ=得,111030.7257117.011719.3x x -=⇒=≈, 所以,本次考试成绩达到自主招生分数要求的理科数学成绩约为117分. …………7分(ⅱ)因为(45)2,Y B ~,4423()55()()iiiP Y i C -∴==,0,1,2,3,4i =.所以10分 所以()45528E Y =⨯=. …………………………12分20.(本小题满分12分) 解:(1)设点1F 、2F 分别为(,0),(,0)(0)c c c ->由已知2ca=,所以2c a =,224c a =,22223b c a a =-=又因为点3(1,)2在双曲线C 上,所以229141a b -= 则222294b a a b -=,即2249334a a a-=,解得214a =,12a =所以1c =………………………………………………………………………………………3分 连接PQ ,因为12,OF OF OP OQ ==,所以四边形12PFQF 为平行四边形因为四边形12PFQF 的周长为所以21122PF PF F F +=>=所以动点P 的轨迹是以点1F、2F 分别为左、右焦点, 长轴长为可得动点P 的轨迹方程为:221(0)2x y y +=≠……………………………………………5分(2)因为22221=+x x ,,12,1222222121=+=+y x y x 所以12221=+y y ………………………6分 所以||||OG MN ⋅= 212122212221212122212221222221y y x x y y x x y y x x y y x x +++++--+++==1212121232232213()222x x y y x x y y --+++≤= ………………………………………10分 等号当仅当21212121223223y y x x y y x x ++=--,即02121=+y y x x所以ON OM ⊥,即OMN ∆为直角三角形………………………………………………12分 21.(本小题满分12分)解:(1)由已知0x >,且2121()2x ax f x x a x x++'=++=①当280a ∆=-≤时,即当a -≤≤()0f x '≥则函数()f x 在[1,2]1分②当280a ∆=->时,即a <-a >2210x ax ++=有两个根,a x -=,因为0x >,所以4a x -=11≤时,令(1)30f a '=+≥,解得3a ≥-∴当3-或>()f x 在[1,2]上单调递增…………………3分2°当12<<时,令(1)30f a '=+<,9(2)02f a '=+>, 解得932a -<<-∴当932a -<<-时,函数()f x 在上单调递减,在上单调递增;…………………5分3°当24a -≥时,令9(2)02f a '=+≤,解得92a ≤- ∴当92a ≤-时,函数()f x 在[1,2]上单调递减; ……………………………………6分(2)函数121()()ln x x g x e x a f x e x ax a --=++-=--+则11()()x g x e a h x x -'=--=则121()0x h x e x-'=+>,所以()g x '在(0,)+∞上单调增当0,(),,()x g x x g x →→-∞→+∞→+∞,所以()R g x '∈所以()g x '在(0,)+∞上有唯一零点1x当11(0,),()0,(,),()0x x g x x x g x ''∈<∈+∞>,所以1()g x 为()g x 的最小值 由已知函数()g x 有且只有一个零点m ,则1m x =所以()0,()0,g m g m '==则111ln 0m m e a m e m am a --⎧--=⎪⎨⎪--+=⎩ …………………………………9分则11111ln ()()0m m m e m e m e m m ------+-=,得11(2)ln 0m m m e m m----+= 令11()(2)ln (0)x x p x x e x x x --=--+>,所以()0,p m = 则121()(1)()x p x x e x-'=-+,所以(0,1),()0,(1,),()0x p x x p x ''∈>∈+∞<所以()p x 在(1,)+∞单调递减,因为1111(1)10,()(2)1(2)0e e e p p e e e e e e e---=>=--+=--< 所以()p x 在(1,)e 上有一个零点,在(,)e +∞无零点所以m e < …………………………………………………………………………………12分(二)选考题:共10分.请考生在第22、23两题中任选一题作答.如果多做,则按所做的第一题记分. 22.(本小题满分10分)选修44-:坐标系与参数方程 解:(1)因为2sin 4cos 0ρθθ-=,所以22sin 4cos 0ρθρθ-=,所以24y x = ……………………………………………2分因为12cos 2sin x y ϕϕ=-+⎧⎨=⎩,所以22(1)4x y ++= …………………………………………4分(2)由题知点1(,0)2P 在直线l 上将直线l的参数方程12x y ⎧=⎪⎪⎨⎪=⎪⎩代入24y x =得,240t --=设,M N 两点对应的参数为12,t t则12124t t t t +==-……………………………………………………………………6分 所以1212121212||||||1111||||||||||||t t t t PM PN t t t t t t +-+=+==12== ………………………………………………………………10分23.(本小题满分10分)选修45-:不等式选讲解:(1)因为12(1)(2)3x x x x ++-≥+--=所以函数()f x 的最小值为3 ………………………………………………………………5分(2)由(1)知,11a b+因为2222222222()()()2()0m n c d mc nd m d n c mcnd md nc ++-+=+-=-≥所以22222121()[1](13a b a ++≥⨯+= 所以22122a b +≥ ……………………………………………………………………………10分。

学海大联考2018届高三名校模拟试卷(六)文科综合地理部分(图片版)-最新学习文档

学海大联考2018届高三名校模拟试卷(六)文科综合地理部分(图片版)-最新学习文档

文科综合参考答案地理1.A 根据图中等值线的分布特点,可以得出图示区域内的地壳厚度有由东向西逐渐增大的趋势。

2.C 地壳厚度即地表到莫霍面之间的垂直距离。

绘制地壳厚度剖面图,其0千米起算面可以以地面为0向下算到莫霍界面,或以莫霍面为0向上算到地面。

3.A 根据处在两条等值线之间的闭合曲线遵循“大于大的,小于小的”原则,可知图中40<A<42,38<B<40,选A。

4.D房价收入比与房价呈正相关关系,A错。

人口迁入数量是房价收入比高低的影响因素,不是决定性因素,B错。

一线城市的房价收入一般高于二线城市,C错。

房价收入比高的城市社会矛盾较为严重,D正确。

5. B天津是工业城市,人均GDP在全国排名前列,但居民平均工资较其他城市低,最主要的影响因素是产业结构,B对。

人均GDP高,人口数童不是主要原因,A错。

政府政策、教育水平不是人均工资低的原因,C、D错。

6.A针对北京房价过高的问题,解决措施不合理的是严禁人口迁人。

建设新区、政策调控房价、产业转移都是抑制房价过高的合理措施.选A。

7.B根据横轴的植被类型判断海拔高度,纵轴表示有机碳含量,图中土壤有机碳含量的总体变化趋势是随山地海拔升高而增加,B对。

不能体现随植被覆盖度、降水量、土层深度的变化,A,C,D错。

8.D与荒漠草原区相比,该山地落叶阔叶林区有机碳含量高,土壤肥力较高,A错。

海拔较低,受人类活动干扰多,B错。

海拔较低,大气温度较高,C错。

风化壳的发育程度与温度、降水、植物生长量呈正相关,落叶阔叶林区的地表风化作用强烈,D对。

9.B图中整体上海拔越高,有机碳含量越多,说明有机碳含量与温度有相关性。

近年来高山草甸区的士攘有机鐾含量减少趋势明显,主要原因最可能是气候变暖,植物生长快:消耗有机碳多,B对。

光照、降水没有明显变化,A、D错。

高山区是夏季放牧,C错。

10. A发展“田园综合体”模式,是建设集现代农业、休闲旅游、田园社区为一体的特色小镇和乡村。

届高三数学(理)第一次月考模拟试卷及答案

届高三数学(理)第一次月考模拟试卷及答案

届高三数学(理)第一次月考模拟试卷及答案2018届高三数学(理)第一次月考模拟试卷及答案高考数学知识覆盖面广,我们可以通过多做数学模拟试卷来扩展知识面!以下是店铺为你整理的2018届高三数学(理)第一次月考模拟试卷,希望能帮到你。

2018届高三数学(理)第一次月考模拟试卷题目一、选择题(本题共12道小题,每小题5分,共60分)1.已知全集U=R,A={x|x2﹣2x<0},B={x|x≥1},则A∪(∁UB)=( )A.(0,+∞)B.(﹣∞,1)C.(﹣∞,2)D.(0,1)2.已知集合A={1,2,3,4},B={y|y=3x﹣2,x∈A},则A∩B=()A.{1}B.{4}C.{1,3}D.{1,4}3.在△ABC中,“ >0”是“△ABC为锐角三角形”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.下列说法错误的是( )A.命题“若x2﹣4x+3=0,则x=3”的逆否命题是:“若x≠3,则x2﹣4x+3≠0”B.“x>1”是“|x|>0”的充分不必要条件C.若p且q为假命题,则p、q均为假命题D.命题p:“∃x∈R使得x2+x+1<0”,则¬p:“∀x∈R,均有x2+x+1≥0”5.已知0A.a2>2a>log2aB.2a>a2>log2aC.log2a>a2>2aD.2a>log2a>a26.函数y=loga(x+2)﹣1(a>0,a≠1)的图象恒过定点A,若点A在直线mx+ny+1=0上,其中m>0,n>0,则 + 的最小值为( )A.3+2B.3+2C.7D.117.已知f(x)是定义在R上的偶函数,在[0,+∞)上是增函数,若a=f(sin ),b=f(cos ),c=f(tan ),则( )A.a>b>cB.c>a>bC.b>a>cD.c>b>a8.若函数y=f(x)对x∈R满足f(x+2)=f(x),且x∈[-1 ,1]时,f(x)=1﹣x2,g(x)= ,则函数h(x)=f(x)﹣g(x)在区间x∈[-5 ,11]内零点的个数为( ) A.8 B.10 C.12 D.149设f(x)是定义在R上的恒不为零的函数,对任意实数x,y∈R,都有f(x)•f(y)=f(x+y),若a1= ,an=f(n)(n∈N*),则数列{an}的前n 项和Sn的取值范围是( )A.[ ,2)B.[ ,2]C.[ ,1)D.[ ,1]10.如图所示,点P从点A处出发,按逆时针方向沿边长为a的正三角形ABC运动一周,O为ABC的中心,设点P走过的路程为x,△OAP的面积为f(x)(当A、O、P三点共线时,记面积为0),则函数f(x)的图象大致为( )A . B.C. D.11.设函数f(x)=(x﹣a)|x﹣a|+b,a,b∈R,则下列叙述中,正确的序号是( )①对任意实数a,b,函数y=f(x)在R上是单调函数;②对任意实数a,b,函数y=f(x)在R上都不是单调函数;③对任意实数a,b,函数y=f(x)的图象都是中心对称图象;④存在实数a,b,使得函数y=f(x)的图象不是中心对称图象.A.①③B.②③C.①④D.③④12.已知函数,如在区间(1,+∞)上存在n(n≥2)个不同的数x1,x2,x3,…,xn,使得比值= =…= 成立,则n的取值集合是( )A.{2,3,4,5}B.{2,3}C.{2,3,5}D.{2,3,4}第II卷(非选择题)二、填空题(本题共4道小题,每小题5分,共20分)13.命题:“∃x∈R,x2﹣x﹣1<0”的否定是 .14.定义在R上的奇函数f(x)以2为周期,则f(1)= .15.设有两个命题,p:x的不等式ax>1(a>0,且a≠1)的解集是{x|x<0};q:函数y=lg(ax2﹣x+a)的定义域为R.如果p∨q为真命题,p∧q为假命题,则实数a的取值范围是 .16.在下列命题中①函数f(x)= 在定义域内为单调递减函数;②已知定义在R上周期为4的函数f(x)满足f(2﹣x)=f(2+x),则f(x)一定为偶函数;③若f(x)为奇函数,则 f(x)dx=2 f(x)dx(a>0);④已知函数f(x)=ax3+bx2+cx+d(a≠0),则a+b+c=0是f(x)有极值的充分不必要条件;⑤已知函数f(x)=x﹣sinx,若a+b>0,则f(a)+f(b)>0.其中正确命题的序号为 (写出所有正确命题的序号).三、解答题(本题共7道小题,第1题12分,第2题12分,第3题12分,第4题12分,第5题12分,第6题10分,第7题10分,共70分)17.已知集合A={x|x2﹣4x﹣5≤0},函数y=ln(x2﹣4)的定义域为B.(Ⅰ)求A∩B;(Ⅱ)若C={x|x≤a﹣1},且A∪(∁RB)⊆C,求实数a的取值范围.18.已知关于x的不等式ax2﹣3x+2≤0的解集为{x|1≤x≤b}.(1)求实数a,b的值;(2)解关于x的不等式: >0(c为常数).19.已知函数f(x)= 是定义在(﹣1,1)上的奇函数,且f( )= .(1)确定函数f(x)的解析式;(2)证明f(x)在(﹣1,1)上是增函数;(3)解不等式f(t﹣1)+f(t)<0.20.已知关于x的不等式x2﹣(a2+3a+2)x+3a(a2+2)<0(a∈R).(Ⅰ)解该不等式;(Ⅱ)定义区间(m,n)的长度为d=n﹣m,若a∈R,求该不等式解集表示的区间长度的最大值.21.设关于x的方程2x2﹣ax﹣2=0的两根分别为α、β(α<β),函数(1)证明f(x)在区间(α,β)上是增函数;(2)当a为何值时,f(x)在区间[α,β]上的最大值与最小值之差最小.选做第22或23题,若两题均选做,只计第22题的分。

湖南省学海大联考2018届高三名校模拟数学(理)试卷(六)(有答案)

湖南省学海大联考2018届高三名校模拟数学(理)试卷(六)(有答案)

湖南省学海大联考2018届高三名校模拟试卷(六)数学(理)试题命题人:长沙市一中高三数学备课组一、选择题:本大题共12小题,每小题5分,共60分,在每小题题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}21,1,2,2,3A B a a =-=+A=,若{}2AB =,则实数a 的值为A .一1B .0C .1 D·22.已知i 为虚数单位,复数z 满足(12)(1)(2)i z i i +=+-,则z 为A B . C D . 3.设双曲线22221(0,0)x y a b a b-=>>的离心率是3,则其渐近线的方程为 ( )A .0x ±=B .0y ±=C .80x y ±=D .80x y ±= 4.如图所示的茎叶图是甲、乙两个代表队各7名队员参 加“安全知识竞赛”的成绩,乙队成绩的众数为m+81, 从甲、乙两队中各选取1名队员,则两名队员所得 分数相同的概率为 ( )A .349 B .449 C .37 D .475.设等差数列{}n a 的前n 项和为S n ,若以a 1=2,公差d =3,S k +3一S k =60,k = ( ) A . 8 B .7 C .6 D .5 6.已知函数()sin()(0,0,)2f x M x M πωϕωϕ=+>><,的部分图象如图所示,其中A(2,3)(点A 为图象的一个最高点), B(5,02-)’则f (20)=A .3-B .32-C .32D .3 7.记不等式组22220x y x y y +≤⎧⎪+≥⎨⎪+≥⎩,表示的平面区域为Ω,点P 的坐标为(x ,y ).有下面四个命题:P l :,p x y ∀∈Ω-的最小值为6; p 2:224,205p x y ∀∈Ω≤+≤; p 3:,p x y ∀∈Ω-的最大值为6; p 4:22p x y ∀∈Ω≤+≤ 其中的真命题是A ·P l ,P 4B .P I ,P 2C .P 2,P 3D .P 3,P 48.执行如图所示的程序框图,若输出m 的值为35,则输入a 的值为 ( )A .4B .5C .6D .7 9.若二项式4(,n x n N ∈的展开式中含有常数项,则n 的最小值等于A .3B .4C .6D .810.已知过点(0,一2)的直线交抛物线y 2=8x 于A(x 1,y 1),B(x 2,y 2)两点,若x 1-x 2=4,△OAB(O 为坐标原点)的面积为A .2B .4C .8D .16 11.如图为某几何体的三视图,则其体积为A .243π+ B .243π+ C .43π+ D .43π+12.斐波那契数列{}n a 满足a l =a 2=1,a n =a n -1+a n -2(3,n n ≥∈N*).若将数列的每一项按照右图方法放进格子里,每一小格子的边长为1,记前n 项所占的格子的面积之和为S n ,每段螺旋线与其所在的正方形所围成的扇形面积为c n ,则下列结论错误的是 ( )A .1214()n n n n c c a a π--+-=⋅ (n ≥3)B .S n +1=a n +1(a n +a n +1)C .a 1+a 2+a 3+…+a 2n -1=a 2n —4D .a 7+a 9+a 11+…+a 2n 一1=a 2n --4(n ≥4)二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卡中对应题号的横线上·13.已知13(,),(2cos ,2sin )22a b αα==,a 与b 的夹角为60︒,则2_______a b -= 14.已知函数()2f x x x =-,则不等式(1)2[2log ]3x f -->的解集为__________。

2018届湖南省学海大联考高三名校模拟试卷(六)理综

2018届湖南省学海大联考高三名校模拟试卷(六)理综

学海大联考2018届高三名校模拟卷·理科(六)理科综合本试卷分第I卷(选择题)和第Ⅱ卷。

第I卷均为必考题,第Ⅱ卷包括必考和选考两个部分。

本卷可能用到的相对原子质量:H--1 Li--7 N--14 O—16 C1--35.5第I卷(选择题共126分)一、单项选择题:本大题共13小题,每小题6分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.下列关于细胞结构和功能的叙述中,正确的是①一切生物都是由细胞和细胞产物构成的②细胞干重中C含量达到55.99%,所以说“碳是生命的核心元素"③生态系统的成分中,生产者和消费者都是真核生物,分解者都是原核生物④功能越复杂的细胞膜,蛋白质的种类和数量相对越多⑤代谢旺盛的细胞的核孔数目较多A.①②B.②③C.③④D.④⑤2.请你依据所学的生物学知识,分析下列直方图,其中错误的是3.下列关于低温诱导染色体加倍实验的叙述,正确的是A.原理:低温抑制染色体着丝点分裂,使子染色体不能分别移向两极B.解离:盐酸酒精混合液和卡诺氏液都可以使洋葱根尖解离C.染色:改良苯酚品红溶液和醋酸洋红溶液都可以使染色体着色D.观察:显微镜下可以看到大多数细胞的染色体数目发生改变4.研究发现生长素(IAA)和赤霉素(GA)对胚芽鞘、茎切段等离体器官的作用如图,下列有关叙述不正确的是①IAA和GA均具有促进植物生长的作用,但GA的促进效应较IAA明显②IAA和GA同时存在时,具有明显增效作用③图2表明生长素与赤霉素之间为拮抗关系④赤霉素通过自身能转化为生长素而对生长起调节作用A.①②③B.②③④C.①②④D.①③④5.已知某异花受粉的野生植物,其高茎(A)对矮茎(a)为显性,紫花(B)对白花(b)为显性,两对基因独立遗传。

对这一野生植物种群进行研究发现,其表现型及所占比例分别是高茎紫花占2/3,高茎白花占1/12,矮茎紫花占2/9,矮茎白花占l/36(已知纯合子的基因型频率等于相应基因频率的乘积)。

2018年高考理科数学模拟试卷(共三套)(含答案)

2018年高考理科数学模拟试卷(共三套)(含答案)

2018年高考理科数学模拟试卷(一)(考试时间120分钟满分150分)一、选择题(共12小题,每小题5分,满分60分)1.已知集合S={1,2},设S的真子集有m个,则m=()A.4 B.3 C.2 D.12.已知i为虚数单位,则的共轭复数为()A.﹣+i B. +i C.﹣﹣i D.﹣i3.已知、是平面向量,如果||=3,||=4,|+|=2,那么|﹣|=()A. B.7 C.5 D.4.在(x﹣)10的二项展开式中,x4的系数等于()A.﹣120 B.﹣60 C.60 D.1205.已知a,b,c,d都是常数,a>b,c>d,若f(x)=2017﹣(x﹣a)(x﹣b)的零点为c,d,则下列不等式正确的是()A.a>c>b>d B.a>b>c>d C.c>d>a>b D.c>a>b>d6.公元263年左右,我国古代数学家刘徽用圆内接正多边形的面积去逼近圆的面积求圆周率π,他从圆内接正六边形算起,令边数一倍一倍地增加,即12,24,48,…,192,…,逐个算出正六边形,正十二边形,正二十四边形,…,正一百九十二边形,…的面积,这些数值逐步地逼近圆面积,刘徽算到了正一百九十二边形,这时候π的近似值是3.141024,刘徽称这个方法为“割圆术”,并且把“割圆术”的特点概括为“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”.刘徽这种想法的可贵之处在于用已知的、可求的来逼近未知的、要求的,用有限来逼近无穷,这种思想及其重要,对后世产生了巨大影响,如图是利用刘徽的“割圆术”思想设计的一个程序框图,若运行改程序(参考数据:≈1.732,sin15°≈0.2588,sin7.5°≈0.1305),则输出n的值为()A.48 B.36 C.30 D.247.在平面区域内随机取一点(a,b),则函数f(x)=ax2﹣4bx+1在区间[1,+∞)上是增函数的概率为()A. B.C.D.8.已知△ABC的内角A、B、C的对边分别为a、b、c.若a=bcosC+csinB,且△ABC的面积为1+.则b的最小值为()A.2 B.3 C.D.9.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()A.12 B.18 C.24 D.3010.已知常数ω>0,f(x)=﹣1+2sinωxcosωx+2cos2ωx图象的对称中心得到对称轴的距离的最小值为,若f(x0)=,≤x0≤,则cos2x0=()A.B.C.D.11.已知三棱锥P﹣ABC的所有顶点都在表面积为16π的球O的球面上,AC为球O的直径,当三棱锥P﹣ABC的体积最大时,设二面角P﹣AB﹣C的大小为θ,则sinθ=()A. B.C.D.12.抛物线M的顶点是坐标原点O,抛物线M的焦点F在x轴正半轴上,抛物线M的准线与曲线x2+y2﹣6x+4y﹣3=0只有一个公共点,设A是抛物线M上的一点,若•=﹣4,则点A的坐标是()A.(﹣1,2)或(﹣1,﹣2)B.(1,2)或(1,﹣2)C.(1,2) D.(1,﹣2)二、填空题(共4小题,每小题5分,满分20分)13.某校1000名高三学生参加了一次数学考试,这次考试考生的分数服从正态分布N(90,σ2),若分数在(70,110]内的概率为0.7,估计这次考试分数不超过70分的人数为人.14.过双曲线﹣=1(a>0,b>0)的右焦点且垂直于x轴的直线与双曲线交于A,B两点,与双曲线的渐近线交于C,D两点,若|AB|≥|CD|,则双曲线离心率的取值范围为.15.计算=(用数字作答)16.已知f(x)=,若f (x﹣1)<f(2x+1),则x的取值范围为.三、解答题(共5小题,满分60分)17.设数列{a n}的前n项和为S n,a1=1,当n≥2时,a n=2a n S n﹣2S n2.(1)求数列{a n}的通项公式;(2)是否存在正数k,使(1+S1)(1+S2)…(1+S n)≥k对一切正整数n都成立?若存在,求k的取值范围,若不存在,请说明理由.18.云南省20XX年高中数学学业水平考试的原始成绩采用百分制,发布成绩使用等级制,各登记划分标准为:85分及以上,记为A等,分数在[70,85)内,记为B等,分数在[60,70)内,记为C等,60分以下,记为D等,同时认定等级分别为A,B,C都为合格,等级为D为不合格.已知甲、乙两所学校学生的原始成绩均分布在[50,100]内,为了比较两校学生的成绩,分别抽取50名学生的原始成绩作为样本进行统计,按照[50,60),[60,70),[70,80),[80,90),[90,100]分别作出甲校如图1所示样本频率分布直方图,乙校如图2所示样本中等级为C、D的所有数据茎叶图.(1)求图中x的值,并根据样本数据比较甲乙两校的合格率;(2)在选取的样本中,从甲、乙两校C等级的学生中随机抽取3名学生进行调研,用X表示所抽取的3名学生中甲校的学生人数,求随机变量X的分布列和数学期望.19.如图,在四棱锥S﹣ABCD中,底面ABCD是矩形,平面ABCD⊥平面SBC,SB=SC,M是BC的中点,AB=1,BC=2.(1)求证:AM⊥SD;(2)若二面角B﹣SA﹣M的正弦值为,求四棱锥S﹣ABCD的体积.20.已知椭圆E的中心在原点,焦点F1、F2在y轴上,离心率等于,P 是椭圆E上的点,以线段PF1为直径的圆经过F2,且9•=1.(1)求椭圆E的方程;(2)做直线l与椭圆E交于两个不同的点M、N,如果线段MN被直线2x+1=0平分,求l的倾斜角的取值范围.21.已知e是自然对数的底数,实数a是常数,函数f(x)=e x﹣ax﹣1的定义域为(0,+∞).(1)设a=e,求函数f(x)在切点(1,f(1))处的切线方程;(2)判断函数f(x)的单调性;(3)设g(x)=ln(e x+x3﹣1)﹣lnx,若∀x>0,f(g(x))<f(x),求a 的取值范围.[选修4-4:坐标系与参数方程选讲]22.已知直线L的参数方程为(t为参数),以原点O为极点,以x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=.(Ⅰ)直接写出直线L的极坐标方程和曲线C的普通方程;(Ⅱ)过曲线C上任意一点P作与L夹角为的直线l,设直线l与直线L的交点为A,求|PA|的最大值.[选修4-5:不等式选讲]23.已知函数f(x)=|x+a|+|x﹣2|的定义域为实数集R.(Ⅰ)当a=5时,解关于x的不等式f(x)>9;(Ⅱ)设关于x的不等式f(x)≤|x﹣4|的解集为A,B={x∈R|2x﹣1|≤3},如果A∪B=A,求实数a的取值范围.参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.解:∵集合S={1,2},∴S的真子集的个数为:22﹣1=3.故选:B.2.解:∵=,∴的共轭复数为.故选:C.3.解:根据条件:==4;∴;∴=9﹣(﹣21)+16=46;∴.故选:A.==(﹣1)r x10﹣2r,4.解:通项公式T r+1令10﹣2r=4,解得r=3.∴x4的系数等于﹣=﹣120.故选:A5.解:由题意设g(x)=(x﹣a)(x﹣b),则f(x)=2017﹣g(x),所以g(x)=0的两个根是a、b,由题意知:f(x)=0 的两根c,d,也就是g(x)=2017 的两根,画出g(x)(开口向上)以及直线y=2017的大致图象,则与f(x)交点横坐标就是c,d,f(x)与x轴交点就是a,b,又a>b,c>d,则c,d在a,b外,由图得,c>a>b>d,故选D.6.解:模拟执行程序,可得:n=6,S=3sin60°=,不满足条件S≥3.10,n=12,S=6×sin30°=3,不满足条件S≥3.10,n=24,S=12×sin15°=12×0.2588=3.1056,满足条件S≥3.10,退出循环,输出n的值为24.故选:D.7.解:作出不等式组对应的平面区域如图:对应的图形为△OAB,其中对应面积为S=×4×4=8,若f(x)=ax2﹣4bx+1在区间[1,+∞)上是增函数,则满足a>0且对称轴x=﹣≤1,即,对应的平面区域为△OBC,由,解得,∴对应的面积为S1=××4=,∴根据几何概型的概率公式可知所求的概率为=,故选:B.8.解:由正弦定理得到:sinA=sinCsinB+sinBcosC,∵在△ABC中,sinA=sin[π﹣(B+C)]=sin(B+C),∴sin(B+C)=sinBcosC+cosBsinC=sinCsinB+sinBcosC,∴cosBsinC=sinCsinB,∵C∈(0,π),sinC≠0,∴cosB=sinB,即tanB=1,∵B∈(0,π),∴B=,=acsinB=ac=1+,∵S△ABC∴ac=4+2,由余弦定理得到:b2=a2+c2﹣2accosB,即b2=a2+c2﹣ac≥2ac﹣ac=4,当且仅当a=c时取“=”,∴b的最小值为2.故选:A.9.解:由已知中的三视图可得该几何体是一个以俯视图为底面的三棱锥,切去一个三棱锥所得的组合体,其底面面积S=×3×4=6,棱柱的高为:5,棱锥的高为3,故组合体的体积V=6×5﹣×6×3=24,故选:C10.解:由f(x)=﹣1+2sinωxcosωx+2cos2ωx,化简可得:f(x)=sin2ωx+cos2ωx=2sin(2ωx+)∵对称中心得到对称轴的距离的最小值为,∴T=π.由,可得:ω=1.f(x0)=,即2sin(2x0+)=∵≤x0≤,∴≤2x0+≤∴sin(2x0+)=>0∴cos(2x0+)=.那么:cos2x0=cos(2x0+﹣)=cos(2x0+)cos+sin(2x0+)sin=故选D11.解:如图所示:由已知得球的半径为2,AC为球O的直径,当三棱锥P﹣ABC的体积最大时,△ABC为等腰直角三角形,P在面ABC上的射影为圆心O,过圆心O作OD⊥AB于D,连结PD,则∠PDO为二面角P﹣AB﹣C的平面角,在△ABC△中,PO=2,OD=BC=,∴,sinθ=.故选:C12.解:x2+y2﹣6x+4y﹣3=0,可化为(x﹣3)2+(y+2)2=16,圆心坐标为(3,﹣2),半径为4,∵抛物线M的准线与曲线x2+y2﹣6x+4y﹣3=0只有一个公共点,∴3+=4,∴p=2.∴F(1,0),设A(,y0)则=(,y0),=(1﹣,﹣y0),由•=﹣4,∴y0=±2,∴A(1,±2)故选B.二、填空题(共4小题,每小题5分,满分20分)13.解:由X服从正态分布N(90,σ2)(σ>0),且P(70≤X≤110)=0.35,得P(X≤70)=(1﹣0.35)=.∴估计这次考试分数不超过70分的人数为1000×=325.故答案为:325.14.解:设双曲线﹣=1(a>0,b>0)的右焦点为(c,0),当x=c时代入双曲线﹣=1得y=±,则A(c,),B(c,﹣),则AB=,将x=c代入y=±x得y=±,则C(c,),D(c,﹣),则|CD|=,∵|AB|≥|CD|,∴≥•,即b≥c,则b2=c2﹣a2≥c2,即c2≥a2,则e2=≥,则e≥.故答案为:[,+∞).15.解:由===.故答案为:.16.解:∵已知f(x)=,∴满足f(﹣x)=f(x),且f(0)=0,故f(x)为偶函数,f(x)在[0,+∞)上单调递增.若f(x﹣1)<f(2x+1),则|x﹣1|<|2x+1|,∴(x﹣1)2<(2x+1)2,即x2+2x>0,∴x>0,或x<﹣2,故答案为:{x|x>0,或x<﹣2}.三、解答题(共5小题,满分60分)17.解:(1)∵当n≥2时,a n=2a n S n﹣2S n2,∴a n=,n≥2,∴(S n﹣S n﹣1)(2S n﹣1)=2S n2,∴S n﹣S n﹣1=2S n S n﹣1,∴﹣2,n≥2,∴数列{}是以=1为首项,以2为公差的等差数列,∴=1+2(n﹣1)=2n﹣1,∴S n=,∴n≥2时,a n=S n﹣S n﹣1=﹣=﹣,∵a1=S1=1,∴a n=,(2)设f(n)=,则==>1,∴f(n)在n∈N*上递增,要使f(n)≥k恒成立,只需要f(n)min≥k,∵f(n)min=f(1)=,∴0<k≤18.解:(1)由频率分布直方图可得:(x+0.012+0.056+0.018+0.010)×10=1,解得x=0.004.甲校的合格率P1=(1﹣0.004)×10=0.96=96%,乙校的合格率P2==96%.可得:甲乙两校的合格率相同,都为96%.(2)甲乙两校的C等级的学生数分别为:0.012×10×50=6,4人.X=0,1,2,3.则P(X=k)=,P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==.∴X的分布列为:X0123PE(X)=0+1×+2×+3×=.19.证明:(1)∵SB=SC,M是BC的中点,∴SM⊥BC,∵平面ABCD⊥平面SBC,平面ABCD∩平面SBC=BC,∴SM⊥平面ABCD,∵AM⊂平面ABCD,∴SM⊥AM,∵底面ABCD是矩形,M是BC的中点,AB=1,BC=2,∴AM2=BM2==,AD=2,∴AM2+BM2=AD2,∴AM⊥DM,∵SM∩DM=M,∴AM⊥平面DMS,∵SD⊂平面DMS,∴AM⊥SD.解:(2)∵SM⊥平面ABCD,∴以M为原点,MC为x轴,MS为y轴,过M作平面BCS的垂线为z轴,建立空间直角坐标系,设SM=t,则M(0,0,0),B(﹣1,0,0),S(0,t,0),A(﹣1,0,1),=(0,0,1),=(1,t,0),=(﹣1,0,1),=(0,t,0),设平面ABS的法向量=(x,y,z),则,取x=1,得=(1,﹣,0),设平面MAS的法向量=(a,b,c),则,取a=1,得=(1,0,1),设二面角B﹣SA﹣M的平面角为θ,∵二面角B﹣SA﹣M的正弦值为,∴sinθ=,cosθ==,∴cosθ===,解得t=,∵SM⊥平面ABCD,SM=,∴四棱锥S﹣ABCD的体积:V S﹣=== ABCD.20.解:(1)由题意可知:设题意的方程:(a>b>0),e==,则c=a,设丨PF1丨=m,丨PF2丨=n,则m+n=2a,线段PF1为直径的圆经过F2,则PF2⊥F1F2,则n2+(2c)2=m2,9m•n×cos∠F1PF2=1,由9n2=1,n=,解得:a=3,c=,则b==1,∴椭圆标准方程:;(2)假设存在直线l,依题意l交椭圆所得弦MN被x=﹣平分,∴直线l的斜率存在.设直线l:y=kx+m,则由消去y,整理得(k2+9)x2+2kmx+m2﹣9=0∵l与椭圆交于不同的两点M,N,∴△=4k2m2﹣4(k2+9)(m2﹣9)>0,即m2﹣k2﹣9<0①设M(x1,y1),N(x2,y2),则x1+x2=﹣∴=﹣=﹣,∴m=②把②代入①式中得()2﹣(k2+9)<0∴k>或k<﹣,∴直线l倾斜角α∈(,)∪(,).21.解:(1)a=e时,f(x)=e x﹣ex﹣1,f(1)=﹣1,f′(x)=e x﹣e,可得f′(1)=0,故a=e时,函数f(x)在切点(1,f(1))处的切线方程是y=﹣1;(2)f(x)=e x﹣ax﹣1,f′(x)=e x﹣a,当a≤0时,f′(x)>0,则f(x)在R上单调递增;当a>0时,令f′(x)=e x﹣a=0,得x=lna,则f(x)在(﹣∞,lna]上单调递减,在(lna,+∞)上单调递增.(3)设F(x)=e x﹣x﹣1,则F′(x)=e x﹣1,∵x=0时,F′(x)=0,x>0时,F′(x)>0,∴F(x)在[0,+∞)递增,∴x>0时,F(x)>F(0),化简得:e x﹣1>x,∴x>0时,e x+x3﹣1>x,设h(x)=xe x﹣e x﹣x3+1,则h′(x)=x(e x﹣ex),设H(x)=e x﹣ex,H′(x)=e x﹣e,由H′(x)=0,得x=1时,H′(x)>0,x<1时,H′(x)<0,∴x>0时,H(x)的最小值是H(1),x>0时,H(x)≥H(1),即H(x)≥0,∴h′(x)≥0,可知函数h(x)在(0,+∞)递增,∴h(x)>h(0)=0,化简得e x+x3﹣1<xe x,∴x>0时,x<e x+x3﹣1<xe x,∴x>0时,lnx<ln(e x+x3﹣1)<lnx+x,即0<ln(e x+x3﹣1)﹣lnx<x,即x>0时,0<g(x)<x,当a≤1时,由(2)得f(x)在(0,+∞)递增,得f(g(x))<f(x)满足条件,当a>1时,由(2)得f(x)在(0,lna)递减,∴0<x≤lna时,f(g(x))>f(x),与已知∀x>0,f(g(x))<f(x)矛盾,综上,a的范围是(﹣∞,1].[选修4-4:坐标系与参数方程选讲]22.解:(Ⅰ)直线L的参数方程为(t为参数),普通方程为2x+y﹣6=0,极坐标方程为2ρcosθ+ρsinθ﹣6=0,曲线C的极坐标方程为ρ=,即ρ2+3ρ2cos2θ=4,曲线C 的普通方程为=1;(Ⅱ)曲线C上任意一点P(cosθ,2sinθ)到l的距离为d=|2cosθ+2sinθ﹣6|.则|PA|==|2sin(θ+45°)﹣6|,当sin(θ+45°)=﹣1时,|PA|取得最大值,最大值为.[选修4-5:不等式选讲]23.解:(Ⅰ)当a=5时,关于x的不等式f(x)>9,即|x+5|+|x﹣2|>9,故有①;或②;或③.解①求得x<﹣6;解②求得x∈∅,解③求得x>3.综上可得,原不等式的解集为{x|x<﹣6,或x>3}.(Ⅱ)设关于x的不等式f(x)=|x+a|+|x﹣2|≤|x﹣4|的解集为A,B={x∈R|2x﹣1|≤3}={x|﹣1≤x≤2 },如果A∪B=A,则B⊆A,∴,即,求得﹣1≤a≤0,故实数a的范围为[﹣1,0].2018年高考理科数学模拟试卷(二)(考试时间120分钟满分150分)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.复数z满足方程=﹣i(i为虚数单位),则复数z在复平面内对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限2.已知集合A={x|x2+x﹣2<0},集合B={x|(x+2)(3﹣x)>0},则(∁R A)∩B 等于()A.{x|1≤x<3}B.{x|2≤x<3}C.{x|﹣2<x<1}D.{x|﹣2<x≤﹣1或2≤x<3}3.下列函数中,在其定义域内,既是奇函数又是减函数的是()A.f(x)=B.f(x)=C.f(x)=2﹣x﹣2x D.f(x)=﹣tanx 4.已知“x>2”是“x2>a(a∈R)”的充分不必要条件,则a的取值范围是()A.(﹣∞,4)B.(4,+∞)C.(0,4]D.(﹣∞,4]5.已知角α是第二象限角,直线2x+(t anα)y+1=0的斜率为,则cosα等于()A. B.﹣C.D.﹣6.执行如图所示的程序框图,若输入n的值为8,则输出s的值为()A.16 B.8 C.4 D.27.(﹣)8的展开式中,x的系数为()A.﹣112 B.112 C.56 D.﹣568.在△ABC中,∠A=60°,AC=3,面积为,那么BC的长度为()A.B.3 C.2D.9.记曲线y=与x轴所围成的区域为D,若曲线y=ax(x ﹣2)(a<0)把D的面积均分为两等份,则a的值为()A.﹣B.﹣C.﹣D.﹣10.为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,得分(十分制)如图所示,假设得分的中位数为m e,众数为m0,平均值为,则()A.m e=m0=B.m e=m0<C.m e<m0<D.m0<m e<11.已知矩形ABCD的顶点都在半径为5的球O的球面上,且AB=6,BC=2,则棱锥O﹣ABCD的侧面积为()A.20+8B.44 C.20 D.4612.函数f(x)=2sin(2x++φ)(|φ|<)的图象向左平移个单位后关于y轴对称,则以下判断不正确的是()A.是奇函数 B.为f(x)的一个对称中心C.f(x)在上单调递增D.f(x)在(0,)上单调递减二、填空题:本大题共4小题,每小题5分,共20分.13.若变量x,y满足约束条件,则z=2x﹣y的最大值为.14.如图所示是一个几何体的三视图,则这个几何体的体积为.15.已知抛物线y2=8x的焦点F到双曲线C:﹣=1(a>0,b>0)渐近线的距离为,点P是抛物线y2=8x上的一动点,P到双曲线C的上焦点F1(0,c)的距离与到直线x=﹣2的距离之和的最小值为3,则该双曲线的方程为.16.已知向量,的夹角为θ,|+|=2,|﹣|=2则θ的取值范围为.三、解答题:本大题共5小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.已知S n为等差数列{a n}的前n项和,S6=51,a5=13.(1)求数列{a n}的通项公式;(2)数列{b n}的通项公式是b n=,求数列{b n}的前n项和S n.18.袋中有大小相同的四个球,编号分别为1、2、3、4,从袋中每次任取一个球,记下其编号.若所取球的编号为偶数,则把该球编号改为3后放同袋中继续取球;若所取球的编号为奇数,则停止取球.(1)求“第二次取球后才停止取球”的概率;(2)若第一次取到偶数,记第二次和第一次取球的编号之和为X,求X的分布列和数学期望.19.在三棱椎A﹣BCD中,AB=BC=4,AD=BD=CD=2,在底面BCD内作CE ⊥CD,且CE=.(1)求证:CE∥平面ABD;(2)如果二面角A﹣BD﹣C的大小为90°,求二面角B﹣AC﹣E的余弦值.20.在平面直角坐标系xOy中,已知椭圆C: +=1(a>b>0)的离心率为.且过点(3,﹣1).(1)求椭圆C的方徎;(2)若动点P在直线l:x=﹣2上,过P作直线交椭圆C于M,N两点,使得PM=PN,再过P作直线l′⊥MN,直线l′是否恒过定点,若是,请求出该定点的坐标;若否,请说明理由.21.已知函数f(x)=m(x﹣1)2﹣2x+3+lnx(m≥1).(1)求证:函数f(x)在定义域内存在单调递减区间[a,b];(2)是否存在实数m,使得曲线C:y=f(x)在点P(1,1)处的切线l与曲线C有且只有一个公共点?若存在,求出实数m的值;若不存在,请说明理由.[选修4-1:几何证明选讲]22.选修4﹣1:几何证明选讲如图,已知PA是⊙O的切线,A是切点,直线PO交⊙O于B、C两点,D是OC 的中点,连接AD并延长交⊙O于点E,若PA=2,∠APB=30°.(Ⅰ)求∠AEC的大小;(Ⅱ)求AE的长.[选修4-4:极坐标与参数方程]23.选修4﹣4:坐标系与参数方程在平面直角坐标系x0y中,动点A的坐标为(2﹣3sinα,3cosα﹣2),其中α∈R.在极坐标系(以原点O为极点,以x轴非负半轴为极轴)中,直线C的方程为ρcos (θ﹣)=a.(Ⅰ)判断动点A的轨迹的形状;(Ⅱ)若直线C与动点A的轨迹有且仅有一个公共点,求实数a的值.[选修4-5:不等式选讲]24.已知函数f(x)=|x﹣1|+|x﹣a|.(1)若a=2,解不等式f(x)≥2;(2)若a>1,∀x∈R,f(x)+|x﹣1|≥1,求实数a的取值范围.参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.解:由=﹣i,得,即z=1+i.则复数z在复平面内对应的点的坐标为(1,1).位于第一象限.故选:A.2.解:∵集合A={x|x2+x﹣2<0}={x|﹣2<x<1},集合B={x|(x+2)(3﹣x)>0}={x|﹣2<x<3},∴(C R A)∩B={x|x≤﹣2或x≥1}∩{x|﹣2<x<3}={x|1≤x<3}.故选:A.3.解:A中,f(x)=是奇函数,但在定义域内不单调;B中,f(x)=是减函数,但不具备奇偶性;C中,f(x)2﹣x﹣2x既是奇函数又是减函数;D中,f(x)=﹣tanx是奇函数,但在定义域内不单调;故选C.4.解:由题意知:由x>2能得到x2>a;而由x2>a得不出x>2;∵x>2,∴x2>4;∴a≤4;∴a的取值范围是(﹣∞,4].故选:D.5.解:由题意得:k=﹣=,故tanα=﹣,故cosα=﹣,故选:D.6.解:开始条件i=2,k=1,s=1,i<8,开始循环,s=1×(1×2)=2,i=2+2=4,k=1+1=2,i<8,继续循环,s=×(2×4)=4,i=6,k=3,i<8,继续循环;s=×(4×6)=8,i=8,k=4,8≥8,循环停止,输出s=8;故选B:=(﹣2)r C8r x4﹣r,7.解:(﹣)8的展开式的通项为T r+1令4﹣r=1,解得r=2,∴展开式中x的系数为(﹣2)2C82=112,故选:B.8.解:在图形中,过B作BD⊥ACS△ABC=丨AB丨•丨AC丨sinA,即×丨AB丨×3×sin60°=,解得:丨AB丨=2,∴cosA=,丨AD丨=丨AB丨cosA=2×=1,sinA=,则丨BD丨=丨AB丨sinA=2×=,丨CD丨=丨AC丨﹣丨AD丨=3﹣1=2,在△BDC中利用勾股定理得:丨BC丨2=丨BD丨2+丨CD丨2=7,则丨BC丨=,故选A.9.解:由y=得(x﹣1)2+y2=1,(y≥0),则区域D表示(1,0)为圆心,1为半径的上半圆,而曲线y=ax(x﹣2)(a<0)把D的面积均分为两等份,∴=,∴(﹣ax2)=,∴a=﹣,故选:B.10.解:根据题意,由题目所给的统计图可知:30个得分中,按大小排序,中间的两个得分为5、6,故中位数m e=5.5,得分为5的最多,故众数m0=5,其平均数=≈5.97;则有m0<m e<,故选:D.11.解:由题意可知四棱锥O﹣ABCD的侧棱长为:5.所以侧面中底面边长为6和2,它们的斜高为:4和2,所以棱锥O﹣ABCD的侧面积为:S=4×6+2=44.故选B.12.解:把函数f(x)=2sin(2x++φ)(|φ|<)的图象向左平移个单位后,得到y=2sin(2x++φ+π)=﹣2sin(2x++φ)的图象,再根据所得关于y轴对称,可得+φ=kπ+,k∈Z,∴φ=,∴f(x)=2sin(2x++φ)=2cos2x.由于f(x+)=2cos(2x+)=﹣sin2x是奇函数,故A正确;当x=时,f(x)=0,故(,0)是f(x)的图象的一个对称中心,故B正确;在上,2x∈(﹣,﹣),f(x)没有单调性,故C不正确;在(0,)上,2x∈(0,π),f(x)单调递减,故D正确,故选:C.二、填空题:本大题共4小题,每小题5分,共20分.13.解:由约束条件作出可行域如图,联立,解得A(4,2),化目标函数z=2x﹣y为y=2x﹣z,由图可知,当直线y=2x﹣z过点A时,直线在y 轴上的截距最小,z有最大值为6.故答案为:6.14.解:由三视图得到几何体如图:其体积为;故答案为:15.解:抛物线y2=8x的焦点F(2,0),双曲线C:﹣=1(a>0,b >0)一条渐近线的方程为ax﹣by=0,∵抛物线y2=8x的焦点F到双曲线C:﹣=1(a>0,b>0)渐近线的距离为,∴,∴2b=a,∵P到双曲线C的上焦点F1(0,c)的距离与到直线x=﹣2的距离之和的最小值为3,∴FF1=3,∴c2+4=9,∴c=,∵c2=a2+b2,a=2b,∴a=2,b=1,∴双曲线的方程为﹣x2=1.故答案为:﹣x2=1.16.解:由|+|=2,|﹣|=2,可得:+2=12,﹣2=4,∴=8≥2,=2,∴cosθ=≥.∴θ∈.故答案为:.三、解答题:本大题共5小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.解:(1)设等差数列{a n}的公差为d,则∵S6=51,∴×(a1+a6)=51,∴a1+a6=17,∴a2+a5=17,∵a5=13,∴a2=4,∴d=3,∴a n=a2+3(n﹣2)=3n﹣2;(2)b n==﹣2•8n﹣1,∴数列{b n}的前n项和S n==(8n﹣1).18.解:(1)记“第二次取球后才停止取球”为事件A.∴第一次取到偶数球的概率为=,第二次取球时袋中有三个奇数,∴第二次取到奇数球的概率为,而这两次取球相互独立,∴P(A)=×=.(2)若第一次取到2时,第二次取球时袋中有编号为1,3,3,4的四个球;若第一次取到4时,第二次取球时袋中有编号为1,2,3,3的四个球.∴X的可能取值为3,5,6,7,∴P(X=3)=×=,P(X=5)=×+×=,P(X=6)=×+×=,P(X=7)=×=,∴X的分布列为:X3567P数学期望EX=3×+5×+6×+7×=.19.(1)证明:∵BD=CD=2,BC=4,∴BD2+CD2=BC2,∴BD⊥CD,∵CE⊥CD,∴CE∥BD,又CE⊄平面ABD,BD⊂平面ABD,∴CE∥平面ABD;(2)解:如果二面角A﹣BD﹣C的大小为90°,由AD⊥BD得AD⊥平面BDC,∴AD⊥CE,又CE⊥CD,∴CE⊥平面ACD,从而CE⊥AC,由题意AD=DC=2,∴Rt△ADC中,AC=4,设AC的中点为F,∵AB=BC=4,∴BF⊥AC,且BF=2,设AE中点为G,则FG∥CE,由CE⊥AC得FG⊥AC,∴∠BFG为二面角B﹣AC﹣E的平面角,连接BG,在△BCE中,∵BC=4,CE=,∠BCE=135°,∴BE=,在Rt△DCE中,DE==,于是在Rt△ADE中,AE==3,在△ABE中,BG2=AB2+BE2﹣AE2=,∴在△BFG中,cos∠BFG==﹣,∴二面角B﹣AC﹣E的余弦值为﹣.20.解:(1)∵椭圆C: +=1(a>b>0)的离心率为.且过点(3,﹣1),∴,解得a2=12,b2=4,∴椭圆C的方程为.(2)∵直线l的方程为x=﹣2,设P(﹣2,y0),,当y0≠0时,设M(x1,y1),N(x2,y2),由题意知x1≠x2,联立,∴,∴,又∵PM=PN,∴P为线段MN的中点,∴直线MN的斜率为,又l′⊥MN,∴l′的方程为,即,∴l′恒过定点.当y0=0时,直线MN为,此时l′为x轴,也过点,综上,l′恒过定点.21.(1)证明:令f′(x)=0,得mx2﹣(m+2)x+1=0.(*)因为△=(m+2)2﹣4m=m2+4>0,所以方程(*)存在两个不等实根,记为a,b (a<b).因为m≥1,所以a+b=>0,ab=>0,所以a>0,b>0,即方程(*)有两个不等的正根,因此f′(x)≤0的解为[a,b].故函数f(x)存在单调递减区间;(2)解:因为f′(1)=﹣1,所以曲线C:y=f(x)在点P(1,1)处的切线l为y=﹣x+2.若切线l与曲线C只有一个公共点,则方程m(x﹣1)2﹣2x+3+lnx=﹣x+2有且只有一个实根.显然x=1是该方程的一个根.令g(x)=m(x﹣1)2﹣x+1+lnx,则g′(x)=.当m=1时,有g′(x)≥0恒成立,所以g(x)在(0,+∞)上单调递增,所以x=1是方程的唯一解,m=1符合题意.当m>1时,令g′(x)=0,得x1=1,x2=,则x2∈(0,1),易得g(x)在x1处取到极小值,在x2处取到极大值.所以g(x2)>g(x1)=0,又当x→0时,g(x)→﹣∞,所以函数g(x)在(0,)内也有一个解,即当m>1时,不合题意.综上,存在实数m,当m=1时,曲线C:y=f(x)在点P(1,1)处的切线l与C 有且只有一个公共点.[选修4-1:几何证明选讲]22.解:(Ⅰ)连接AB,因为:∠APO=30°,且PA是⊙O的切线,所以:∠AOB=60°;∵OA=OB∴∠AB0=60°;∵∠ABC=∠AEC∴∠AEC=60°.(Ⅱ)由条件知AO=2,过A作AH⊥BC于H,则AH=,在RT△AHD中,HD=2,∴AD==.∵BD•DC=AD•DE,∴DE=.∴AE=DE+AD=.[选修4-4:极坐标与参数方程]23.解:(Ⅰ)设动点A的直角坐标为(x,y),则,利用同角三角函数的基本关系消去参数α可得,(x﹣2)2+(y+2)2=9,点A的轨迹为半径等于3的圆.(Ⅱ)把直线C方程为ρcos(θ﹣)=a化为直角坐标方程为+=2a,由题意可得直线C与圆相切,故有=3,解得a=3 或a=﹣3.[选修4-5:不等式选讲]24.解:(1)当a=2时,,由于f(x)≥2,则①当x<1时,﹣2x+3≥2,∴x≤;②当1≤x≤1时,1≥2,无解;③当x>2时,2x﹣3≥2,∴x≥.综上所述,不等式f(x)≥2的解集为:(﹣∞,]∪[,+∞);(2)令F(x)=f(x)+|x﹣1|,则,所以当x=1时,F(x)有最小值F(1)=a﹣1,只需a﹣1≥1,解得a≥2,所以实数a的取值范围为[2,+∞).2018年高考理科数学模拟试卷(三)(考试时间120分钟满分150分)一、选择题(共12小题,每小题5分,满分60分)1.已知复数z满足z(1﹣i)2=1+i(i为虚数单位),则z=()A. +i B.﹣i C.﹣+i D.﹣﹣i2.已知集合A={x|(x﹣1)2≤3x﹣3,x∈R},B={y|y=3x+2,x∈R},则A∩B=()A.(2,+∞)B.(4,+∞)C.[2,4]D.(2,4]3.甲、乙两类水果的质量(单位:kg)分别服从正态分布N(μ1,σ12)及N(μ2,σ22),其正态分布的密度曲线如图所示,则下列说法错误的是()A.乙类水果的质量服从的正态分布的参数σ2=1.99B.甲类水果的质量比乙类水果的质量更集中C.甲类水果的平均质量μ1=0.4kgD.甲类水果的平均质量比乙类水果的平均质量小4.已知数列{a n}的前n项和S n满足S n+S m=S n(n,m∈N*)且a1=5,则a8=()+mA.40 B.35 C.12 D.55.设a=(),b=(),c=ln,则a,b,c的大小关系是()A.a>b>c B.b>a>c C.b>c>a D.a>c>b6.执行如图所示的程序框图,则输出b的值为()A.2 B.4 C.8 D.167.若圆C:x2+y2﹣2x+4y=0上存在两点A,B关于直线l:y=kx﹣1对称,则k的值为()A.﹣1 B.﹣C.﹣D.﹣38.某同学在运动场所发现一实心椅子,其三视图如图所示(俯视图是圆的一部分及该圆的两条互相垂直的半径,有关尺寸如图,单位:m),经了解,建造该类椅子的平均成本为240元/m3,那么该椅子的建造成本约为(π≈3.14)()A.94.20元 B.240.00元C.282.60元D.376.80元9.当函数f(x)=sinx+cosx﹣t(t∈R)在闭区间[0,2π]上,恰好有三个零点时,这三个零点之和为()A.B. C. D.2π10.有5位同学排成前后两排拍照,若前排站2人,则甲不站后排两端且甲、乙左右相邻的概率为()A.B.C.D.11.某工厂拟生产甲、乙两种实销产品.已知每件甲产品的利润为0.4万元,每件乙产品的利润为0.3万元,两种产品都需要在A,B两种设备上加工,且加工一件甲、乙产品在A,B设备上所需工时(单位:h)分别如表所示.甲产品所需工时乙产品所需工时A设备23B设备41若A设备每月的工时限额为400h,B设备每月的工时限额为300h,则该厂每月生产甲、乙两种产品可获得的最大利润为()A.40万元B.45万元C.50万元D.55万元12.若函数g(x)满足g(g(x))=n(n∈N)有n+3个解,则称函数g(x)为“复合n+3解”函数.已知函数f(x)=(其中e是自然对数的底数,e=2.71828…,k∈R),且函数f(x)为“复合5解”函数,则k的取值范围是()A.(﹣∞,0)B.(﹣e,e)C.(﹣1,1)D.(0,+∞)二、填空题(共4小题,每小题5分,满分20分)13.在Rt△ABC中,D是斜边AB的中点,若BC=6,CD=5,则•=.14.有下列四个命题:①垂直于同一条直线的两条直线平行;②垂直于同一条直线的两个平面平行;③垂直于同一平面的两个平面平行;④垂直于同一平面的两条直线平行.其中正确的命题有(填写所有正确命题的编号).15.若等比数列{a n}的公比为2,且a3﹣a1=2,则++…+=.16.设抛物线C:y2=2px(p>0)的焦点为F,点A在C上,若|AF|=,以线段AF为直径的圆经过点B(0,1),则p=.三、解答题(共5小题,满分60分)17.在△ABC中,设内角A,B,C所对边分别为a,b,c,且sin(A﹣)﹣cos(A+)=.(1)求角A的大小;(2)若a=,sin2B+cos2C=1,求△ABC的面积.18.某大学有甲、乙两个图书馆,对其借书、还书的等待时间进行调查,得到下表:甲图书馆12345借(还)书等待时间T1(分钟)频数1500 1000 500 500 1500乙图书馆12345借(还)书等待时间T2(分钟)频数100050020001250250以表中等待时间的学生人数的频率为概率.(1)分别求在甲、乙两图书馆借书的平均等待时间;(2)学校规定借书、还书必须在同一图书馆,某学生需要借一本数学参考书,并希望借、还书的等待时间之和不超过4分钟,在哪个图书馆借、还书更能满足他的要求?19.如图所示,在Rt△ABC中,AC⊥BC,过点C的直线VC垂直于平面ABC,D、E分别为线段VA、VC上异于端点的点.(1)当DE⊥平面VBC时,判断直线DE与平面ABC的位置关系,并说明理由;(2)当D、E、F分别为线段VA、VC、AB上的中点,且VC=2BC时,求二面角B ﹣DE﹣F的余弦值.20.已知椭圆+=1(a>b>0)过点P(2,1),且离心率为.(Ⅰ)求椭圆的方程;(Ⅱ)设O为坐标原点,在椭圆短轴上有两点M,N满足=,直线PM、PN分别交椭圆于A,B.(i)求证:直线AB过定点,并求出定点的坐标;(ii)求△OAB面积的最大值.21.已知函数f(x)=lnx﹣2ax(其中a∈R).(Ⅰ)当a=1时,求函数f(x)的图象在x=1处的切线方程;(Ⅱ)若f(x)≤1恒成立,求a的取值范围;(Ⅲ)设g(x)=f(x)+x2,且函数g(x)有极大值点x0,求证:x0f(x0)+1+ax02>0.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy中,双曲线E的参数方程为(θ为参数),设E的右焦点为F,经过第一象限的渐进线为l.以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(1)求直线l的极坐标方程;(2)设过F与l垂直的直线与y轴相交于点A,P是l上异于原点O的点,当A,O,F,P四点在同一圆上时,求这个圆的极坐标方程及点P的极坐标.[选修4-5:不等式选讲]23.已知函数f(x)=|x+a|﹣2a,其中a∈R.(1)当a=﹣2时,求不等式f(x)≤2x+1的解集;(2)若x∈R,不等式f(x)≤|x+1|恒成立,求a的取值范围.参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.解:∵z(1﹣i)2=1+i,∴,故选:C.2.解:集合A={x|(x﹣1)2≤3x﹣3,x∈R}={x|(x﹣1)(x﹣4)≤0}={x|1≤x ≤4}=[1,4];B={y|y=3x+2,x∈R}={y|y>2}=(2,+∞),则A∩B=(2,4].故选:D.3.解:由图象可知,甲类水果的平均质量μ1=0.4kg,乙类水果的平均质量μ2=0.8kg,故B,C,D正确;乙类水果的质量服从的正态分布的参数σ2=,故A 不正确.故选:A.4.解:数列{a n}的前n项和S n满足S n+S m=S n+m(n,m∈N*)且a1=5,令m=1,则S n+1=S n+S1=S n+5.可得a n+1=5.则a8=5.故选:D.5.解:b=()=>()=a>1,c=ln<1,∴b>a>c.故选:B.6.解:第一次循环,a=1≤3,b=2,a=2,第二次循环,a=2≤3,b=4,a=3,第三次循环,a=3≤3,b=16,a=4,第四次循环,a=4>3,输出b=16,故选:D.7.解:圆C:x2+y2﹣2x+4y=0的圆心(1,﹣2),若圆C:x2+y2﹣2x+4y=0上存在两点A,B关于直线l:y=kx﹣1对称,可知直线经过圆的圆心,可得﹣2=k﹣1,解得k=﹣1.故选:A.8.解:由三视图可知:该几何体为圆柱的.∴体积V=.∴该椅子的建造成本约为=×240≈282.60元.故选:C.9.解:f(x)=2sin(x+)﹣t,令f(x)=0得sin(x+)=,做出y=sin(x+)在[0,2π]上的函数图象如图所示:∵f(x)在[0,2π]上恰好有3个零点,∴=sin=,解方程sin(x+)=得x=0或x=2π或x=.∴三个零点之和为0+2π+=.故选:B.10.解:由题意得:p===,故选:B.11.C解:设甲、乙两种产品月的产量分别为x,y件,约束条件是目标函数是z=0.4x+0.3y由约束条件画出可行域,如图所示的阴影部分由z=0.4x+0.3y,结合图象可知,z=0.4x+0.3y在A处取得最大值,由可得A(50,100),此时z=0.4×50+0.3×100=50万元,故选:C.12.解:函数f(x)为“复合5解“,∴f(f(x))=2,有5个解,设t=f(x),∴f(t)=2,∵当x>0时,f(x)=,∴f(x)=,当0<x<1时,f′(x)<0,函数f(x)单调递减,当x>1时,f′(x)>0,函数f(x)单调递增,∴f(x)min=f(1)=1,∴t≥1,∴f(t)=2在[1,+∞)有2个解,当x≤0时,f(x)=kx+3,函数f(x)恒过点(0,3),当k≤0时,f(x)≥f(0)=3,∴t≥3∵f(3)=>2,∴f(t)=2在[3,+∞)上无解,当k>0时,f(x)≤f(0)=3,∴f(t)=2,在(0,3]上有2个解,在(∞,0]上有1个解,综上所述f(f(x))=2在k>0时,有5个解,故选:D二、填空题(共4小题,每小题5分,满分20分)13.解:在Rt△ABC中,D是斜边AB的中点,若BC=6,CD=5,可得AD=BD=5,即AB=10,由勾股定理可得AC==8,则•=﹣•=﹣||•||•cosA=﹣5×8×=﹣32.14.解:如图在正方体ABCD﹣A′B′C′D′中,对于①,AB⊥BB′,BC⊥BB′,AB、BC不平行,故错;对于②,两底面垂直于同一条侧棱,两个底面平面平行,故正确;对于③,相邻两个侧面同垂直底面,这两个平面不平行,故错;对于④,平行的侧棱垂直底面,侧棱平行,故正确.故答案为:②④15.解:∵等比数列{a n}的公比为2,且a3﹣a1=2,∴=2,解得a1=.∴a n==.∴=.则++…+=3×==1﹣.故答案为:1﹣.16.解:由题意,可得A(,),AB⊥BF,∴(,﹣1)•(,﹣1)=0,∴﹣+1=0,∴p(5﹣p)=4,∴p=1或4.三、解答题(共5小题,满分60分)17.解:(1)sin(A﹣)﹣cos(A+)=sin(A﹣)﹣cos(2π﹣A)=sin(A﹣)﹣cos(A+)=sinA﹣cosA﹣cosA﹣sinA=即cosA=,∵0<A<π,∴A=.(2)由sin2B+cos2C=1,可得sin2B=2sin2C,由正弦定理,得b2=2c2,即.a=,cosA==,解得:c=1,b=∴△ABC的面积S=bcsinA=.18.解:(1)根据已知可得T1的分布列:T1(分钟)12345P0.30.20.10.10.3T1的数学期望为:E(T1)=1×0.3+2×0.2+3×0.1+4×0.1+5×0.3=2.9.T2(分钟)12345P0.20.10.4 0.250.05T2的数学期望为:E(T1)=1×0.2+2×0.1+3×0.4+4×0.25+5×0.05=2.85.因此:该同学甲、乙两图书馆借书的平均等待时间分别为:2.9分钟,2.85分钟.(2)设T11,T12分别表示在甲图书馆借、还书所需等待时间,设事件A为“在甲图书馆借、还书的等待时间之和不超过4分钟”.T11+T12≤4的取值分别为:(1,1),(1,2),(1,3),(2,1),(2,2),(3,1).。

山东省青岛市2018届高三5月模拟考试数学(理)试卷及答案

山东省青岛市2018届高三5月模拟考试数学(理)试卷及答案

2018年青岛市高考模拟检测数学(理科)本试题卷共6页,23题(含选考题)。

全卷满分150分。

考试用时120分钟。

注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。

答案写在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

5.考试结束后,请将答题卡上交。

一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{|(3)(6)0}A x x x =+-≥ R ()A B =I ðA .(3,6)-B .[6,)+∞ D .(,3)(6,)-∞-+∞U2.i 是虚数单位),则z 的共轭复数z 在复平面内对应的点位于A .第一象限 C .第三象限 D . 第四象限 3.《九章算术》中有如下问题:“今有勾五步,股一十二步,问勾中容圆,径几何?”其大意:“已知直角三角形两直角边分别为5步和12步,问其内切圆的直径为多少步?”现若向此三角形内随机投一粒豆子,则豆子落在其内切圆外的概率是A .215π B .320π C .2115π- D .3120π-4. 在如图所示的框图中,若输出360S =,那么判断框中应填入的关于k 的判断条件是 A .2?k > B .2?k < C .3?k > D .3?k <5.已知各项均为正数的等比数列{}n a 的前n 项和为n S ,且满足6a ,43a ,5a -成等差数列,则42S S = A .3 B .9 C .10 D .136.已知直线20x y a -+=与圆O :222x y +=相交于A ,B 两点(O 为坐标原点),则“a =0OA OB ⋅=u u u r u u u r”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7.已知定义域为R 的奇函数()f x ,当0x >则(1)(2)(3)(2020)f f f f +++⋅⋅⋅+= A .2log 5B .2log 5-C .2-D .08.将函数()=2sin(2+)3f x x π图像上的每个点的横坐标缩短为原来的一半,纵坐标不变,再将所得图像向左平移12π个单位得到函数()g x 的图像,在()g x 图像的所有对称轴中,离原点最近的对称轴方程为 A .24x π=-B .4x π=C .524x π=D .12x π= 9.设变量y x ,满足约束条件⎪⎩⎪⎨⎧≥≤+-≥-a y y x y x 41,目标函数y x z 23-=的最小值为4-,则a 的值是A .1B .0C .1-D .1210.某几何体的三视图如图所示,则该几何体的体积为A .5B .53C .52D .5611.已知过抛物线22(0)y px p =>的焦点F 的直线与抛物线交于A ,B 两点,且3AF FB =u u u r u u u r,抛正视图 侧视图物线的准线l 与x 轴交于点C , 1AA l ⊥于点1A ,若四边形1AA CF的面积为l 的方程为A.x = B.x =- C .2x =- D .1x =-12.对于定义域为R 的函数()f x ,若满足① (0)0f =;② 当R x ∈,且0x ≠时,都有()0xf x '>;③ 当120x x <<,且12||||x x =时,都有12()()f x f x <,则称()f x 为“偏对称函数”.现给出四个函数: 1()sin f x x x =;2())f x x =;31,0(), 0xe xf x x x ⎧-≥=⎨-<⎩;24()x x f x e e x =--.则其中是“偏对称函数”的函数个数为A .3B .2C .1D .0二、填空题:本大题共4个小题,每小题5分.13.已知向量a r ,b r 满足||5b =r ,||4a b +=r r ,||6a b -=r r,则向量a r 在向量b r 上的投影为 .14.已知5()(21)a x x x+-展开式中的常数项为30,则实数a = . 15.定义12nnp p p +++L 为n 个正数12,,,n p p p L 的“均倒数”,若已知数列{}n a 的前n 项的“均倒数”为121n +,又14n n a b +=,则122320172018111b b b b b b +++=L . 16.已知三棱锥A BCD -中,3,1,4,AB AD BC BD ====当三棱锥A BCD -的体积最大时,其外接球的体积为 .三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17题21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求解答. (一)必考题:共60分.17.(12分)ABC ∆的内角AB C 、、的对边分别为a b c 、、,已知cos b A c =. (1)求cos B ;(2)如图,D 为ABC ∆外一点,若在平面四边形ABCD 中,2D B ∠=∠,且1AD =,3CD =,BC =AB 的长.CAB D18.(12分)如图所示,在三棱柱111ABC A B C -中,侧棱1BB ⊥底面ABC ,14BB =,AB BC ⊥,且AB BC ==,点,M N 为棱,AB BC 上的动点,且AM BN =,D 为11B C 的中点.(1)当点,M N 运动时,能否出现//AD 面1B MN 情况,请说明理由. (2)若BN =,求直线AD 与平面1B MN 所成角的正弦值.19.(12分)为了解某市高三数学复习备考情况,该市教研机构组织了一次检测考试,并随机抽取了部分高三理科学生数学成绩绘制如图所示的频率分布直方图.(1)根据频率分布直方图,估计该市此次检测理科数学的平均成绩0u ;(精确到个位) (2)研究发现,本次检测的理科数学成绩X 近似服从正态分布2(,)N u σ(0u u =,σ约为19.3),按以往的统计数据,理科数学成绩能达到自主招生分数要求的同学约占40%.(ⅰ)估计本次检测成绩达到自主招生分数要求的理科数学成绩大约是多少分?(精确到个位) (ⅱ)从该市高三理科学生中随机抽取4人,记理科数学成绩能达到自主招生分数要求的人数为Y ,求Y 的分布列及数学期望()E Y . (说明:()111()x uP X x φσ->=-表示1X x >的概率.参考数据:(0.7257)0.6φ=,(0.6554)0.4φ=)20.(12分)在平面直角坐标系中,点1F 、2F 分别为双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点,双曲线C 的离心率为2,点3(1,)2在双曲线C 上.不在x 轴上的动点P 与动点Q 关于原点OA BC1B1AD1CM N对称,且四边形12PF QF的周长为(1)求动点P 的轨迹方程;(2)在动点P 的轨迹上有两个不同的点1122(,)(,)M x y N x y 、,线段MN 的中点为G ,已知点12(,)x x 在圆222x y +=上,求||||OG MN ⋅的最大值,并判断此时OMN ∆的形状.21.(12分)已知函数2()ln (R)f x x ax x a =++∈. (1)讨论函数()f x 在[1,2]上的单调性; (2)令函数12()()x g x ex a f x -=++-, 2.71828e =⋅⋅⋅是自然对数的底数,若函数()g x 有且只有一个零点m ,判断m 与e 的大小,并说明理由.(二)选考题:共10分.请考生在第22、23两题中任选一题作答.如果多做,则按所做的第一题记分.22.选修44-:坐标系与参数方程(10分)以直角坐标系的原点O 为极点,x 轴非负半轴为极轴,并在两种坐标系中取相同的长度单位,曲线1C 的极坐标方程为2sin 4cos 0ρθθ-=,曲线2C 的参数方程是12cos 2sin x y ϕϕ=-+⎧⎨=⎩(ϕ为参数).(1)求曲线1C 的直角坐标方程及2C 的普通方程;(2)已知点1(,0)2P ,直线l的参数方程为1222x y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),设直线l 与曲线1C 相交于,M N 两点,求11||||PM PN +的值.23.选修45-:不等式选讲(10分) 已知函数()|1||2|f x x x =++-. (1)求函数()f x 的最小值k ;(2)在(1)的结论下,若正实数,a b满足11a b +,求证:22122a b+≥.2018年青岛市高考模拟检测数学(理科)参考答案及评分标准一、选择题:本大题共12小题.每小题5分,共60分. C B C D C A B A C D A B二、填空题:本大题共4小题,每小题5分,共20分. 13.1- 14.3 15.20172018 16.1256π 三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17题~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求解答. (一)必考题:共60分.17. (本小题满分12分)解:(1)在ABC ∆中,由正弦定理得sin cos sin B A A C +=, ………………2分又()C A B π=-+,所以sin cos sin()B A A A B +=+,故sin cos sin cos cos sin B A A A B A B =+,…………………………………4分所以sin cos A B A =,又(0,)A π∈,所以sin 0A ≠,故cos B =6分(2)2D B ∠=∠Q ,21cos 2cos 13D B ∴=-=-………………………………………7分又在ACD ∆中, 1AD =, 3CD =∴由余弦定理可得22212cos 1923()123AC AD CD AD CD D =+-⋅⋅=+-⨯⨯-=,∴AC = ………………………………………………………………………………9分在ABC ∆中, BC =AC = cos B =, ∴由余弦定理可得2222cos AC AB BC AB BC B =-+⋅,即21262AB AB =+-⋅260AB --=,解得AB =故AB 的长为12分 18.(本小题满分12分) 解:(1)当,M N 为各棱中点时,//AD 面1B MN 证明如下:连接CD1//CN B D 且112CN B D BC ==∴四边形1B DCN 为平行四边形, 1//DC B N ∴又DC ⊄面1B MN ,1B N ⊂面1B MN∴//DC 面1B MN …………………………3分,M N Q 为各棱中点 //AC MN ∴又AC ⊄面1B MN ,MN ⊂面1B MN ,∴//AC 面1B MN ……………………………5分 Q DC AC C =I ,∴面//ADC 面1B MN又AD ⊂Q 面ADC ,//AD ∴面1B MN …………………………………………………6分(2)如图,设AC 中点为O ,作OE OA ⊥,以OA ,OE ,OB 分别为x ,y ,z 轴建立空间直角坐标系,BN =QAB BC ==,6AC ∴=133(2,0,1),(1,0,2),(3,0,0),(0,4,3),(,4,)22M N A B D ----Q1(3,0,1),(2,4,2)MN B M ∴=-=-u u u u r u u u u r………………………………………………………8分设平面1B MN 的法向量为(,,)n x y z =r ,则有1,n MN n B M ⊥⊥r u u u u r r u u u u r302420x z x y z -+=⎧∴⎨+-=⎩,可得平面1B MN 的一个法向量(1,1,3)n =r ……………………10分 又93(,4,)22AD =--u u u r,cos ,77||||n AD n AD n AD ⋅∴<>==r u u u rr u u u r r u u u u r设直线AD 与平面1B MN 所成角为α,则sin |cos ,|77n AD α=<>=r u u u r ……………12分19.(本小题满分12分) 解:(1)该市此次检测理科数学成绩平均成绩约为:0650.05750.08850.12950.15u =⨯+⨯+⨯+⨯1050.241150.181250.11350.051450.03103.2103+⨯+⨯+⨯+⨯+⨯=≈ …3分 (2)(ⅰ)记本次考试成绩达到自主招生分数要求的理科数学成绩约为1x ,根据题意,111103()1()1()0.419.3x u x P x x φφσ-->=-=-=,即1103()0.619.3x φ-=. 由(0.7257)0.6φ=得,111030.7257117.011719.3x x -=⇒=≈, 所以,本次考试成绩达到自主招生分数要求的理科数学成绩约为117分. …………7分(ⅱ)因为(45)2,Y B ~,4423()55()()i i iP Y i C -∴==,0,1,2,3,4i =.所以的分布列为…………………………………………………………………10分 所以()45528E Y =⨯=. …………………………12分 20.(本小题满分12分) 解:(1)设点1F 、2F 分别为(,0),(,0)(0)c c c ->由已知2ca=,所以2c a =,224c a =,22223b c a a =-= 又因为点3(1,)2在双曲线C 上,所以229141a b -= 则222294b a a b -=,即2249334a a a -=,解得214a =,12a =所以1c =………………………………………………………………………………………3分 连接PQ ,因为12,OF OF OP OQ ==,所以四边形12PF QF 为平行四边形因为四边形12PF QF的周长为所以21122PF PF F F +=>=所以动点P 的轨迹是以点1F 、2F 分别为左、右焦点,长轴长为可得动点P 的轨迹方程为:221(0)2x y y +=≠……………………………………………5分 (2)因为22221=+x x ,,12,1222222121=+=+y x y x 所以12221=+y y ………………………6分所以||||OG MN ⋅= 212122212221212122212221222221y y x x y y x x y y x x y y x x +++++--+++==1212121232232213()222x x y y x x y y --+++≤= ………………………………………10分等号当仅当21212121223223y y x x y y x x ++=--,即02121=+y y x x所以ON OM ⊥,即OMN ∆为直角三角形………………………………………………12分 21.(本小题满分12分)解:(1)由已知0x >,且2121()2x ax f x x ax++'=++=①当280a ∆=-≤时,即当a -≤≤()0fx '≥则函数()f x 在[1,2]上单调递增…………………………………………………………1分②当280a ∆=->时,即a <-或a >2210x ax++=有两个根,4a x -=,因为0x >,所以4a x -+=11≤时,令(1)30f a '=+≥,解得3a ≥-∴当3a -≤<-a >()f x 在[1,2]上单调递增…………………3分2°当12<<时,令(1)30f a '=+<,9(2)02f a '=+>, 解得932a -<<-∴当932a -<<-时,函数()f x在上单调递减,在[,2]4a -上单调递增;…………………5分 32≥时,令9(2)02f a '=+≤,解得92a ≤- ∴当92a ≤-时,函数()f x 在[1,2]上单调递减; ……………………………………6分(2)函数121()()ln x x g x e x a f x e x ax a --=++-=--+则11()()x g x e a h x x -'=--=则121()0x h x e x-'=+>,所以()g x '在(0,)+∞上单调增当0,(),,()x g x x g x →→-∞→+∞→+∞,所以()R g x '∈ 所以()g x '在(0,)+∞上有唯一零点1x当11(0,),()0,(,),()0x x g x x x g x ''∈<∈+∞>,所以1()g x 为()g x 的最小值 由已知函数()g x 有且只有一个零点m ,则1m x =所以()0,()0,g m g m '==则111ln 0m m e a m e m am a --⎧--=⎪⎨⎪--+=⎩ …………………………………9分则11111ln ()()0m m m e m e m e m m ------+-=,得11(2)ln 0m m m e m m----+= 令11()(2)ln (0)x x p x x e x x x --=--+>,所以()0,p m = 则121()(1)()x p x x e x-'=-+,所以(0,1),()0,(1,),()0x p x x p x ''∈>∈+∞<所以()p x 在(1,)+∞单调递减,因为1111(1)10,()(2)1(2)0e e e p p e e e e e e e---=>=--+=--< 所以()p x 在(1,)e 上有一个零点,在(,)e +∞无零点所以m e < …………………………………………………………………………………12分(二)选考题:共10分.请考生在第22、23两题中任选一题作答.如果多做,则按所做的第一题记分. 22.(本小题满分10分)选修44-:坐标系与参数方程 解:(1)因为2sin 4cos 0ρθθ-=,所以22sin 4cos 0ρθρθ-=,所以24y x = ……………………………………………2分因为12cos 2sin x y ϕϕ=-+⎧⎨=⎩,所以22(1)4x y ++= …………………………………………4分(2)由题知点1(,0)2P 在直线l 上将直线l的参数方程122x t y ⎧=+⎪⎪⎨⎪=⎪⎩代入24y x =得,240t --=设,M N 两点对应的参数为12,t t则12124t t t t +==-……………………………………………………………………6分 所以1212121212||||||1111||||||||||||t t t t PM PN t t t t t t +-+=+==12== ………………………………………………………………10分23.(本小题满分10分)选修45-:不等式选讲解:(1)因为12(1)(2)3x x x x ++-≥+--=所以函数()f x 的最小值为3 ………………………………………………………………5分(2)由(1)知,11a b+= 因为2222222222()()()2()0m n c d mc nd m d n c mcnd md nc ++-+=+-=-≥所以22222121()[1](13a b a ++≥⨯= 所以22122a b+≥ ……………………………………………………………………………10分。

学海大联考2018届高三名校模拟试卷(六)英语(解析版)

学海大联考2018届高三名校模拟试卷(六)英语(解析版)

学海大联考2018届高三名校模拟卷·英语(六)第I卷第一部分听力(共两节,满分30分)第一节(共5小题;每小题1.5分,满分7.5分)听下面5段对话。

每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。

听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。

每段对话仅读一遍。

1.Where does the conversation probably take place?A.At a travel agency.B.In a library.C.At a bookstore.2.What does the woman mean?A.Fred’s English is hard to understand.B.She met Fred just two months ago.C.Fred is a member of an English club.3.Why does the man like the Harry Potter series?A.The language is simple.B.The story is interesting.C.The story is educational.4.What did the man enjoy seeing most?A.The Science Museum.B.The River Thames.C.Big Ben.5.How is the man going to Spain?A.By air.B.By sea.C.By balloon.第二节(共15小题;每小题1.5分,满分22.5分)听下面5段对话或独白。

每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。

听每段对话或独白前,你将有时间阅读各个小题,每小题5秒钟;听完后,各小题将给出5秒钟的作答时间。

2018届高三上学期期末联考数学(理)试题有答案-精品

2018届高三上学期期末联考数学(理)试题有答案-精品

2017—2018学年度第一学期期末联考试题高三数学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分全卷满分150分,考试时间120分钟.注意:1. 考生在答题前,请务必将自己的姓名、准考证号等信息填在答题卡上.2. 选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,答在试卷上无效.3. 填空题和解答题用0.5毫米黑色墨水签字笔答在答题卡上每题对应的答题区域内.答在试题卷上无效.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.把答案填在答题卡上对应题号后的框内,答在试卷上无效.1.设集合{123}A =,,,{45}B =,,{|}M x x a b a A b B ==+∈∈,,,则M 中的元素个数为A .3B .4C .5D .62.在北京召开的第24届国际数学家大会的会议,会议是根据中国古代数学家赵爽的弦图(如图)设计的,其由四个全等的直角三角形和一个正方形组成,若直角三角形的直角边的边长分别是3和4,在绘图内随机取一点,则此点取自直角三角形部分的概率为 A .125B .925C .1625D .24253.设i 为虚数单位,则下列命题成立的是A .a ∀∈R ,复数3i a --是纯虚数B .在复平面内i(2i)-对应的点位于第三限象C .若复数12i z =--,则存在复数1z ,使得1z z ∈RD .x ∈R ,方程2i 0x x +=无解4.等比数列{}n a 的前n 项和为n S ,已知3215109S a a a =+=,,则1a =A .19B .19-C .13D .13-5.已知曲线421y x ax =++在点(1(1))f --,处切线的斜率为8,则(1)f -=试卷类型:A天门 仙桃 潜江A .7B .-4C .-7D .4 6.84(1)(1)x y ++的展开式中22x y 的系数是A .56B .84C .112D .1687.已知一个空间几何体的三视图如图,根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是 A .4cm 3B .5 cm 3C .6 cm 3D .7 cm 38.函数()sin()(0,0)f x A x A ωϕω=+>>的图像如图所示,则(1)(2)(3)(18)f f f f ++++的值等于ABC 2D .19.某算法的程序框图如图所示,其中输入的变量x 在1,2,3…,24 这24个整数中等可能随机产生。

学海大联考2018届高三名校模拟试卷(六)英语(解析版)

学海大联考2018届高三名校模拟试卷(六)英语(解析版)

学海大联考2018届高三名校模拟卷·英语(六)第I卷第一部分听力(共两节,满分30分)第一节(共5小题;每小题1.5分,满分7.5分)听下面5段对话。

每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。

听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。

每段对话仅读一遍。

1.Where does the conversation probably take place?A.At a travel agency.B.In a library.C.At a bookstore.2.What does the woman mean?A.Fred’s English is hard to understand.B.She met Fred just two months ago.C.Fred is a member of an English club.3.Why does the man like the Harry Potter series?A.The language is simple.B.The story is interesting.C.The story is educational.4.What did the man enjoy seeing most?A.The Science Museum.B.The River Thames.C.Big Ben.5.How is the man going to Spain?A.By air.B.By sea.C.By balloon.第二节(共15小题;每小题1.5分,满分22.5分)听下面5段对话或独白。

每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。

听每段对话或独白前,你将有时间阅读各个小题,每小题5秒钟;听完后,各小题将给出5秒钟的作答时间。

安徽省2018届高三名校联考数学试题(理)及答案

安徽省2018届高三名校联考数学试题(理)及答案

安徽省2018届高三一轮复习名校联考数 学 试 题(理)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,全卷满分150分,考试时间120分钟。

第Ⅰ卷(选择题,共50分)一、选择题(本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{}}2120,01x x x x B xx ⎧--≤=≥⎨+⎩则()u AC B =A {}10x x -≤< B {}10x x -<≤C {}01x x ≤<D {}01x x <≤2.若12a ibi i+=- 则a+b= A 3 B -3 C 2 D -23已知实数a 、b,则“2a 0a b b +>>且”是“a>1且b>1”的A 充分非必要条件B 必要非充分条件C 充要条件D 既非充分又非必要条件4已知函数()log a f x x =满足f a =,则A (2)0f >B 1()02f >C (3)0f >D 1()03f >5已知向量(1,2), b (1,3)a ==-,(12)c a b λλ=+-,且a c ⊥,则λ= A -1 B 1 C 12-D 126下列命题:21:,12sin cos 2p x x x ∀∈ℜ-= 2:,sin cos cos 2p x x x x ∃∈ℜ+=33:(0,),log log p x x x π∀∈+∞> 2:(0,),23x x p x ∃∈+∞>其中真命题是( )A 14,P PB 13,P PC 23,P PD 14,P P7在ABC ∆中,角A 、B 、C 的对边分别为a,b,c 若2223c )4sin a bc A +-=2(b ,则角A= A6π B 3πC 23πD 56π8定义在ℜ上的偶函数(f x ),当0()2xx f x ≥=时,,则满足(12)(3)f x f -<的x 取值范围是A (-1,2)B (-2,1)C [-1,2]D (-2,1]9已知实数x,y,z满足0+=的最小值为ABCD 10将正奇数按如图所示规律排列,则第31行从左向右的第3个数为13 5 717 15 13 11 919 21 23 25 27 29 31A 1915B 1917C 1919D 1921二第Ⅱ卷(非选择题 共100分)二、填空题(本大题共5小题,每小题5分,共25分,把答案填在题中横线上)11 已知α 是第二象限角,且1sin 3α=,则tan α=____________ 12 等比数列S n 的前n 项和为S n ,公比12q =-,则33S a =__________13 平面向量a (1,0),2b ==与b 的夹角为4π,a (1,0),2b ==则2a b -=_______14 不等式组202030{x y x y a x y -≥-+≤+-≤ 表示的平面区域被x 轴分成面积相等的两个部分,则a=_________15 已知曲线C :31()3,[,2]2f x ax x x =-∈ ,A 、B 是曲线C 上不同两点,且直线AB 的斜率R 总满足,3<R<124则实数a=__________三、解答题:本大题共6小题,共75分。

2018年高考仿真卷理科数学试卷(六)含解析答案

2018年高考仿真卷理科数学试卷(六)含解析答案

2018高考仿真卷·理科数学(六)(考试时间:120分钟试卷满分:150分)第Ⅰ卷选择题(共60分)一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集U=R,集合A={x|y=},集合B={y|y=2x,x∈R},则(∁R A)∩B=()A.{x|x<0}B.{x|0<x≤1}C.{x|1<x≤2}D.{x|x>2}2.已知复数z=cos θ+isin θ,则=()A.cos θ+isin θB.2sin θC.2cos θD.isin 2θ3.设集合M={x|0<x≤3},N={x|0<x≤2},那么“a∈M”是“a∈N”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.甲、乙、丙、丁、戊五位同学站成一排照相留念,则在甲乙相邻的条件下,甲丙也相邻的概率为()A. B. C. D.5.已知公差不为0的等差数列{a n}满足a1,a3,a4成等比数列,S n为数列{a n}的前n项和,则的值为()A.-2B.-3C.2D.36.已知三棱锥的俯视图与侧视图如图所示,俯视图是边长为2的正三角形,侧视图是有一条直角边为2的直角三角形,则该三棱锥的正视图可能为()7.设定义在R上的奇函数y=f(x),满足对任意t∈R都有f(t)=f(1-t),且x∈时,f(x)=-x2,则f(3)+f的值等于()A.-B.-C.-D.-8.若如下程序框图运行结果为S=41,则图中的判断框①中应填入的是()A.i>6?B.i≤6?C.i>5?D.i≤5?9.2018年“元旦”期间,山西某游乐园举行免费游园活动,免费开放一天,早晨6时30分有2人进入游乐园,接下来的第一个30分钟内有4人进去1人出来,第二个30分钟内有8人进去2人出来,第三个30分钟内有16人进去3人出来,第四个30分钟内有32人进去4人出来……按照这种规律进行下去,到上午11点30分时园内的人数是()A.212-57B.211-47C.210-38D.29-3010.若圆x2+y2-4x-4y-10=0上至少有三个不同点到直线l:ax+by=0的距离为2,则直线l的斜率的取值范围是()A.[2-,1]B.C.D.[0,+∞)11.函数f(x)=2x-1+x-5的零点所在的区间是()A.(0,1)B.(1,2)C.(2,3)D.(3,4)12.定义在R上的函数f(x)满足f'(x)-f(x)=x·e x,且f(0)=,则的最大值为()A.1B.-C.-1D.0第Ⅱ卷非选择题(共90分)二、填空题(本大题共4小题,每小题5分,共20分)13.已知a=sin x d x,则二项式的展开式中x-3的系数为.14.已知F1,F2为双曲线E:=1(a>0,b>0)的左、右两个焦点,点M在E上,MF1与x轴垂直,sin ∠MF2F1=,则E的离心率为.15.已知实数x,y满足若目标函数z=-mx+y的最大值为-2m+10,最小值为-2m-2,则实数m的取值范围是.16.在正三棱锥V-ABC内,有一个半球,其底面与正三棱锥的底面重合,且与正三棱锥的三个侧面都相切,若半球的半径为2,则正三棱锥的体积最小时,其底面边长为.三、解答题(本大题共6小题,满分70分,解答须写出文字说明、证明过程或演算步骤)17.(本小题满分12分)在△ABC中,角A,B,C的对边分别为a,b,c,tan C=.(1)求角C的大小;(2)若c=,求a2+b2的取值范围.18.(本小题满分12分)为了引导居民合理用水,某市决定全面实施阶梯水价,阶梯水价原则上以住宅(一套住宅为一户)的月用水量为基准定价,具体划分标准如下表:从本市随机抽取了10户家庭,统计了同一个月的用水量,得到右边的茎叶图: (1)现要在这10户家庭中任意选取3户,求取到第二阶梯水量的户数的分布列和均值; (2)用抽到的10户家庭作为样本估计全市的居民用水情况,从全市依次随机抽取10户,若抽到n 户月用水量为第二阶梯水量的可能性最大,求出n 的值.19.(本小题满分12分)如图,在四棱锥A-EFCB 中,△AEF 为等边三角形,平面AEF ⊥平面EFCB ,EF ∥BC ,BC=4,EF=2a ,∠EBC=∠FCB=60°,O 为EF 的中点. (1)求证:AO ⊥BE :(2)求二面角F-AE-B 的余弦值; (3)若BE ⊥平面AOC ,求a 的值.20.(本小题满分12分)已知椭圆C:=1(a>b>0),过椭圆的上顶点与右顶点的直线l,与圆x2+y2=相切,且椭圆C的右焦点与抛物线y2=4x的焦点重合.(1)求椭圆C的方程;(2)过点O作两条相互垂直的射线与椭圆C分别交于A,B两点,求△OAB面积的最小值.21.(本小题满分12分)已知函数f(x)=x ln x-x2-x+a(a∈R)在定义域内有两个不同的极值点.(1)求实数a的取值范围;(2)记两个极值点为x1,x2,且x1<x2,已知λ>0,若不等式x1·>e1+λ恒成立,求λ的取值范围.请考生在第22、23两题中任选一题做答,如果多做,则按所做的第一题评分.22.(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系xOy中,曲线C1:x+y=4,曲线C2:(θ为参数),以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系.(1)求曲线C1,C2的极坐标方程;(2)若射线l:θ=α(ρ>0)分别交C1,C2于A,B两点,求的最大值.23.(本小题满分10分)选修4—5:不等式选讲已知|x1-2|<1,|x2-2|<1.(1)求证:2<x1+x2<6,|x1-x2|<2;(2)若f(x)=x2-x+1,求证:|x1-x2|<|f(x1)-f(x2)|<5|x1-x2|.参考答案2018高考仿真卷·理科数学(六)1.D解析由题意,得A={x|2x-x2≥0}={x|0≤x≤2},∁R A={x|x<0或x>2},B={y|y>0},则(∁R A)∩B={x|x>2}.2.C解析因z=cos θ+isin θ,所以=2cos θ.3.B解析由a∈M推不出a∈N;由a∈N能推出a∈M,所以“a∈M”是“a∈N”的必要不充分条件.4.D解析甲乙相邻的排队顺序共有2=48种,其中甲乙相邻,甲丙相邻的排队顺序共有2=12种,所以在甲乙相邻的条件下,甲丙也相邻的概率为5.C解析设等差数列{a n}的首项为a1,公差为d(d≠0),因为a1,a3,a4成等比数列,所以a1a4=,即a1=-4d,所以=2.6.C解析由俯视图可知三棱锥的底面是个边长为2的正三角形,由侧视图可知三棱锥的一条侧棱垂直于底面,且其长度为2,故其正视图为高为2的三角形,且中间有一虚线,故选C.7.C解析由题意,f(3)=f(-2)=-f(2)=-f(-1)=f(1)=f(0)=0,f=-f=-f=f=-,所以f(3)+f=0-=-8.C解析由题意,得i=10,S=1,满足条件,执行循环体,第1次循环,S=11,i=9,满足条件,执行循环体,第2次循环,S=20,i=8,满足条件,执行循环体,第3次循环,S=28,i=7,满足条件,执行循环体,第4次循环,S=35,i=6,满足条件,执行循环体,第5次循环,S=41,i=5,此时i不满足循环条件,退出循环,所以判断框中的条件为i>5.故选C.9.A解析设每个30分钟进去的人数构成数列{a n},则a1=2=2-0,a2=4-1,a3=8-2,a4=16-3,a5=32-4,…,a n=2n-(n-1).设数列{a n}的前n项和为S n,依题意,只需求S11,所以S11=(2-0)+(22-1)+(23-2)+…+(211-10)=(2+22+23+…+211)-(1+2+…+10)==212-2-55=212-57,故选A.10.B解析圆的方程可化为(x-2)2+(y-2)2=18,则圆心为(2,2),半径为3,由圆x2+y2-4x-4y-10=0上至少有三个不同点到直线l:ax+by=0的距离为2,则圆心到直线l:ax+by=0的距离d≤3-2,即,则a2+b2+4ab≤0,若b=0,则a=0,故不成立,故b≠0,则上式可化为1++40,由直线l的斜率k=-,可知上式可化为k2-4k+1≤0,解得2-k≤2+,即k的取值范围为[2-,2+].故选B.11.C解析由f(0)f(1)=(1+1-5)>0,可排除A.由f(1)f(2)=(1+1-5)(2+2-5)>0,可排除B.由f(2)f(3)=(2+2-5)(4+3-5)<0,可知函数f(x)在(2,3)内一定有零点,故选C.12.A解析令F(x)=,则F'(x)==x,则可设F(x)=x2+c,c为常数,所以f(x)=e x f(0)=,∴c=f(x)=e x当x≤0时,0;当x>0时,1,当且仅当x=1时等号成立.所以的最大值为1,故选A.13.-160解析由题意,得a=-(cos π-cos 0)=2,所以二项式为,其展开式的通项为T r+1=,所以r=3,展开式中x-3的系数为(-2)3=-160.14解析因为MF1垂直于x轴,所以|MF1|=,|MF2|=2a+因为sin∠MF2F1=,所以,化简得b=a,故双曲线的离心率e=15.[-1,2]解析作出不等式组对应的平面区域如图阴影部分所示.由目标函数z=-mx+y,得y=mx+z,所以直线的纵截距最大时,z最大,直线的纵截距最小时,z最小.∵目标函数z=-mx+y的最大值为-2m+10,最小值为-2m-2,∴当目标函数经过点A(2,10)时,取得最大值,当经过点B(2,-2)时,取得最小值,∴目标函数z=-mx+y的目标函数的斜率m满足比x+y=0的斜率大,比2x-y+6=0的斜率小,即-1≤m≤2.16.6解析设△ABC的中心为O,取AB中点D,连接OD,VD,VO,设OD=a,VO=h,则VD=AB=2AD=2a.过O作OE⊥VD,则OE=2,∴S△VOD=OD·VO=VD·OE,∴ah=2,整理得a=(h>2).∴V(h)=S△ABC·h=(2)2a2h=a2h=∴V'(h)=4=4令V'(h)=0,得h2-12=0,解得h=2当2<h<2时,V'(h)<0,当h>2时,V'(h)>0,∴当h=2,即a=,也就是AB=a=6时,V(h)取得最小值.17.解 (1)因为tan C=,即,所以sin C cos A+sin C cos B=cos C sin A+cos C sin B,即sin C cos A-cos C sin A=cos C sin B-sin C cos B,得sin(C-A)=sin(B-C).所以C-A=B-C[或C-A=π-(B-C)舍去],即2C=A+B,又A+B+C=π,故C=(2)由C=,可设A=+α,B=-α,0<A,B<,知-<α<又2R==2,a=2R sin A=2sin A,b=2R sin B=2sin B,故a2+b2=4(sin2A+sin2B)=4=4-2=4+2cos 2α.由-<α<,知-<2α<,则-<cos 2α≤1,故3<a2+b2≤6.所以a2+b2的取值范围是(3,6].18.解 (1)由茎叶图可知抽取的10户中用水量为一阶的有2户,二阶的有6户,三阶的有2户.第二阶梯水量的户数X的可能取值为0,1,2,3,P(X=0)=,P(X=1)=,P(X=2)=,P(X=3)=所以X的分布列为所以E(X)=0+1+2+3(2)设Y为从全市抽取的10户中用水量为二阶的家庭户数,依题意得Y~B,所以P(Y=k)=,其中k=0,1,2,…,10,设t=,若t>1,则k<6.6,P(Y=k-1)<P(Y=k);若t<1,则k>6.6,P(Y=k-1)>P(Y=k).所以当k=6或7时,P(Y=k)可能最大.因为>1,所以n的取值为6.19.(1)证明由△AEF为等边三角形,O为EF的中点,可得AO⊥EF.因为平面AEF⊥平面EFCB,且平面AEF∩平面EFCB=EF,所以AO⊥平面EFCB.又BE⊂平面EFCB,所以AO⊥BE.(2)解取CB的中点D,连接OD,以O为原点,分别以OE,OD,OA为x,y,z轴建立空间直角坐标系,易知A(0,0,a),E(a,0,0),B(2,2a,0),则=(a,0,-a),=(2-a,2a,0),由平面AEF与y轴垂直,可设平面AEF的法向量为n1=(0,1,0).设平面AEB的法向量n2=(x,y,1),由n2,可得ax-a=0,解得x=;由n2,可得(2-a)x+(2a)y=0,解得y=-1,所以n2=(,-1,1).所以cos<n1,n2>==-,由二面角F-AE-B为钝二面角,所以二面角F-AE-B的余弦值为-(3)解由(1)知AO⊥平面EFCB,则AO⊥BE,若BE⊥平面AOC,只需BE⊥OC,=(2-a,2a,0),又=(-2,2a,0),=-2(2-a)+(2a)2=0,解得a=2或a=,由题意易知a<2,所以a=20.解 (1)过椭圆的上顶点与右顶点的直线l为=1,直线与x2+y2=相切,满足,且a2-b2=1,整理可得7a4-31a2+12=0,(7a2-3)(a2-4)=0,a2=4,a2=(舍去),故b2=3,所求的椭圆C的方程为=1.(2)①当两线分别与坐标轴重合时,S△OAB=2②当两线不与坐标轴重合时,由于OA⊥OB,设直线OA为y=kx,则直线OB为y=-x,设A(x1,y1),B(x2,y2),直线OA的方程为y=kx,与椭圆=1联立消去y,得,用-代换k得,,S2=|OA|2·|OB|2=)·()===,当且仅当k=±1时取等号,又,综合①②可得三角形的最小面积为S△OAB=21.解 (1)函数f(x)的定义域为(0,+∞).由题意知,方程f'(x)=0在(0,+∞)内有两个不同根,即方程ln x-ax=0在(0,+∞)内有两个不同根.转化为函数y=ln x与函数y=ax的图象在(0,+∞)上有两个不同交点,如图.可见,若令过原点且切于函数y=ln x图象的直线斜率为k,只需0<a<k.令切点A(x0,ln x0),故k=y',又k=,故,解得x0=e,故k=,故0<a<(2)因为e1+λ<x1等价于1+λ<ln x1+λln x2.由(1)可知x1,x2分别是方程ln x-ax=0的两个根,即ln x1=ax1,ln x2=ax2,所以原式等价于1+λ<ax1+λax2=a(x1+λx2),因为λ>0,0<x1<x2,所以原式等价于a>又由ln x1=ax1,ln x2=ax2作差得,ln=a(x1-x2),即a=所以原式等价于,因为0<x1<x2,原式恒成立,即ln恒成立.令t=,t∈(0,1),则不等式ln t<在t∈(0,1)上恒成立.令h(t)=ln t-,又h'(t)=,当λ2≥1时,可见t∈(0,1)时,h'(t)>0,所以h(t)在t∈(0,1)上单调递增,又h(1)=0,所以h(t)<0在t∈(0,1)恒成立,符合题意.当λ2<1时,可见t∈(0,λ2)时,h'(t)>0,t∈(λ2,1)时,h'(t)<0,所以h(t)在t∈(0,λ2)时单调递增,在t∈(λ2,1)时单调递减,又h(1)=0,所以h(t)在t∈(0,1)上不能恒小于0,不符合题意,舍去.综上所述,若不等式e1+λ<x1恒成立,只需λ2≥1,又λ>0,所以λ≥1.22.解 (1)C1:ρ(cos θ+sin θ)=4,C2的普通方程为(x-1)2+y2=1,所以ρ=2cos θ.(2)设A(ρ1,α),B(ρ2,α),-<α<,则ρ1=,ρ2=2cos α,2cos α(cos α+sin α)=(cos 2α+sin 2α+1)=,当α=时,取得最大值+1).23.证明 (1)∵|x1-2|<1,∴-1<x1-2<1,即1<x1<3,同理1<x2<3,∴2<x1+x2<6.∵|x1-x2|=|(x1-2)-(x2-2)|≤|x1-2|+|x2-2|,∴|x1-x2|<2.(2)|f(x1)-f(x2)|=|-x1+x2|=|x1-x2||x1+x2-1|,∵2<x1+x2<6,∴1<x1+x2-1<5,∴|x1-x2|<|f(x1)-f(x2)|<5|x1-x2|.。

学海大联考·2018届高三名校模拟卷·理科(七)

学海大联考·2018届高三名校模拟卷·理科(七)

学海大联考·2018届高三名校模拟卷·理科(七) _5ccca3dd0102y6ka学海大联考·2018届高三名校模拟卷·理科(七)一、现代文阅读(一)论述类文本阅读阅读下面的文字,完成下列小题。

美丽中国是生态文明建设的价值目标和中国梦的重要组成部分,也是对建设什么样的中国、怎样建设中国’’这一问题的具体回应。

它具有三个维度,内含了生态文明建设的核心价值理念,蕴藏着新时代应该塑造与弘扬的伦理与道德,不仅具有审美意义,而且还是先进文化的表征。

美丽中国的价值维度。

美丽中国宏伟目标的设定体现了人们对关的生活的向往与追求。

改革开放带来了生产力的迅速释放,却也使资源与环境、物质享受与精神追求之间的隐性矛盾显现。

建立在单纯追求物质丰富基础上的幸福是不完整的,也是不可持续的。

幸福是物质生产丰富与精神生活愉悦的统一,美丽中国建设就是将枋质美与精神美统一起来,从而将美的形式与内容统一起来,以物质与精神共同关的视角去审视中国整体发展和人们的生产生活,让中国变得物质富饶、环境优美、人与自然和谐、人与人和善,既强调变美的过程又突出美的结果,成就幸福的理想状态。

可以说,生态整体繁荣是美丽中国的基点,人的全面发展是美丽中国的最高价值目标。

美丽中国的关系维度。

美丽中国的内涵包括了两部分内容,一是美的对象,即让谁变美丽的问题;二是美的内容,即究竟怎样美丽的问题。

美丽的对象是中国,这是广义的具有指向意义的地域代名词,其内含了中国地域范围内的人、社会与自然三部分,所以说广义上的美丽中国就是美丽的人、美丽的社会与美丽的自然之统称。

美丽的内容是从审美视域下审视中国的人、自然与社会,实现自然生态和人类社会的双繁荣。

美丽中国内含了特殊的主客体活动及人们需求的改变。

审美意义上的社会是人与人的和谐共处、真诚相待,是公正、公平与正义的结合。

客体的人、自然、社会在美丽中国视域下成为审美意义的客体,它是中国人民在长期生产实践与物质积累过程中从自发到自觉的必然,也是生态文明建设的主体内容与价值目标。

普通高等学校2018届高三招生全国统一考试仿真卷(六)数学(理)含答案

普通高等学校2018届高三招生全国统一考试仿真卷(六)数学(理)含答案

绝密★启用前2018年普通高等学校招生全国统一考试仿真卷理科数学(六)本试题卷共2页,23题(含选考题)。

全卷满分150分。

考试用时120分钟。

★祝考试顺利★注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

用2B铅笔将答题卡上试卷类型A后的方框涂黑。

2、选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。

答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

5、考试结束后,请将本试题卷和答题卡一并上交。

第I卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1 •在复平面内,复数Z1和22对应的点分别是A 2,1和B 0,1 ,则互二()Z2A. -1 -2iB. -1 2iC. 1 -2iD. 1 2i2•已知集合M ={x|x , N ={x2x却},则M □ N =()A. 1x|0::x:1?B. 1x|x:0?C. 「x|x:1D.-3.已知函数f x =lnx,若f x-1 <1,贝U实数x的取值范围是()A. -::,e 1B. 0, ; C . 1,e 1 D . e 1,::1,则cos2等于()3C .-i6.《九章算术》卷5《商功》记载一个问题“今有圆堡瑽,周四丈八尺,高一丈一 尺.问积几何?答曰:二千一百一十二尺.术曰:周自相乘,以高乘之,十二而 ”.这里所说的圆堡瑽就是圆柱体,它的体积为“周自相乘,以高乘之,十二而 ”.就是说:圆堡瑽(圆柱体)的体积为 v =丄 (底面圆的周长的平方 高),12则由此可推得圆周率n 的取值为()前n 项和为()B . n n 一12y <1的概率是()A . 1B . 2C . 3D . 4777710.如图,网格纸上小正方形的边长为 2,粗实线及粗虚线画出的是某四棱锥的三 视图,4.若 tan5.已知向量 a =:[2, -1 , A -1,x ,B 1,-1,若a_ AB ,则实数x 的值为()-53.1C . 3.143.27.已知三角形ABC 中,AB 二 AC =2.2,DB=3AD , 连接CD 并取线段CD 的中点F ,则AF CD 的值为 () A . -5154C . -I-28.已知正项数列:an [满足可12-2可2_an 禺=0,设0 =呃丑 a i9.设不等式组3x - y乞 3x -2y ,:所表示的平面区域为 M ,在M 内任取一点P x,y ,则该四棱锥的外接球的表面积为()A 51n41 nC . 41 nA .B .42I x I -+1,^1f x =8In x -1,x _ 1唯一零点的充要条件是()12. 已知抛物线E:y 2=2px(p ■ 0)的焦点为F , O 为坐标原点,点,ON 分别交抛物线E 于点A , B ,且A , B , F 三点共线,卷包括必考题和选考题两部分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学海大联考·2018届高三名校模拟卷 (六)
理科数学
命题人:长沙市一中高三数学备课组
一、选择题:本大题共12小题,每小题5分,共60分,在每小题题给出的四个选项中,只有一项是符合题目要求的.
1.已知集合{}{}21,1,2,2,3A B a a =-=+A=,若{}2A B = ,则实数a 的值为
A .一1
B .0
C .1 D·2
2.已知i 为虚数单位,复数z 满足(12)(1)(2)i z i i +=+-,则z 为
A B . C D .
3.设双曲线22
221(0,0)x y a b a b -=>>的离心率是3,则其渐近线的方程为 ( )
A .0x ±=
B .0y ±=
C .80x y ±=
D .80x y ±=
4.如图所示的茎叶图是甲、乙两个代表队各7名队员参
加“安全知识竞赛”的成绩,乙队成绩的众数为m+81,
从甲、乙两队中各选取1名队员,则两名队员所得
分数相同的概率为 ( )
A .3
49 B .4
49
C .37
D .4
7
5.设等差数列{}n a 的前n 项和为S n ,若以a 1=2,公差d =3,S k +3一S k =60,k = (
) A . 8 B .7 C .6 D .5
6.已知函数()sin()(0,0,)2f x M x M π
ωϕωϕ=+>><,
的部分图象如图所示,其中A(2,3)(点A 为图象的一个最高点), B(5
,02-)’则f (20)=
A .3-
B .32-
C .32
D .3 7.记不等式组22220x y x y y +≤⎧⎪+≥⎨⎪+≥⎩
,表示的平面区域为Ω,点P 的坐标为(x ,y ).有下面四个命题: P l :,p x y ∀∈Ω-的最小值为6; p 2:224,205
p x y ∀∈Ω≤+≤; p 3:,p x y ∀∈Ω-的最大值为6; p 4
:22p x y ∀∈Ω≤+≤ 其中的真命题是
A ·P l ,P 4
B .P I ,P 2
C .P 2,P 3
D .P 3,P 4
8.执行如图所示的程序框图,若输出m 的值为35,则输入a 的值为 (
)
A .4
B .5
C .6
D .7
9
.若二项式4(,n x n N ∈的展开式中含有常数项,则n 的最小值等于
A .3
B .4
C .6
D .8
10.已知过点(0,一2)的直线交抛物线y 2=8x 于A(x 1,y 1),B(x 2,y 2)两点,若x 1-x 2=4,△OAB(O 为坐标原点)的面积为
A .2
B .4
C .8
D .16
11.如图为某几何体的三视图,则其体积为。

相关文档
最新文档