2020-2021学年山东省淄博市中考数学第一次模拟试题及答案解析
2020-2021学年最新山东省淄博市中考数学模拟试卷及答案
中考数学模拟试卷(3月份)一.选择题(共12小题,满分48分,每小题4分)1.设a是9的平方根,B=()2,则a与B的关系是()A.a=±B B.a=BC.a=﹣B D.以上结论都不对2.据资料显示,地球的海洋面积约为360000000平方千米,请用科学记数法表示地球海洋面积约为多少平方千米()A.36×107 B.3.6×108C.0.36×109D.3.6×1093.下列运算正确的是()A.2a﹣a=1 B.2a+b=2abC.(a4)3=a7D.(﹣a)2•(﹣a)3=﹣a54.如果y=+3,那么y x的算术平方根是()A.2 B.3 C.9 D.±35.如图所示的几何体的俯视图是()A.B.C.D.6.已知x+y=5,xy=6,则x2+y2的值是()A.1 B.13 C.17 D.257.不等式组的解集在数轴上表示为()A.B.C.D.8.如图,AB∥CD,有图中α,β,γ三角之间的关系是()A.α+β+γ=180°B.α﹣β+γ=180°C.α+β﹣γ=180°D.α+β+γ=360°9.下列说法中不正确的是()A.选举中,人们通常最关心的数据是众数B.从1,2,3,4,5中随机抽取一个数,取得奇数的可能性比较大C.数据甲、乙的方差分别为S甲2=0.4,S乙2=0.6,则数据甲的波动小D.数据3,5,4,1,﹣2的中位数是410.如图,在Rt△ABC中,∠B=90°,AB=6,BC=8,点D在BC上,以AC为对角线的所有▱ADCE中,DE的最小值是()A.4 B.6 C.8 D.1011.如图,在矩形ABCD中,AB=3,BC=4,O为矩形ABCD的中心,以D为圆心1为半径作⊙D,P为⊙D上的一个动点,连接AP、OP,则△AOP面积的最大值为()A.4 B. C. D.12.对于两个实数,规定max{a,b}表示a、b中的较大值,当a≥b时,max{a,b}=a,当a<b时,max{a,b}=b,例如:max{1,3}=3.则函数y=max{x2+2x+2,﹣x2﹣1}的最小值是()A.1 B.﹣1 C.0 D.2二.填空题(共5小题,满分20分,每小题4分)13.一元二次方程x2+4x﹣5=0的两根分别为a和b,则a2+b2的值为.14.用教材中的计算器进行计算,开机后依次按下,把显示结果输入如图的程序中,则输出的结果是.15.已知圆锥的底面半径为5cm,侧面积为65πcm2,圆锥的母线是cm.16.如图,两个反比例函数y=和y=在第一象限的图象如图所示,当P在y=的图象上,PC⊥x轴于点C,交y=的图象于点A,PD⊥y轴于点D,交y=的图象于点B,则四边形PAOB的面积为.17.如图,在平面直角坐标系中,已知点A的坐标是(4,0),并且OA=OC=4OB,动点P在过A,B,C三点的抛物线上.过点P作PE垂直于y轴于点E,交直线AC于点D,过点D作x轴的垂线.垂足为F,连接EF,当线段EF的长度最短时,点P的坐标为.三.解答题(共7小题,满分52分)18.(5分)先化简,再求值:.其中x=sin60°.19.(5分)已知:等边三角形ABC中,BD平分∠ABC,点E在BC的延长线上,CE=CD,求证:DB=DE.20.(8分)抛物线y1=ax2+c与x轴交于A、B两点,与y轴交于点C,点P在抛物线上,过P(1,﹣3),B(4,0)两点作直线y2=kx+b.(1)求a、c的值;(2)根据图象直接写出y1>y2时,x的取值范围;(3)在抛物线上是否存在点M,使得S△ABP=5S△ABM,若存在,求出点M的坐标,若不存在,请说明理由.21.(8分)“足球运球”是中考体育必考项目之一.兰州市某学校为了解今年九年级学生足球运球的掌握情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按A,B,C,D四个等级进行统计,制成了如下不完整的统计图.(说明:A级:8分﹣10分,B级:7分﹣7.9分,C级:6分﹣6.9分,D级:1分﹣5.9分)根据所给信息,解答以下问题:(1)在扇形统计图中,C对应的扇形的圆心角是度;(2)补全条形统计图;(3)所抽取学生的足球运球测试成绩的中位数会落在等级;(4)该校九年级有300名学生,请估计足球运球测试成绩达到A级的学生有多少人?22.(8分)人民商场准备购进甲、乙两种牛奶进行销售,若甲种牛奶的进价比乙种牛奶的进价每件少5元,其用90元购进甲种牛奶的数量与用100元购进乙种牛奶的数量相同.(1)求甲种牛奶、乙种牛奶的进价分别是多少元?(2)若该商场购进甲种牛奶的数量是乙种牛奶的3倍少5件,该商场甲种牛奶的销售价格为49元,乙种牛奶的销售价格为每件55元,则购进的甲、乙两种牛奶全部售出后,可使销售的总利润(利润=售价﹣进价)等于371元,请通过计算求出该商场购进甲、乙两种牛奶各自多少件?23.(9分)阅读下列材料,完成任务:自相似图形定义:若某个图形可分割为若干个都与它相似的图形,则称这个图形是自相似图形.例如:正方形ABCD中,点E、F、G、H分别是AB、BC、CD、DA边的中点,连接EG,HF交于点O,易知分割成的四个四边形AEOH、EBFO、OFCG、HOGD均为正方形,且与原正方形相似,故正方形是自相似图形.任务:(1)图1中正方形ABCD分割成的四个小正方形中,每个正方形与原正方形的相似比为;(2)如图2,已知△ABC中,∠ACB=90°,AC=4,BC=3,小明发现△ABC也是“自相似图形”,他的思路是:过点C作CD⊥AB于点D,则CD将△ABC分割成2个与它自己相似的小直角三角形.已知△ACD∽△ABC,则△ACD与△ABC的相似比为;(3)现有一个矩形ABCD是自相似图形,其中长AD=a,宽AB=b(a>b).请从下列A、B两题中任选一条作答:我选择题.A:①如图3﹣1,若将矩形ABCD纵向分割成两个全等矩形,且与原矩形都相似,则a= (用含b的式子表示);②如图3﹣2若将矩形ABCD纵向分割成n个全等矩形,且与原矩形都相似,则a= (用含n,b的式子表示);B:①如图4﹣1,若将矩形ABCD先纵向分割出2个全等矩形,再将剩余的部分横向分割成3个全等矩形,且分割得到的矩形与原矩形都相似,则a= (用含b的式子表示);②如图4﹣2,若将矩形ABCD先纵向分割出m个全等矩形,再将剩余的部分横向分割成n个全等矩形,且分割得到的矩形与原矩形都相似,则a= (用含m,n,b的式子表示).24.(9分)抛物线y=ax2+bx+3(a≠0)经过点A(﹣1,0),B(,0),且与y 轴相交于点C.(1)求这条抛物线的表达式;(2)求∠ACB的度数;(3)设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC 上,且DE⊥AC,当△DCE与△AOC相似时,求点D的坐标.参考答案与试题解析一.选择题(共12小题,满分48分,每小题4分)1.【分析】由于正数的平方根有两个,且互为相反数,所以在此题中有a两种情况,要考虑全面.【解答】解:∵a是9的平方根,∴a=±3,又B=()2=3,∴a=±b.故选:A.2.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将360000000用科学记数法表示为:3.6×108.故选:B.3.【分析】根据合并同类项,幂的乘方与积的乘方,同底数幂的乘法的计算法则解答.【解答】解:A、2a﹣a=a,故本选项错误;B、2a与b不是同类项,不能合并,故本选项错误;C、(a4)3=a12,故本选项错误;D、(﹣a)2•(﹣a)3=﹣a5,故本选项正确.故选:D.4.【分析】根据二次根式中的被开方数必须是非负数列出不等式,求出x、y的值,根据算术平方根的概念解答即可.【解答】解:由题意得,x﹣2≥0,2﹣x≥0,解得,x=2,∴y=3,则y x=9,9的算术平方根是3.故选:B.5.【分析】找到从上面看所得到的图形即可,注意所有看到的棱都应表现在俯视图中.【解答】解:从上往下看,该几何体的俯视图与选项D所示视图一致.故选:D.6.【分析】将x+y=5两边平方,利用完全平方公式化简,把xy的值代入计算,即可求出所求式子的值.【解答】解:将x+y=5两边平方得:(x+y)2=x2+2xy+y2=25,将xy=6代入得:x2+12+y2=25,则x2+y2=13.故选:B.7.【分析】根据不等式解集的四种情况,求出其公共解集即可.【解答】解:根据大小小大中间找得出解集为﹣1<x≤1,故选:B.8.【分析】延长AE交直线CD于F,根据平行线的性质得出∠α+∠AFD=180°,根据三角形外角性质得出∠AFD=∠β﹣∠γ,代入求出即可.【解答】解:如图,延长AE交直线CD于F,∵AB∥CD,∴∠α+∠AFD=180°,∵∠AF D=∠β﹣∠γ,∴∠α+∠β﹣∠γ=180°,故选:C.9.【分析】利用众数、中位数、方差等有关知识分别判断后即可确定正确的选项.【解答】解:A、众数表示的是一组数据中出现次数最多的数,在选举中,若某人的选票最多,则此人当选的可能性就越大,故A正确;B、五个数中有3个奇数,2个偶数,故取得奇数的可能性大,故B正确;C、方差越大波动越大,故C正确;D、数据3,5,4,1,﹣2的中位数是3,故D错误,故选:D.10.【分析】平行四边形ADCE的对角线的交点是AC的中点O,当OD⊥BC时,OD最小,即DE最小,根据三角形中位线定理即可求解.【解答】解:平行四边形ADCE的对角线的交点是AC的中点O,当OD⊥BC时,OD最小,即DE最小.∵OD⊥BC,BC⊥AB,∴OD∥AB,又∵OC=OA,∴OD是△ABC的中位线,∴OD=AB=3,∴DE=2OD=6.故选:B.11.【分析】当P点移动到平行于OA且与⊙D相切时,△AOP面积的最大,由于P为切点,得出MP垂直与切线,进而得出PM⊥AC,根据勾股定理先求得AC的长,进而求得OA的长,根据△ADM∽△ACD,求得DM的长,从而求得PM的长,最后根据三角形的面积公式即可求得;【解答】解:当P点移动到平行于OA且与⊙D相切时,△AOP面积的最大,如图,∵P是⊙D的切线,∴DP垂直与切线,延长PD交AC于M,则DM⊥AC,∵在矩形ABCD中,AB=3,BC=4,∴AC==5,∴OA=,∵∠AMD=∠ADC=90°,∠DAM=∠CAD,∴△ADM∽△ACD,∴=,∵AD=4,CD=3,AC=5,∴DM=,∴PM=PD+DM=1+=,∴△AOP的最大面积=OA•PM=××=,故选:D.12.【分析】根据题意可以判断x2+2x+2与﹣x2﹣1的大小,并求出函数y=max{x2+2x+2,﹣x2﹣1}的最小值,从而可以解答本题.【解答】解:∵y=max{x2+2x+2,﹣x2﹣1},x2+2x+2=(x+1)2+1≥1,﹣x2﹣1≤﹣1,∴x2+2x+2>﹣x2﹣1,∴函数y=max{x2+2x+2,﹣x2﹣1}的最小值是1,故选:A.二.填空题(共5小题,满分20分,每小题4分)13.【分析】根据韦达定理得a+b=﹣4,ab=﹣5,代入a2+b2=(a+b)2﹣2ab计算可得.【解答】解:∵方程x2+4x﹣5=0的两根分别为a和b,∴a+b=﹣4,ab=﹣5,则a2+b2=(a+b)2﹣2ab=16+10=26,故答案为:26.14.【分析】先根据计算器计算出输入的值,再根据程序框图列出算式,继而根据二次根式的混合运算计算可得.【解答】解:由题意知输入的值为32=9,则输出的结果为[(9÷3)﹣]×(3+)=(3﹣)×(3+)=9﹣2=7故答案为:7.15.【分析】圆锥的侧面积=π×底面半径×母线长,把相应数值代入即可求解.【解答】解:设母线长为R,则:65π=π×5R,解得R=13cm.16.【分析】此题所求的四边形PAOB的面积可由分割法,S四边形PAOB=S□PCOD﹣S△DBO ﹣S△ACO.【解答】解:由于P点在y=上,则S□PCOD=2,A、B两点在y=上,则S△DBO=S△ACO=×1=.∴S四边形PAOB=S□PCOD﹣S△DBO﹣S△ACO=2﹣﹣=1.∴四边形PAOB的面积为1.故答案为:1.17.【分析】由矩形性质可知OD=EF,据垂线段最短可得,当OD⊥AC时,OD最短,即EF最短,根据等腰三角形的性质,D是AC的中点时,OD⊥AC,则DF=OC,即可求得P的纵坐标,代入二次函数的解析式,即可求得横坐标,得到P的坐标.【解答】解:连接OD,由题意可知,四边形OFDE是矩形,则OD=EF.根据垂线段最短,可得当OD⊥AC时,OD最短,即EF最短.由(1)可知,在直角△AOC中,OC=OA=4,根据等腰三角形的性质,D是AC的中点时,OD⊥AC.又∵DF∥OC,∴DF=OC=2,∴点P的纵坐标是2.则﹣x2+3x+4=2,解得:x=,∴当EF最短时,点P的坐标是:(,2)或(,2).故答案为:(,2)或(,2).三.解答题(共7小题,满分52分)18.【分析】先根据分式的混合运算顺序和运算法则化简原式,再根据三角函数值代入计算可得.【解答】解:原式=•=,当x=sin60°=时,原式==.19.【分析】根据等边三角形的性质、外角的性质及等腰三角形的性质即可推理得出结论.【解答】证明:∵△ABC是等边三角形,BD平分∠ABC,∴∠BCA=60°,∠DBC=30°,∵CD=CE,∴∠CDE=∠E,∴∠BCA=∠CDE+∠E=2∠E=60°,∴∠E=30°,∴∠DBC=∠E=30°,∴DB=DE.20.【分析】(1)把P点和B点的坐标代入抛物线解析式,即可求出答案;(2)根据函数的图象得出即可;(3)根据面积公式求出M点到x轴的距离,得出M点的纵坐标,再求出M点的横坐标即可.【解答】解:(1)将P(1,﹣3)、B(4,0)代入y=ax2+c得:,解得:;(2)由图象得x>4或x<1;(3)在抛物线上存在点M,使得S△ABP=5S△ABM,理由是:抛物线的解析式是y=x2﹣,设M点的纵坐标为e,∵P(1,﹣3),∴由S△ABP=5S△ABM得:×AB×|﹣3|=5×AB×|e|,[来源:]解得;|e|=,当e=时,x2﹣=,解得:x=±,当e=﹣时,x2﹣=﹣,解得:x=±,即M点的坐标是(,)(﹣,)(,﹣)(﹣,﹣).21.【分析】(1)先根据B等级人数及其百分比求得总人数,总人数减去其他等级人数求得C等级人数,继而用360°乘以C等级人数所占比例即可得;(2)根据以上所求结果即可补全图形;(3)根据中位数的定义求解可得;(4)总人数乘以样本中A等级人数所占比例可得.【解答】解:(1)∵总人数为18÷45%=40人,∴C等级人数为40﹣(4+18+5)=13人,则C对应的扇形的圆心角是360°×=117°,故答案为:117;(2)补全条形图如下:(3)因为共有40个数据,其中位数是第20、21个数据的平均数,而第20、21个数据均落在B等级,所以所抽取学生的足球运球测试成绩的中位数会落在B等级,故答案为:B.(4)估计足球运球测试成绩达到A级的学生有300×=30人.22.【分析】(1)设乙种牛奶的进价为x元/件,则甲种牛奶的进价为(x﹣5)元/件,根据数量=总价÷单价结合用90元购进甲种牛奶的数量与用100元购进乙种牛奶的数量相同,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设购进乙种牛奶y件,则购进甲种牛奶(3y﹣5)件,根据总利润=单件利润×销售数量,即可得出关于y的一元一次方程,解之即可得出结论.【解答】解:(1)设乙种牛奶的进价为x元/件,则甲种牛奶的进价为(x﹣5)元/件,根据题意得:=,解得:x=50,经检验,x=50是原分式方程的解,且符合实际意义,∴x﹣5=45.答:乙种牛奶的进价是50元/件,甲种牛奶的进价是45元/件.(2)设购进乙种牛奶y件,则购进甲种牛奶(3y﹣5)件,根据题意得:(49﹣45)(3y﹣5)+(55﹣50)y=371,解得:y=23,∴3y﹣5=64.答:该商场购进甲种牛奶64件,乙种牛奶23件.23.【分析】(1)先得出AH=AD,即可得出结论;(2)根据勾股定理求出AB,即可得出结论;(3)A、①根据矩形ABEF∽矩形FECD得出比例式即可得出结论;②同①的方法即可得出结论;B、①分FM是矩形DFMN的长或DF是矩形DFMN的长两种情况,先根据相似矩形得出AF,AG,最后用矩形GABH∽矩形ABCD建立方程即可得出结论;②同①的方法即可得出结论.【解答】解:(1)∵点H是AD的中点,∴AH=AD,∵正方形AEOH∽正方形ABCD,∴相似比为:==;故答案为:;(2)在Rt△ABC中,AC=4,BC=3,根据勾股定理得,AB=5,∴△ACD与△ABC相似的相似比为:=,故答案为:;(3)A、①∵矩形ABEF∽矩形FECD,∴AF:AB=AB:AD,即a:b=b:a,∴a=b;故答案为: b②每个小矩形都是全等的,则其边长为b和a,则b:a=a:b,∴a=b;故答案为: bB、①如图2,由①②可知纵向2块矩形全等,横向3块矩形也全等,∴DN=b,Ⅰ、当FM是矩形DFMN的长时,∵矩形FMND∽矩形ABCD,∴FD:DN=AD:AB,即FD:b=a:b,解得FD=a,∴AF=a﹣a=a,∴AG===a,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即a:b=b:a得:a=b;Ⅱ、当DF是矩形DFMN的长时,∵矩形DFMN∽矩形ABCD,∴FD:DN=AB:AD即FD:b=b:a解得FD=,∴AF=a﹣=,∴AG==,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即:b=b:a,得:a=b;故答案为:b或b;②如图3,由①②可知纵向m块矩形全等,横向n块矩形也全等,∴DN=b,Ⅰ、当FM是矩形DFMN的长时,∵矩形FMND∽矩形ABCD,∴FD:DN=AD:AB,即FD:b=a:b,解得FD=a,∴AF=a﹣a,∴AG===a,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即a:b=b:a得:a=b;Ⅱ、当DF是矩形DFMN的长时,∵矩形DFMN∽矩形ABCD,∴FD:DN=AB:AD即FD:b=b:a解得FD=,∴AF=a﹣,∴AG==,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即:b=b:a,得:a=b;故答案为:b或b.24.【分析】(1)先求得点C(0,3)的坐标,然后设抛物线的解析式为y=a(x+1)(x﹣),最后,将点C的坐标代入求得a的值即可;(2)过点B作BM⊥AC,垂足为M,过点M作MN⊥OA,垂足为N.先求得AC 的解析式,然后再求得BM的解析式,从而可求得点M的坐标,依据两点间的距离公式可求得MC=BM,最后,依据等腰直角三角形的性质可得到∠ACB的度数;(3)如图2所示:延长CD,交x轴与点E.依据题意可得到∠ECD>45°,然后依据相似三角形的性质可得到∠CAO=∠ECD,则CE=AE,设点E的坐标为(a,0),依据两点间的距离公式可得到(a+1)2=32+a2,从而可得到点E的坐标,然后再求得CE的解析式,最后求得CE与抛物线的交点坐标即可.【解答】解:(1)当x=0,y=3,∴C(0,3).设抛物线的解析式为y=a(x+1)(x﹣).将C(0,3)代入得:﹣a=3,解得:a=﹣2,∴抛物线的解析式为y=﹣2x2+x+3.(2)过点B作BM⊥AC,垂足为M,过点M作MN⊥OA,垂足为N.∵OC=3,AO=1,∴tan∠CAO=3.∴直线AC的解析式为y=3x+3.∵AC⊥BM,∴BM的一次项系数为﹣.设BM的解析式为y=﹣x+b,将点B的坐标代入得:﹣×+b=0,解得b=.∴BM的解析式为y=﹣x+.将y=3x+3与y=﹣x+联立解得:x=﹣,y=.∴MC=BM═=.∴△MCB为等腰直角三角形.∴∠ACB=45°.(3)如图2所示:延长CD,交x轴与点F.∵∠ACB=45°,点D是第一象限抛物线上一点,∴∠ECD>45°.又∵△DCE与△AOC相似,∠AOC=∠DEC=90°,∴∠CAO=∠ECD.∴CF=AF.设点F的坐标为(a,0),则(a+1)2=32+a2,解得a=4.∴F(4,0).设CF的解析式为y=kx+3,将F(4,0)代入得:4k+3=0,解得:k=﹣.∴CF的解析式为y=﹣x+3.将y=﹣x+3与y=﹣2x2+x+3联立:解得:x=0(舍去)或x=.将x=代入y=﹣x+3得:y=.∴D(,).。
2020年山东省淄博市中考数学试卷及答案解析
2020年山东省淄博市中考数学试卷一、选择题:本大题共12个小题,每小题4分,共48分.在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(4分)若实数a的相反数是﹣2,则a等于()A.2B.﹣2C.D.02.(4分)下列图形中,不是轴对称图形的是()A.B.C.D.3.(4分)李老师为了解学生家务劳动时间情况,更好地弘扬“热爱劳动”的民族传统美德,随机调查了本校10名学生在上周参加家务劳动的时间,收集到如下数据(单位:小时):4,3,4,6,5,5,6,5,4,5.则这组数据的中位数和众数分别是()A.4,5B.5,4C.5,5D.5,64.(4分)如图,在四边形ABCD中,CD∥AB,AC⊥BC,若∠B=50°,则∠DCA等于()A.30°B.35°C.40°D.45°5.(4分)下列运算正确的是()A.a2+a3=a5B.a2•a3=a5C.a3÷a2=a5D.(a2)3=a5 6.(4分)已知sin A=0.9816,运用科学计算器求锐角A时(在开机状态下),按下的第一个键是()A.B.C.D.7.(4分)如图,若△ABC≌△ADE,则下列结论中一定成立的是()A.AC=DE B.∠BAD=∠CAE C.AB=AE D.∠ABC=∠AED 8.(4分)化简+的结果是()A.a+b B.a﹣b C.D.9.(4分)如图,在直角坐标系中,以坐标原点O(0,0),A(0,4),B(3,0)为顶点的Rt△AOB,其两个锐角对应的外角角平分线相交于点P,且点P恰好在反比例函数y=的图象上,则k的值为()A.36B.48C.49D.6410.(4分)如图,放置在直线l上的扇形OAB.由图①滚动(无滑动)到图②,再由图②滚动到图③.若半径OA=2,∠AOB=45°,则点O所经过的最短路径的长是()A.2π+2B.3πC.D.+211.(4分)如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M是曲线部分的最低点,则△ABC的面积是()A.12B.24C.36D.4812.(4分)如图,在△ABC中,AD,BE分别是BC,AC边上的中线,且AD⊥BE,垂足为点F,设BC=a,AC=b,AB=c,则下列关系式中成立的是()A.a2+b2=5c2B.a2+b2=4c2C.a2+b2=3c2D.a2+b2=2c2二、填空题:本大题共5个小题,每小题4分,共20分.请直接填写最后结果.13.(4分)计算:+=.14.(4分)如图,将△ABC沿BC方向平移至△DEF处.若EC=2BE=2,则CF的长为.15.(4分)已知关于x的一元二次方程x2﹣x+2m=0有两个不相等的实数根,则实数m的取值范围是.16.(4分)如图,矩形纸片ABCD,AB=6cm,BC=8cm,E为边CD上一点.将△BCE沿BE所在的直线折叠,点C恰好落在AD边上的点F处,过点F作FM⊥BE,垂足为点M,取AF的中点N,连接MN,则MN=cm.17.(4分)某快递公司在甲地和乙地之间共设有29个服务驿站(包括甲站、乙站),一辆快递货车由甲站出发,依次途经各站驶往乙站,每停靠一站,均要卸下前面各站发往该站的货包各1个,又要装上该站发往后面各站的货包各1个.在整个行程中,快递货车装载的货包数量最多是个.三、解答题:本大题共7个小题,共52分.解答要写出必要的文字说明、证明过程或演算步骤.18.(5分)解方程组:19.(5分)已知:如图,E是▱ABCD的边BC延长线上的一点,且CE=BC.求证:△ABC≌△DCE.20.(8分)某校数学实践小组就近期人们比较关注的五个话题:“A.5G通讯;B.民法典;C.北斗导航;D.数字经济;E.小康社会”,对某小区居民进行了随机抽样调查,每人只能从中选择一个本人最关注的话题,根据调查结果绘制了如图两幅不完整的统计图.请结合统计图中的信息,解决下列问题:(1)数学实践小组在这次活动中,调查的居民共有人;(2)将上面的最关注话题条形统计图补充完整;(3)最关注话题扇形统计图中的a=,话题D所在扇形的圆心角是度;(4)假设这个小区居民共有10000人,请估计该小区居民中最关注的话题是“民法典”的人数大约有多少?21.(8分)如图,在直角坐标系中,直线y1=ax+b与双曲线y2=(k≠0)分别相交于第二、四象限内的A(m,4),B(6,n)两点,与x轴相交于C点.已知OC=3,tan∠ACO=.(1)求y1,y2对应的函数表达式;(2)求△AOB的面积;(3)直接写出当x<0时,不等式ax+b>的解集.22.(8分)如图,著名旅游景区B位于大山深处,原来到此旅游需要绕行C地,沿折线A →C→B方可到达.当地政府为了增强景区的吸引力,发展壮大旅游经济,修建了一条从A地到景区B的笔直公路.请结合∠A=45°,∠B=30°,BC=100千米,≈1.4,≈1.7等数据信息,解答下列问题:(1)公路修建后,从A地到景区B旅游可以少走多少千米?(2)为迎接旅游旺季的到来,修建公路时,施工队使用了新的施工技术,实际工作时每天的工效比原计划增加25%,结果提前50天完成了施工任务.求施工队原计划每天修建多少千米?23.(9分)如图,△ABC内接于⊙O,AD平分∠BAC交BC边于点E,交⊙O于点D,过点A作AF⊥BC于点F,设⊙O的半径为R,AF=h.(1)过点D作直线MN∥BC,求证:MN是⊙O的切线;(2)求证:AB•AC=2R•h;(3)设∠BAC=2α,求的值(用含α的代数式表示).24.(9分)如图,在直角坐标系中,四边形OABC是平行四边形,经过A(﹣2,0),B,C 三点的抛物线y=ax2+bx+(a<0)与x轴的另一个交点为D,其顶点为M,对称轴与x轴交于点E.(1)求这条抛物线对应的函数表达式;(2)已知R是抛物线上的点,使得△ADR的面积是▱OABC的面积的,求点R的坐标;(3)已知P是抛物线对称轴上的点,满足在直线MD上存在唯一的点Q,使得∠PQE =45°,求点P的坐标.2020年山东省淄博市中考数学试卷参考答案与试题解析一、选择题:本大题共12个小题,每小题4分,共48分.在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(4分)若实数a的相反数是﹣2,则a等于()A.2B.﹣2C.D.0【解答】解:∵2的相反数是﹣2,∴a=2.故选:A.2.(4分)下列图形中,不是轴对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,故本选项不符合题意;B、是轴对称图形,故本选项不符合题意;C、是轴对称图形,故本选项不符合题意;D、不是轴对称图形,故本选项符合题意.故选:D.3.(4分)李老师为了解学生家务劳动时间情况,更好地弘扬“热爱劳动”的民族传统美德,随机调查了本校10名学生在上周参加家务劳动的时间,收集到如下数据(单位:小时):4,3,4,6,5,5,6,5,4,5.则这组数据的中位数和众数分别是()A.4,5B.5,4C.5,5D.5,6【解答】解:这组数据4,3,4,6,5,5,6,5,4,5中,出现次数最多的是5,因此众数是5,将这组数据从小到大排列后,处在第5、6位的两个数都是5,因此中位数是5.故选:C.4.(4分)如图,在四边形ABCD中,CD∥AB,AC⊥BC,若∠B=50°,则∠DCA等于()A.30°B.35°C.40°D.45°【解答】解:∵AC⊥BC,∴∠ACB=90°,又∵∠B=50°,∴∠CAB=90°﹣∠B=40°,∵CD∥AB,∴∠DCA=∠CAB=40°.故选:C.5.(4分)下列运算正确的是()A.a2+a3=a5B.a2•a3=a5C.a3÷a2=a5D.(a2)3=a5【解答】解:A.a2+a3≠a5,所以A选项错误;B.a2•a3=a5,所以B选项正确;C.a3÷a2=a,所以C选项错误;D.(a2)3=a6,所以D选项错误;故选:B.6.(4分)已知sin A=0.9816,运用科学计算器求锐角A时(在开机状态下),按下的第一个键是()A.B.C.D.【解答】解:∵已知sin A=0.9816,运用科学计算器求锐角A时(在开机状态下)的按键顺序是:2ndF,sin,0,∴按下的第一个键是2ndF.故选:D.7.(4分)如图,若△ABC≌△ADE,则下列结论中一定成立的是()A.AC=DE B.∠BAD=∠CAE C.AB=AE D.∠ABC=∠AED 【解答】解:∵△ABC≌△ADE,∴AC=AE,AB=AD,∠ABC=∠ADE,∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE.故A,C,D选项错误,B选项正确,故选:B.8.(4分)化简+的结果是()A.a+b B.a﹣b C.D.【解答】解:原式====a﹣b.故选:B.9.(4分)如图,在直角坐标系中,以坐标原点O(0,0),A(0,4),B(3,0)为顶点的Rt△AOB,其两个锐角对应的外角角平分线相交于点P,且点P恰好在反比例函数y=的图象上,则k的值为()A.36B.48C.49D.64【解答】解:过P分别作AB、x轴、y轴的垂线,垂足分别为C、D、E,如图,∵A(0,4),B(3,0),∴OA=4,OB=3,∴AB==5,∵△OAB的两个锐角对应的外角角平分线相交于点P,∴PE=PC,PD=PC,∴PE=PC=PD,设P(t,t),则PC=t,∵S△P AE+S△P AB+S△PBD+S△OAB=S矩形PEOD,∴×t×(t﹣4)+×5×t+×t×(t﹣3)+×3×4=t×t,解得t=6,∴P(6,6),把P(6,6)代入y=得k=6×6=36.故选:A.10.(4分)如图,放置在直线l上的扇形OAB.由图①滚动(无滑动)到图②,再由图②滚动到图③.若半径OA=2,∠AOB=45°,则点O所经过的最短路径的长是()A.2π+2B.3πC.D.+2【解答】解:如图,点O的运动路径的长=的长+O1O2+的长=++=,故选:C.11.(4分)如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M是曲线部分的最低点,则△ABC的面积是()A.12B.24C.36D.48【解答】解:由图2知,AB=BC=10,当BP⊥AC时,y的值最小,即△ABC中,BC边上的高为8(即此时BP=8),当y=8时,PC===6,△ABC的面积=×AC×BP=8×12=48,故选:D.12.(4分)如图,在△ABC中,AD,BE分别是BC,AC边上的中线,且AD⊥BE,垂足为点F,设BC=a,AC=b,AB=c,则下列关系式中成立的是()A.a2+b2=5c2B.a2+b2=4c2C.a2+b2=3c2D.a2+b2=2c2【解答】解:设EF=x,DF=y,∵AD,BE分别是BC,AC边上的中线,∴点F为△ABC的重心,AF=AC=b,BD=a,∴AF=2DF=2y,BF=2EF=2x,∵AD⊥BE,∴∠AFB=∠AFE=∠BFD=90°,在Rt△AFB中,4x2+4y2=c2,①在Rt△AEF中,4x2+y2=b2,②在Rt△BFD中,x2+4y2=a2,③②+③得5x2+5y2=(a2+b2),∴4x2+4y2=(a2+b2),④①﹣④得c2﹣(a2+b2)=0,即a2+b2=5c2.故选:A.二、填空题:本大题共5个小题,每小题4分,共20分.请直接填写最后结果.13.(4分)计算:+=2.【解答】解:+=﹣2+4=2.故答案为:214.(4分)如图,将△ABC沿BC方向平移至△DEF处.若EC=2BE=2,则CF的长为1.【解答】解:∵△ABC沿BC方向平移至△DEF处.∴BE=CF,∵EC=2BE=2,∴BE=1,∴CF=1.故答案为1.15.(4分)已知关于x的一元二次方程x2﹣x+2m=0有两个不相等的实数根,则实数m的取值范围是m<.【解答】解:∵方程有两个不相等的实数根,a=1,b=﹣1,c=2m∴△=b2﹣4ac=(﹣1)2﹣4×1×2m>0,解得m<,故答案为m<.16.(4分)如图,矩形纸片ABCD,AB=6cm,BC=8cm,E为边CD上一点.将△BCE沿BE所在的直线折叠,点C恰好落在AD边上的点F处,过点F作FM⊥BE,垂足为点M,取AF的中点N,连接MN,则MN=5cm.【解答】解:连接AC,FC.由翻折的性质可知,BE垂直平分线段CF,∴FM⊥BE,∴F.M,C共线,FM=MC,∵AN=FN,∴MN=AC,∵四边形ABCD是矩形,∴∠ABC=90°,∴AC===10(cm),∴MN=AC=5(cm),故答案为5.17.(4分)某快递公司在甲地和乙地之间共设有29个服务驿站(包括甲站、乙站),一辆快递货车由甲站出发,依次途经各站驶往乙站,每停靠一站,均要卸下前面各站发往该站的货包各1个,又要装上该站发往后面各站的货包各1个.在整个行程中,快递货车装载的货包数量最多是210个.【解答】解:当一辆快递货车停靠在第x个服务驿站时,快递货车上需要卸下已经通过的(x﹣1)个服务驿站发给该站的货包共(x﹣1)个,还要装上下面行程中要停靠的(n﹣x)个服务驿站的货包共(n﹣x)个.根据题意,完成下表:服务驿站序号在第x服务驿站启程时快递货车货包总数1n﹣12(n﹣1)﹣1+(n﹣2)=2(n﹣2)32(n﹣2)﹣2+(n﹣3)=3(n﹣3)43(n﹣3)﹣3+(n﹣4)=4(n﹣4)54(n﹣4)﹣4+(n﹣5)=5(n﹣5)……n0由上表可得y=x(n﹣x).当n=29时,y=x(29﹣x)=﹣x2+29x=﹣(x﹣14.5)2+210.25,当x=14或15时,y取得最大值210.答:在整个行程中,快递货车装载的货包数量最多是210个.故答案为:210.三、解答题:本大题共7个小题,共52分.解答要写出必要的文字说明、证明过程或演算步骤.18.(5分)解方程组:【解答】解:,①+②,得:5x=10,解得x=2,把x=2代入①,得:6+y=8,解得y=4,所以原方程组的解为.19.(5分)已知:如图,E是▱ABCD的边BC延长线上的一点,且CE=BC.求证:△ABC≌△DCE.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠B=∠DCE,在△ABC和△DCE中,∴△ABC≌△DCE(SAS).20.(8分)某校数学实践小组就近期人们比较关注的五个话题:“A.5G通讯;B.民法典;C.北斗导航;D.数字经济;E.小康社会”,对某小区居民进行了随机抽样调查,每人只能从中选择一个本人最关注的话题,根据调查结果绘制了如图两幅不完整的统计图.请结合统计图中的信息,解决下列问题:(1)数学实践小组在这次活动中,调查的居民共有200人;(2)将上面的最关注话题条形统计图补充完整;(3)最关注话题扇形统计图中的a=25,话题D所在扇形的圆心角是36度;(4)假设这个小区居民共有10000人,请估计该小区居民中最关注的话题是“民法典”的人数大约有多少?【解答】解:(1)调查的居民共有:60÷30%=200(人),故答案为:200;(2)选择C的居民有:200×15%=30(人),选择A的有:200﹣60﹣30﹣20﹣40=50(人),补全的条形统计图如右图所示;(3)a%=50÷200×100%=25%,话题D所在扇形的圆心角是:360°×=36°,故答案为:25,36;(4)10000×30%=3000(人),答:该小区居民中最关注的话题是“民法典”的人数大约有3000人.21.(8分)如图,在直角坐标系中,直线y1=ax+b与双曲线y2=(k≠0)分别相交于第二、四象限内的A(m,4),B(6,n)两点,与x轴相交于C点.已知OC=3,tan∠ACO=.(1)求y1,y2对应的函数表达式;(2)求△AOB的面积;(3)直接写出当x<0时,不等式ax+b>的解集.【解答】解:(1)设直线y1=ax+b与y轴交于点D,在Rt△OCD中,OC=3,tan∠ACO=.∴OD=2,即点D(0,2),把点D(0,2),C(0,3)代入直线y1=ax+b得,b=2,3a+b=0,解得,a=﹣,∴直线的关系式为y1=﹣x+2;把A(m,4),B(6,n)代入y1=﹣x+2得,m=﹣3,n=﹣2,∴A(﹣3,4),B(6,﹣2),∴k=﹣3×4=﹣12,∴反比例函数的关系式为y2=﹣,因此y1=﹣x+2,y2=﹣;(2)由S△AOB=S△AOC+S△BOC,=×3×4+×3×2,=9.(3)由图象可知,当x<0时,不等式ax+b>的解集为x<﹣3.22.(8分)如图,著名旅游景区B位于大山深处,原来到此旅游需要绕行C地,沿折线A →C→B方可到达.当地政府为了增强景区的吸引力,发展壮大旅游经济,修建了一条从A地到景区B的笔直公路.请结合∠A=45°,∠B=30°,BC=100千米,≈1.4,≈1.7等数据信息,解答下列问题:(1)公路修建后,从A地到景区B旅游可以少走多少千米?(2)为迎接旅游旺季的到来,修建公路时,施工队使用了新的施工技术,实际工作时每天的工效比原计划增加25%,结果提前50天完成了施工任务.求施工队原计划每天修建多少千米?【解答】解:(1)过点C作AB的垂线CD,垂足为D,在直角△BCD中,AB⊥CD,sin30°=,BC=1000千米,∴CD=BC•sin30°=100×=50(千米),BD=BC•cos30°=100×=50(千米),在直角△ACD中,AD=CD=50(千米),AC==50(千米),∴AB=50+50(千米),∴从A地到景区B旅游可以少走:AC+BC﹣AB=50+100﹣(50+50)=50+50﹣50≈35(千米).答:从A地到景区B旅游可以少走35千米;(2)设施工队原计划每天修建x千米,依题意有,﹣=50,解得x=0.14,经检验x=0.14是原分式方程的解.答:施工队原计划每天修建0.14千米.23.(9分)如图,△ABC内接于⊙O,AD平分∠BAC交BC边于点E,交⊙O于点D,过点A作AF⊥BC于点F,设⊙O的半径为R,AF=h.(1)过点D作直线MN∥BC,求证:MN是⊙O的切线;(2)求证:AB•AC=2R•h;(3)设∠BAC=2α,求的值(用含α的代数式表示).【解答】解:(1)如图1,连接OD,∵AD平分∠BAC,∴∠BAD=∠CAD,∴=,又∵OD是半径,∴OD⊥BC,∵MN∥BC,∴OD⊥MN,又∵OD是半径,∴MN是⊙O的切线;(2)如图2,连接AO并延长交⊙O于H,∵AH是直径,∴∠ABH=90°=∠AFC,又∵∠AHB=∠ACF,∴△ACF∽△AHB,∴,∴AB•AC=AF•AH=2R•h;(3)如图3,过点D作DQ⊥AB于Q,DP⊥AC,交AC延长线于P,连接CD,∵∠BAC=2α,AD平分∠BAC,∴∠BAD=∠CAD=α,∴=,∴BD=CD,∵∠BAD=∠CAD,DQ⊥AB,DP⊥AC,∴DQ=DP,∴Rt△DQB≌Rt△DPC(HL),∴BQ=CP,∵DQ=DP,AD=AD,∴Rt△DQA≌Rt△DP A(HL),∴AQ=AP,∴AB+AC=AQ+BQ+AC=2AQ,∵cos∠BAD=,∴AD=,∴==2cosα.24.(9分)如图,在直角坐标系中,四边形OABC是平行四边形,经过A(﹣2,0),B,C 三点的抛物线y=ax2+bx+(a<0)与x轴的另一个交点为D,其顶点为M,对称轴与x轴交于点E.(1)求这条抛物线对应的函数表达式;(2)已知R是抛物线上的点,使得△ADR的面积是▱OABC的面积的,求点R的坐标;(3)已知P是抛物线对称轴上的点,满足在直线MD上存在唯一的点Q,使得∠PQE =45°,求点P的坐标.【解答】解:(1)OA=2=BC,故函数的对称轴为x=1,则x=﹣=1①,将点A的坐标代入抛物线表达式得:0=4a﹣2b+②,联立①②并解得,故抛物线的表达式为:y=﹣x2+x+③;(2)由抛物线的表达式得,点M(1,3)、点D(4,0);∵△ADR的面积是▱OABC的面积的,∴×AD×|y R|=×OA×OB,则×6×|y R|=×2×,解得:y R=±④,联立④③并解得,故点R的坐标为(1+,4)或(1,4)或(1,﹣4)或(1﹣,﹣4);(3)作△PEQ的外接圆R,∵∠PQE=45°,故∠PRE=90°,则△PRE为等腰直角三角形,当直线MD上存在唯一的点Q,则RQ⊥MD,点M、D的坐标分别为(1,4)、(4,0),则ME=4,ED=4﹣1=3,则MD=5,过点R作RH⊥ME于点H,设点P(1,2m),则PH=HE=HR=m,则圆R的半径为m,则点R(1+m,m),S△MED=S△MRD+S△MRE+S△DRE,即×EM•ED=×MD×RQ+×ED•y R+×ME•RH,∴4×3=×5×m+×4×m×3×m,解得m=60﹣84,故点P(1,120﹣168).。
2021年山东省淄博第四中学中考数学一模试卷(有答案)
2021年山东省淄博中考数学一模试卷一.选择题(共12小题,满分48分,每小题4分)1.计算的结果是()A.0 B.1 C.﹣1 D.2.如图,是某个几何体从不同方向看到的形状图(视图),这个几何体的表面能展开成下面的哪个平面图形?()A.B.C.D.3.下列说法:①“明天降雨的概率是50%”表示明天有半天都在降雨;②无理数是开方开不尽的数;③若a为实数,则|a|<0是不可能事件;④16的平方根是±4,用式子表示是=±4;⑤某班的5位同学在向“创建图书角”捐款活动中,捐款数如下(单位:元):8,3,8,2,4,那么这组数据的众数是8,中位数是4,平均数是5.其中正确的个数有()A.1个B.2个C.3个D.4个4.10名学生的平均成绩是x,如果另外5名学生每人得90分,那么整个组的平均成绩是()A.B.C.D.5.如图,在矩形ABCD中,E是CD边的中点,且BE⊥AC于点F,连接DF,则下列结论错误的是()A .△ADC ∽△CFBB .AD =DFC .=D .=6.如图,∠ACB =90°,AC =BC ,AD ⊥CE ,BE ⊥CE ,若AD =3,BE =1,则DE =( )A .1B .2C .3D .47.某商品的标价为150元,八折销售仍盈利20%,则商品进价为( )元.A .100B .110C .120D .1308.在一次数学课上,张老师出示了一个题目:“如图,▱ABCD 的对角线相交于点O ,过点O 作EF 垂直于BD 交AB ,CD 分别于点F ,E ,连接DF ,BE .请根据上述条件,写出一个正确结论.”其中四位同学写出的结论如下:小青:OE =OF ;小何:四边形DFBE 是正方形;小夏:S 四边形AFED =S 四边形FBCE ;小雨:∠ACE =∠CAF .这四位同学写出的结论中不正确的是( )A .小青B .小何C .小夏D .小雨9.已知x a =2,x b =3,则x 3a ﹣2b 等于( )A .B .﹣1C .17D .7210.解不等式组,该不等式组的最大整数解是( ) A .3 B .4 C .2 D .﹣311.如图,△ABC 的顶点都在正方形网格的格点上,则tan ∠BAC 的值为( )A.2 B.C.D.12.一次函数y=(k﹣1)x﹣k的大致图象如图所示,关于该次函数,下列说法错误的是()A.k>1B.y随x的增大而增大C.该函数有最小值D.函数图象经过第一、三、四象限二.填空题(共5小题,满分20分,每小题4分)13.计算(+2)(﹣2)的结果是.14.因式分解:x2y﹣4y3=.15.某学校要新购置一批课桌椅,现有甲、乙两种规格的课桌椅可供选择.已知购买甲种课桌椅3套比购买乙种2套共多60元;购买甲种5套和乙种3套,共需1620元.求甲、乙两种规格的课桌椅每套价格分别是多少元?若设甲、乙两种规格的课桌椅每套价格分别是x和y元,根据题意,可列方程组为.16.同一个圆的内接正方形和正三角形的边心距的比为.17.设α,β是方程x2﹣x﹣2019=0的两个实数根,则α3﹣2021α﹣β的值为;三.解答题(共7小题,满分52分)18.如图,直线a∥b,∠1=45°,∠2=30°,求∠P的度数.19.附加题:(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2.求的值.20.某校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有 人;(2)补全条形统计图,并在图上标明相应的数据;(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供50人食用一餐.据此估算,该校18000名学生一餐浪费的食物可供多少人食用一餐.21.某八年级计划用360元购买笔记本奖励优秀学生,在购买时发现,每本笔记本可以打九折,结果买得的笔记本比打折前多10本.(1)请利用分式方程求出每本笔记本的原来标价;(2)恰逢文具店周年志庆,每本笔记本可以按原价打8折,这样该校最多可购入本笔记本?22.关于x 的一元二次方程x 2+2(m ﹣1)x +m 2﹣1=0有两个不相等的实数根x 1,x 2.(1)求实数m 的取值范围;(2)是否存在实数m ,使得x 1x 2=0成立?如果存在,求出m 的值,如果不存在,请说明理由.23.已知:如图1,四边形ABCD 中,∠ABC =135°,连接AC 、BD ,交于点E ,BD ⊥BC ,AD =AC(1)求证:∠DAC =90°;(2)如图2,过点B 作BF ⊥AB ,交DC 于点F ,交AC 于点G ,若S △DBF =2S △CBF ,求证:AG =CG ;(3)如图3,在(2)的条件下,若AB =3,求线段GF 的长.24.如图,已知二次函数y =ax 2+bx ﹣3a 经过点A (﹣1,0),C (0,3),与x 轴交于另一点B ,抛物线的顶点为D .(1)求此二次函数解析式;(2)连接DC 、BC 、DB ,求证:△BCD 是直角三角形;(3)在对称轴右侧的抛物线上是否存在点P ,使得△PDC 为等腰三角形?若存在,求出符合条件的点P 的坐标;若不存在,请说明理由.2021年山东省淄博中考数学一模试卷参考答案与试题解析一.选择题(共12小题,满分48分,每小题4分)1.【分析】先计算绝对值,再计算减法即可得.【解答】解:=﹣=0,故选:A.【点评】本题主要考查绝对值和有理数的减法,解题的关键是掌握绝对值的性质和有理数的减法法则.2.【分析】由主视图和左视图可得此几何体为柱体,根据俯视图是圆可判断出此几何体为圆柱,进一步由展开图的特征选择答案即可.【解答】解:∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个圆,∴此几何体为圆柱,因此图A是圆柱的展开图.故选:A.【点评】此题由三视图判断几何体,用到的知识点为:三视图里有两个相同可确定该几何体是柱体,锥体还是球体,由另一个视图确定其具体形状.3.【分析】根据概率的意义、无理数概念、确定事件的概念、平方根的定义及众数、中位数、平均数的定义逐一求解可得.【解答】解:①“明天降雨的概率是50%”表示明天降雨与不降雨可能性相同,此结论错误;②无理数是无线不循环的数,此结论错误;③若a为实数,则|a|<0是不可能事件,此结论正确;④16的平方根是±4,用式子表示是±=±4,此结论错误;⑤某班的5位同学在向“创建图书角”捐款活动中,捐款数如下(单位:元):8,3,8,2,4,那么这组数据的众数是8,中位数是4,平均数是5.此结论正确;故选:B.【点评】本题主要考查概率的意义,解题的关键是掌握概率的意义、无理数概念、确定事件的概念、平方根的定义及众数、中位数、平均数的定义.4.【分析】整个组的平均成绩=15名学生的总成绩÷15.【解答】解:这15个人的总成绩10x+5×90=10x+450,除以15可求得平均值为.故选:D.【点评】此题考查了加权平均数的知识,解题的关键是求的15名学生的总成绩.5.【分析】依据∠ADC=∠BCD=90°,∠CAD=∠BCF,即可得到△ADC∽△CFB;过D作DM∥BE交AC于N,交AB于M,得出DM垂直平分AF,即可得到DF=DA;设CE=a,AD=b,则CD=2a,由△ADC∽△CFB,可得=,可得b=a,依据,即可得出=;根据E是CD边的中点,可得CE:AB=1:2,再根据△CEF∽△ABF,即可得到=()2=.【解答】解:∵BE⊥AC,∠ADC=∠BCD=90°,∴∠BCF+∠ACD=∠CAD+∠ACD,∴∠CAD=∠BCF,∴△ADC∽△CFB,故A选项正确;如图,过D作DM∥BE交AC于N,交AB于M,∵DE∥BM,BE∥DM,∴四边形BMDE是平行四边形,∴BM=DE=DC,∴BM=AM,∴AN=NF,∵BE⊥AC于点F,DM∥BE,∴DN⊥AF,∴DM垂直平分AF,∴DF=DA,故B选项正确;设CE=a,AD=b,则CD=2a,由△ADC∽△CFB,可得=,即b=a,∴,∴=,故C选项错误;∵E是CD边的中点,∴CE:AB=1:2,又∵CE∥AB,∴△CEF∽△ABF,∴=()2=,故选D选项正确;故选:C.【点评】本题主要考查了相似三角形的判定和性质,矩形的性质的综合应用,正确的作出辅助线构造平行四边形是解题的关键.在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形6.【分析】根据余角的性质,可得∠DCA与∠CBE的关系,根据AAS可得△ACD与△△CBE的关系,根据全等三角形的性质,可得AD与CE的关系,根据线段的和差,可得答案.【解答】解:AD⊥CE,BE⊥CE,∴∠ADC=∠BEC=90°.∵∠BCE+∠CBE=90°,∠BCE+∠CAD=90°,∠DCA=∠CBE,在△ACD和△CBE中,,∴△ACD≌△CBE(AAS),∴CE=AD=3,CD=BE=1,DE=CE﹣CD=3﹣1=2,故选:B.【点评】本题考查了全等三角形的判定与性质,利用了全等三角形的判定与性质.7.【分析】根据(1+利润率)×进价=标价×八折列方程,可得结论.【解答】解:设商品进价为x元,根据题意得:150×80%=(1+20%)x,x=100,答:商品进价为100元.故选:A.【点评】本题考查了一元一次方程的应用,找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.8.【分析】利用平行四边形的性质、全等三角形的判定和性质,一一判断即可.【解答】解:∵四边形ABCD是平行四边形,∴OA=OC,CD∥AB,∴∠ECO=∠FAO,(故小雨的结论正确),在△EOC和△FOA中,,∴△EOC ≌△FOA ,∴OE =OF (故小青的结论正确),∴S △EOC =S △AOF ,∴S 四边形AFED =S △ADC =S 平行四边形ABCD ,∴S 四边形AFED =S 四边形FBCE 故小夏的结论正确,∵△EOC ≌△FOA ,∴EC =AF ,∵CD =AB ,∴DE =FB ,DE ∥FB ,∴四边形DFBE 是平行四边形,∵OD =OB ,EO ⊥DB ,∴ED =EB ,∴四边形DFBE 是菱形,无法判断是正方形,故小何的结论错误,故选:B .【点评】本题考查平行四边形的性质、全等三角形的判定和性质、线段的垂直平分线的性质正方形的判定、菱形的判定等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.9.【分析】直接利用幂的乘方运算法则以及同底数幂的乘除运算法则将原式变形得出答案.【解答】解:∵x a =2,x b =3,∴x 3a ﹣2b =(x a )3÷(x b )2=23÷32=.故选:A .【点评】此题主要考查了幂的乘方运算以及同底数幂的乘除运算,正确掌握运算法则是解题关键.10.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,据此可得其最大整数解.【解答】解:解不等式(x ﹣1)≤1,得:x ≤3,解不等式1﹣x <2,得:x >﹣1,则不等式组的解集为﹣1<x ≤3,所以不等式组的最大整数解为3,故选:A.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.11.【分析】如图,连接BD,先利用勾股定理逆定理得△ABD是直角三角形,再根据正切函数的定义求解可得.【解答】解:如图所示,连接BD,则BD2=12+12=2、AD2=22+22=8、AB2=12+32=10,∴BD2+AD2=AB2,∴△ABD是直角三角形,且∠ADB=90°,则tan∠BAC===,故选:B.【点评】本题主要考查解直角三角形,解题的关键是构建直角三角形并掌握勾股定理逆定理、正切函数的定义.12.【分析】根据一次函数的增减性确定有关k的不等式组,求解即可.【解答】解:∵观察图象知:y随x的增大而增大,且交与y轴负半轴,函数图象经过第一、三、四象限,∴,解得:k>1,∵该函数没有最小值,故选:C.【点评】本题考查了一次函数的图象与系数的关系,解题的关键是了解系数对函数图象的影响,难度不大.二.填空题(共5小题,满分20分,每小题4分)13.【分析】利用平方差公式计算,再根据二次根式的性质计算可得.【解答】解:原式=()2﹣22=3﹣4=﹣1,故答案为:﹣1.【点评】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则.14.【分析】首先提公因式y,再利用平方差进行分解即可.【解答】解:原式=y(x2﹣4y2)=y(x﹣2y)(x+2y).故答案为:y(x﹣2y)(x+2y).【点评】此题主要考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.15.【分析】设甲、乙两种规格的课桌椅每套价格分别是x和y元,根据:购买甲种课桌椅3套比购买乙种2套共多60元;购买甲种5套和乙种3套,共需1620元列出方程组求解即可;【解答】解:设甲、乙两种规格的课桌椅每套价格分别是x和y元,根据题意可得:,故答案为:,【点评】本题主要考查二元一次方程组的应用能力,根据题意准确抓住相等关系是解题的根本和关键.16.【分析】先画出同一个圆的内接正方形和内接正三角形,设⊙O的半径为R,求出正方形的边心距和正三角形的边心距,再求出比值即可.【解答】解:设⊙O的半径为R,⊙O的内接正方形ABCD,如图,过O作OQ⊥BC于Q,连接OB、OC,即OQ为正方形ABCD的边心距,∵四边形BACD是正方形,⊙O是正方形ABCD的外接圆,∴O为正方形ABCD的中心,∴∠BOC=90°,∵OQ⊥BC,OB=CO,∴QC=BQ,∠COQ=∠BOQ=45°,∴OQ=OC×cos45°=R;设⊙O的内接正△EFG,如图,过O作OH⊥FG于H,连接OG,即OH为正△EFG的边心距,∵正△EFG是⊙O的外接圆,∴∠OGF=∠EGF=30°,∴OH=OG×sin30°=R,∴OQ:OH=(R):(R)=:1,故答案为::1.【点评】本题考查了正多边形与圆、解直角三角形,等边三角形的性质、正方形的性质解直角三角形等知识点,能综合运用知识点进行推理和计算是解此题的关键.17.【分析】根据一元二次方程跟与系数的关系,结合“α,β是方程x2﹣x﹣2019=0的两个实数根”,得到α+β的值,代入α3﹣2021α﹣β,再把α代入方程x2﹣x﹣2019=0,经过整理变化,即可得到答案.【解答】解:根据题意得:α+β=1,α3﹣2021α﹣β=α(α2﹣2020)﹣(α+β)=α(α2﹣2020)﹣1,∵α2﹣α﹣2019=0,∴α2﹣2020=α﹣1,把α2﹣2020=α﹣1代入原式得:原式=α(α﹣1)﹣1=α2﹣α﹣1=2019﹣1=2018.【点评】本题考查了根与系数的关系,正确掌握一元二次方程根与系数的关系是解题的关键.三.解答题(共7小题,满分52分)18.【分析】过P作PM∥直线a,求出直线a∥b∥PM,根据平行线的性质得出∠EPM=∠2=30°,∠FPM =∠1=45°,即可求出答案.【解答】解:过P作PM∥直线a,∵直线a∥b,∴直线a∥b∥PM,∵∠1=45°,∠2=30°,∴∠EPM=∠2=30°,∠FPM=∠1=45°,∴∠EPF=∠EPM+∠FPM=30°+45°=75°,【点评】本题考查了平行线的性质的应用,能正确根据平行线的性质进行推理是解此题的关键,注意:两直线平行,内错角相等.19.【分析】先将已知条件化简,可得:(x﹣y)2+(x﹣z)2+(y﹣z)2=0.因为x,y,z均为实数,所以x=y=z.将所求代数式中所有y和z都换成x,计算即可.【解答】解:∵(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2.∴(y﹣z)2﹣(y+z﹣2x)2+(x﹣y)2﹣(x+y﹣2z)2+(z﹣x)2﹣(z+x﹣2y)2=0,∴(y﹣z+y+z﹣2x)(y﹣z﹣y﹣z+2x)+(x﹣y+x+y﹣2z)(x﹣y﹣x﹣y+2z)+(z﹣x+z+x﹣2y)(z ﹣x﹣z﹣x+2y)=0,∴2x2+2y2+2z2﹣2xy﹣2xz﹣2yz=0,∴(x﹣y)2+(x﹣z)2+(y﹣z)2=0.∵x,y,z均为实数,∴x=y=z.∴==1.【点评】本题中多次使用完全平方公式,但使用技巧上有所区别,要仔细琢磨,灵活运用公式,会给解题带来益处.20.【分析】(1)用不剩的人数除以其所占的百分比即可;(2)用抽查的总人数减去其他三类的人数,再画出图形即可;(3)根据这次被调查的所有学生一餐浪费的食物可以供50人用一餐,再根据全校的总人数是18000人,列式计算即可.【解答】解:(1)这次被调查的学生共有600÷60%=1000人,故答案为:1000;(2)剩少量的人数为1000﹣(600+150+50)=200人,补全条形图如下:(3),答:估计该校18000名学生一餐浪费的食物可供900人食用一餐.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.【分析】(1)根据打折后购买的数量比打折前多10本,进而得出等式求出答案;(2)先求出打8折后的标价,再根据数量=总价÷单价,列式计算即可求解.【解答】解:(1)设笔打折前售价为x 元,则打折后售价为0.9x 元,由题意得:+10=,解得:x =4,经检验,x =4是原方程的根.答:打折前每支笔的售价是4元;(2)购入笔记本的数量为:360÷(4×0.8)=112.5(元).故该校最多可购入112本笔记本.【点评】此题主要考查了分式方程的应用,正确得出等量关系是解题关键.22.【分析】(1)在与一元二次方程有关的求值问题中,必须满足下列条件:(1)二次项系数不为零,(2)在有不相等的实数根下必须满足△=b 2﹣4ac >0,列方程解出答案;(2)根据题意解方程即可得到结论.【解答】解:(1)∵方程x 2+2(m ﹣1)x +m 2﹣1=0有两个不相等的实数根x 1,x 2.∴△=4(m ﹣1)2﹣4(m 2﹣1)=﹣8m +8>0,∴m <1;(2)存在实数m ,使得x 1x 2=0成立;∵x 1x 2=0,∴m 2﹣1=0,解得:m =﹣1或m =1,∴当m =1时,方程为x 2=0,有两个相等的实数根,与题意不符,舍去,∴m =﹣1.【点评】本题考查了一元二次方程根的判别式的应用,切记不要忽略一元二次方程二次项系数不为零这一隐含条件,难度适中.23.【分析】(1)过点A 作AP ⊥BD 于点P ,AF ⊥BC ,交CB 的延长线于点F ,可证四边形APBF 是正方形,可得AP =AF ,根据“HL ”可证Rt △APD ≌Rt △FAC ,可得∠DAP =∠FAC ,即可得∠DAC =90°;(2)过点F 作FM ⊥BC 于点M ,FN ⊥BD 于点N ,过点C 作CP ⊥BF 于点P ,在BD 上截取DH =BC ,连接AH ,根据角平分线的性质可得FN =FM ,根据S △DBF =2S △CBF ,可得BD =2BC ,即BH =DH =BC ,通过全等三角形的判定和性质可得AG =GC ;(3)由全等三角形的性质可得BG =PG =,根据勾股定理可求GC ,DC ,PF 的长,即可求GF 的长.【解答】解:(1)如图,过点A 作AP ⊥BD 于点P ,AF ⊥BC ,交CB 的延长线于点F ,∵AP ⊥BD ,AF ⊥BC ,BD ⊥BC∴四边形APBF 是矩形∵∠ABC =135°,∠DBC =90°,∴∠ABP =45°,且∠APB =90°,∴AP =PB ,∴四边形APBF 是正方形∴AP =AF ,且AD =AC ,∴Rt △APD ≌Rt △FAC (HL )∴∠DAP =∠FAC ,∵∠FAC +∠PAC =90°∴∠DAP +∠PAC =90°∴∠DAC =90°(2)如图,过点F 作FM ⊥BC 于点M ,FN ⊥BD 于点N ,过点C 作CP ⊥BF 于点P ,在BD 上截取DH =BC ,连接AH ,∵∠ABC =135°,∠ABF =90°,∴∠CBF =45°,且∠DBC =90°,∴∠DBF =∠CBF ,且FN ⊥BD ,FM ⊥BC ,∴FN =FM ,∵S △DBF =2S △CBF ,∴×2,∴BD =2BC ,∴BH =BD ﹣DH =BD ﹣BC =BC ,∵∠AED =∠BEC ,∠DAC =∠DBC =90°,∴∠ADH =∠ACB ,且AD =AC ,DH =BC ,∴△ADH ≌△ACB (SAS ),∴∠AHD =∠ABC =135°,AH =AB ,∴∠AHB =∠ABD =45°,∴∠HAB =90°,∵BC =BH ,∠HAB =∠BPC ,∠AHB =∠FBC =45°,∴△AHB ≌△PBC (AAS ),∴AB =PC ,∵AB =PC ,且∠ABP =∠BPC ,∠AGB =∠CGP ,∴△AGB ≌△CGP (AAS ),∴AG =GC(3)∵AB =3=CP ,∠PBC =45°,CP ⊥BF ,∴BP =3,∵△AGB ≌△CGP ,∴BG =GP =在Rt △PGC 中,CG ==∴AG =GC =∴AC =AD =3在Rt △ADC 中,CD ==3,∵S △DBF =2S △CBF ,∴DF =2FC∵DF +FC =DC∴CF =在Rt △PFC 中,PF ==1∴FG =PG +PF =1+=【点评】本题是四边形综合题,考查了正方形的判定和性质,全等三角形判定和性质,勾股定理,角平分线的性质等知识,添加恰当的辅助线构造全等三角形是本题的关键.24.【分析】(1)将A (﹣1,0)、B (3,0)代入二次函数y =ax 2+bx ﹣3a 求得a 、b 的值即可确定二次函数的解析式;(2)分别求得线段BC 、CD 、BD 的长,利用勾股定理的逆定理进行判定即可;(3)分以CD 为底和以CD 为腰两种情况讨论.运用两点间距离公式建立起P 点横坐标和纵坐标之间的关系,再结合抛物线解析式即可求解.【解答】解:(1)∵二次函数y =ax 2+bx ﹣3a 经过点A (﹣1,0)、C (0,3),∴根据题意,得,解得, ∴抛物线的解析式为y =﹣x 2+2x +3.(2)由y =﹣x 2+2x +3=﹣(x ﹣1)2+4得,D 点坐标为(1,4),∴CD ==,BC ==3,BD ==2,∵CD 2+BC 2=()2+(3)2=20,BD 2=(2)2=20, ∴CD 2+BC 2=BD 2,∴△BCD 是直角三角形;(3)存在.y =﹣x 2+2x +3对称轴为直线x =1.①若以CD 为底边,则P 1D =P 1C ,设P 1点坐标为(x ,y ),根据勾股定理可得P 1C 2=x 2+(3﹣y )2,P 1D 2=(x ﹣1)2+(4﹣y )2, 因此x 2+(3﹣y )2=(x ﹣1)2+(4﹣y )2,即y =4﹣x .又P 1点(x ,y )在抛物线上,∴4﹣x =﹣x 2+2x +3,即x 2﹣3x +1=0,解得x 1=,x 2=<1,应舍去,∴x=,∴y=4﹣x=,即点P1坐标为(,).②若以CD为一腰,∵点P2在对称轴右侧的抛物线上,由抛物线对称性知,点P2与点C关于直线x=1对称,此时点P2坐标为(2,3).∴符合条件的点P坐标为(,)或(2,3).【点评】考查了二次函数综合题,此题是一道典型的“存在性问题”,结合二次函数图象和等腰三角形、直角梯形的性质,考查了它们存在的条件,有一定的开放性.。
2021年山东省淄博市张店区中考数学一模试卷(word版 含答案)
参考答案
1.C
【分析】
根据相反数和绝对值的定义求出结果.
【详解】
解: ,它的相反数是 .
故选:C.
【点睛】
本题考查相反数和绝对值,解题的关键是掌握相反数和绝对值的定义.
2.B
【分析】
根据中心对称图形的概念解答即可.
(1)求反比例函数与一次函数的解析式;
(2)直接写出 的解集;
(3)若点 为 轴上一点,求使 的点 的坐标.
22.为准备参加“全国文明城市”评选,某市计划对 公里的道路进行维护.已知甲工程队每天维护道路的长度是乙工程队每天维护道路的长度的 倍,若甲、乙两个工程队分别独立完成整个任务,甲工程队比乙工程队少用 天.
10.A
【分析】
根据图象分析得出甲、乙两人相遇即甲、乙图象有交点进而得出答案.
【详解】
解:甲、乙两人相遇即甲、乙图象有交点,由图象可知
前2分钟共有3个交点,即相遇3次,
前3分钟共有5个交点,即相遇5次.
∵3分钟后,甲和乙的图像是一个循环,
∴从开始起到 分钟止,他们相遇的次数为5+3=8次;
故选:A.
A. B. C. D.
二、填空题
13.因式分解, ____.
14.运用科学计算器(如图是其面板的部分截图)进行计算,按键顺序如图:则计算器显示的结果是____________.
15.已知 , 是方程 的两个实数根,则 _____.
16.如图,在平面直角坐标系中有两条直线 , ,若 上的一点 到 的距离是 ,则点 的坐标为______.
过C作CD⊥AF,垂足为M,交AB于D,由 平分 ,且AM是DC边上的高,可得△DAC是等腰三角形,得AD=AC,可求BD=AB-AC=2 ,即可BD为定值,过M作MN∥BD交BF于N,又DM∥BN,可证四边形MNBD是平行四边形,可得MN=BD,在△MNF中,无论F在哪分支运动,有MN为定值,∠MFN=90°,作△MFN的外接圆,点F在以MN为直径的圆上运动,点F的运动轨迹以坐标原点为原心,以 为半径的圆,设圆与x轴负半轴的交点为K,则K坐标为(- ,0)求出PK=2 即可.
淄博市中考数学试卷及答案(解析)
山东省淄博市中考数学试卷一、选择题(共12小题,每小题4分)1.(4分)(山东淄博)计算(﹣3)2等于()A.﹣9 B.﹣6 C. 6 D.9考点:有理数的乘方.分析:根据负数的偶次幂等于正数,可得答案.解答:解:原式=32=9.故选:D.点评:本题考查了有理数的乘方,负数的偶次幂是正数.2.(4分)(山东淄博)方程﹣=0解是()A.x=B.x=C.x=D.x=﹣1考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:3x+3﹣7x=0,解得:x=,经检验x=是分式方程的解.故选B点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.3.(4分)(山东淄博)如图是交警在一个路口统计的某个时段来往车辆的车速(单位:千米/时)情况.则这些车的车速的众数、中位数分别是()A.8,6 B.8,5 C.52,53 D.52,52考点:频数(率)分布直方图;中位数;众数.专题:计算题.分析:找出出现次数最多的速度即为众数,将车速按照从小到大顺序排列,求出中位数即可.解答:解:根据题意得:这些车的车速的众数52千米/时,车速分别为50,50,51,51,51,51,51,52,52,52,52,52,52,52,52,53,53,53,53,53,53,54,54,54,54,55,55,中间的为52,即中位数为52千米/时,则这些车的车速的众数、中位数分别是52,52.故选D点评:此题考查了频数(率)分布直方图,中位数,以及众数,弄清题意是解本题的关键.4.(4分)(山东淄博)如图是三个大小不等的正方体拼成的几何体,其中两个较小正方体的棱长之和等于大正方体的棱长.该几何体的主视图、俯视图和左视图的面积分别是S1,S2,S3,则S1,S2,S3的大小关系是()A.S1>S2>S3B.S3>S2>S1C.S2>S3>S1D.S1>S3>S2考点:简单组合体的三视图.分析:根据从正面看得到的图形是主视图,从上面看得到的图形是俯视图,从左面看得到的图形是左视图,根据边角面积的大小,可得答案.解答:解:主视图的面积是三个正方形的面积,左视图是两个正方形的面积,俯视图是一个正方形的面积,S1>S3>S2,故选:D.点评:本题考查了简单组合体的三视图,分别得出三视图是解题关键.5.(4分)(山东淄博)一元二次方程x2+2x﹣6=0的根是()A.x1=x2=B.x1=0,x2=﹣2C.x1=,x2=﹣3D.x1=﹣,x2=3考点:解一元二次方程-公式法.分析:找出方程中二次项系数a,一次项系数b及常数项c,再根据x=,将a,b及c的值代入计算,即可求出原方程的解.解答:解:∵a=1,b=2,c=﹣6∴x====﹣±2,∴x1=,x2=﹣3;故选C.点评:此题考查了利用公式法求一元二次方程的解,利用公式法解一元二次方程时,首先将方程化为一般形式,找出二次项系数,一次项系数及常数项,计算出根的判别式,当根的判别式大于等于0时,将a,b及c的值代入求根公式即可求出原方程的解.6.(4分)(山东淄博)当x=1时,代数式ax3﹣3bx+4的值是7,则当x=﹣1时,这个代数式的值是()A.7 B. 3 C. 1 D.﹣7考点:代数式求值.专题:整体思想.分析:把x=1代入代数式求值a、b的关系式,再把x=﹣1代入进行计算即可得解.解答:解:x=1时,ax3﹣3bx+4=a﹣3b+4=7,解得a﹣3b=3,当x=﹣1时,ax3﹣3bx+4=﹣a+3b+4=﹣3+4=1.故选C.点评:本题考查了代数式求值,整体思想的利用是解题的关键.7.(4分)(山东淄博)如图,等腰梯形ABCD中,对角线AC、DB相交于点P,∠BAC=∠CDB=90°,AB=AD=DC.则cos∠DPC的值是()A.B. C. D.考点:等腰梯形的性质.分析:先根据等腰三角形的性质得出∠DAB+∠BAC=180°,AD∥BC,故可得出∠DAP=∠ACB,∠ADB=∠ABD,再由AB=AD=DC可知∠ABD=∠ADB,∠DAP=∠ACD,所以∠DAP=∠ABD=∠DBC,再根据∠BAC=∠CDB=90°可知,3∠ABD=90°,故∠ABD=30°,再由直角三角形的性质求出∠DPC的度数,进而得出结论.解答:解:∵梯形ABCD是等腰梯形,∴∠DAB+∠BAC=180°,AD∥BC,∴∠DAP=∠ACB,∠ADB=∠ABD,∵AB=AD=DC,∴∠ABD=∠ADB,∠DAP=∠ACD,∴∠DAP=∠ABD=∠DBC,∵∠BAC=∠CDB=90°,∴3∠ABD=90°,∴∠ABD=30°,在△ABP中,∵∠ABD=30°,∠BAC=90°,∴∠APB=60°,∴∠DPC=60°,∴cos∠DPC=cos60°=.故选A.点评:本题考查的是等腰梯形的性质,熟知等腰梯形同一底上的两个角相等是解答此题的关键.8.(4分)(山东淄博)如图,二次函数y=x2+bx+c的图象过点B(0,﹣2).它与反比例函数y=﹣的图象交于点A(m,4),则这个二次函数的解析式为()A.y=x2﹣x﹣2 B.y=x2﹣x+2 C.y=x2+x﹣2 D.y=x2+x+2考点:待定系数法求二次函数解析式;反比例函数图象上点的坐标特征.专题:计算题.分析:将A坐标代入反比例解析式求出m的值,确定出A的坐标,将A与B坐标代入二次函数解析式求出b与c的值,即可确定出二次函数解析式.解答:解:将A(m,4)代入反比例解析式得:4=﹣,即m=﹣2,∴A(﹣2,4),将A(﹣2,4),B(0,﹣2)代入二次函数解析式得:,解得:b=﹣1,c=﹣2,则二次函数解析式为y=x2﹣x﹣2.故选A.点评:此题考查l待定系数法求二次函数解析式,以及反比例函数图象上点的坐标特征,熟练掌握待定系数法是解本题的关键.9.(4分)(山东淄博)如图,ABCD是正方形场地,点E在DC的延长线上,AE与BC相交于点F.有甲、乙、丙三名同学同时从点A出发,甲沿着A﹣B﹣F﹣C的路径行走至C,乙沿着A﹣F﹣E﹣C﹣D的路径行走至D,丙沿着A﹣F﹣C﹣D的路径行走至D.若三名同学行走的速度都相同,则他们到达各自的目的地的先后顺序(由先至后)是()A.甲乙丙B.甲丙乙C.乙丙甲D.丙甲乙考点:正方形的性质;线段的性质:两点之间线段最短;比较线段的长短.分析:根据正方形的性质得出AB=BC=CD=AD,∠B=∠ECF,根据直角三角形得出AF>AB,EF>CF,分别求出甲、乙、丙行走的距离,再比较即可.解答:解:∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=90°,甲行走的距离是AB+BF+CF=AB+BC=2AB;乙行走的距离是AF+EF+EC+CD;丙行走的距离是AF+FC+CD,∵∠B=∠ECF=90°,∴AF>AB,EF>CF,∴AF+FC+CD>2AB,AF+FC+CD<AF+EF+EC+CD,∴甲比丙先到,丙比乙先到,即顺序是甲丙乙,故选B.点评:本题考查了正方形的性质,直角三角形的性质的应用,题目比较典型,难度适中.10.(4分)(山东淄博)如图,矩形纸片ABCD中,点E是AD的中点,且AE=1,BE的垂直平分线MN恰好过点C.则矩形的一边AB的长度为()A. 1 B. C. D. 2考点:勾股定理;线段垂直平分线的性质;矩形的性质.分析:本题要依靠辅助线的帮助,连接CE,首先利用线段垂直平分线的性质证明BC=EC.求出EC后根据勾股定理即可求解.解答:解:如图,连接EC.∵FC垂直平分BE,∴BC=EC(线段垂直平分线的性质)又∵点E是AD的中点,AE=1,AD=BC,故EC=2利用勾股定理可得AB=CD==.故选:C.点评:本题考查的是勾股定理、线段垂直平分线的性质以及矩形的性质,本题的关键是要画出辅助线,证明BC=EC后易求解.本题难度中等.11.(4分)(山东淄博)如图,直线AB与⊙O相切于点A,弦CD∥AB,E,F为圆上的两点,且∠CDE=∠ADF.若⊙O的半径为,CD=4,则弦EF的长为()A. 4 B.2C.5D. 6 考点:切线的性质.分析:首先连接OA,并反向延长交CD于点H,连接OC,由直线AB与⊙O相切于点A,弦CD∥AB,可求得OH的长,然后由勾股定理求得AC的长,又由∠CDE=∠ADF,可证得EF=AC,继而求得答案.解答:解:连接OA,并反向延长交CD于点H,连接OC,∵直线AB与⊙O相切于点A,∴OA⊥AB,∵弦CD∥AB,∴AH⊥CD,∴CH=CD=×4=2,∵⊙O的半径为,∴OA=OC=,∴OH==,∴AH=OA+OH=+=4,∴AC==2.∵∠CDE=∠ADF,∴=,∴=,∴EF=AC=2.故选B.点评:此题考查了切线的性质、圆周角定理、垂径定理以及勾股定理等知识.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.12.(4分)(山东淄博)已知二次函数y=a(x﹣h)2+k(a>0),其图象过点A(0,2),B(8,3),则h的值可以是()A. 6 B. 5 C. 4 D. 3考点:二次函数的性质.专题:计算题.分析:根据抛物线的顶点式得到抛物线的对称轴为直线x=h,由于所给数据都是正数,所以当对称轴在y轴的右侧时,比较点A和点B都对称轴的距离可得到h<4.解答:解:∵抛物线的对称轴为直线x=h,∴当对称轴在y轴的右侧时,A(0,2)到对称轴的距离比B(8,3)到对称轴的距离小,∴x=h<4.故选D.点评:本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣,),对称轴直线x=﹣,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:①当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<﹣时,y随x的增大而减小;x>﹣时,y随x的增大而增大;x=﹣时,y取得最小值,即顶点是抛物线的最低点.②当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<﹣时,y随x的增大而增大;x>﹣时,y随x的增大而减小;x=﹣时,y取得最大值,即顶点是抛物线的最高点.二、填空题(共5小题,每小题4分,满分20分)13.(4分)(山东淄博)分解因式:8(a2+1)﹣16a=8(a﹣1)2.考点:提公因式法与公式法的综合运用.分析:首先提取公因式8,进而利用完全平方公式分解因式得出即可.解答:解:8(a2+1)﹣16a=8(a2+1﹣2a)=8(a﹣1)2.故答案为:8(a﹣1)2.点评:此题主要考查了提取公因式法以及公式法分解因式,熟练应用完全平方公式是解题关键.14.(4分)(山东淄博)某实验中学九年级(1)班全体同学的综合素质评价“运动与健康”方面的等级统计如图所示,其中评价为“A”所在扇形的圆心角是108度.考点:扇形统计图.分析:首先计算出A部分所占百分比,再利用360°乘以百分比可得答案.解答:解:A所占百分比:100%﹣15%﹣20%﹣35%=30%,圆心角:360°×30%=108°,故答案为:108.点评:此题主要考查了扇形统计图,关键是掌握圆心角度数=360°×所占百分比.15.(4分)(山东淄博)已知▱ABCD,对角线AC,BD相交于点O,请你添加一个适当的条件,使▱ABCD成为一个菱形,你添加的条件是AD=DC.考点:菱形的判定;平行四边形的性质.专题:开放型.分析:根据菱形的定义得出答案即可.解答:解:∵邻边相等的平行四边形是菱形,∴平行四边形AB CD的对角线AC、BD相交于点O,试添加一个条件:可以为:AD=DC;故答案为:AD=DC.点评:此题主要考查了菱形的判定以及平行四边形的性质,根据菱形的定义得出是解题关键.16.(4分)(山东淄博)关于x的反比例函数y=的图象如图,A、P为该图象上的点,且关于原点成中心对称.△PAB中,PB∥y轴,AB∥x轴,PB与AB相交于点B.若△PAB的面积大于12,则关于x的方程(a﹣1)x2﹣x+=0的根的情况是没有实数根.考点:根的判别式;反比例函数的性质.分析:由比例函数y=的图象位于一、三象限得出a+4>0,A、P为该图象上的点,且关于原点成中心对称,得出2xy>12,进一步得出a+4>6,由此确定a的取值范围,进一步利用根的判别式判定方程根的情况即可.解答:解:∵反比例函数y=的图象位于一、三象限,∴a+4>0,a>﹣4,∵A、P关于原点成中心对称,PB∥y轴,AB∥x轴,△PAB的面积大于12,∴2xy>12,即a+4>6,a>2∴a>2.∴△=(﹣1)2﹣4(a﹣1)×=2﹣a<0,∴关于x的方程(a﹣1)x2﹣x+=0没有实数根.故答案为:没有实数根.点评:此题综合考查了反比例函数的图形与性质,一元二次方程根的判别式,注意正确判定a的取值范围是解决问题的关键.17.(4分)(山东淄博)如图,在正方形网格中有一边长为4的平行四边形ABCD,请将其剪拼成一个有一边长为6的矩形.(要求:在答题卡的图中画出裁剪线即可)考点:作图—应用与设计作图;图形的剪拼.分析:如图先过D点向下剪出一个三角形放在平行四边形的左边,再在剪去D点下面两格的小正方形放在右面,就组成了一人矩形.解答:解:如图:点评:本题一方面考查了学生的动手操作能力,另一方面考查了学生的空间想象能力,重视知识的发生过程,让学生体验学习的过程.三、解答题(共7小题,共52分)18.(5分)(山东淄博)计算:•.考点:分式的乘除法.专题:计算题.分析:原式约分即可得到结果.解答:解:原式=•=.点评:此题考查了分式的乘除法,熟练掌握运算法则是解本题的关键.19.(5分)(山东淄博)如图,直线a∥b,点B在直线上b上,且AB⊥BC,∠1=55°,求∠2的度数.考点:平行线的性质.分析:根据垂直定义和邻补角求出∠3,根据平行线的性质得出∠2=∠3,代入求出即可.解答:解:∵AB⊥BC,∴∠ABC=90°,∴∠1+∠3=90°,∵∠1=55°,∴∠3=35°,∵a∥b,∴∠2=∠3=35°.点评:本题考查了垂直定义,平行线的性质的应用,注意:两直线平行,同位角相等.20.(8分)(山东淄博)节能灯根据使用寿命分成优等品、正品和次品三个等级,其中使用寿命大于或等于8000小时的节能灯是优等品,使用寿命小于6000小时的节能灯是次品,其余的节能灯是正品.质检部门对某批次的一种节能灯(共200个)的使用寿命进行追踪调查,并将结果整理成此表.(1)根据分布表中的数据,在答题卡上写出a,b,c的值;(2)某人从这200个节能灯中随机购买1个,求这种节能灯恰好不是次品的概率.寿命(小时)频数频率4000≤t≤5000 10 0.055000≤t<6000 20 a6000≤t<7000 80 0.407000≤t<8000 b 0.158000≤t<9000 60 c合计 200 1考点:频数(率)分布表;概率公式.分析:(1)由频率分布表中的数据,根据频率=频数÷数据总数及频数=数据总数×频率即可求出a、b、c的值;(2)根据频率分布表中的数据,用不是次品的节能灯个数除以节能灯的总个数即可求解.解答:解:(1)根据频率分布表中的数据,得a==0.1,b=200×0.15=30,c==0.3;(Ⅱ)设“此人购买的节能灯恰好不是次品”为事件A.由表可知:这批灯泡中优等品有60个,正品有110个,次品有30个,所以此人购买的节能灯恰好不是次品的概率为P(A)==0.85.点评:本题考查了读频数(率)分布表的能力和利用统计图获取信息的能力及古典概型的概率,用到的知识点:频率=频数÷数据总数,概率=所有出现的情况数与总数之比.21.(8分)(山东淄博)为鼓励居民节约用电,某省试行阶段电价收费制,具体执行方案如表:档次每户每月用电数(度)执行电价(元/度)第一档小于等于200 0.55第二档大于200小于400 0.6第三档大于等于400 0.85例如:一户居民七月份用电420度,则需缴电费420×0.85=357(元).某户居民五、六月份共用电500度,缴电费290.5元.已知该用户六月份用电量大于五月份,且五、六月份的用电量均小于400度.问该户居民五、六月份各月电多少度?考点:二元一次方程组的应用.分析:某户居民五、六月份共用电500度,就可以得出每月用电量不可能都在第一档,分情况讨论,当5月份用电量为x度≤200度,6月份用电(500﹣x)度,当5月份用电量为x 度>200度,六月份用电量为(500﹣x)度>x度,分别建立方程求出其解即可.解答:解:当5月份用电量为x度≤200度,6月份用电(500﹣x)度,由题意,得0.55x+0.6(500﹣x)=290.5,解得:x=190,∴6月份用电500﹣x=310度.当5月份用电量为x度>200度,六月份用电量为(500﹣x)度,由题意,得0.6x+0.6(500﹣x)=290.5,300=290.5,原方程无解.∴5月份用电量为190度,6月份用电310度.点评:本题考查了列一元一次方程解实际问题的运用,一元一次方程的解法的运用,分类讨论思想的运用,解答时由总价=单价×数量是关键.22.(8分)(山东淄博)如图,在直角坐标系中,点A的坐标是(0.3),点C是x轴上的一个动点,点C在x轴上移动时,始终保持△ACP是等边三角形.当点C移动到点O时,得到等边三角形A OB(此时点P与点B重合).(1)点C在移动的过程中,当等边三角形ACP的顶点P在第三象限时(如图),求证:△AOC≌△ABP;由此你发现什么结论?(2)求点C在x轴上移动时,点P所在函数图象的解析式.考点:一次函数综合题.分析:(1)由等边三角形的性质易证AO=AB,AC=AP,∠CAP=∠OAB=60°;然后由图示知∠CAP+∠PAO=∠OAB+∠PAO,即∠CAO=∠PAB.所以根据SAS证得结论;(2)利用(1)中的结论PB⊥AB.根据等边三角形的性质易求点B的坐标为B(,).再由旋转的性质得到当点P移动到y轴上的坐标是(0,﹣3),所以根据点B、P的坐标易求直线BP的解析式.解答:(1)证明:∵△AOB与△ACP都是等边三角形,∴AO=AB,AC=AP,∠CAP=∠OAB=60°,∴∠CAP+∠PAO=∠OAB+∠PAO,∴∠CAO=∠PAB,在△AOC与△ABP中,∴△AOC≌△ABP(SAS).∴∠COA=∠PBA=90°,∴点P在过点B且与AB垂直的直线上或PB⊥AB或∠ABP=90°.故结论是:点P在过点B且与AB垂直的直线上或PB⊥AB或∠ABP=90°;(2)解:点P在过点B且与AB垂直的直线上.∵△AOB是等边三角形,A(0,3),∴B(,).当点C移动到点P在y轴上时,得P(0,﹣3).设点P所在的直线方程为:y=kx+b(k≠0).把点B、P的坐标分别代入,得,解得,所以点P所在的函数图象的解析式为:y=x﹣3.点评:本题综合考查了待定系数法求一次函数解析式,旋转的性质,全等三角形的判定与性质等知识.解答(2)题时,求得点P位于y轴负半轴上的坐标是解题的关键.23.(9分)(山东淄博)如图,四边形ABCD中,AC⊥BD交BD于点E,点F,M分别是AB,BC的中点,BN平分∠ABE交AM于点N,AB=AC=BD.连接MF,NF.(1)判断△BMN的形状,并证明你的结论;(2)判断△MFN与△BDC之间的关系,并说明理由.考点:相似三角形的判定与性质;等腰直角三角形;三角形中位线定理.分析:(1)根据等腰三角形的性质,可得AM是高线、顶角的角平分线,根据直角三角形的性质,可得∠EAB+∠EBA=90°,根据三角形外角的性质,可得答案;(2)根据三角形中位线的性质,可得MF与AC的关系,根据等量代换,可得MF与BD 的关系,根据等腰直角三角形,可得BM与NM的关系,根据等量代换,可得NM与BC 的关系,根据同角的余角相等,可得∠CBD与∠NMF的关系,根据两边对应成比例且夹角相等的两个三角形相似,可得答案.解答:(1)答:△BMN是等腰直角三角形.证明:∵AB=AC,点M是BC的中点,∴AM⊥BC,AM平分∠BAC.∵BN平分∠ABE,AC⊥BD,∴∠AEB=90°,∴∠EAB+∠EBA=90°,∴∠MNB=∠NAB+∠ABN=(∠BAE+∠ABE)=45°.∴△BMN是等腰直角三角形;(2)答:△MFN∽△BDC.证明:∵点F,M分别是AB,BC的中点,∴FM∥AC,FM=AC.∵AC=BD,∴FM=BD,即.∵△BMN是等腰直角三角形,∴NM=BM=BC,即,∴.∵AM⊥BC,∴∠NMF+∠FMB=90°.∵FM∥AC,∴∠ACB=∠FMB.∵∠CEB=90°,∴∠ACB+∠CBD=90°.∴∠CBD+∠FMB=90°,∴∠NMF=∠CBD.∴△MFN∽△BDC.点评:本题考查了相似三角形的判定与性质,利用了锐角是45°的直角三角形是等腰直角三角形,两边对应成比例且夹角相等的两个三角形相似.24.(9分)(山东淄博)如图,点A与点B的坐标分别是(1,0),(5,0),点P是该直角坐标系内的一个动点.(1)使∠APB=30°的点P有无数个;(2)若点P在y轴上,且∠APB=30°,求满足条件的点P的坐标;(3)当点P在y轴上移动时,∠APB是否有最大值?若有,求点P的坐标,并说明此时∠APB最大的理由;若没有,也请说明理由.考点:圆的综合题;三角形的外角性质;等边三角形的性质;勾股定理;矩形的判定与性质;垂径定理;圆周角定理;切线的性质.专题:综合题;探究型.分析:(1)已知点A、点B是定点,要使∠APB=30°,只需点P在过点A、点B的圆上,且弧AB所对的圆心角为60°即可,显然符合条件的点P有无数个.(2)结合(1)中的分析可知:当点P在y轴的正半轴上时,点P是(1)中的圆与y轴的交点,借助于垂径定理、等边三角形的性质、勾股定理等知识即可求出符合条件的点P的坐标;当点P在y轴的负半轴上时,同理可求出符合条件的点P的坐标.(3)由三角形外角的性质可证得:在同圆或等圆中,同弧所对的圆周角大于同弧所对的圆外角.要∠APB最大,只需构造过点A、点B且与y轴相切的圆,切点就是使得∠APB最大的点P,然后结合切线的性质、三角形外角的性质、矩形的判定与性质、勾股定理等知识即可解决问题.解答:解:(1)以AB为边,在第一象限内作等边三角形ABC,以点C为圆心,AC为半径作⊙C,交y轴于点P1、P2.在优弧AP1B上任取一点P,如图1,则∠APB=∠ACB=×60°=30°.∴使∠APB=30°的点P有无数个.故答案为:无数.(2)①当点P在y轴的正半轴上时,过点C作CG⊥AB,垂足为G,如图1.∵点A(1,0),点B(5,0),∴OA=1,OB=5.∴AB=4.∵点C为圆心,CG⊥AB,∴AG=BG=AB=2.∴OG=OA+AG=3.∵△ABC是等边三角形,∴AC=BC=AB=4.∴CG===2.∴点C的坐标为(3,2).过点C作CD⊥y轴,垂足为D,连接CP2,如图1,∵点C的坐标为(3,2),∴CD=3,OD=2.∵P1、P2是⊙C与y轴的交点,∴∠AP1B=∠AP2B=30°.∵CP2=CA=4,CD=3,∴DP2==.∵点C为圆心,CD⊥P1P2,∴P1D=P2D=.∴P2(0,2﹣).P1(0,2+).②当点P在y轴的负半轴上时,同理可得:P3(0,﹣2﹣).P4(0,﹣2+).综上所述:满足条件的点P的坐标有:(0,2﹣)、(0,2+)、(0,﹣2﹣)、(0,﹣2+).(3)当过点A、B的⊙E与y轴相切于点P时,∠APB最大.①当点P在y轴的正半轴上时,连接EA,作EH⊥x轴,垂足为H,如图2.∵⊙E与y轴相切于点P,∴PE⊥OP.∵EH⊥AB,OP⊥OH,∴∠EPO=∠POH=∠EHO=90°.∴四边形OPEH是矩形.∴OP=EH,PE=OH=3.∴EA=3.∵∠EHA=90°,AH=2,EA=3,∴EH===∴OP=∴P(0,).②当点P在y轴的负半轴上时,同理可得:P(0,﹣).理由:①若点P在y轴的正半轴上,在y轴的正半轴上任取一点M(不与点P重合),连接MA,MB,交⊙E于点N,连接NA,如图2所示.∵∠ANB是△AMN的外角,∴∠ANB>∠AMB.∵∠APB=∠ANB,∴∠APB>∠AMB.②若点P在y轴的负半轴上,同理可证得:∠APB>∠AMB.综上所述:当点P在y轴上移动时,∠APB有最大值,此时点P的坐标为(0,)和(0,﹣).点评:本题考查了垂径定理、圆周角定理、勾股定理、等边三角形的性质、矩形的判定与性质,切线的性质、三角形外角性质等知识,综合性强.同时也考查了创造性思维,有一定的难度.构造辅助圆是解决本题关键.。
淄博市沂源县中考数学一模试卷(1)含答案解析
山东省淄博市沂源县中考数学一模试卷一、选择题:本题共12小题,在每小题所给出的四个选项中,只有一个是正确的,请把正确的选项选出来.每小题4分,共48分,错选、不选或选出的答案超出一个,均记0分. 1.下列计算正确的是()A.(a+b)2=a2+b2B.(ab)2=ab2C.a•a2=a3D.(a3)2=a52.已知实数a、b,若a>b,则下列结论正确的是()A.a﹣5<b﹣5 B.2+a<2+b C.D.3a>3b3.化简的值是()A.﹣3 B.3 C.±3 D.94.如图是小刚的一张脸,他对妹妹说“如果我用(0,2)表示左眼,用(2,2)表示右眼,那么嘴的位置可以表示成()A.(1,0)B.(﹣1,0) C.(﹣1,1) D.(1,﹣1)5.化简的结果是()A.B.a C.a﹣1 D.6.在下列四种图形变换中,本题图案不包含的变换是()A.位似B.旋转C.轴对称D.平移7.下列说法正确的是()A.求sin30°的按键顺序是、30、=B.求23的按键顺序、2、、3、=C.求的按键顺序是、、8、=D.已知sinA=0.5018,用计算器求锐角A的大小,按键顺序是、、0.5018、=8.用八个同样大小的小立方体粘成一个大立方体如图1,得到的几何体的三视图如图2所示,若小明从八个小立方体中取走若干个,剩余小立方体保持原位置不动,并使得到的新几何体的三视图仍是图2,则他取走的小立方体最多可以是()A.1个B.2个C.3个D.4个9.小明在超市帮妈妈买回一袋纸杯,他把纸杯整齐地叠放在一起,如图请你根据图中的信息,若小明把100个纸杯整齐叠放在一起时,它的高度约是()A.106cm B.110cm C.114cm D.116cm10.如图,在平面直角坐标系中,在x轴、y轴的正半轴上分别截取OA、OB,使OA=OB;再分别以点A、B为圆心,以大于AB长为半径作弧,两弧交于点C.若点C的坐标为(m﹣1,2n),则m与n的关系为()A.m+2n=1 B.m﹣2n=1 C.2n﹣m=1 D.n﹣2m=111.如图,已知A、B两点的坐标分别为(2,0)、(0,2),⊙C的圆心坐标为(﹣1,0),半径为1.若D是⊙C上的一个动点,线段DA与y轴交于点E,则△ABE面积的最小值是()A.2 B.1 C.D.12.在平面直角坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D 的坐标为(0,2),延长CB交x轴于点A1,作正方形A1B1C1C;延长C1B1交x轴于点A2,作正方形A2B2C2C1;…,按这样的规律进行下去,第个正方形的面积为()A.5×()B.5×()C.5×()D.5×()4032二、填空题:本题共5小题,每小题4分,共20分,只要求填写最后结果.13.分解因式:x2+2x=.14.有四张不透明的卡片,正面写有不同命题(见图),背面完全相同.将这四张卡片背面朝上洗匀后,随机抽取一张,得到正面上命题是真命题的概率为.15.如图,△ABC中,∠ACB=90°,AB=8cm,D是AB的中点.现将△BCD沿BA方向平移1cm,得到△EFG,FG交AC于H,则GH的长等于cm.16.如图,正方形ABCD的边长为3cm,E为CD边上一点,∠DAE=30°,M为AE的中点,过点M作直线分别与AD、BC相交于点P、Q.若PQ=AE,则AP等于cm.17.如图,▱OABC的顶点B、C在第一象限,点A的坐标为(3,0),D为边AB的中点,反比例函数y=(k>0)的图象经过点C、D两点,若∠COA=60°,则k的值为.三、解答题:本大题共7小题,共52分.解答要写出必要的文字说明、证明过程或演算步骤.18.解一元一次不等式组.19.已知:如图,E,F分别是▱ABCD的边AD,BC的中点.求证:AF=CE.20.从1月7日起,中国中东部大部分地区持续出现雾霾天气.某市记者为了了解”雾霾天气的主要原因“,随机调查了该市部分市民,并对调查结果进行整理.绘制了如下尚不完整的统计图表.组别观点频数(人数)A 大气气压低,空气不流动80B 地面灰尘大,空气湿度低mC 汽车尾气排放nD 工厂造成的污染120E 其他60请根据图表中提供的信息解答下列问题:(1)填空:m=,n=.扇形统计图中E组所占的百分比为%;(2)若该市人口约有100万人,请你估计其中持D组“观点”的市民人数;(3)若在这次接受调查的市民中,随机抽查一人,则此人持C组“观点”的概率是多少?21.校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于21米,在l上点D的同侧取点A、B,使∠CAD=30°,∠CBD=60°.(1)求AB的长(精确到0.1米,参考数据: =1.73, =1.41);(2)已知本路段对校车限速为40千米/小时,若测得某辆校车从A到B用时2秒,这辆校车是否超速?说明理由.22.已知关于x的一元二次方程x2﹣(2k+1)x+k2+2k=0有两个实数根x1,x2.(1)求实数k的取值范围;(2)是否存在实数k使得x1•x2﹣x12﹣x22≥0成立?若存在,请求出k的值;若不存在,请说明理由.23.如图,Rt△ABC中,∠C=90°,BC=6,AC=8.点P,Q都是斜边AB上的动点,点P 从B向A运动(不与点B重合),点Q从A向B运动,BP=AQ.点D,E分别是点A,B 以Q,P为对称中心的对称点,HQ⊥AB于Q,交AC于点H.当点E到达顶点A时,P,Q同时停止运动.设BP的长为x,△HDE的面积为y.(1)求证:△DHQ∽△ABC;(2)求y关于x的函数解析式并求y的最大值;(3)当x为何值时,△HDE为等腰三角形?24.已知:△ABC的高AD所在直线与高BE所在直线相交于点F.(1)如图1,若△ABC为锐角三角形,且∠ABC=45°,过点F作FG∥BC,交直线AB于点G,求证:FG+DC=AD;(2)如图2,若∠ABC=135°,过点F作FG∥BC,交直线AB于点G,则FG、DC、AD 之间满足的数量关系是;(3)在(2)的条件下,若AG=,DC=3,将一个45°角的顶点与点B重合并绕点B 旋转,这个角的两边分别交线段FG于M、N两点(如图3),连接CF,线段CF分别与线段BM、线段BN相交于P、Q两点,若NG=,求线段PQ的长.山东省淄博市沂源县中考数学一模试卷参考答案与试题解析一、选择题:本题共12小题,在每小题所给出的四个选项中,只有一个是正确的,请把正确的选项选出来.每小题4分,共48分,错选、不选或选出的答案超出一个,均记0分. 1.下列计算正确的是()A.(a+b)2=a2+b2B.(ab)2=ab2C.a•a2=a3D.(a3)2=a5【考点】完全平方公式;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据积的乘方、完全平方公式、同底数幂的乘法,即可解答.【解答】解:A、(a+b)2=a2+2ab+b2,故错误;B、(ab)2=a2b2,故错误;C、a•a2=a3,正确;D、(a3)2=a6,故错误;故选:C.2.已知实数a、b,若a>b,则下列结论正确的是()A.a﹣5<b﹣5 B.2+a<2+b C.D.3a>3b【考点】不等式的性质.【分析】以及等式的基本性质即可作出判断.【解答】解:A、a>b,则a﹣5>b﹣5,选项错误;B、a>b,则2+a>2+b,选项错误;C、a>b,则>,选项错误;D、正确.故选D.3.化简的值是()A.﹣3 B.3 C.±3 D.9【考点】二次根式的性质与化简.【分析】由于=|a|,由此即可化简求解.【解答】解: =3.故选B.4.如图是小刚的一张脸,他对妹妹说“如果我用(0,2)表示左眼,用(2,2)表示右眼,那么嘴的位置可以表示成()A.(1,0)B.(﹣1,0) C.(﹣1,1) D.(1,﹣1)【考点】坐标确定位置.【分析】由“左眼”位置点的坐标为(0,2),“右眼”点的坐标为(2,2)可以确定平面直角坐标系中x轴与y轴的位置,从而可以确定“嘴”的坐标.【解答】解:根据题意,坐标原点是嘴所在的行和左眼所在的列的位置,所以嘴的坐标是(1,0),故选A.5.化简的结果是()A.B.a C.a﹣1 D.【考点】分式的乘除法.【分析】本题考查的是分式的除法运算,做除法运算时要转化为乘法的运算,注意先把分子、分母能因式分解的先分解,然后约分.【解答】解: =×=a.故选B.6.在下列四种图形变换中,本题图案不包含的变换是()A.位似B.旋转C.轴对称D.平移【考点】几何变换的类型.【分析】观察本题中图案的特点,根据对称、平移、旋转、位似的定义作答.【解答】解:A、符合位似图形的定义,本题图案包含位似变换.错误;B、将图形绕着中心点旋转40°的整数倍后均能与原图形重合,本题图案包含旋转变换.错误;C、有9条对称轴,本题图案包含轴对称变换.错误;D、图形的方向发生了改变,不符合平移的定义,本题图案不包含平移变换.正确.故选:D.7.下列说法正确的是()A.求sin30°的按键顺序是、30、=B.求23的按键顺序、2、、3、=C.求的按键顺序是、、8、=D.已知sinA=0.5018,用计算器求锐角A的大小,按键顺序是、、0.5018、=【考点】计算器—三角函数;计算器—数的开方.【分析】根据计算器求三角函数、计算器乘方、开方的方法解答即可.【解答】解:求sin30°的按键顺序是、30、=,A正确;求23的按键顺序2、、3、=,B错误;求的按键顺序是、8、=,C错误;已知sinA=0.5018,用计算器求锐角A的大小,按键顺序是先按shift键、0.5018、=,D错误,故选:A.8.用八个同样大小的小立方体粘成一个大立方体如图1,得到的几何体的三视图如图2所示,若小明从八个小立方体中取走若干个,剩余小立方体保持原位置不动,并使得到的新几何体的三视图仍是图2,则他取走的小立方体最多可以是()A.1个B.2个C.3个D.4个【考点】由三视图判断几何体.【分析】由于从八个小立方体中取走若干个,剩余小立方体保持原位置不动,并使得到的新几何体的三视图都相同,由主视图可知有2层2列,由左视图可知有2层2行,由俯视图可知最少有2个小立方体.【解答】解:由主视图和左视图可得每一层的每一行每一列都要保留一个立方体,故取走的小立方体最多可以是4个.具体可参看图形:故选D.9.小明在超市帮妈妈买回一袋纸杯,他把纸杯整齐地叠放在一起,如图请你根据图中的信息,若小明把100个纸杯整齐叠放在一起时,它的高度约是()A.106cm B.110cm C.114cm D.116cm【考点】二元一次方程组的应用.【分析】仔细观察图形,可知题中有两个等量关系:单独一个纸杯的高度+3个纸杯叠放在一起高出单独一个纸杯的高度=9,单独一个纸杯的高度+8个纸杯叠放在一起高出单独一个纸杯的高度=14.根据这两个等量关系,可列出方程组,再求解.【解答】解:设每两个纸杯叠放在一起比单独的一个纸杯增高xcm,单独一个纸杯的高度为ycm,则,解得则99x+y=99×1+7=106即把100个纸杯整齐的叠放在一起时的高度约是106cm.故选A.10.如图,在平面直角坐标系中,在x轴、y轴的正半轴上分别截取OA、OB,使OA=OB;再分别以点A、B为圆心,以大于AB长为半径作弧,两弧交于点C.若点C的坐标为(m﹣1,2n),则m与n的关系为()A.m+2n=1 B.m﹣2n=1 C.2n﹣m=1 D.n﹣2m=1【考点】全等三角形的判定与性质;坐标与图形性质;三角形的角平分线、中线和高.【分析】根据OA=OB;再分别以点A、B为圆心,以大于AB长为半径作弧,两弧交于点C,得出C点在∠BOA的角平分线上,进而得出C点横纵坐标相等,进而得出答案.【解答】解:∵OA=OB;分别以点A、B为圆心,以大于AB长为半径作弧,两弧交于点C,∴C点在∠BOA的角平分线上,∴C点到横纵坐标轴距离相等,进而得出,m﹣1=2n,即m﹣2n=1.故选:B.11.如图,已知A、B两点的坐标分别为(2,0)、(0,2),⊙C的圆心坐标为(﹣1,0),半径为1.若D是⊙C上的一个动点,线段DA与y轴交于点E,则△ABE面积的最小值是()A.2 B.1 C.D.【考点】切线的性质;坐标与图形性质;三角形的面积;相似三角形的判定与性质.【分析】由于OA的长为定值,若△ABE的面积最小,则BE的长最短,此时AD与⊙O 相切;可连接CD,在Rt△ADC中,由勾股定理求得AD的长,即可得到△ADC的面积;易证得△AEO∽△ACD,根据相似三角形的面积比等于相似比的平方,可求出△AOE的面积,进而可得出△AOB和△AOE的面积差,由此得解.【解答】解:若△ABE的面积最小,则AD与⊙C相切,连接CD,则CD⊥AD;Rt△ACD中,CD=1,AC=OC+OA=3;由勾股定理,得:AD=2;∴S△ACD=AD•CD=;易证得△AOE∽△ADC,∴=()2=()2=,即S△AOE=S△ADC=;∴S△ABE=S△AOB﹣S△AOE=×2×2﹣=2﹣;另解:利用相似三角形的对应边的比相等更简单!故选:C.12.在平面直角坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D 的坐标为(0,2),延长CB交x轴于点A1,作正方形A1B1C1C;延长C1B1交x轴于点A2,作正方形A2B2C2C1;…,按这样的规律进行下去,第个正方形的面积为()A.5×()B.5×()C.5×()D.5×()4032【考点】正方形的性质;坐标与图形性质.【分析】先求出正方形ABCD的边长和面积,再求出第一个正方形A1B1C1C的面积,得出规律,根据规律即可求出第个正方形的面积.【解答】解:∵点A的坐标为(1,0),点D的坐标为(0,2),∴OA=1,OD=2,∵∠AOD=90°,∴AB=AD=,∠ODA+∠OAD=90°,∵四边形ABCD是正方形,∴∠BAD=∠ABC=90°,S==5,正方形ABCD∴∠ABA1=90°,∠OAD+∠BAA1=90°,∴∠ODA=∠BAA1,∴△ABA1∽△DOA,∴,即,∴BA1=,∴CA1=,∴正方形A1B1C1C的面积==5×,…,第n个正方形的面积为5×,∴第个正方形的面积为5×().故选C.二、填空题:本题共5小题,每小题4分,共20分,只要求填写最后结果.13.分解因式:x2+2x=x(x+2).【考点】因式分解-提公因式法.【分析】首先找出公因式,进而提取公因式得出答案.【解答】解:x2+2x=x(x+2).故答案为:x(x+2).14.有四张不透明的卡片,正面写有不同命题(见图),背面完全相同.将这四张卡片背面朝上洗匀后,随机抽取一张,得到正面上命题是真命题的概率为.【考点】概率公式;命题与定理.【分析】先判断命题的真假,再根据概率公式计算即可.【解答】解:①是真命题,②是真命题;③是假命题,因为两个锐角的和可能是锐角,可能是直角,也可能是钝角;④是真命题.故真命题3个,而命题有4个,是真命题的概率为.故答案为.15.如图,△ABC中,∠ACB=90°,AB=8cm,D是AB的中点.现将△BCD沿BA方向平移1cm,得到△EFG,FG交AC于H,则GH的长等于3cm.【考点】直角三角形斜边上的中线;等腰三角形的判定与性质;平移的性质.【分析】利用直角三角形斜边上的中线等于斜边的一半知AD=BD=CD=AB=4cm;然后由平移的性质推知GH∥CD;最后根据平行线截线段成比例列出比例式,即可求得GH的长度.【解答】解:∵△ABC中,∠ACB=90°,AB=8cm,D是AB的中点,∴AD=BD=CD=AB=4cm;又∵△EFG由△BCD沿BA方向平移1cm得到的,∴GH∥CD,GD=1cm,∴△AGH∽△ADC,∴=,即=,解得,GH=3 cm;故答案是:3.16.如图,正方形ABCD的边长为3cm,E为CD边上一点,∠DAE=30°,M为AE的中点,过点M作直线分别与AD、BC相交于点P、Q.若PQ=AE,则AP等于1或2cm.【考点】全等三角形的判定与性质;正方形的性质;解直角三角形.【分析】根据题意画出图形,过P作PN⊥BC,交BC于点N,由ABCD为正方形,得到AD=DC=PN,在直角三角形ADE中,利用锐角三角函数定义求出DE的长,进而利用勾股定理求出AE的长,根据M为AE中点求出AM的长,利用HL得到三角形ADE与三角形PQN全等,利用全等三角形对应边,对应角相等得到DE=NQ,∠DAE=∠NPQ=30°,再由PN与DC平行,得到∠PFA=∠DEA=60°,进而得到PM垂直于AE,在直角三角形APM 中,根据AM的长,利用锐角三角函数定义求出AP的长,再利用对称性确定出AP′的长即可.【解答】解:根据题意画出图形,过P作PN⊥BC,交BC于点N,∵四边形ABCD为正方形,∴AD=DC=PN,在Rt△ADE中,∠DAE=30°,AD=3cm,∴tan30°=,即DE=cm,根据勾股定理得:AE==2cm,∵M为AE的中点,∴AM=AE=cm,在Rt△ADE和Rt△PNQ中,,∴Rt△ADE≌Rt△PNQ(HL),∴DE=NQ,∠DAE=∠NPQ=30°,∵PN∥DC,∴∠PFA=∠DEA=60°,∴∠PMF=90°,即PM⊥AF,在Rt△AMP中,∠MAP=30°,cos30°=,∴AP===2cm;由对称性得到AP′=DP=AD﹣AP=3﹣2=1cm,综上,AP等于1cm或2cm.故答案为:1或2.17.如图,▱OABC的顶点B、C在第一象限,点A的坐标为(3,0),D为边AB的中点,反比例函数y=(k>0)的图象经过点C、D两点,若∠COA=60°,则k的值为4.【考点】反比例函数图象上点的坐标特征;反比例函数的性质;平行四边形的性质.【分析】作CE⊥x轴于点E,则∠CEO=90°,过B作BF⊥x轴于F,过D作DM⊥x轴于M,设C的坐标为(x, x),表示出D的坐标,代入反比例函数的解析式,求出k即可.【解答】解:作CE⊥x轴于点E,则∠CEO=90°,过B作BF⊥x轴于F,过D作DM⊥x 轴于M,则BF=CE,DM∥BF,BF=CE,∵D为AB的中点,∴AM=FM,∴DM=BF,∵∠COA=60°,∴∠OCE=30°,∴OC=2OE,CE=OE,∴设C的坐标为(x, x),∴AF=OE=x,CE=BF=x,OE=AF=x,DM=x,∵四边形OABC是平行四边形,A(3,0),∴OF=3+x,OM=3+x,即D点的坐标为(3+x, x),把C和D的坐标代入y=得:k=x•x,k=(3+x)•x,解得:x=0或2(x=0不符合题意舍去),k=4,故答案为:4.三、解答题:本大题共7小题,共52分.解答要写出必要的文字说明、证明过程或演算步骤.18.解一元一次不等式组.【考点】解一元一次不等式组.【分析】先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可.【解答】解:∵解不等式①得:x>﹣3,解不等式②得:x≤2,∴不等式组的解集为﹣3<x≤2.19.已知:如图,E,F分别是▱ABCD的边AD,BC的中点.求证:AF=CE.【考点】平行四边形的判定与性质.【分析】由四边形ABCD是平行四边形,可得AD=BC,AD∥BC,又由E,F分别是AD,BC的中点,即可得AE=CF,则可证得四边形AFCE是平行四边形,继而证得结论.【解答】证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∵E,F分别是AD,BC的中点,∴AE=CF,∴四边形AFCE是平行四边形,∴AF=CE.20.从1月7日起,中国中东部大部分地区持续出现雾霾天气.某市记者为了了解”雾霾天气的主要原因“,随机调查了该市部分市民,并对调查结果进行整理.绘制了如下尚不完整的统计图表.组别观点频数(人数)A 大气气压低,空气不流动80B 地面灰尘大,空气湿度低mC 汽车尾气排放nD 工厂造成的污染120E 其他60请根据图表中提供的信息解答下列问题:(1)填空:m=40,n=100.扇形统计图中E组所占的百分比为15%;(2)若该市人口约有100万人,请你估计其中持D组“观点”的市民人数;(3)若在这次接受调查的市民中,随机抽查一人,则此人持C组“观点”的概率是多少?【考点】频数(率)分布表;用样本估计总体;扇形统计图;概率公式.【分析】(1)求得总人数,然后根据百分比的定义即可求得;(2)利用总人数100万,乘以所对应的比例即可求解;(3)利用频率的计算公式即可求解.【解答】解:(1)总人数是:80÷20%=400(人),则m=400×10%=40(人),C组的频数n=400﹣80﹣40﹣120﹣60=100(人),E组所占的百分比是:×100%=15%;故答案为:40,100,15%;(2)100×=30(万人);所以持D组“观点”的市民人数为30万人;(3)随机抽查一人,则此人持C组“观点”的概率是=.答:随机抽查一人,则此人持C组“观点”的概率是.21.校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于21米,在l上点D的同侧取点A、B,使∠CAD=30°,∠CBD=60°.(1)求AB的长(精确到0.1米,参考数据: =1.73, =1.41);(2)已知本路段对校车限速为40千米/小时,若测得某辆校车从A到B用时2秒,这辆校车是否超速?说明理由.【考点】解直角三角形的应用.【分析】(1)分别在Rt△ADC与Rt△BDC中,利用正切函数,即可求得AD与BD的长,继而求得AB的长;(2)由从A到B用时2秒,即可求得这辆校车的速度,比较与40千米/小时的大小,即可确定这辆校车是否超速.【解答】解:(1)由題意得,在Rt△ADC中,AD==≈36.33(米),…2分在Rt△BDC中,BD=≈12.11(米),…4分则AB=AD﹣BD=36.33﹣12.11=24.22≈24.2(米)…6分(2)超速.理由:∵汽车从A到B用时2秒,∴速度为24.2÷2=12.1(米/秒),∵12.1×3600=43560(米/时),∴该车速度为43.56千米/小时,…9分∵大于40千米/小时,∴此校车在AB路段超速.…10分22.已知关于x的一元二次方程x2﹣(2k+1)x+k2+2k=0有两个实数根x1,x2.(1)求实数k的取值范围;(2)是否存在实数k使得x1•x2﹣x12﹣x22≥0成立?若存在,请求出k的值;若不存在,请说明理由.【考点】根与系数的关系;根的判别式.【分析】(1)根据已知一元二次方程的根的情况,得到根的判别式△≥0,据此列出关于k 的不等式[﹣(2k+1)]2﹣4(k2+2k)≥0,通过解该不等式即可求得k的取值范围;(2)假设存在实数k使得≥0成立.利用根与系数的关系可以求得,然后利用完全平方公式可以把已知不等式转化为含有两根之和、两根之积的形式≥0,通过解不等式可以求得k的值.【解答】解:(1)∵原方程有两个实数根,∴[﹣(2k+1)]2﹣4(k2+2k)≥0,∴4k2+4k+1﹣4k2﹣8k≥0∴1﹣4k≥0,∴k≤.∴当k≤时,原方程有两个实数根.(2)假设存在实数k使得≥0成立.∵x1,x2是原方程的两根,∴.由≥0,得≥0.∴3(k2+2k)﹣(2k+1)2≥0,整理得:﹣(k﹣1)2≥0,∴只有当k=1时,上式才能成立.又∵由(1)知k≤,∴不存在实数k使得≥0成立.23.如图,Rt△ABC中,∠C=90°,BC=6,AC=8.点P,Q都是斜边AB上的动点,点P 从B向A运动(不与点B重合),点Q从A向B运动,BP=AQ.点D,E分别是点A,B以Q,P为对称中心的对称点,HQ⊥AB于Q,交AC于点H.当点E到达顶点A时,P,Q同时停止运动.设BP的长为x,△HDE的面积为y.(1)求证:△DHQ∽△ABC;(2)求y关于x的函数解析式并求y的最大值;(3)当x为何值时,△HDE为等腰三角形?【考点】二次函数的最值;等腰三角形的判定;相似三角形的判定与性质.【分析】(1)根据对称性可得HD=HA,那么可得∠HDQ=∠A,加上已有的两个直角相等,那么所求的三角形相似;(2)分0<x≤2.5;2.5<x≤5两种情况讨论,得到y关于x的函数关系式,再利用二次函数的最值即可求得最大值;(3)等腰三角形有两边相等,根据所在的不同位置再分不同的边相等解答.【解答】(1)证明:∵A、D关于点Q成中心对称,HQ⊥AB,∴∠HQD=∠C=90°,HD=HA,∴∠HDQ=∠A,∴△DHQ∽△ABC.(2)解:①如图1,当0<x≤2.5时,ED=10﹣4x,QH=AQtanA=x,此时y=(10﹣4x)×x=﹣+x,当x=时,最大值y=,②如图2,当2.5<x≤5时,ED=4x﹣10,QH=AQtanA=x,此时y=(4x﹣10)×x=﹣x=(x﹣)2﹣.当2.5<x≤5时,y有最大值,当x=5时,最大值为y=,∴y与x之间的函数解析式为y=,则当2.5<x≤5时,y有最大值,其最大值是y=.综上可得,y的最大值为.(3)解:①如图1,当0<x<2.5时,若DE=DH,∵DH=AH==x,DE=10﹣4x,∴10﹣4x=,x=.∵∠EDH>90°,∴EH>ED,EH>DH,即ED=EH,HD=HE不可能;②如图2,当2.5<x≤5时,若DE=DH,4x﹣10=,x=;若HD=HE,此时点D,E分别与点B,A重合,x=5;若ED=EH,则∠ADH=∠DHE,又∵点A、D关于点Q对称,∴∠A=∠ADH,∴△EDH∽△HDA,∴=,x=,∴当x的值为,,5,时,△HDE是等腰三角形.24.已知:△ABC的高AD所在直线与高BE所在直线相交于点F.(1)如图1,若△ABC为锐角三角形,且∠ABC=45°,过点F作FG∥BC,交直线AB于点G,求证:FG+DC=AD;(2)如图2,若∠ABC=135°,过点F作FG∥BC,交直线AB于点G,则FG、DC、AD 之间满足的数量关系是FG﹣DC=AD;(3)在(2)的条件下,若AG=,DC=3,将一个45°角的顶点与点B重合并绕点B 旋转,这个角的两边分别交线段FG于M、N两点(如图3),连接CF,线段CF分别与线段BM、线段BN相交于P、Q两点,若NG=,求线段PQ的长.【考点】直角三角形的性质;三角形内角和定理;全等三角形的判定;矩形的判定.【分析】(1)首先证明∠CBE=∠DAC,∠AGF=∠BAD可推出FA=FG;(2)与(1)证明方法同理;(3)首先证明△FDC为等腰直角三角形,然后证明四边形DFHB为矩形.根据三角函数的计算得出.【解答】证明:(1)∵∠ADB=90°,∠ABC=45°,∴∠BAD=∠ABC=45°,∴AD=BD∵∠BEC=90°,∴∠CBE+∠C=90°,∵∠DAC+∠C=90°,∴∠CBE=∠DAC,∵GF∥BD,∴∠AGF=∠ABC=45°,∴∠AGF=∠BAD,∴FA=FG,∴FG+DC=FA+DF=AD;解:(2)FG﹣DC=AD;(3)如图,∵∠ABC=135°,∴∠ABD=45°,∵∠ADB=90°,∴∠DAB=∠DBA=45°,∴AD=BD,∵FG∥BC,∴∠G=∠DBA=∠DAB,∴AF=FG∴AG=5,FG2+AF2=AG2,∴FG=AF=5∵DC=3由(2)知FG﹣DC=AD,∴AD=BD=2,BC=1,DF=3,∴△FDC为等腰直角三角形∴FC=,分别过B,N作BH⊥FG于点H,NK⊥BG于点K,∴四边形DFHB为矩形,∴HF=BD=2 BH=DF=3,∴BH=HG=3,∴BG=∵sinG=,∴NK=×=,∴BK=∵∠MBN=∠HBG=45°,∴∠MBH=∠NBK,∵∠MHB=∠NKB=90°,∴△MBH∽△NBK∴,∴MH=1,∴FM=1,∵BC∥FG,∴∠BCF=∠CFN,∵∠BPC=∠MPF CB=FM,∴△BPC≌△MPF,∴PC=PF=FC=,∵∠BQC=∠NQF,∴△BCQ∽△NFQ,∴,∴,∴CQ=FC==,∴PQ=CP﹣CQ=.6月15日。
山东省淄博市2020年中考数学试卷(解析版)
参照秘密级管理 ★启用前淄博市 2020 年初中学业水平考试 数学试题 本试卷分选择题和非选择题两部分, 共 8 页,满分 120 分,考试时间 120 分钟。
考试结束后, 将本试卷和答题卡一并交回。
注意事项:1.答题前,考生务必用 0.5 毫米黑色签字笔将区县、学校、姓名、考试号、座号填写在答题卡和试卷规定位置,并核对条形码.2.选择题每小题选出答案后,用 2B 铅笔涂黑答题卡对应题目的答案标号;如需改动,用橡 皮擦干净后,再选涂其他答案标号。
3.非选择题必须用 0.5 毫米黑色签字笔作答,字体工整、笔迹清晰,写在答题卡各题目指 定区域内如需改动,先划掉原来答案,然后再写上新答案,严禁使用涂改液、胶带纸、修 正带修改,不允许使用计算器.4.保证答题卡清洁、完整,严禁折叠,严禁在答题卡上做任何标记。
5.评分以答题卡上的答案为依据,不按以上要求作答的答案无效。
选择题 共 48 分一、选择题:本大题共 12 个小题 , 每小题 4 分,共 48 分。
在每小题给出的四个选项中,只有一项 是符合题目要求的 .1.若实数 a 的相反数是﹣ 2,则 a 等于1A .2B .﹣ 2C .D . 022.下列图形中,不是轴对称图形的是3.李老师为了解学生家务劳动时间情况,更好地弘扬“热爱劳动”的民族传统美德,随机调查了 本校 10 名学生在上周参加家务劳动的时间,收集到如下数据(单位:小时) :4,3,4,6,5,5,6,5,4,5.则这组数据的中位数和众数分别是 A .4, 5B .5, 4C .5,5D .5,6初中学业水平考试数学试题 第1页(共 8 页)试卷类型: A4.如图,在四边形 ABCD 中, CD ∥AB ,AC ⊥BC ,A . 30 °B .35°C .40°D .45°5.下列运算正确的是A .a 2+a3= a 5B . a 2?a 3=a 5C .a3÷a 2=a 5D .a 2)3=a 56.已知 sinA =0.9816,运用科学计算器求锐角 A 时(在开机状态下) ,按下的第一个键是7.如图,若△ ABC ≌△ ADE ,则下列结论中一定成立的是A.AC =DEB . ∠ BAD =∠ CAE C.AB =AED . ∠ ABC =∠ AED8.化简 +A .a+ bB .a ﹣bC .D .D . 64若∠ B = 50°,A .B .C.D .的结果是C . 4910.如图,放置在直线 l 上的扇形 OAB .由图① 滚动(无滑动)到图 ② ,再由图 ②滚动到图 ③.若半径 OA =2,∠AOB =45°,则点 O 所 经过的最短路径的长是11.如图 1,点 P 从△ ABC 的顶 点B 出发,沿 B →C → A 匀速 运动到点 A ,图 2是点 P 运动 时,线段 BP 的长度 y 随时间 x 变化的关系图象, 其中 M 是 曲线部分的最低点, 则△ ABC 的面积是A . 12B .24C .36D .4812.如图,在△ ABC 中,AD ,BE 分别是 BC ,AD ⊥ BE ,垂足为点 F ,设 BC =a ,AC =b ,式中成立的是A .a 2+b2= 5c 2B .a 2+b 2= 4c 2C .a 2+b 2= 3c 2 2 2 2D .a 2+b 2=2c 2非选择题 共 72 分二、填空题:本大题共 5 个小题,每小题 4分,共 20分。
2021年山东省淄博市博山区中考数学一模试卷(解析版)
2021年山东省淄博市博山区中考数学一模试卷注意事项:1.答题前,考生务必在试题卷、答题卡规定位置填写本人准考证号、姓名等信息.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名”与考生本人准考证号、姓名是否一致.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.非选择题答案用0.5 毫米黑色墨水签字笔在答题卡上相应位置书写作答,在试题卷上答题无效.3.作图可先使用2B 铅笔画出,确定后必须用0.5 毫米黑色墨水签字笔描黑.一、选择题(共12小题).1.的绝对值是()A.2B.C.﹣2D.﹣2.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.3.不等式组的解集为()A.x≥﹣2B.﹣2<x<3C.x>3D.﹣2≤x<3 4.如图,下列条件中,不能证明△ABD≌△ACD的是()A.BD=DC,AB=AC B.∠ADB=∠ADC,BD=DCC.∠B=∠C,∠BAD=∠CAD D.∠B=∠C,BD=DC5.如图,若用我们数学课本上采用的科学计算器进行计算,其按键顺序为,则输出结果应为()A.8B.4C.D.6.根据如图所示的程序计算函数y的值,若输入的x值为3或﹣4时,输出的y值互为相反数,则b等于()A.﹣30B.﹣23C.23D.307.如图,一次函数y=x+1的图象与反比例函数y=的图象的一个交点为A(2,m),则不等式>3的解集是()A.x>2B.0<x<2C.x>0D.x<﹣3或0<x<28.某超市销售一种商品,发现一周利润y(元)与销售单价x(元)之间的关系满足y=﹣2(x﹣20)2+1558,由于某种原因,销售单价只能为15≤x≤22,那么一周可获得最大利润是()A.1558B.1550C.1508D.209.如图,在矩形ABCD中,把∠A沿DF折叠,点A恰好落在矩形的对称中心E处,则∠ADF的度数为()A.15°B.20°C.25°D.30°10.设a,b是方程x2+x﹣2022=0的两个实数根,则a2+2a+b的值为()A.2020B.2021C.2022D.202311.如图,Rt△ABC中,AC=3,BC=5,∠C=90°,点G是AB上的一个动点,过点G 作GF垂直于AC于点F,点P是BC上的点,若△GFP是以GF为斜边的等腰直角三角形,则此时PC长为()A.B.2C.D.12.如图,半径为1的⊙O与直线l相切于点A,C为⊙O上的一点,CB⊥l于点B,则AB+BC 的最大值是()A.2B.C.D.二、填空题:本题共5小题,满分15分,只要求填写最后结果,每小题填对得4分. 13.tan60°的值等于.14.用a,b,c表示二次函数y=ax2+bx+c(其中a,b,c为常数且a≠0)的顶点坐标为(,).15.若方程mx+ny=6有两个解和,则m+n的值为.16.如果一组数据5、8、a、7、4的平均数是a,那么这组数据的方差为.17.如图,圆心都在x轴正半轴上的半圆O1,半圆O2,…半圆O n与直线l相切.设半圆O1,半圆O2,…,半圆O n的半径分别是r1,r2,…,r n,则当直线l与x轴所成锐角为30°,且r1=2时,r2021=.三、解答题:本大题共7小题,共70分.解答要写出必要的文字说明、证明过程或演算步骤. 18.解方程:=.19.已知在四边形ABCD中,AD=BC,∠D=∠DCE.求证:四边形ABCD是平行四边形.20.自新冠肺炎疫情爆发以来,我国人民上下一心,团结一致,基本控制住了疫情.然而,全球新冠肺炎疫情依然严重,境外许多国家的疫情尚在继续蔓延,疫情防控不可松懈.如图是某国截止5月31日新冠病毒感染人数的扇形统计图和折线统计图.根据上面图表信息,回答下列问题:(1)截止5月31日该国新冠肺炎感染总人数累计为万人,扇形统计图中40﹣59岁感染人数对应圆心角的度数为°;(2)请直接在图中补充完整该国新冠肺炎感染人数的折线统计图;(3)在该国所有新冠肺炎感染病例中随机地抽取1人,求该患者年龄为60岁或60岁以上的概率;(4)若该国感染病例中从低到高各年龄段的死亡率依次为1%、2.75%、3.5%、10%、20%,求该国新冠肺炎感染病例的平均死亡率.21.随着我国首艘自主建造航母“山东舰”的正式服役,标志者我国已进入“双航母”时代.已知“山东舰”舰长BD为315m,航母前端点E到水平甲板BD的距离DE为6m,舰岛顶端A到BD的距离是AC,经测量,∠BAC=71.6°,∠EAC==80.6°.(参考数据:sin71.6°≈0.95,cos71.6°≈0.32,tan71.6°≈3.01,sin80.6°≈0.99,cos80.6°≈0.16,tan80.6°≈6.04)(1)若设AC=xm,用含x的代数式表示BC与CD的长度.(2)请计算舰岛AC的高度(结果精确到1m).22.如图,已知反比例函数y=(x>0)的图象经过点A(4,2),过A作AC⊥y轴于点C.点B为反比例函数图象上的一动点,过点B作BD⊥x轴于点D,连接AD.直线BC 与x轴的负半轴交于点E.(1)求k的值;(2)连接CD,求△ACD的面积;(3)若BD=3OC,求四边形ACED的面积.23.已知:AB,CD都是⊙O的直径,点E为上一点,连接BE,CE,且∠BEC=45°.(1)如图1,求证:AB⊥CD;(2)如图2,连接AC,过点E作EF⊥AC,垂足为点F,过点A作AG⊥CE,垂足为点G,交EF于点H,求证:AC=EH;(3)如图3,在(2)的条件下,连接DG,若∠DGE=∠CAG,BE=2,求EH的长.24.如图,抛物线y=ax2+bx+c交轴于点A(﹣1,0),B(3,0),交y轴于点C,∠CAB =60°,点E是线段AB上一动点,作EF∥AC交线段BC于点F.(1)求抛物线的解析式;(2)如图1,延长线段EF交抛物线第一象限的部分于点G,点D是AC边中点,当四边形ADGF为平行四边形时,求出G点坐标;(3)如图2,M为射线EF上一点,且EM=EB,将射线EF绕点E逆时针旋转60°,交直线AC于点N,连接MN,P为MN的中点,连接AP、BP,问:AP+BP是否存在最小值,若存在,请求出这个最小值,若不存在,请说明理由.参考答案一、选择题:本题共12小题,在每小题所给出的四个选项中,只有一个是正确的.每小题5分,错选、不选或选出的答案超过一个,均记零分.1.的绝对值是()A.2B.C.﹣2D.﹣【分析】根据绝对值的定义解决此题.解:根据绝对值的定义,得.故选:B.2.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形以及轴对称图形的概念对各选项分析判断即可得解.解:A.是轴对称图形,不是中心对称图形,故本选项不合题意;B.不是轴对称图形,是中心对称图形,故本选项不合题意;C.是轴对称图形,不是中心对称图形,故本选项不合题意;D.既是轴对称图形,也是中心对称图形,故本选项符合题意.故选:D.3.不等式组的解集为()A.x≥﹣2B.﹣2<x<3C.x>3D.﹣2≤x<3【分析】分别求出两不等式的解集,进而得出它们的公共解集.解:,解①得:x>3,解②得:x≥﹣2,所以不等式组的解集为:x>3.故选:C.4.如图,下列条件中,不能证明△ABD≌△ACD的是()A.BD=DC,AB=AC B.∠ADB=∠ADC,BD=DCC.∠B=∠C,∠BAD=∠CAD D.∠B=∠C,BD=DC【分析】依据全等三角形的判定定理解答即可.解:A、依据SSS可知△ABD≌△ACD,故A不符合要求;B、依据SAS可知△ABD≌△ACD,故B不符合要求;C、依据AAS可知△ABD≌△ACD,故C不符合要求;D、依据SSA可知△ABD≌△ACD,故D符合要求.故选:D.5.如图,若用我们数学课本上采用的科学计算器进行计算,其按键顺序为,则输出结果应为()A.8B.4C.D.【分析】根据计算器的按键顺序,写出计算的式子,然后求值即可.解:==故选:D.6.根据如图所示的程序计算函数y的值,若输入的x值为3或﹣4时,输出的y值互为相反数,则b等于()A.﹣30B.﹣23C.23D.30【分析】由输入的x值为3或﹣4时输出的y值互为相反数,即可得出关于b的一元一次方程,解之即可得出结论.解:依题意得:32﹣b=﹣,解得:b=30.故选:D.7.如图,一次函数y=x+1的图象与反比例函数y=的图象的一个交点为A(2,m),则不等式>3的解集是()A.x>2B.0<x<2C.x>0D.x<﹣3或0<x<2【分析】由点A在一次函数图象上利用一次函数图象上点的坐标特征即可求出点A的坐标,根据图象即可求得.解:∵点A在一次函数y=x+1的图象上,∴m=2+1=3,∴点A的坐标为(2,3).由图象可知,不等式>3的解集是0<x<2,故选:B.8.某超市销售一种商品,发现一周利润y(元)与销售单价x(元)之间的关系满足y=﹣2(x﹣20)2+1558,由于某种原因,销售单价只能为15≤x≤22,那么一周可获得最大利润是()A.1558B.1550C.1508D.20【分析】由函数解析式以及x的取值范围,根据函数的性质求函数的最大值.解:利润y与销售单价x之间的关系满足y=﹣2(x﹣20)2+1558,∵﹣2<0,15≤x≤22,∴当x=20时,y取得最大值,最大值1558,故选:A.9.如图,在矩形ABCD中,把∠A沿DF折叠,点A恰好落在矩形的对称中心E处,则∠ADF的度数为()A.15°B.20°C.25°D.30°【分析】根据折叠的性质得到AD=ED=AE,∠ADF=∠EDF=∠ADE,推出△DAE 的等边三角形,根据等边三角形的性质得到∠ADE=60°,求得∠ADF=30°.解:如图,连接AE,∵把∠A沿DF折叠,点A恰好落在矩形的对称中心E处,∴AD=ED=AE,∠ADF=∠EDF=∠ADE,∴△DAE是等边三角形,∴∠ADE=60°,∴∠ADF=30°,故选:D.10.设a,b是方程x2+x﹣2022=0的两个实数根,则a2+2a+b的值为()A.2020B.2021C.2022D.2023【分析】根a、b是方程x2+x﹣2021=0的两个实数根,求出a2+a﹣2022=0,a+b=﹣1,得出a2+a=2022,把a2+2a+b变形后(a2+a)+(a+b)进行计算即可.解:∵a、b是方程x2+x﹣2022=0的两个实数根,∴a2+a﹣2022=0,a+b=﹣1,∴a2+a=2022,∴a2+2a+b=(a2+a)+(a+b)=2022﹣1=2021.故选:B.11.如图,Rt△ABC中,AC=3,BC=5,∠C=90°,点G是AB上的一个动点,过点G 作GF垂直于AC于点F,点P是BC上的点,若△GFP是以GF为斜边的等腰直角三角形,则此时PC长为()A.B.2C.D.【分析】依题意补全图形,判定△FPC是等腰直角三角形及△AFG∽△ABC,从而得比例式,设CP=CF=x,将相关线段的值或含x的代数式代入比例式,求解即可.解:依题意补全图形,如图:由题可知,GF⊥AC,△GFP是以GF为斜边的等腰直角三角形,在Rt△ABC中,BC⊥AC,∴GF∥BC,∴∠GFP=∠FPC=45°,∵∠C=90°,∴∠PFC=∠FPC=45°,∴△FPC是等腰直角三角形,设CP=CF=x,则FP=x,GF=FP=2x,∵AC=3,∴AF=3﹣x,∵GF∥BC,∴△AFG∽△ABC,∴,即,解得x=.故选:A.12.如图,半径为1的⊙O与直线l相切于点A,C为⊙O上的一点,CB⊥l于点B,则AB+BC 的最大值是()A.2B.C.D.【分析】延长AB到点D,使BD=BC,则AB+BC=AD,当DC与⊙O相切于点C时,AD最大,则此时连接AO并延长交DC延长线于点E,则AE⊥AD,根据∠CDB=45°,可得OC=CE=1,根据勾股定理可得OE的长,进而可得结论.解:如图,延长AB到点D,使BD=BC,则AB+BC=AD,当DC与⊙O相切于点C时,AD最大,则此时连接AO并延长交DC延长线于点E,则AE⊥AD,∵CB⊥l,∴∠DBC=90°,∵BD=BC,∴∠CDB=45°,∵⊙O与直线l相切于点A,∴OA⊥l,∴∠OAD=90°,∴∠AED=45°,连接OC,则OC⊥DE,在Rt△OCE中,OC=CE=1,根据勾股定理,得OE==,∴AD=AE=AO+OE=1+.则AB+BC的最大值是+1.故选:C.二、填空题:本题共5小题,满分15分,只要求填写最后结果,每小题填对得4分. 13.tan60°的值等于.【分析】根据特殊锐角的三角函数值得出答案.解:tan60°=,故答案为:.14.用a,b,c表示二次函数y=ax2+bx+c(其中a,b,c为常数且a≠0)的顶点坐标为(﹣,).【分析】根据二次函数的性质填空即可.解:用a,b,c表示二次函数y=ax2+bx+c(其中a,b,c为常数且a≠0)的顶点坐标为(﹣,),故答案为:﹣,.15.若方程mx+ny=6有两个解和,则m+n的值为12.【分析】根据题意得出关于m,n的等式进而求出答案.解:由题意,①×2+②×3,得5m=30,解得m=6,把m=6代入①,得﹣12+3n=6,解得n=6,所以m+n=12.故答案为:12.16.如果一组数据5、8、a、7、4的平均数是a,那么这组数据的方差为2.【分析】先根据平均数的定义列算式求出a的值,再由方差的定义计算即可.解:根据题意知=a,解得a=6,所以这组数据为5、8、6、7、4,则这组数据的方差为×[(5﹣6)2+(8﹣6)2+(6﹣6)2+(7﹣6)2+(4﹣6)2]=2,故答案为:2.17.如图,圆心都在x轴正半轴上的半圆O1,半圆O2,…半圆O n与直线l相切.设半圆O1,半圆O2,…,半圆O n的半径分别是r1,r2,…,r n,则当直线l与x轴所成锐角为30°,且r1=2时,r2021=2×32019.【分析】根据切线的性质和相似三角形的性质,求出r1,r2,r3,r4……根据数据所呈现的规律进行计算即可.解:如图,设切点分别为A1,A2,A3…A2021,连接O1A1,O2A2,O3A3,…∵sin30°=====…=,而OO1=2r1,OO2=OO1+O1O2=3r1+r2,∴=,又∵r2=2,∴r1=,同理可求出r3=6,r4=18,r5=54,…于是r1=,r2=2,r3=6,r4=18,r5=54,…∴r2021=×32020=2×32019,故答案为:2×32019.三、解答题:本大题共7小题,共70分.解答要写出必要的文字说明、证明过程或演算步骤. 18.解方程:=.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解:去分母得:x﹣2=3x,解得:x=﹣1,检验:把x=﹣1代入得:x(x﹣2)≠0,∴x=﹣1是分式方程的解.19.已知在四边形ABCD中,AD=BC,∠D=∠DCE.求证:四边形ABCD是平行四边形.【分析】直接利用平行线的判定方法得出AD∥BC,再利用一组对边平行且相等的四边形是平行四边形进而求出即可.【解答】证明:∵∠D=∠DCE,∴AD∥BC,又∵AD=BC,∴四边形ABCD是平行四边形.20.自新冠肺炎疫情爆发以来,我国人民上下一心,团结一致,基本控制住了疫情.然而,全球新冠肺炎疫情依然严重,境外许多国家的疫情尚在继续蔓延,疫情防控不可松懈.如图是某国截止5月31日新冠病毒感染人数的扇形统计图和折线统计图.根据上面图表信息,回答下列问题:(1)截止5月31日该国新冠肺炎感染总人数累计为20万人,扇形统计图中40﹣59岁感染人数对应圆心角的度数为72°;(2)请直接在图中补充完整该国新冠肺炎感染人数的折线统计图;(3)在该国所有新冠肺炎感染病例中随机地抽取1人,求该患者年龄为60岁或60岁以上的概率;(4)若该国感染病例中从低到高各年龄段的死亡率依次为1%、2.75%、3.5%、10%、20%,求该国新冠肺炎感染病例的平均死亡率.【分析】(1)由60﹣79岁的人数及其所占百分比可得总人数,再用360°乘以40﹣59岁感染人数所占比例即可得;(2)先求出20﹣39岁人数,再补全折线图;(3)利用频率估计概率即可得;(4)利用加权平均数的定义求解可得.解:(1)截止5月31日该国新冠肺炎感染总人数累计为9÷45%=20(万人),扇形统计图中40﹣59岁感染人数对应圆心角的度数为360°×=72°,故答案为:20,72;(2)20﹣39岁人数为20×10%=2(万人),补全的折线统计图如图所示;(3)该患者年龄为60岁及以上的概率为:=0.675;(4)该国新冠肺炎感染病例的平均死亡率为:.21.随着我国首艘自主建造航母“山东舰”的正式服役,标志者我国已进入“双航母”时代.已知“山东舰”舰长BD为315m,航母前端点E到水平甲板BD的距离DE为6m,舰岛顶(参考数据:sin71.6°端A到BD的距离是AC,经测量,∠BAC=71.6°,∠EAC==80.6°.≈0.95,cos71.6°≈0.32,tan71.6°≈3.01,sin80.6°≈0.99,cos80.6°≈0.16,tan80.6°≈6.04)(1)若设AC=xm,用含x的代数式表示BC与CD的长度.(2)请计算舰岛AC的高度(结果精确到1m).【分析】(1)作EH⊥AC于H,分别在Rt△ABC与Rt△AHE中,由正切定义解题;(2)在矩形EHCD中,分别求出BD=BC+CD=315m,BC=3.01xm,CD=(6.04x﹣36.24)m,最后根据线段的和差解题.解:(1)作EH⊥AC于H,则四边形EHCD是矩形,在Rt△ABC中,∵tan∠BAC=,∴BC=AC•tan71.6°=3.01xm,在Rt△AHE中,∵tan∠EAC=,∴CD=EH=AH•tan80.6°=6.04(x﹣6)=(6.04x﹣36.24)m;(2)设AC=xm,∵四边形EHCD是矩形,∴DE=CH=6m,∵BD=BC+CD=315m,BC=3.01xm,CD=(6.04x﹣36.24)m,∴3.01x+6.04x﹣36.24=315,解得:x=39,∴舰岛AC的高度为:39m.22.如图,已知反比例函数y=(x>0)的图象经过点A(4,2),过A作AC⊥y轴于点C.点B为反比例函数图象上的一动点,过点B作BD⊥x轴于点D,连接AD.直线BC 与x轴的负半轴交于点E.(1)求k的值;(2)连接CD,求△ACD的面积;(3)若BD=3OC,求四边形ACED的面积.【分析】(1)根据题意直接用待定系数法将A点代入即可得出答案;(2)由题意先求出AC和DF,进而根据三角形面积公式进行计算即可得出答案;(3)由题意求出直线BC的解析式,可得E点的坐标,求出DE,OC,AC,即可利用梯形面积公式解决问题.解:∵反比例函数y=(x>0)的图象经过点A(4,2),∴2=,∴k=8;(2)如图,∵AC⊥y轴,BD⊥x轴,A(4,2),∴AC=4,DF=OC=2,∴S△ACD=,(3)反比例函数的解析式为:y=(x>0),∵BD=3OC,∴BD=3×2=6,∵BD⊥x轴,∴点B的纵坐标为6,代入y=,得:6=,解得:x=,∵B(),C(0,2),设直线BC的解析式为:y=kx+b,则,解得:,∴直线BC的解析式为:y=3x+2,令y=0,得:3x+2=0,解得:x=﹣,∴E(),∴DE==2,∵AC∥DE,∴S四边形ACED=.23.已知:AB,CD都是⊙O的直径,点E为上一点,连接BE,CE,且∠BEC=45°.(1)如图1,求证:AB⊥CD;(2)如图2,连接AC,过点E作EF⊥AC,垂足为点F,过点A作AG⊥CE,垂足为点G,交EF于点H,求证:AC=EH;(3)如图3,在(2)的条件下,连接DG,若∠DGE=∠CAG,BE=2,求EH的长.【分析】(1)根据同弧所对的圆心角是圆周角的2倍即可得证;(2)连接AE,证明AG=EG,从而可证△ACG≌△EHG即可得AC=EH;(3)连接AD并延长,与CE延长线交于M,连接BC,过B作BN⊥CE于N,先证明BC=AC=AD=DM=DG,再利用tan∠BCN求出BC即可得答案.解:(1)证明:∵∠BOC=2∠BEC,且∠BEC=45°,∴∠BOC=90°,∴AB⊥CD;(2)如答图1:连接AE,∵∠BOC=90°,∴∠AOC=180°﹣∠BOC=90°,∴∠AEC=∠AOC=45°,∵EF⊥AC,AG⊥CE,∴∠AGC=∠AGE=∠CFE=90°,∴∠GAE=∠AEG=45°,∴AG=EG,∵∠CAG+∠ACG=90°,∠HEG+∠ACG=90°,∴∠CAG=∠HEG,∴△ACG≌△EHG(ASA),∴AC=EH;(3)如答图2:连接AD并延长,与CE延长线交于M,连接BC,过B作BN⊥CE于N,∵OC=OD,OA⊥CD,∴AC=AD,同理可得AC=BC,∵AB、CD是直径,∴∠ACB=∠CAD=90°,∴∠CAG+∠GAM=90°,而∠M+∠GAM=90°,∴∠CAG=∠M,∵∠DGE=∠CAG,∴∠DGE=∠M,∴DG=DM,∵∠CAG+∠GAD=90°,∠DGE+∠DGA=90°,∠DGE=∠CAG,∴∠GAD=∠DGA,∴AD=DG,∴AC=AD=DM=AM,在Rt△ACM中,tan M=,∵∠ACM+∠M=90°,∠ACM+∠BCE=90°,∴∠BCE=∠M,∴tan∠BCE=,Rt△BEN中,∠BEN=45°,∴BN=BE•sin45°=BE,而BE=2,∴BN=2,在Rt△BCN中,tan∠BCN==,∴CN=2BN=4,∴BC==10,∴EH=AC=BC=10.24.如图,抛物线y=ax2+bx+c交轴于点A(﹣1,0),B(3,0),交y轴于点C,∠CAB =60°,点E是线段AB上一动点,作EF∥AC交线段BC于点F.(1)求抛物线的解析式;(2)如图1,延长线段EF交抛物线第一象限的部分于点G,点D是AC边中点,当四边形ADGF为平行四边形时,求出G点坐标;(3)如图2,M为射线EF上一点,且EM=EB,将射线EF绕点E逆时针旋转60°,交直线AC于点N,连接MN,P为MN的中点,连接AP、BP,问:AP+BP是否存在最小值,若存在,请求出这个最小值,若不存在,请说明理由.【分析】(1)用待定系数法进行解答即可;(2)根据已知P点的横坐标为m,可得点P和D的坐标,用m的代数式表示PD和DE,根据相似三角形的两种情况,由两直角边对应成比例,列出m的方程即可;(3)证明点P在直线y=上运动,再利用轴对称的性质解决最短问题即可.解:(1)∵点A(﹣1,0),∴OA=1,在Rt△AOC中,∠CAB=60°,∴∠ACO=30°,∴AC=2AO=2,OC=,∴C(0,),把点A(﹣1,0),B(3,0),C(0,)代入抛物线y=ax2+bx+c中得:,解得:,∴抛物线的解析式为:y=﹣x2+x+.(2)如图1中,连接DG,AF.∵A(﹣1,0),C(0,),B(3,0),AD=DC,∴D(﹣,),∴直线CB的解析式为y=﹣x+,设F(m,﹣m+),∵四边形ADGF是平行四边形,∴AD=FG,AD∥FG,∴G(m+,﹣m+),把点G的坐标代入y=﹣x2+x+,得到,﹣m+=﹣(m+)2+(m+)+,解得m=或,∴G(1,)或(2,).(3)如图,过点M作MT⊥AB于T,过点N作NJ⊥AB于J,过点P作PH⊥AB于H,连接BM.设AE=t,则EB=4﹣t.∵EM=EB,∠MEB=60°,∴△MEB是等边三角形,∵MT⊥EB,∴MT=(4﹣t),∵∠AEN=∠EAN=60°,∴△ANE是等边三角形,∵NJ⊥AE,∴NJ=t,∵NJ∥PH∥MT,NP=PM,∴JH=HT,∴PH=(NJ+MT)=,∴点P的运动轨迹是直线y=,作点A关于直线y=是对称点A′,连接A′B交直线y=于P′,连接P′A,此时P′A+P′B的值最小,最小值=A′B==2.。
2021年山东省淄博市中考数学一模试卷及答案
2021年山东省淄博市中考数学一模试题学校:___________姓名:___________班级:___________考号:___________ 一、单选题1.2-的相反数是() A .2-B .2C .12D .12-2.如图甲骨文中,不是轴对称图形的是( )A .B .C .D .3.为了解某小区“全民健身”活动的开展情况,随机对居住在该小区的40名居民一周的体育锻炼时间进行了统计,结果如下表:这40名居民一周体育锻炼时间的众数和中位数是() A .14,5B .14,6C .5,5D .5,64.如图,在ABC ∆中,CD 平分ACB ∠,已知74,46A B ︒︒∠=∠=,则BDC ∠的度数为()A .104︒B .106︒C .134︒D .136︒5.下面计算正确的是( )A .a 3•a 3=2a 3B .2a 2+a 2=3a 4C .a 9÷a 3=a 3D .(﹣3a 2)3=﹣27a 66.为了方便行人推车过某天桥,市政府在10m 高的天桥一侧修建了40m 长的斜道(如图所示),我们可以借助科学计算器求这条斜道倾斜角的度数,具体按键顺序是()A .B .C .D .7.已知图中的两个三角形全等,则∠α等于()A .50°B .60°C .70°D .80°8.化简21211a aa a----的结果为() A .11a a +- B .1a - C .a D .1a -9.如图,A ,B 两点在反比例函数1k y x=的图象上,C ,D 两点在反比例函数2k y x=的图象上,AC ⊥y 轴于点E ,BD ⊥y 轴于点F ,AC =6,BD =3,EF =8,则k 1﹣k 2的值是()A.10 B.18 C.12 D.16 10.如图,四边形ABCD是边长为1的菱形,∠ABC=60°.动点P第1次从点A处开始,沿以B为圆心,AB为半径的圆弧运动到CB延长线,记为点P1;第2次从点P1开始,沿以C为圆心,CP1为半径的圆弧运动到DC的延长线,记为点P2;第3次从P2开始,沿以D为圆心,DP2为半径的圆弧运动到AD 的延长线,记为点P3;第4次从点P3开始,沿以A为圆心,AP3为半径的圆弧运动到BA的延长线,记为点P4;…..如此运动下去,当点P运动到P20时,点P所运动的路程为()A.4303πB.3103πC.2103πD.1053π11.如图1,在菱形ABCD中,动点P从点B出发,沿折线B→C→D→B运动,设点P经过的路程为x,ABP△的面积为y.把y看作x的函数,函数的图象如图2所示,则图2中的a等于()A.25 B.20 C.12 D.12.如图①.在正方形ABCD的边BC上有一点E,连接AE.点P从正方形的顶点A出发,沿A→D→C以1cm/s的速度匀速运动到点C.图②是点P运动时,△APE的面积y(cm2)随时间x(s)变化的函数图象.当x=7时,y 的值为()A.7 B.6 C.132D.112二、填空题13.计算:(﹣1)2_____.14.如图,将周长为8的ABC沿BC边向右平移2个单位,得到DEF,则四边形ABFD的周长为________.15.已知关于x的方程x2﹣4x﹣2k=0有两个实数根,那么k的取值范围是_____.16.如图①的长方形ABCD中,E在AD上,沿BE将A点往右折成如图②所示,再作AF⊥CD于点F,如图③所示,若AB=2,BC=3,∠BEA=60°,则图③中AF的长度为_______.17.一列数按某规律排列如下:11,12,21,13,22,31,14,23,32,41,⋯,若第n 个数为56,则n =_______.三、解答题 18.解方程组:(1)329817x y x y -=⎧⎨+=⎩(2)272253xy y x ⎧+=⎪⎪⎨⎪+=⎪⎩19.以人工智能、大数据、物联网为基础的技术创新促进了新业态蓬勃发展,新业态发展对人才的需求更加旺盛.某大型科技公司上半年新招聘软件、硬件、总线、测试四类专业的毕业生,现随机调查了m 名新聘毕业生的专业情况,并将调查结果绘制成如下两幅不完整的统计图:根据以上信息,解答下列问题:(1)m=,n=;(2)请补全条形统计图;(3)在扇形统计图中,“软件”所对应圆心角的度数是;(4)若该公司新聘600名毕业生,请你估计“总线”专业的毕业生有名.20.如图,一次函数y1=x+4的图象与反比例函数y2=kx的图象交于A(﹣1,a),B两点,与x轴交于点C.(1)求k.(2)根据图象直接写出y1>y2时,x的取值范围.(3)若反比例函数y2=kx与一次函数y1=x+4的图象总有交点,求k的取值范围.21.如图,连接A市和B市的高速公路是AC高速和BC高速,现在要修一条新高速AB,在施工过程中,决定在A、B两地开凿隧道,从而将两地间的公路进行改建,汽车原来从A地到B地需途径C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB 行驶,已知BC =80千米,∠A =45°,∠B =30°. (1)开通隧道前,汽车从A 地到B 地要走多少干来?(结果保留根号) (2)开通隧道后,汽车从A 地到B 地少走多少千米?(结果保留根号)22.如图,在平面直角坐标系xOy 中,已知点(0,4)A ,点B 是x 轴正半轴上一点,连接AB ,过点A 作AC AB ⊥,交x 轴于点C ,点D 是点C 关于点A 的对称点,连接BD ,以AD 为直径作O 交BD 于点E ,连接AE 并延长交x轴于点F ,连接DF . (1)求线段AE 的长;(2)若2AB BO -=,求tan AFC ∠的值; (3)若DEF ∆与AEB ∆相似,求EF 的值.23.已知,如图,抛物线y =ax 2+bx +c (a ≠0)的顶点为M (1,9),经过抛物线上的两点A (﹣3,﹣7)和B (3,m )的直线交抛物线的对称轴于点C .(1)求抛物线的解析式及点B的坐标.(2)在抛物线上A,M两点之间的部分(不包含A,M两点),是否存在点D,使得S△DAC=2S△DCM?若存在,求出点D的坐标;若不存在,请说明理由.(3)上下平移直线AB,设平移后的直线与抛物线交于A′,B′两点(A′在左边,B'在右边),且与y轴交于点P(0,n),若∠A′MB′=90°,求n的值.24.如图,在△ABC中,AC=BC,AB=26,以AB为直径的⊙O交AC边于点D,点E在BC上,连结BD,DE,∠CDE=∠ABD.(1)证明:DE是⊙O的切线;(2)若sin∠CDE=513,求DC的长.参考答案1.B根据相反数的性质可得结果.因为-2+2=0,所以﹣2的相反数是2,故选B.点评:本题考查求相反数,熟记相反数的性质是解题的关键.2.D根据轴对称图形的概念求解.在平面内,如果把一个图形沿一条直线折叠,直线两旁的部分能够完全重合,那么这个图形为轴对称图形.A项是轴对称图形,故本选项错误;B项是轴对称图形,故本选项错误;C项是轴对称图形,故本选项错误;D项不是轴对称图形,故本选项正确.故选D.点评:本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合. 3.C众数是一组数据中出现次数最多的数据,中位数是将一组数据按大小依次排列,把处在最中间位置的一个数据或者最中间两个数据的平均数叫这组数据的中位数.本组数据中,把数据按照从大到小的顺序排列,最中间的两个数的平均数即为中位数.由统计表可知:体育锻炼时间最多的是5小时,故众数是5小时;统计表中是按从小到大的顺序排列的,最中间两个人的锻炼时间都是5小时,故中位数是5小时.故选C.点评:本题考查了确定一组数据的众数和中位数的能力.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数.如果数据有奇数个,则正中间的数字即为所求;如果是偶数,则找中间两位数的平均数. 4.A首先根据三角形内角和为180°以及角平分线性质得出∠ACD=∠BCD=30°,再利用三角形内角和进一步求出答案即可.∵74,46A B ︒︒∠=∠=, ∴∠ACB=180°-74°-46°=60°, ∵CD 平分ACB ∠, ∴∠ACD=∠BCD=30°,∴∠BDC=180°-∠B-∠BCD=104°, 故选:A. 点评:本题主要考查了三角形内角和性质以及角平分线性质的综合运用,熟练掌握相关概念是解题关键. 5.D根据幂的运算公式分别进行求解即可判断.A.a 3•a 3=a 6,故错误;B.2a 2+a 2=3a 2,故错误;C.a 9÷a 3=a 6,故错误;D.(﹣3a 2)3=﹣27a 6,正确 故选D . 点评:此题主要考查幂的运算,解题的关键是熟知幂的运算法则与公式的运用. 6.A先利用正弦的定义得到sinA=0.25,然后利用计算器求锐角∠A.解:因为AC=40,BC=10,sin∠A=BC AC,所以sin∠A=0.25.所以用科学计算器求这条斜道倾斜角的度数时,按键顺序为故选:A.点睛:本题考查了计算器-三角函数:正确使用计算器,一般情况下,三角函数值直接可以求出,已知三角函数值求角需要用第二功能键.7.C利用全等三角形的性质及三角形内角和可求得答案.解:如图,∵两三角形全等,∴∠2=60°,∠1=52°,∴∠α=180°-50°-60°=70°,故选:C.点评:本题主要考查全等三角形的性质,掌握全等三角形的对应角相等是解题的关键.8.B根据分式的运算法则即可求出答案.解:原式21211a a a a -=+-- 2(1)1a a -=- 1a =-故选:B点评:本题考查分式的化简,解题的关键是熟练运用分式的运算法则,本题属于基础题型. 9.D由反比例函数的性质可知112AOE BOF S S k ==,212COE DOF S S k ==-△△,结合AOC AOE COE SS S =+和BOD DOF BOF S S S =+△△△可求得12k k -的值.解:连接OA 、OC 、OD 、OB ,如图:由反比例函数的性质可知1111||22AOE BOF S S k k ===△△,2211||22COE DOF S S k k ===-△△, AOC AOE COE S S S =+△△△, ∴1211163()222AC OE OE OE k k ⋅=⨯⨯==-⋯①, BOD DOF BOF S S S =+△△△,∴12111313()3(8)12()22222BD OF EF OE OE OE k k ⋅=⨯⨯-=⨯⨯-=-=-⋯②,由①②两式得:31232OE OE -=,解得83 OE=,则1216k k-=,故选:D.点评:本题考查反比例函数图象上的点的坐标特征,解题的关键是利用参数,构建方程组解决问题,属于中考常考题型.10.B利用弧长公式计算即可解决问题.由题意:点P所运动的路程=1201602180180ππ⋅⋅++1203180π⋅+604180π⋅+1205180π⋅+…+6020180π⋅=120180π(1+3+5+…+19)+60180π(2+4+…+2+20)=23π•1192+×10+3π•2202+×10=2003π+1103π=3103π,故选:B.点评:本题考查菱形的性质,弧长公式等知识,理解题意,灵活运用所学知识是解题的关键.11.C连接AC交BD于O,根据图②求出菱形的边长为5,对角线BD为8,根据菱形的对角线互相垂直平分求出BO,再利用勾股定理列式求出CO,然后求出AC的长,再根据菱形的面积等于对角线乘积的一半求出菱形的面积,a为点P在CD上时△ABP的面积,等于菱形的面积的一半,从而得解.如图,连接AC交BD于O,由图②可知,BC=CD=5,BD=18-10=8,∴BO=12BD=12×8=4,在Rt△BOC中,CO=222245BC BO-=-=3,AC=2CO=6,所以,菱形的面积=12AC•BD=12×6×8=24,当点P在CD上运动时,△ABP的面积不变,为a,所以,a=12×24=12.故选:C.点评:考核知识点:动点与函数图象.理解菱形基本性质,从函数图象获取信息是解决问题关键.12.C依题意可得当点P在点D时,与当点P在点C时,分别三角形的面积公式求出正方形的边长,EP,EC,BE的长,再根据当x=7时,P点在CD上,根据y=S正方形ABCD−(S△ABE+S△ECP +S△APD),即可求解.解:设正方形的边长为a,①当点P在点D时,y=12AB×AD=12×a×a=8,解得:a=4,②当点P在点C时,y=12EP×AB=12×EP×4=6,解得:EP=3,即EC=3,BE=1,③当x =7时,如下图所示:此时,PC =1,PD =7−4=3,当x =7时,y =S 正方形ABCD −(S △ABE +S △ECP +S △APD )=4×4−12(4×1+1×3+4×3)=132, 故选:C .点评:本题考查的是动点图象问题,此类问题关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解.13.4根据乘方的定义及算术平方根即可化简求解.(﹣1)21+3=4故答案为:4.点评:此题主要考查实数的运算,解题的关键是掌握算术平方根.14.12先根据平移的性质可得,2AC DF CF AD ===,再根据三角形的周长公式可得8AB BC AC ++=,然后根据等量代换即可得.由平移的性质得:,2AC DF CF AD === ABC 的周长为88AB BC AC ∴++=则四边形ABFD 的周长为()AB BF DF AD AB BC CF AC AD +++=++++22AB BC AC =++++822=++=12故答案为:12.点评:本题考查了平移的性质等知识点,掌握理解平移的性质是解题关键.15.k≥﹣2根据方程根的情况可以判定其根的判别式的取值范围,进而可以得到关于k的不等式,解得即可.解:∵关于x的方程x2﹣4x﹣2k=0有两个实数根,∴△=b2−4ac≥0,即:16+8k≥0,解得:k≥−2,∴k的取值范围为k≥−2.故答案为:k≥−2.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2−4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.16.3作AH⊥BC于H.证明四边形AFCH是矩形,得出AF=CH,在Rt△ABH中,求得∠ABH=30°,则根据勾股定理可求出,可求出HC的长度即为AF的长度.解:如下图,作AH⊥BC于H.则∠AHC=90°,∵四边形形ABCD 为长方形,∴∠B=∠C=∠EAB=90°,∵AF ⊥CD ,∴∠AFC=90°,∴四边形AFCH 是矩形,,AF CH =∵∠BEA =60°,∴∠EAB=30°,∴根据折叠的性质可知∠AEH=90°-2∠EAB=30°,∵在Rt △ABH 中,AB=2, ∴112AH AB ==,根据勾股定理BH ===∵BC=3,∴3AF HC BC BH ==-=-故填:3点评:本题考查矩形的性质和判定,折叠变化,勾股定理,含30°角的直角三角形.能作辅助线构造直角三角形是解决此题的关键.17.50根据题目中的数据对数据进行改写,进而观察规律得出第n 个数为56时n 的值.解:∵11,12,21,13,22,31,14,23,32,41,⋯,可以写为:11,(12,21),(13,22,31),(14,23,32,41),⋯, ∴根据规律可知56所在的括号内应为(1234567891,,,,,,,,,109876543210),共计10个,56在括号内从左向右第5位,∴第n个数为56,则n=1+2+3+4+5+6+7+8+9+5=50.故答案为:50.点评:本题考查数字的变化规律,解答本题的关键是明确题意,发现题目中数字的变化规律.18.(1)11xy=⎧⎨=⎩;(2)23xy=⎧⎨=⎩(1)利用加减法解方程组;(2)利用加减法解方程组.解:(1)329817x yx y-=⎧⎨+=⎩①②,由①×3得:9x﹣3y=6③,由②﹣③得:11x=11,解得:x=1,将x=1代入①得:y=1,所以,原方程组的解为11 xy=⎧⎨=⎩;(2)272253xyyx⎧+=⎪⎪⎨⎪+=⎪⎩①②,由①×4得:2x+8y=28③,③﹣②得:2323 3y=,解得:y=3,将y=3代入②得:x=2,所以,原方程组的解为:23 xy=⎧⎨=⎩.点评:此题考查二元一次方程组的解法,根据方程组的特点选择适合的解法是解题的关键.19.(1)50,10;(2)补全条形统计图见解析;(3)70°;(4)估计“总线”专业的毕业生有180名.(1)根据条形统计图和扇形统计图的数据计算即可.(2)先算出硬件专业的毕业生人数,再补充统计图即可.(3)先算出软件专业的占比,再利用周角相乘即可算出圆心角.(4)用600与总线所占比相乘即可求出.(1)由统计图可知155030%m==,510%50n==,n=10.(2)硬件专业的毕业生为5040%=20⨯人,则统计图为(3)软件专业的毕业生对应的占比为10100%=20%50⨯,所对的圆心角的度数为20%360=72⨯︒︒.(4)该公司新聘600名毕业生,“总线”专业的毕业生为60030%=180⨯名.点评:本题考查条形统计图和扇形统计图的画图和信息获取,关键在于通过图象获取有用信息.20.(1)-3;(2)﹣3<x<﹣1;(3)k≥﹣4且k≠0.(1)把点A坐标代入一次函数关系式可求出a的值,确定点A的坐标,再代入反比例函数关系式可求出k的值,(2)一次函数与反比例函数联立,可求出交点B的坐标,再根据图象可得出当y1>y2时,x的取值范围.(3)若反比例函数y2=kx与一次函数y1=x+4的图象总有交点,就是x2+4x﹣k=0有实数根,根据根的判别式求出k的取值范围.(1)一次函数y 1=x +4的图象过A (﹣1,a ),∴a =﹣1+4=3,∴A (﹣1,3)代入反比例函数y 2=k x 得, k =﹣3;(2)由(1)得反比例函数23y x=-,由题意得, 1243y x y x =+⎧⎪⎨=-⎪⎩,解得,1113x y =-⎧⎨=⎩,2231x y =-⎧⎨=⎩, ∴点B (﹣3,1)当y 1>y 2,即一次函数的图象位于反比例函数图象上方时,自变量的取值范围为:﹣3<x <﹣1;(3)若反比例函数y 2=k x 与一次函数y 1=x +4的图象总有交点, 即,方程k x=x +4有实数根,也就是x 2+4x ﹣k =0有实数根, ∴16+4k≥0,解得,k≥﹣4,∵k≠0,∴k 的取值范围为:k≥﹣4且k≠0.点评:此题考查待定系数法求函数解析式,函数图象与二元一次方程组的关系,一次函数与反比例函数交点的确定,正确理解题意是解题的关键.21.(1)()千米;(2)()千米.(1)开通隧道前,汽车从A 地到B 地要走()千米;(2)开通隧道后,汽车从A 地到B 地可以走()千米.解:(1)作CD ⊥AB 于D 点,由题意可知:BC=80千米.∠A=45°,∠B=30°,∴CD=12BC=40千米, ∵∠A=45°,∴△ACD 是等腰直角三角形,∴AD=CD=40千米,∴AC=2CD=402(千米),∴AC+BC=80+402(千米),即开通隧道前,汽车从A 地到B 地要走(80+402)千米;(2)由(1)知CD=40千米,∵CD ⊥AB ,∠A=45°,∴△ACD 是等腰直角三角形,∴AD=CD=40千米,∵∠B=30°,∴BD=3CD =403(千米),∴AB=403+40(千米),答:开通隧道后,汽车从A 地到B 地可以走(403+40)千米.点评:本题考查了解直角三角形的应用,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.22.(1)4;(2)2122;(3)4EF =或8(1)由AD 是圆Q 的直径可得:∠AEB=∠AED=90°,再由BA 垂直平分CD 可得:BC=BD ,然后证明ABE ABO ,即可解答;(2)设BO x =,则2AB x =+,根据勾股定理可得:x=3,再证明△BFA ∽△AFC ,最后运用正切的定义即可解答;(3)需要分BAE FDE ∠=∠和ABE FDE ∠=∠两种情况解答即可.(1)∵AB 是O 的直径90AEB AED ︒∴∠=∠=90AEB AOB ︒∴∠=∠=∵BA 垂直平分CD ,BC BD ∴=,BA BAABE ABO4AE AO ∴==(2)设BO x =,则2AB x =+在ABO ∆中,由222AO OB AB +=得2216(2)x x +=+,解得:3x = 3,5OB BE AB ∴===90EAB ABE ︒∠+∠=,90ACB ABC ︒∠+∠=EAB ACB ∴∠=∠BAF AFC ∠=∠BFA AFC ∴∆∆::3:4BF AF BE AO ∴==设EF x =,则34,(4)4AF x BF x =+=+ 在BEF ∆中,222BE EF BF += ()223944x x ⎡⎤+=+⎢⎥⎣⎦解得2222,77x EF == ∴tan AFC ∠=32122227BE EF (3)①如图1,当AEBDEF ∆∆时,有BAE FDE ∠=∠ADE FDE ∴∠=∠BD 垂直平分AF4EF AE ∴==②如图2,设Q 交y 轴于点G ,连接DG ,作FH DG ⊥于H 当DEF BEA ∆∆时,有ABE FDE ∠=∠DAE DAG FDE FDH ∴∠=∠=∠=∠4,8AG AE EF FH OG ∴=====综上所述,4EF =或8;点评:本题考查了圆的性质、勾股定理、相似三角形判定和性质等知识点,属于几何综合题和几何压轴题,熟练掌握并运用所学性质定理和判定定理是解答本题的关键.23.(1)y =﹣x 2+2x +8,B (3,5);(2)存在,点D (﹣1,5);(3)n =6(1)抛物线的表达式为:y =a (x ﹣1)2+9,将点A 的坐标代入上式并解得:a =﹣1,即可求解;(2)S △DAC =2S △DCM ,则HN =2GH ,即1﹣k ﹣(3k ﹣7)=2(9﹣k ﹣1+k ),即可求解; (3)∠GA′M =∠HMB′,故tan ∠GA′M =tan ∠HM B′,即:122119(29(2))1x x n x n x -+=-+--,而x 1+x 2=0,x 1x 2=n ﹣8,y 1+y 2=2n ,y 1y 2=4n ﹣32+n 2,即可求解.解:(1)抛物线的表达式为:y =a (x ﹣1)2+9,将点A 的坐标代入上式并解得:a =﹣1,故抛物线的表达式为:y=﹣x2+2x+8,将点B坐标代入上式并解得:m=5,故点B(3,5);(2)过点M、C、A分别作三条相互平移的平行线,分别交y轴于点G、H、N,直线l与抛物线交于点D,设直线m的表达式为:y=kx+t,将点M的坐标代入上式并解得:t=9﹣k,故直线m的表达式为:y=kx+9﹣k,即点G(0,9﹣k),同理直线l的表达式为:y=kx+1﹣k,故点H(0,1﹣k),同理直线n的表达式为:y=kx+3k﹣7,故点N(0,3k﹣7),S△DAC=2S△DCM,则HN=2GH,即1﹣k﹣(3k﹣7)=2(9﹣k﹣1+k),解得:k=﹣2,故直线l的表达式为:y=﹣2x+3…②,联立①②并解得:x=5(舍去)或﹣1,故点D(﹣1,5);(3)直线A′B′的表达式为:y=2x+n,设点A′、B′的坐标分别为:(x1,y1)、(x2,y2),将抛物线与直线A′B′的表达式联立并整理得:x2+n﹣8=0,故x1+x2=0,x1x2=n﹣8,y 1+y 2=2(x 1+x 2)+2n =2n ,同理可得:y 1y 2=4n ﹣32+n 2,过点M 作x 轴的平行线交过点A′与y 轴的平行线于点G ,交过点B′与y 轴的平行线于点H ,∵∠A′MB′=90°,∴∠GMA′+∠GA′M =90°,∠GMA′+∠MHB′=90°,∴∠GA′M =∠HMB′,故tan ∠GA′M =tan ∠HMB′, 即:122119(29(2))1x x n x n x -+=-+--, 而x 1+x 2=0,x 1x 2=n ﹣8,y 1+y 2=2n ,y 1y 2=4n ﹣32+n 2,整理得:n 2﹣13n+42=0,解得:n =6或7(舍去),故n =6.点评:主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.24.(1)见解析;(2)DC 的长为1195(1)连结OD ,如图,根据圆周角定理,由AB 为⊙O 的直径得∠ADO+∠ODB=90°,再由OB=OD 得∠OBD=∠ODB ,则∠ADO+∠ABD=90°,由于∠CDE=∠ABD ,所以∠ADO+∠CDE=90°,然后根据平角的定义得∠ODE=90°,于是可根据切线的判定定理得到DE是⊙O的切线;(2)由于∠CDE=∠ABD,则sin∠CDE=sin∠ABD=513,在Rt△ABD中,根据正弦的定义得sin∠ABD=513ADAB=,得到AD=10,再连结OC,如图,由于CA=CB,OA=OB,根据等腰三角形的性质得CO⊥AB,则利用等角的余角相等可得到∠ACO=∠ABD,然后在Rt△ACO中,利用∠ACO的正弦可计算出AC的长,从而可得答案.(1)证明:连结OD,如图,∵AB为⊙O的直径,∴∠ADB=90°,即∠ADO+∠ODB=90°,∵OB=OD,∴∠OBD=∠ODB,∴∠ADO+∠ABD=90°,∵∠CDE=∠ABD,∴∠ADO+∠CDE=90°,∴∠ODE=90°,∴OD⊥DE,∴DE是⊙O的切线;(2)解:∵∠CDE=∠ABD,∴sin∠CDE=sin∠ABD=5 13,在Rt△ABD中,sin∠ABD=ADAB=513,26,AB=∴10,24, AD BD===∴圆O的半径为13,连结OC,如图,∵CA=CB,OA=OB,∴CO⊥AB,∴∠ACO=∠ABD,在Rt△ACO中,∵sin∠ACO=5,13 OAAC=∴AC=13169,55OA=16911910.55CD AC AD∴=-=-=点评:本题考查了切线的判定:经过半径的外端且垂直于这条半径的直线是圆的切线.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.也考查了等腰三角形的性质,勾股定理的应用,解直角三角形,掌握以上知识是解题的关键.。
2020年山东省淄博市张店区中考数学一模试卷 解析版
2020年山东省淄博市张店区中考数学一模试卷一、选择题:(本题共12小题,在每小题所给出的四个选项中,只有一个是正确的,请把正确的选项填涂在答题纸的相应位置上).1.下列各数中,比﹣2小的数是()A.0B.C.﹣1.5D.﹣32.下列几何体中,侧面展开图是矩形的是()A.B.C.D.3.下列计算中,正确的是()A.a5+a5=a10B.a2•a3=a6C.(a3)3=a9D.a6÷a2=a3(a≠0)4.下列命题中,正确的是()A.两个直角三角形一定相似B.两个矩形一定相似C.两个等边三角形一定相似D.两个菱形一定相似5.如图,直角坐标平面内有一点P(2,4),那么OP与x轴正半轴的夹角α的余切值为()A.2B.C.D.6.如果x﹣3y=0,那么代数式的值为()A.﹣2B.2C.D.37.设x1为一元二次方程x2﹣2x=较小的根,则()A.0<x1<1B.﹣1<x1<0C.﹣2<x1<﹣1D.﹣5<x1<﹣4 8.如图所示,概率学习中小红制作了一个游戏转盘,红、绿两个扇形的圆心角度数分别为150°,90°.让转盘自由转动(落在边界处重转),指针停止后落在紫色区域的概率是()A.B.C.D.9.如图,AB为⊙O直径,已知∠DCB=20°,则∠DBA为()A.50°B.20°C.60°D.70°10.如图,菱形ABCD的边长为4,且AE⊥BC,E、F、G、H分别为BC、CD、DA、AB 的中点,以A、B、C、D四点为圆心,半径为2作圆,则图中阴影部分的面积是()A.4﹣4πB.4﹣2πC.8﹣2πD.8﹣4π11.一辆货车与客车都从A地出发经过B地再到C地,总路程200千米,货车到B地卸货后再去C地,客车到B地部分旅客下车后再到C地,货车比客车晚出发10分钟,则以下4种说法:①货车与客车同时到达B地;②货车在卸货前后速度不变;③客车到B地之前的速度为20千米/时;④货车比客车早5分钟到达C地;4种说法中正确的个数是()A.1个B.2个C.3个D.4个12.如图所示,菱形ABCD的边长是2厘米,∠BAD=120°,动点M以1厘米/秒的速度自A点出发向B移动,动点N以2厘米/移的速度自B点出发向D移动,两点中任一个到达线段端点移动便告结束.若点M、N同时出发运动了t秒,记△BMN的面积为S厘米2,下面图象中能表示S与t之间的函数关系的是()A.B.C.D.二、填空题(本题共5小题,请把正确的结果填在答题纸的相应位置上.)13.的算术平方根是.14.颐和园坐落在北京西郊,是第一批全国重点文物保护单位之一.小万去颐和园参加实践活动时发现有的窗户造型是正八边形,如下图所示,则∠1=°.15.若⊙A半径为5,圆心A的坐标是(1,2),点P的坐标是(5,2),那么点P与⊙A位置关系为.16.如图,已知点A、B分别在反比例函数y=﹣(x<0)与y=(x>0)图象上,且OA⊥OB,若AB=6,则△AOB的面积为.17.甲地有42吨货物要运到乙地,有大、小两种货车可供选择,具体收费情况如表:类型载重量(吨)运费(元/车)大货车8450小货车5300运完这批货物最少要支付运费元.三、解答题(本题共7小题,请把解答过程写在答题纸上)18.计算:.19.已知:如图,∠MAN=90°,线段a和线段b求作:矩形ABCD,使得矩形ABCD的两条边长分别等于线段a和线段b.下面是小东设计的尺规作图过程.作法:如图,①以点A为圆心,b为半径作弧,交AN于点B;②以点A为圆心,a为半径作弧,交AM于点D;③分别以点B、点D为圆心,a、b长为半径作弧,两弧交于∠MAN内部的点C;④分别连接BC,DC.所以四边形ABCD就是所求作的矩形.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵AB=;AD=;∴四边形ABCD是平行四边形.∵∠MAN=90°;∴四边形ABCD是矩形(填依据).20.如图,点C、E、F、B在同一直线上,点A、D在BC异侧,AB∥CD,AE=DF,∠A =∠D.(1)求证:AB=CD;(2)若AB=CF,∠B=40°,求∠D的度数.21.为了丰富学生的业余文化生活,某校教务处准备在大课间期间开设兴趣小组,预设科目为“舞蹈”“音乐”“电竞”“动漫”为了准确配备教室与师资,负责人制作了“你最喜欢的科目”的调查问卷,在校园随机调查后制作了两幅不完整的统计图,请你根据信息解答下面问题:(1)本次调查中,参与问卷调查的人数为;(2)扇形统计图中的m、n的值为、,补全条形统计图;(3)若该校有学生2000人,请你估计报名“电竞”的学生的人数为;(4)最先报名“动漫”课程的三名学生中有两名男生一名女生,若随机抽取两名学生参与教室网线布设,求两名学生恰为一男一女的概率.22.如图,四边形ABCD内接于⊙O,BD是⊙O的直径,过点A作AE⊥CD,交CD的延长线于点E,DA平分∠BDE.(1)求证:AE是⊙O的切线;(2)已知AE=8cm,CD=12cm,求⊙O的半径.23.如图,在△ABC与△EBD中,∠ABC=∠EBD=90°,AB=6,BC=3,EB=2,BD =,射线AE与直线CD交于点P.(1)求证:△ABE∽△CBD;(2)若AB∥ED,求tan∠P AC的值;(3)若△EBD绕点B逆时针旋转一周,直接写出线段AP的最大值与最小值.24.已知,抛物线y=﹣x2+bx+c交y轴于点C(0,2),经过点Q(2,2).直线y=x+4分别交x轴、y轴于点B、A.(1)求抛物线的解析式;(2)如图1,点P为抛物线上一动点(不与点C重合),PO交抛物线于M,PC交AB 于N,连MN.求证:MN∥y轴;(3)如图2,过点A的直线交抛物线于D、E,QD、QE分别交y轴于G、H.求证:CG•CH为定值.2020年山东省淄博市张店区中考数学一模试卷参考答案与试题解析一、选择题:(本题共12小题,在每小题所给出的四个选项中,只有一个是正确的,请把正确的选项填涂在答题纸的相应位置上).1.下列各数中,比﹣2小的数是()A.0B.C.﹣1.5D.﹣3【分析】根据负数的绝对值越大负数反而小,可得答案.【解答】解:|﹣3|>|﹣2|,∴﹣3<﹣2,故选:D.2.下列几何体中,侧面展开图是矩形的是()A.B.C.D.【分析】根据几何体的展开图:圆柱的侧面展开图是矩形;圆锥的侧面展开图是扇形;六棱锥的侧面展开图是六个三角形;棱台的侧面展开图是四个梯形,可得答案.【解答】解:A、侧面展开图是矩形,故A正确;B、侧面展开图是扇形,故B错误;C、侧面展开图是三角形,故C错误;D、侧面展开图是梯形,故D错误.故选:A.3.下列计算中,正确的是()A.a5+a5=a10B.a2•a3=a6C.(a3)3=a9D.a6÷a2=a3(a≠0)【分析】分别根据合并同类项法则,同底数幂的乘法法则,幂的乘方运算法则以及同底数幂的除法法则逐一判断即可.【解答】解:A.a5+a5=2a5,故本选项不符合题意;B.a2•a3=a5,故本选项不符合题意;C.(a3)3=a9,符合题意;D.a6÷a2=a4(a≠0),故本选项不符合题意.故选:C.4.下列命题中,正确的是()A.两个直角三角形一定相似B.两个矩形一定相似C.两个等边三角形一定相似D.两个菱形一定相似【分析】根据相似三角形的判定方法对A、C进行判断;利用反例可对B、D进行判断.【解答】解:两个直角三角形不一定相似,两个矩形不一定相似,两个菱形不一定相似,而两个等边三角形一定相似.故选:C.5.如图,直角坐标平面内有一点P(2,4),那么OP与x轴正半轴的夹角α的余切值为()A.2B.C.D.【分析】过点P作P A⊥x轴于点A.由P点的坐标得P A、OA的长,根据余切函数的定义得结论.【解答】解:过点P作P A⊥x轴于点A.由于点P(2,4),∴P A=4,OA=2∴cotα==.故选:B.6.如果x﹣3y=0,那么代数式的值为()A.﹣2B.2C.D.3【分析】先根据分式的混合运算顺序和运算法则化简原式,再将x=3y代入化简可得.【解答】解:原式=(﹣)•=•=,∵x﹣3y=0,∴x=3y,则原式==2,故选:B.7.设x1为一元二次方程x2﹣2x=较小的根,则()A.0<x1<1B.﹣1<x1<0C.﹣2<x1<﹣1D.﹣5<x1<﹣4【分析】求出方程的解,求出方程的最小值,即可求出答案.【解答】解:x2﹣2x=,8x2﹣16x﹣5=0,x==,∵x1为一元二次方程x2﹣2x=较小的根,∴x1==1﹣,∵5<<6,∴﹣1<x1<0.故选:B.8.如图所示,概率学习中小红制作了一个游戏转盘,红、绿两个扇形的圆心角度数分别为150°,90°.让转盘自由转动(落在边界处重转),指针停止后落在紫色区域的概率是()A.B.C.D.【分析】直接利用已知得出紫色部分扇形的圆心角度数,再利用概率公式计算得出答案.【解答】解:∵红、绿两个扇形的圆心角度数分别为150°,90°.∴紫色部分扇形的圆心角度数为:360°﹣150°﹣90°=120°,故指针停止后落在紫色区域的概率是:=.故选:B.9.如图,AB为⊙O直径,已知∠DCB=20°,则∠DBA为()A.50°B.20°C.60°D.70°【分析】先根据半圆(或直径)所对的圆周角是直角得到∠ACB=90°,再利用互余得∠ACD=90°﹣∠DCB=70°,然后根据同弧或等弧所对的圆周角相等求解.【解答】解:∵AB为⊙O直径,∴∠ACB=90°,∴∠ACD=90°﹣∠DCB=90°﹣20°=70°,∴∠DBA=∠ACD=70°.故选:D.10.如图,菱形ABCD的边长为4,且AE⊥BC,E、F、G、H分别为BC、CD、DA、AB的中点,以A、B、C、D四点为圆心,半径为2作圆,则图中阴影部分的面积是()A.4﹣4πB.4﹣2πC.8﹣2πD.8﹣4π【分析】由图形可知,阴影部分的面积是菱形ABCD的面积减去半径为2的整圆的面积,然后根据题目中的数据可以计算AE的长,然后代入数据计算即可解答本题.【解答】解:由已知可得,AB=BC=AC=4,∵点E为BC的中点,∴AE⊥BC,并且平分BC,∴AE==2,∴图中阴影部分的面积是:4×﹣π×22=8﹣4π,故选:D.11.一辆货车与客车都从A地出发经过B地再到C地,总路程200千米,货车到B地卸货后再去C地,客车到B地部分旅客下车后再到C地,货车比客车晚出发10分钟,则以下4种说法:①货车与客车同时到达B地;②货车在卸货前后速度不变;③客车到B地之前的速度为20千米/时;④货车比客车早5分钟到达C地;4种说法中正确的个数是()A.1个B.2个C.3个D.4个【分析】①由函数图可以得出货车到达B地用时30分钟,客车到达B地用时40分钟,根据货车比客车晚出发10分钟就可以得出货车与客车同时到达B地;②分别求出货车卸货前后的速度并作比较就可以得出结论;③由路程÷时间=速度就可以得出结论;④由函数图象可以得出货车到达C地的时间是80分钟,客车到达C地的时间是85分钟就可以得出,但是客车先出发了10分钟,故货车比客车晚5分钟到达C地.【解答】解:①函数图可以得出货车到达B地用时30分钟,客车到达B地用时40分钟,∵车比客车晚出发10分钟,∴货车与客车同时到达B地.故正确②货车在卸货前的速度为:80÷0.5=160千米/时,货车在卸货后的速度为:120÷0.5=240千米/时.∵160≠240,∴货车在卸货前后速度不相等.故错误;③客车到B地之前的速度为:80÷=120千米/时≠20千米/时.故错误;④由函数图象可以得出货车到达C地所有时间是80分钟,客车到达C地所用时间是85分钟,∵客车先出发了10分钟,∴货车是客车出发90分钟后到达的C地,∴货车比客车晚5分钟到达C地.故错误.故选:A.12.如图所示,菱形ABCD的边长是2厘米,∠BAD=120°,动点M以1厘米/秒的速度自A点出发向B移动,动点N以2厘米/移的速度自B点出发向D移动,两点中任一个到达线段端点移动便告结束.若点M、N同时出发运动了t秒,记△BMN的面积为S厘米2,下面图象中能表示S与t之间的函数关系的是()A.B.C.D.【分析】连接AC与BD交于点O,作MH⊥BD,垂足为H,根据菱形的性质以及题目给出的条件可得BO=cm,进而得出BD=cm,根据题意可知AM=tcm,BN=2tcm,根据题意得出t的取值范围,再根据三角形的面积公式得出S与t之间的函数关系式即可得出正确选项.【解答】解:如图,连接AC与BD交于点O,作MH⊥BD,垂足为H,∵ABCD是菱形,∠BAD=120°,∴∠BAC=60°,∠ABO=30°,∴BO=AB•cos30°==(cm),∴BD=(cm),根据s=vt可知,AM=t(cm),BN=2t(cm),∵0≤AM≤2,得0≤t≤2,,∴,∵在△BMH中,BN=2t,MH=BM•sin30°=,∴==(),此函数的图象为开口方向向下的抛物线的一部分,且图象两个端点的横坐标分别为0,.故选:B.二、填空题(本题共5小题,请把正确的结果填在答题纸的相应位置上.)13.的算术平方根是3.【分析】首先根据算术平方根的定义求出的值,然后即可求出其算术平方根.【解答】解:∵=9,又∵(±3)2=9,∴9的平方根是±3,∴9的算术平方根是3.即的算术平方根是3.故答案为:3.14.颐和园坐落在北京西郊,是第一批全国重点文物保护单位之一.小万去颐和园参加实践活动时发现有的窗户造型是正八边形,如下图所示,则∠1=45°.【分析】利用正八边形的外角和等于360度即可求出答案.【解答】解:360°÷8=45°,故答案为:45.15.若⊙A半径为5,圆心A的坐标是(1,2),点P的坐标是(5,2),那么点P与⊙A位置关系为点P在⊙A内.【分析】先求出P A的长,然后比较P A与半径的大小,再根据点与圆的关系的判定方法进行判断.【解答】解:∵点A的坐标是(1,2),点P的坐标是(5,2),∴P A=4<5,∴点P在圆A内,故答案为:点P在⊙A内.16.如图,已知点A、B分别在反比例函数y=﹣(x<0)与y=(x>0)图象上,且OA⊥OB,若AB=6,则△AOB的面积为6.【分析】过A作AC⊥x轴,过B作BD⊥x轴,利用同角的余角相等得到一对角相等,再由一对直角相等,利用两对对应角相等的两三角形相似得到三角形ACO与三角形ODB 相似,由A、B分别在反比例函数y=﹣(x<0)与y=(x>0)图象上,利用反比例函数k的几何意义求出三角形AOC与三角形BOD面积,进而得到面积之比,利用面积比等于相似比的平方确定出相似比,即为OA与OB之比,设出OA=x,OB=x,在直角三角形AOB中,利用勾股定理列出关于x的方程,求出方程的解得到x的值,确定出OA与OB的长,即可求出三角形AOB的面积.【解答】解:过A作AC⊥x轴于C,过B作BD⊥x轴于D,∵∠AOC+∠BOD=90°,∠AOC+∠CAO=90°,∴∠BOD=∠CAO,∵∠ACO=∠BDO=90°,∴△ACO∽△ODB,∵点A,B分别分别在反比例函数y=﹣(x<0)与y=(x>0)图象上,∴S△AOC=×|﹣3|=,S△BOD=×6=3,即S△AOC:S△BOD=1:2,∴OA:OB=1:,在Rt△AOB中,设OA=x,则OB=x,AB=6,根据勾股定理得:AB2=OA2+OB2,即36=x2+2x2,解得:x=2,∴OA=2,OB=2,则S△AOB=OA•OB=6.故答案为:6.17.甲地有42吨货物要运到乙地,有大、小两种货车可供选择,具体收费情况如表:类型载重量(吨)运费(元/车)大货车8450小货车5300运完这批货物最少要支付运费2400元.【分析】直接利用二元一次方程组的解分析得出答案.【解答】解:设租用大货车x辆,小货车y辆,由题意得:8x+5y=42,整数解为:,此时运费为:4×450+2×300=2400(元),当x=6时,y=0,此时运费为:6×450=2700(元),当x=5时,y=1(此车没装满),此时运费为:5×450+1×300=2550(元),当x=3时,y=4(有一辆车没装满),此时运费为:3×450+4×300=2550(元),当x=2时,y=6(有一辆车没装满),此时运费为:2×450+6×300=2700(元),故运完这批货物最少要支付运费是2400元.故答案为:2400.三、解答题(本题共7小题,请把解答过程写在答题纸上)18.计算:.【分析】本题涉及特殊角的三角函数值、负指数幂、绝对值、二次根式化简4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=2×++4﹣2=++4﹣2=4.19.已知:如图,∠MAN=90°,线段a和线段b求作:矩形ABCD,使得矩形ABCD的两条边长分别等于线段a和线段b.下面是小东设计的尺规作图过程.作法:如图,①以点A为圆心,b为半径作弧,交AN于点B;②以点A为圆心,a为半径作弧,交AM于点D;③分别以点B、点D为圆心,a、b长为半径作弧,两弧交于∠MAN内部的点C;④分别连接BC,DC.所以四边形ABCD就是所求作的矩形.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵AB=CD;AD=BC;∴四边形ABCD是平行四边形.∵∠MAN=90°;∴四边形ABCD是矩形(填依据有一个角为直角的平行四边形是矩形).【分析】(1)根据几何语言画出对应的几何图形;(2)先根据平行四边形的判定方法得到四边形ABCD是平行四边形.再根据有一个角为直角的平行四边形是矩形判断四边形ABCD是矩形.【解答】解:(1)如图,四边形ABCD为所求作;(2)完成下面的证明.证明:∵AB=CD;AD=BC;∴四边形ABCD是平行四边形.∵∠MAN=90°;∴四边形ABCD是矩形(有一个角为直角的平行四边形是矩形)故答案为CD,BC;有一个角为直角的平行四边形是矩形.20.如图,点C、E、F、B在同一直线上,点A、D在BC异侧,AB∥CD,AE=DF,∠A =∠D.(1)求证:AB=CD;(2)若AB=CF,∠B=40°,求∠D的度数.【分析】(1)根据平行线的性质求出∠B=∠C,根据AAS推出△ABE≌△DCF,根据全等三角形的性质得出即可;(2)根据全等得出AB=CD,BE=CF,∠B=∠C,求出CF=CD,推出∠D=∠CFD,即可求出答案.【解答】(1)证明:∵AB∥CD,∴∠B=∠C,在△ABE和△DCF中,,∴△ABE≌△DCF(AAS),∴AB=CD;(2)解:∵△ABE≌△DCF,∴AB=CD,BE=CF,∠B=∠C,∵∠B=40°,∴∠C=40°∵AB=CF,∴CF=CD,∴∠D=∠CFD=(180°﹣40°)=70°.21.为了丰富学生的业余文化生活,某校教务处准备在大课间期间开设兴趣小组,预设科目为“舞蹈”“音乐”“电竞”“动漫”为了准确配备教室与师资,负责人制作了“你最喜欢的科目”的调查问卷,在校园随机调查后制作了两幅不完整的统计图,请你根据信息解答下面问题:(1)本次调查中,参与问卷调查的人数为80人;(2)扇形统计图中的m、n的值为54、25,补全条形统计图;(3)若该校有学生2000人,请你估计报名“电竞”的学生的人数为1000人;(4)最先报名“动漫”课程的三名学生中有两名男生一名女生,若随机抽取两名学生参与教室网线布设,求两名学生恰为一男一女的概率.【分析】(1)从两个统计图可得,“电竞”的有40人,占调查人数的50%,可求出调查人数;(2)求出“动漫”12人所占的百分比,即可求出“动漫”所在的圆心角的度数,确定m 的值;求出“音乐”20人所占的百分比,即可求出n的值;求出“舞蹈”的人数,即可补全条形统计图:(3)样本估计总体,样本中“电竞”占50%,估计总体2000人的50%是报“电竞”的人数.(4)用列表法列举出所有可能出现的结果,从中找出“一男一女”的结果数,即可求出相应的概率.【解答】解:(1)40÷50%=80(人),故答案为:80;(2)m=360°×=54°,20÷80=25%,80×10%=8(人),补全条形统计图如图所示:故答案为:54,25;(3)2000×50%=1000(人)故答案为:1000人;(4)用列表法表示所有可能出现的结果如下:共有6种结果,其中一男一女的有4种,∴两名学生恰为一男一女的概率为=.22.如图,四边形ABCD内接于⊙O,BD是⊙O的直径,过点A作AE⊥CD,交CD的延长线于点E,DA平分∠BDE.(1)求证:AE是⊙O的切线;(2)已知AE=8cm,CD=12cm,求⊙O的半径.【分析】(1)根据等边对等角得出∠ODA=∠OAD,进而得出∠OAD=∠EDA,证得EC ∥OA,从而证得AE⊥OA,即可证得AE是⊙O的切线;(2)过点O作OF⊥CD,垂足为点F.从而证得四边形AOFE是矩形,得出OF=AE=8cm,根据垂径定理得出DF=CD=6cm,在Rt△ODF中,根据勾股定理即可求得⊙O 的半径.【解答】(1)证明:连结OA.∵OA=OD,∴∠ODA=∠OAD.∵DA平分∠BDE,∴∠ODA=∠EDA.∴∠OAD=∠EDA,∴EC∥OA.∵AE⊥CD,∴OA⊥AE.∵点A在⊙O上,∴AE是⊙O的切线.(2)解:过点O作OF⊥CD,垂足为点F.∵∠OAE=∠AED=∠OFD=90°,∴四边形AOFE是矩形.∴OF=AE=8cm.又∵OF⊥CD,∴DF=CD=6cm.在Rt△ODF中,OD==10cm,即⊙O的半径为10cm.23.如图,在△ABC与△EBD中,∠ABC=∠EBD=90°,AB=6,BC=3,EB=2,BD =,射线AE与直线CD交于点P.(1)求证:△ABE∽△CBD;(2)若AB∥ED,求tan∠P AC的值;(3)若△EBD绕点B逆时针旋转一周,直接写出线段AP的最大值与最小值.【分析】(1)根据两边成比例夹角相等两三角形相似证明即可.(2)如图,设DE交BC于M.想办法证明∠P=90°,求出PC,P A即可解决问题.(3)由(2)可知当点P与C重合时,P A的值最大,最大值P A=AC===3,如图,当AE在AB的下方且与⊙B相切时,∠CAP的值最大,此时P A =AC•cos∠CAP的值最小,解直角三角形求出P A的最小值即可.【解答】(1)证明:∵,∠ABC=∠EBD=90°,∴∠ABE=∠CBD,∵AB=6,BC=3,EB=2,BD=,∴==2,∴△ABE∽△CBD.(2)解:如图,设DE交BC于M.∵AB∥DE,∠ABC=90°,∴∠DMB=∠ABC=∠DMC=90°,在Rt△DEB中,∵∠EBD=90°,BE=2,BD=,∴DE===5,BM===2,∴DM===1,∴CM=DM=1,CD=,∴∠CDM=∠DCM=45°,∵△ABE∽△CBD,∴==2,∠CDB=∠AEB,∴AE=2,∵∠AEB+∠PEB=180°,∴∠CDB+∠PEB=180°,∵∠EBD=90°,∴∠APC=90°,∴PE=PD=DE=,∴PC=PD﹣CD=MP A=PE+AE=,∴tan∠P AC==.(3)由(2)可知当点P与C重合时,P A的值最大,最大值P A=AC===3,如图,当AE在AB的下方且与⊙B相切时,∠CAP的值最大,此时P A=AC•cos∠CAP 的值最小,∵∠BEP=∠DPE=∠DBE=90°,∴四边形BEPD是矩形,∴BD=PE=,∵AE===4,∴P A的最小值为4﹣,24.已知,抛物线y=﹣x2+bx+c交y轴于点C(0,2),经过点Q(2,2).直线y=x+4分别交x轴、y轴于点B、A.(1)求抛物线的解析式;(2)如图1,点P为抛物线上一动点(不与点C重合),PO交抛物线于M,PC交AB 于N,连MN.求证:MN∥y轴;(3)如图2,过点A的直线交抛物线于D、E,QD、QE分别交y轴于G、H.求证:CG•CH为定值.【分析】(1)将点C,Q的坐标代入y=﹣x2+bx+c即可;(2)设直线PM的解析式为y=mx,直线PC的解析式为y=kx+2,先求出点P的横坐标,再求出点M、N的横坐标,由M、N的横坐标相等可确定MN∥y轴;(3)设G(0,m),H(0,n),分别求出直线QG和直线QH的解析式,再求出点D、E的横坐标,求直线AE与抛物线的交点时利用根与系数的关系推出x D•x E=4,可进一步推出CG•CH=4.【解答】解:(1)将点C(0,2),Q(2,2)代入y=﹣x2+bx+c,得,解得,∴抛物线的解析式为y=﹣x2+x+2;(2)设直线PM的解析式为y=mx,直线PC的解析式为y=kx+2,联立,得x2+(k﹣1)x=0,解得,x1=0,x2=2﹣2k,∴x P=2﹣2k,联立,得x2+(m﹣1)x﹣2=0,∴x1•x2=﹣=﹣4,即x P•x M=﹣4,∴x M===,由,得x N=,∴x N=x M,∴MN∥y轴;(3)设G(0,m),H(0,n),设直线QG的解析式为y=kx+m,将点Q(2,2)代入y=kx+m,得,2=2k+m,∴k=,∴直线QG的解析式为y=x+m,同理可求直线QH的解析式为y=x+n,由,得,x+m=﹣x2+x+2,解得,x1=2,x2=m﹣2,∴x D=m﹣2,同理,x E=n﹣2,设直线AE的解析式为y=kx+4,由,得x2﹣(k﹣1)x+2=0∴x1•x2=﹣=4,即x D•x E=4,即(m﹣2)•(n﹣2)=4,∴CG•CH=(2﹣m)•(2﹣n)=4.。
真题解析2022年山东省淄博市中考数学一模试题(含详解)
2022年山东省淄博市中考数学一模试题 考试时间:90分钟;命题人:数学教研组 考生注意: 1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,已知点B ,F ,C ,E 在一条直线上,AB DE =,AB DE ∥,那么添加下列一个条件后,仍无法判定ABC DEF ≌△△的是( )A .BF CE =B .A D ∠=∠C .AC DF ∥D .AC DF = 2、利用如图①所示的长为a 、宽为b 的长方形卡片4张,拼成了如图②所示的图形,则根据图②的面积关系能验证的等式为( )·线○封○密○外A .22()4()a b ab a b -+=+B .22()()a b a b a b -+=-C .222()2a b a ab b +=++D .222()2a b a ab b ---+3、如图,OE 为AOB ∠的角平分线,30AOB ∠=︒,6OB =,点P ,C 分别为射线OE ,OB 上的动点,则PC PB +的最小值是( )A .3B .4C .5D .64、下列计算中,正确的是( )A .a 2+a 3=a 5B .a •a =2aC .a •3a 2=3a 3D .2a 3﹣a =2a 25、如图,平行四边形ABCD 的边BC 上有一动点E ,连接DE ,以DE 为边作矩形DEGF 且边FG 过点A .在点E 从点B 移动到点C 的过程中,矩形DEGF 的面积( )A .先变大后变小B .先变小后变大C .一直变大D .保持不变6、点()4,9-关于x 轴的对称点是( )A .()4,9--B .()4,9-C .()4,9-D .()4,97、如图,菱形OABC 的边OA 在平面直角坐标系中的x 轴上,60AOC ∠=︒,4OA =,则点C 的坐标为( )A.(2, B.()2 C.( D .()2,2 8、如图,有三块菜地△ACD 、△ABD 、△BDE 分别种植三种蔬菜,点D 为AE 与BC 的交点,AD 平分∠BAC ,AD =DE ,AB =3AC ,菜地△BDE 的面积为96,则菜地△ACD 的面积是( )A .24B .27C .32D .36 9、如图,正方形ABCD 的两条对角线AC ,BD 相交于点O ,点E 在BD 上,且BE =AD ,则∠ACE 的度数为( )A .22.5°B .27.5°C .30°D .35°10、下列现象: ①用两个钉子就可以把木条固定在墙上 ②从A 地到B 地架设电线,总是尽可能沿着线段AB 架设 ③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线 ·线○封○密○外④把弯曲的公路改直,就能缩短路程其中能用“两点之间线段最短”来解释的现象有( )A .①④B .①③C .②④D .③④第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,过ABC 的重心G 作ED AB ∥分别交边AC 、BC 于点E 、D ,联结AD ,如果AD 平分BAC ∠,6AB =,那么EC =______.2、某树主干长出x 根枝干,每个枝干又长出x 根小分支,若主干、枝干和小分支总数共133根,则主干长出枝干的根数x 为______.3、若代数式2a b -的值是3,则多项式()638a b -+的值是______.4、如图,小明用一张等腰直角三角形纸片做折纸实验,其中∠C =90°,AC =BC =10,AB ,点C 关于折痕AD 的对应点E 恰好落在AB 边上,小明在折痕AD 上任取一点P ,则△PEB 周长的最小值是___________.5、两个人玩“石头、剪刀、布”游戏,在保证游戏公平的情况下,随机出手一次,两人手势不相同的概率是___________.三、解答题(5小题,每小题10分,共计50分)1、如图,△ABC 中,∠BAC =90°,点D 是BC 上的一点,将△ABC 沿AD 翻折后,点B 恰好落在线段CD 上的B '处,且AB '平分∠CAD .求∠BAB '的度数.2、请根据学习“一次函数”时积累的经验和方研究函数2y x =-+的图象和性质,并解决问题.(1)填空:①当x =0时,2y x =-+= ; ②当x >0时,2y x =-+= ; ③当x <0时,2y x =-+= ; ·线○封○密·○外(2)在平面直角坐标系中作出函数2y x =-+的图象;(3)观察函数图象,写出关于这个函数的两条结论;(4)进一步探究函数图象发现:①函数图象与x 轴有 个交点,方程20x -+=有 个解; ②方程22x -+=有 个解;③若关于x 的方程2x a -+=无解,则a 的取值范围是 .3、已知:如图,点A ,F ,C ,D 在同一条直线上,点B 和点E 在直线AD 的两侧,且AF =DC ,BC ∥FE ,∠A =∠D .求证:AB =DE .4、某校兴趣小组想了解球的弹性大小,准备了A 、B 两个球,分别让球从不同高度自由下落到地面,测量球的反弹高度,记录数据后绘制成如图所示的统计图.请你根据图中提供的信息解答下列问题:(1)当起始高度为80cm 时,B 球的反弹高度是起始高度的____________%.(2)比较两个球的反弹高度的变化情况,____________球弹性大.(填“A ”或“B ”)(3)下列的推断合理的是____________(只填序号)①根据统计图预测,如果下落的起始高度继续增加,A 球的反弹高度可能会继续增加;②从统计图上看,两球的反弹高度不会超过它们的起始高度. 5、如图,在△ABC 中,点D 在AB 边上,∠ACD =∠B ,CE 平分∠BCD ,交AB 于点E ,点F 在CE 上,连接AF .再从“①AF 平分∠BAC ,②CF =EF ”中选择一个作为已知,另外一个作为结论,组成真命题,并证明.-参考答案- 一、单选题 1、D【解析】【分析】结合选项中的条件,是否能够构成,,AAS ASA SAS 的形式,若不满足全等条件即为所求; 【详解】解:由AB DE 可得B E ∠=∠,判定两三角形全等已有一边和一角;A 中由BF CE =可得BC EF =,进而可由SAS 证明三角形全等,不符合要求;B 中A D ∠=∠,可由ASA 证明三角形全等,不符合要求;·线○·封○密○外C 中由AC DF 可得ACB DFC ∠=∠,进而可由AAS 证明三角形全等,不符合要求;D 中无法判定,符合要求;故选D .【点睛】本题考查了三角形全等.解题的关键在于找出能判定三角形全等的条件.2、A【解析】【分析】整个图形为一个正方形,找到边长,表示出面积;也可用1个小正方形的面积加上4个矩形的面积表示,然后让这两个面积相等即可.【详解】∵大正方形边长为:()a b +,面积为:()2a b +; 1个小正方形的面积加上4个矩形的面积和为:()24a b ab -+; ∴()()2222424a b ab a ab b ab a b -+=-++=+.故选:A .【点睛】此题考查了完全平方公式的几何意义,用不同的方法表示相应的面积是解题的关键.3、A【解析】【分析】过点B 作BD ⊥OA 于D ,交OE 于P ,过P 作PC ⊥OB 于C ,此时PC PB +的值最小,根据角平分线的性质得到,PD=PC ,由此得到PC PB +=BD ,利用直角三角形30度角的性质得到BD 的长,即可得到答案.【详解】解:过点B 作BD ⊥OA 于D ,交OE 于P ,过P 作PC ⊥OB 于C ,此时PC PB +的值最小, ∵OE 为AOB ∠的角平分线,PD ⊥OA ,PC ⊥OB ,∴PD=PC ,∴PC PB +=BD , ∵30AOB ∠=︒,6OB =, ∴132BD OB ==, 故选:A .【点睛】 此题考查了角平分线的性质,直角三角形30度角的性质,最短路径问题,正确掌握角平分线的性质定理是解题的关键. 4、C 【解析】 【分析】 根据整式的加减及幂的运算法则即可依次判断. 【详解】 A. a 2+a 3不能计算,故错误; ··线○封○密○外B. a •a =a 2,故错误;C. a •3a 2=3a 3,正确;D. 2a 3﹣a =2a 2不能计算,故错误;故选C .【点睛】此题主要考查幂的运算即整式的加减,解题的关键是熟知其运算法则.5、D【解析】【分析】连接AE ,根据11,22ADE ADE ABCD DEGF S S S S ==矩形,推出ABCD DEGF S S =矩形,由此得到答案. 【详解】解:连接AE ,∵11,22ADE ADE ABCD DEGF S S S S ==矩形,∴ABCD DEGF S S=矩形, 故选:D . .【点睛】此题考查了平行四边形的性质,矩形的性质,正确连接辅助线AE 是解题的关键.6、A【解析】【分析】直接利用关于x 轴对称点的性质得出答案.【详解】解:点P (−4,9)关于x 轴对称点P ′的坐标是:(−4,−9).故选:A . 【点睛】 此题主要考查了关于x 轴对称点的性质,正确得出横纵坐标的关系是解题关键. 7、A 【解析】 【分析】 如图:过C 作CE ⊥OA ,垂足为E ,然后求得∠OCE =30°,再根据含30°角直角三角形的性质求得OE ,最后运用勾股定理求得CE 即可解答. 【详解】 解:如图:过C 作CE ⊥OA ,垂足为E , ∵菱形OABC ,4OA = ∴OC =OA =4 ∵60AOC ∠=︒, ∴∠OCE =30° ∵OC =4 ∴OE =2 ∴CE==·线○封○密○外∴点C的坐标为(2,.故选A.【点睛】本题主要考查了菱形的性质、含30°直角三角形的性质、勾股定理等知识点,作出辅助线、求出OE、CE的长度是解答本题的关键.8、C【解析】【分析】利用三角形的中线平分三角形的面积求得S△ABD=S△BDE=96,利用角平分线的性质得到△ACD与△ABD 的高相等,进一步求解即可.【详解】解:∵AD=DE,S△BDE=96,∴S△ABD=S△BDE=96,过点D作DG⊥AC于点G,过点D作DF⊥AB于点F,∵AD 平分∠BAC ,∴DG=DF ,∴△ACD 与△ABD 的高相等,又∵AB =3AC ,∴S △ACD =13S △ABD =196323⨯=. 故选:C . 【点睛】 本题考查了角平分线的性质,三角形中线的性质,解题的关键是灵活运用所学知识解决问题. 9、A 【解析】 【分析】 利用正方形的性质证明∠DBC =45°和BE =BC ,进而证明∠BEC =67.5°. 【详解】 解:∵四边形ABCD 是正方形, ∴BC =AD ,∠DBC =45°, ∵BE =AD , ∴BE =BC , ∴∠BEC =∠BCE =(180°﹣45°)÷2=67.5°, ∵AC ⊥BD , ∴∠COE =90°, ∴∠ACE =90°﹣∠BEC =90°﹣67.5°=22.5°, 故选:A .·线○封○密○外【点睛】本题考查正方形的性质,以及等腰三角形的性质,掌握正方形的性质并加以利用是解决本题的关键.10、C【解析】【分析】直接利用直线的性质和线段的性质分别判断得出答案.【详解】解:①用两个钉子就可以把木条固定在墙上,利用的是两点确定一条直线,故此选项不合题意; ②从A 地到B 地架设电线,总是尽可能沿着线段AB 架设,能用“两点之间,线段最短”来解释,故此选项符合题意;③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线,利用的是两点确定一条直线,故此选项不合题意;④把弯曲的公路改直,就能缩短路程,能用“两点之间,线段最短”来解释,故此选项符合题意. 故选:C .【点睛】本题考查了直线的性质和线段的性质,正确掌握相关性质是解题关键.二、填空题1、8【分析】 由重心的性质可以证明23DE AB =,再由AD 平分BAC ∠和ED AB ∥可得DE =AE ,最后根据ED AB ∥得到23DE EC AB AC ==即可求出EC . 【详解】连接CG 并延长与AB 交于H ,∵G 是ABC 的重心 ∴2CG GH = ∴23CG CH = ∵ED AB ∥ ∴23CG EC CH AC ==,ADE BAD ∠=∠,ECD ACB △△ ∴23EC DE AC AB == ∴243DE AB == ∵AD 平分BAC ∠ ∴EAD BAD ∠=∠ ∴EAD ADE ∠=∠ ∴4DE AE == ∴23EC ECAC EC AE ==+, ∴8EC = 【点睛】 本题考查三角形的重心的性质、相似三角形的性质与判定、平行线分线段成比例,解题的关键是利用好平行线得到多个结论. 2、11 ·线○封○密○外【分析】某树主干长出x 根枝干,每个枝干又长出x 根小分支,则小分支有2x 根,可得主干、枝干和小分支总数为()21x x ++根,再列方程解方程,从而可得答案. 【详解】解:某树主干长出x 根枝干,每个枝干又长出x 根小分支,则21133,x x21320,x x12110,x x解得:1212,11,x x经检验:12x =-不符合题意;取11,x =答:主干长出枝干的根数x 为11.故答案为:11.【点睛】本题考查的是一元二次方程的应用,理解题意,用含x 的代数式表示主干、枝干和小分支总数是解本题的关键.3、1【分析】先观察,再由已知求出6a -3b =9,然后整体代入求解即可.【详解】解:∵2a -b =3,∴6a -3b =9,∴6a-(3b+8)=(6a-3b)-8=9-8=1,故答案为:1.【点睛】本题考查代数式求值、整式的加减,利用整体代入求解是解答的关键.4、【分析】连接CE,根据折叠和等腰三角形性质得出当P和D重合时,PE+BP的值最小,即可此时△BPE的周长最小,最小值是BE+PE+PB=BE+CD+DB=BC+BE,先求出BC和BE长,代入求出即可.【详解】解:连接CE,∵沿AD折叠C和E重合,∴∠ACD=∠AED=90°,AC=AE=10,∠CAD=∠EAD,∴BE,AD垂直平分CE,即C和E关于AD对称,CD=DE,∴当P和D重合时,PE+BP的值最小,即此时△BPE的周长最小,最小值是BE+PE+PB=BE+CD+DB=BC+BE,∴△PEB的周长的最小值是BC+BE·线○封○密·○外故答案为:【点睛】本题考查了折叠性质,等腰三角形性质,轴对称-最短路线问题,关键是求出P点的位置.5、2 3【分析】画出树状图分析,找出可能出现的情况,再计算即可.【详解】解:画树形图如下:从树形图可以看出,所有可能出现的结果共有9种,两人手势不相同有6种,所以两人手势不相同的概率=62 93 ,故答案为:23.【点睛】本题涉及列表法和树状图法以及相关概率知识,用到的知识点为:概率=所求情况数与总情况数之比.三、解答题1、60°【解析】【分析】由折叠和角平分线可求∠BAD=30°,即可求出∠BAB'的度数.【详解】解:由折叠可知,∠BAD =∠B 'AD ,∵AB '平分∠CAD .∴∠B 'AC =∠B 'AD ,∴∠BAD =∠B 'AC =∠B 'AD ,∵∠BAC =90°,∴∠BAD =∠B 'AC =∠B 'AD =30°, ∴∠BAB '=60°. 【点睛】 本题考查了折叠和角平分线,解题关键是掌握折叠角相等和角平分线的性质. 2、(1)2;-x +2,x +2;(2)见解析;(3)函数图象关于y 轴对称;当x =0时,y 有最大值2;(4)①2 2;②1;③2a >. 【解析】 【分析】 (1)利用绝对值的意义,分别代入计算,即可得到答案; (2)结合(1)的结论,画出分段函数的图像即可; (3)结合函数图像,归纳出函数的性质即可; (4)结合函数图像,分别进行计算,即可得到答案; 【详解】 解:(1)①当x =0时,22y x =-+=; ②当x >0时,22y x x =-+=-+; ③当x <0时,22y x x =-+=+; ·线○封○密○外故答案为:2;-x +2;x +2;(2)函数y =-|x |+2的图象,如图所示:(3)函数图象关于y 轴对称;当x =0时,y 有最大值2.(答案不唯一)(4)①函数图象与x 轴有2个交点,方程20x -+=有2个解; ②方程22x -+=有1个解;③若关于x 的方程2x a -+=无解,则a 的取值范围是2a >.故答案为:2;2;1;2a >.【点睛】本题考查了一次函数的图像和性质,绝对值的意义,解题的关键是熟练掌握题意,正确的画出图像.3、见解析【解析】【分析】证明△ABC ≌△DEF 即可.【详解】∵BC ∥FE ,∴∠1 =∠2∵AF =DC ,∴AF +FC =DC +CF . ∴AC =DF . 在△ABC 和△DEF 中, ∵{∠1=∠2,AA =AA ,∠A =∠A , ∴△ABC ≌△DEF (ASA ) . ∴AB =DE . 【点睛】 本题考查了平行线的性质、三角形全等的判定与性质,关键是证明三角形全等. 4、 (1)62.5% (2)A (3)①② 【解析】 ·线○封○密○外【分析】(1)根据折线统计图可知起始高度为80cm时,B球的反弹高度,由此可得百分比;(2)根据折线统计图可知A球每次反弹的高度都比B球高,由此即可得到答案;(3)①由折线统计图可知4球的反弹高度变化趋势还非常明显,从而可判断A球的反弹高度可能会继续增加;②从折线统计图可知,反弹的高度是不会超过下路的起始高度的.(1)解:由折线统计图可知当起始高度为80cm时,B球的反弹高度是50cm,是起始高度的62.5%,故答案为:62.5%.(2)解:比较两个球反弹高度的变化情况可知,A球每次反弹的高度都比B球高,所以A球的弹性大,故答案为:A.(3)解:①根据统计图可知,如果下落的起始高度继续增加,A球的反弹高度可能会继续增加;②从统计图上看,两个球的反弹高度一直低于起始高度,并且差距越来越大,因此不会超过起始高度.故答案为:①②.【点睛】本题主要考查了折线统计图,能正确准确读懂统计图是解题关键.5、选择已知①,结论②(或选择已知②,结论①);证明见解析【解析】【分析】选择①作为已知,②作为结论时证明∠ACE=∠AEC得EA=CA,再根据等腰三角形的性质可得结论;选择②作为已知,①作为结论时,证明∠ACE=∠AEC得EA=CA,再根据等腰三角形的性质可得结论.【详解】解:选择已知 ① ,结论 ② .证明:∵CE 平分∠BCD , ∴∠DCE =∠BCE . ∵∠ACD =∠B .∴∠DCE +∠ACD =∠BCE +∠B .∴∠ACE =∠AEC .∴EA =CA .∵AF 平分∠BAC ,∴CF =EF .选择已知 ② ,结论 ① .证明:∵CE 平分∠BCD ,∴∠DCE =∠BCE .∵∠ACD =∠B .∴∠DCE +∠ACD =∠BCE +∠B .∴∠ACE =∠AEC .∴EA =CA . ∵CF =EF . ∴AF 平分∠BAC . ·线○封○密○外【点睛】本题主要考查民角平分线的定义,三角形外角的性质以及等腰三角形的性质,熟练掌握等腰三角形的性质是解答本题的关键.。
2020-2021学年淄博市中考数学仿真模拟试卷及答案解析
山东省淄博市中考数学试卷一、选择题(共12小题,每小题4分,满分48分)1.(4分)(2016•淄博)人类的遗传物质是DNA,DNA是一个很长的链,最短的22号染色体与长达30000000个核苷酸,30000000用科学记数法表示为()A.3×107B.30×104C.0.3×107D.0.3×108【分析】先确定出a和n的值,然后再用科学计数法的性质表示即可.【解答】解:30000000=3×107.故选:A.【点评】本题主要考查的是科学计数法,熟练掌握用科学计数法表示较大数的方法是解题的关键.2.(4分)(2016•淄博)计算|﹣8|﹣(﹣)0的值是()A.﹣7 B.7 C.7D.9【分析】先依据绝对值和零指数幂的性质计算,然后再依据有理数的减法法则计算即可.【解答】解:原式=8﹣1=7.故选:B.【点评】本题主要考查的是零指数幂的性质、绝对值的化简,熟练掌握相关法则是解题的关键.3.(4分)(2016•淄博)如图,AB⊥AC,AD⊥BC,垂足分别为A,D,则图中能表示点到直线距离的线段共有()A.2条B.3条C.4条D.5条【分析】直接利用点到直线的距离的定义分析得出答案.【解答】解:如图所示:线段AB是点B到AC的距离,线段CA是点C到AB的距离,线段AD是点A到BC的距离,线段BD是点B到AD的距离,线段CD是点C到AD的距离,故图中能表示点到直线距离的线段共有5条.故选:D.【点评】此题主要考查了点到直线的距离,正确把握定义是解题关键.4.(4分)(2016•淄博)关于x的不等式组,其解集在数轴上表示正确的是()A.B.C.D.【分析】分别求出各不等式的解集,再在数轴上表示出来即可.【解答】解:,由①得,x>﹣1,由②得,x≤2,故不等式组的解集为:﹣1<x≤2.在数轴上表示为:.故选D.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.5.(4分)(2016•淄博)下列特征量不能反映一组数据集中趋势的是()A.众数B.中位数C.方差D.平均数【分析】根据中位数、众数、平均数和方差的意义进行判断.【解答】解:数据的平均数、众数、中位数是描述一组数据集中趋势的特征量,极差、方差是衡量一组数据偏离其平均数的大小(即波动大小)的特征数.故选C.【点评】本题考查了统计量的选择:此在实际应用中应根据具体问题情景进行具体分析,选用适当的量度刻画数据的波动情况,一般来说,只有在两组数据的平均数相等或比较接近时,才用极差、方差或标准差来比较两组数据的波动大小.6.(4分)(2016•淄博)张老师买了一辆启辰R50X汽车,为了掌握车的油耗情况,在连续两次加油时做了如下工作:(1)把油箱加满油;(2)记录了两次加油时的累计里程(注:“累计里程”指汽车从出厂开始累计行驶的路程),以下是张老师连续两次加油时的记录:加油时间加油量(升)加油时的累计里程(千米)4月28日18 62005月16日30 6600则在这段时间内,该车每100千米平均耗油量为()A.3升B.5升C.7.5升D.9升【分析】根据图表得出总的耗油量以及行驶的总路程,进而求出平均油耗.【解答】解:由题意可得:400÷30=7.5(升).故选:C.【点评】此题主要考查了算术平均数,正确从图表中获取正确信息是解题关键.7.(4分)(2016•淄博)如图,△ABC的面积为16,点D是BC边上一点,且BD=BC,点G是AB上一点,点H在△ABC内部,且四边形BDHG是平行四边形,则图中阴影部分的面积是()A.3 B.4 C.5 D.6【分析】设△ABC底边BC上的高为h,△AGH底边GH上的高为h1,△CGH底边GH上的高为h2,根据图形可知h=h1+h2.利用三角形的面积公式结合平行四边形的性质即可得出S阴影=S△,由ABC此即可得出结论.【解答】解:设△ABC底边BC上的高为h,△AGH底边GH上的高为h1,△CGH底边GH上的高为h2,则有h=h1+h2.S△=BC•h=16,ABCS阴影=S△+S△CGH=GH•h1+GH•h2=GH•(h1+h2)=GH•h.AGH∵四边形BDHG是平行四边形,且BD=BC,∴GH=BD=BC,∴S阴影=×(BC•h)=S△ABC=4.故选B.【点评】本题考查了三角形的面积公式以及平行四边形的性质,解题的关键是找出S阴影=S△.本题属于基础题,难度不大,解决该题型题目时,根据三角形的面积公式找出阴影部分ABC的面积与△ABC的面积之间的关系是关键.8.(4分)(2016•淄博)如图,正方形ABCD的边长为10,AG=CH=8,BG=DH=6,连接GH,则线段GH的长为()A. B.2C.D.10﹣5【分析】延长BG交CH于点E,根据正方形的性质证明△ABG≌△CDH≌△BCE,可得GE=BE﹣BG=2、HE=CH﹣CE=2、∠HEG=90°,由勾股定理可得GH的长.【解答】解:如图,延长BG交CH于点E,在△ABG和△CDH中,,∴△ABG≌△CDH(SSS),AG2+BG2=AB2,∴∠1=∠5,∠2=∠6,∠AGB=∠CHD=90°,∴∠1+∠2=90°,∠5+∠6=90°,又∵∠2+∠3=90°,∠4+∠5=90°,∴∠1=∠3=∠5,∠2=∠4=∠6,在△ABG和△BCE中,,∴△ABG≌△BCE(ASA),∴BE=AG=8,CE=BG=6,∠BEC=∠AGB=90°,∴GE=BE﹣BG=8﹣6=2,同理可得HE=2,在RT△GHE中,GH===2,故选:B.【点评】本题主要考查正方形的性质、全等三角形的判定与性质、勾股定理及其逆定理的综合运用,通过证三角形全等得出△GHE为等腰直角三角形是解题的关键.9.(4分)(2016•淄博)如图是由边长相同的小正方形组成的网格,A,B,P,Q四点均在正方形网格的格点上,线段AB,PQ相交于点M,则图中∠QMB的正切值是()A.B.1 C.D.2【分析】根据题意得出△PAM∽△QBM,进而结合勾股定理得出AP=3,BQ=,AB=2,进而求出答案.【解答】解:连接AP,QB,由网格可得:∠PAB=∠QBA=90°,又∵∠AMP=∠BMQ,∴△PAM∽△QBM,∴=,∵AP=3,BQ=,AB=2,∴=,解得:AM=,∴tan∠QMB=tan∠PMA===.故选:A.【点评】此题主要考查了勾股定理以及相似三角形的判定与性质以及锐角三角函数关系,正确得出△PAM∽△QBM是解题关键.10.(4分)(2016•淄博)小明用计算器计算(a+b)c的值,其按键顺序和计算器显示结果如表:这时他才明白计算器是先做乘法再做加法的,于是他依次按键:从而得到了正确结果,已知a是b的3倍,则正确的结果是()A.24 B.39 C.48 D.96【分析】根据题意得出关于a,b,c的方程组,进而解出a,b,c的值,进而得出答案.【解答】解:由题意可得:,则,解得:,故(9+3)×4=48.故选:C.【点评】此题主要考查了计算器的应用以及方程组的解法,正确得出关于a,b,c的等式是解题关键.11.(4分)(2016•淄博)如图,直线l1∥l2∥l3,一等腰直角三角形ABC的三个顶点A,B,C分别在l1,l2,l3上,∠ACB=90°,AC交l2于点D,已知l1与l2的距离为1,l2与l3的距离为3,则的值为()A. B.C. D.【分析】先作出作BF⊥l3,AE⊥l3,再判断△ACE≌△CBF,求出CE=BF=3,CF=AE=4,然后由l2∥l3,求出DG,即可.【解答】解:如图,作BF⊥l3,AE⊥l3,∵∠ACB=90°,∴∠BCF+∠ACE=90°,∵∠BCF+∠CFB=90°,∴∠ACE=∠CBF,在△ACE和△CBF中,,∴△ACE≌△CBF,∴CE=BF=3,CF=AE=4,∵l1与l2的距离为1,l2与l3的距离为3,∴AG=1,BG=EF=CF+CE=7∴AB==5,∵l2∥l3,∴=∴DG=CE=,∴BD=BG﹣DG=7﹣=,∴=.故选A.【点评】此题是平行线分线段成比例试题,主要考查了全等三角形的性质和判定,平行线分线段成比例定理,勾股定理,解本题的关键是构造全等三角形.12.(4分)(2016•淄博)反比例函数y=(a>0,a为常数)和y=在第一象限内的图象如图所示,点M在y=的图象上,MC⊥x轴于点C,交y=的图象于点A;MD⊥y轴于点D,交y=的图象于点B,当点M在y=的图象上运动时,以下结论:①S△ODB=S△OCA;②四边形OAMB的面积不变;③当点A是MC的中点时,则点B是MD的中点.其中正确结论的个数是()A.0 B.1 C.2 D.3【分析】①由反比例系数的几何意义可得答案;②由四边形OAMB的面积=矩形OCMD面积﹣(三角形ODB面积+面积三角形OCA),解答可知;③连接OM,点A是MC的中点可得△OAM和△OAC的面积相等,根据△ODM的面积=△OCM的面积、△ODB与△OCA的面积相等解答可得.【解答】解:①由于A、B在同一反比例函数y=图象上,则△ODB与△OCA的面积相等,都为×2=1,正确;②由于矩形OCMD、三角形ODB、三角形OCA为定值,则四边形MAOB的面积不会发生变化,正确;③连接OM,点A是MC的中点,则△OAM和△OAC的面积相等,∵△ODM的面积=△OCM的面积=,△ODB与△OCA的面积相等,∴△OBM与△OAM的面积相等,∴△OBD和△OBM面积相等,∴点B一定是MD的中点.正确;故选:D.【点评】本题考查了反比例函数y=(k≠0)中k的几何意义,即过双曲线上任意一点引x轴、y 轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.二、填空题(共5小题,每小题5分,满分25分)13.(5分)(2016•淄博)计算的结果是1﹣2a .【分析】分子是多项式1﹣4a2,将其分解为(1﹣2a)(1+2a),然后再约分即可化简.【解答】解:原式==1﹣2a.【点评】本题考查分式的约分,若分子和分母有多项式,先将其因式分解,然后将相同的因式约去即可.14.(5分)(2016•淄博)由一些相同的小正方体搭成的几何体的左视图和俯视图如图所示,请在网格中涂出一种该几何体的主视图,且使该主视图是轴对称图形.【分析】根据俯视图和左视图可知,该几何体共两层,底层有9个正方体,上层中间一行有正方体,若使主视图为轴对称图形可使中间一行、中间一列有一个小正方体即可.【解答】解:如图所示,【点评】本题主要考查三视图还原几何体及轴对称图形,解题的关键是根据俯视图和左视图抽象出几何体的大概轮廓.15.(5分)(2016•淄博)若x=3﹣,则代数式x2﹣6x+9的值为 2 .【分析】根据完全平方公式,代数式求值,可得答案.【解答】解:x2﹣6x+9=(x﹣3)2,当x=3﹣时,原式=(3﹣﹣3)2=2,故答案为:2.【点评】本题考查了代数式求值,利用完全平方公式是解题关键.16.(5分)(2016•淄博)某快递公司的分拣工小王和小李,在分拣同一类物件时,小王分拣60个物件所用的时间与小李分拣45个物件所用的时间相同.已知小王每小时比小李多分拣8个物件,设小李每小时分拣x个物件,根据题意列出的方程是.【分析】先求得小王每小时分拣的件数,然后根据小王分拣60个物件所用的时间与小李分拣45个物件所用的时间相同列方程即可.【解答】解:小李每小时分拣x个物件,则小王每小时分拣(x+8)个物件.根据题意得:.故答案为:.【点评】本题主要考查的是分式方程的应用,根据找出题目的相等关系是解题的关键.17.(5分)(2016•淄博)如图,⊙O的半径为2,圆心O到直线l的距离为4,有一内角为60°的菱形,当菱形的一边在直线l上,另有两边所在的直线恰好与⊙O相切,此时菱形的边长为4.【分析】过点O作直线l的垂线,交AD于E,交BC于F,作AG直线l于G,根据题意求出EF 的长,得到AG的长,根据正弦的概念计算即可.【解答】解:过点O作直线l的垂线,交AD于E,交BC于F,作AG直线l于G,由题意得,EF=2+4=6,∵四边形AGFE为矩形,∴AG=EF=6,在Rt△ABG中,AB===4.故答案为:4.【点评】本题考查的是切线的性质和菱形的性质,根据题意正确画出图形、灵活运用解直角三角形的知识是解题的关键.三、解答题(共7小题,满分52分)18.(5分)(2016•淄博)如图,一个由4条线段构成的“鱼”形图案,其中∠1=50°,∠2=50°,∠3=130°,找出图中的平行线,并说明理由.【分析】根据同位角相等,两直线平行证明OB∥AC,根据同旁内角互补,两直线平行证明OA∥BC.【解答】解:OA∥BC,OB∥AC.∵∠1=50°,∠2=50°,∴∠1=∠2,∴OB∥AC,∵∠2=50°,∠3=130°,∴∠2+∠3=180°,∴OA∥BC.【点评】本题考查的是平行线的判定,掌握平行线的判定定理:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行是解题的关键.19.(5分)(2016•淄博)解方程:x2+4x﹣1=0.【分析】首先进行移项,得到x2+4x=1,方程左右两边同时加上4,则方程左边就是完全平方式,右边是常数的形式,再利用直接开平方法即可求解.【解答】解:∵x2+4x﹣1=0∴x2+4x=1∴x2+4x+4=1+4∴(x+2)2=5∴x=﹣2±∴x1=﹣2+,x2=﹣2﹣.【点评】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.20.(8分)(2016•淄博)下面是淄博市4月份的天气情况统计表:日期1 2 3 4 5 6 7 8 9 10 11 12 13 14 15天气多云阴多云晴多云阴晴晴晴多云多云多云晴晴雨日期16 17 18 19 20 21 22 23 24 25 26 27 28 29 30天气雨多云多云多云多云晴多云多云晴多云多云多云晴晴晴(1)请完成下面的汇总表:天气晴多云阴雨天数11 15 2 2(2)根据汇总表绘制条形图;(3)在该月中任取一天,计算该天多云的概率.【分析】(1)由天气情况统计表可得晴、多云、阴、雨的天数;(2)以天气为横轴、天数为纵轴,各种天气的天数为长方形的高,绘制四个长方形即可;(3)根据概率公式计算可得.【解答】解:(1)由4月份的天气情况统计表可知,晴天共11天,多云15天,阴2天,雨2天;完成汇总表如下:天气晴多云阴雨天数11 15 2 2(2)条形图如图:(3)在该月中任取一天,共有30种等可能结果,其中多云的结果由15种,∴该天多云的概率为=.故答案为:(1)11、15、2、2.【点评】本题主要考查条形图的绘制与概率的计算,条形统计图能清楚地表示出每个项目的数据,确定每个项目的具体数目并绘制相应长方形是关键.21.(8分)(2016•淄博)如图,抛物线y=ax2+2ax+1与x轴仅有一个公共点A,经过点A的直线交该抛物线于点B,交y轴于点C,且点C是线段AB的中点.(1)求这条抛物线对应的函数解析式;(2)求直线AB对应的函数解析式.【分析】(1)利用△=b2﹣4ac=0时,抛物线与x轴有1个交点得到4a2﹣4a=0,然后解关于a的方程求出a,即可得到抛物线解析式;(2)利用点C是线段AB的中点可判断点A与点B的横坐标互为相反数,则可以利用抛物线解析式确定B点坐标,然后利用待定系数法求直线AB的解析式.【解答】解:(1)∵抛物线y=ax2+2ax+1与x轴仅有一个公共点A,∴△=4a2﹣4a=0,解得a1=0(舍去),a2=1,∴抛物线解析式为y=x2+2x+1;(2)∵y=(x+1)2,∴顶点A的坐标为(﹣1,0),∵点C是线段AB的中点,即点A与点B关于C点对称,∴B点的横坐标为1,当x=1时,y=x2+2x+1=1+2+1=4,则B(1,4),设直线AB的解析式为y=kx+b,把A(﹣1,0),B(1,4)代入得,解得,∴直线AB的解析式为y=2x+2.【点评】本题考查了抛物线与x轴的交点:对于二次函数y=ax2+bx+c(a,b,c是常数,a≠0),△=b2﹣4ac决定抛物线与x轴的交点个数:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.也考查了利用待定系数法求函数解析式.22.(8分)(2016•淄博)如图,已知△ABC,AD平分∠BAC交BC于点D,BC的中点为M,ME∥AD,交BA的延长线于点E,交AC于点F.(1)求证:AE=AF;(2)求证:BE=(AB+AC).【分析】(1)欲证明AE=AF,只要证明∠AEF=∠AFE即可.(2)作CG∥EM,交BA的延长线于G,先证明AC=AG,再证明BE=EG即可解决问题.【解答】证明:(1)∵DA平分∠BAC,∴∠BAD=∠CAD,∵AD∥EM,∴∠BAD=∠AEF,∠CAD=∠AFE,∴∠AEF=∠AFE,∴AE=AF.(2)作CG∥EM,交BA的延长线于G.∵EF∥CG,∴∠G=∠AEF,∠ACG=∠AFE,∵∠AEF=∠AFE,∴∠G=∠ACG,∴AG=AC,∵BM=CM.EM∥CG,∴BE=EG,∴BE=BG=(BA+AG)=(AB+AC).【点评】本题考查三角形中位线定理、角平分线的性质、等腰三角形的判定和性质等知识,解题的关键是添加辅助线,构造等腰三角形,以及三角形中位线,属于中考常考题型.23.(9分)(2016•淄博)已知,点M是二次函数y=ax2(a>0)图象上的一点,点F的坐标为(0,),直角坐标系中的坐标原点O与点M,F在同一个圆上,圆心Q的纵坐标为.(1)求a的值;(2)当O,Q,M三点在同一条直线上时,求点M和点Q的坐标;(3)当点M在第一象限时,过点M作MN⊥x轴,垂足为点N,求证:MF=MN+OF.【分析】(1)设Q(m,),F(0,),根据QO=QF列出方程即可解决问题.(2)设M(t,t2),Q(m,),根据K OM=K OQ,求出t、m的关系,根据QO=QM列出方程即可解决问题.(3)设M(n,n2)(n>0),则N(n,0),F(0,),利用勾股定理求出MF即可解决问题.【解答】解:(1)∵圆心O的纵坐标为,∴设Q(m,),F(0,),∵QO=QF,∴m2+()2=m2+(﹣)2,∴a=1,∴抛物线为y=x2.(2)∵M在抛物线上,设M(t,t2),Q(m,),∵O、Q、M在同一直线上,∴K OM=K OQ,∴=,∴m=,∵QO=QM,∴m2+()2=(m﹣t)2=(﹣t2)2,整理得到:﹣t2+t4+t2﹣2mt=0,∴4t4+3t2﹣1=0,∴(t2+1)(4t2﹣1)=0,∴t1=,t2=﹣,当t1=时,m1=,当t2=﹣时,m2=﹣.∴M1(,),Q1(,),M2(﹣,),Q2(﹣,).(3)设M(n,n2)(n>0),∴N(n,0),F(0,),∴MF===n2+,MN+OF=n2+,∴MF=MN+OF.【点评】本题考查二次函数的应用、三点共线的条件、勾股定理等知识,解题的关键是设参数解决问题,把问题转化为方程解决,属于中考常考题型.24.(9分)(2016•淄博)如图,正方形ABCD的对角线相交于点O,点M,N分别是边BC,CD 上的动点(不与点B,C,D重合),AM,AN分别交BD于点E,F,且∠MAN始终保持45°不变.(1)求证:=;(2)求证:AF⊥FM;(3)请探索:在∠MAN的旋转过程中,当∠BAM等于多少度时,∠FMN=∠BAM?写出你的探索结论,并加以证明.【分析】(1)先证明A、B、M、F四点共圆,根据圆内接四边形对角互补即可证明∠AFM=90°,根据等腰直角三角形性质即可解决问题.(2)由(1)的结论即可证明.(3)由:A、B、M、F四点共圆,推出∠BAM=∠EFM,因为∠BAM=∠FMN,所以∠EFM=∠FMN,推出MN∥BD,得到=,推出BM=DN,再证明△ABM≌△ADN即可解决问题.【解答】(1)证明:∵四边形ABCD是正方形,∴∠ABD=∠CBD=45°,∠ABC=90°,∵∠MAN=45°,∴∠MAF=∠MBE,∴A、B、M、F四点共圆,∴∠ABM+∠AFM=180°,∴∠AFM=90°,∴∠FAM=∠FMA=45°,∴AM=AF,∴=.(2)由(1)可知∠AFM=90°,∴AF⊥FM.(3)结论:∠BAM=22.5时,∠FMN=∠BAM理由:∵A、B、M、F四点共圆,∴∠BAM=∠EFM,∵∠BAM=∠FMN,∴∠EFM=∠FMN,∴MN∥BD,∴=,∵CB=DC,∴CM=CN,∴MB=DN,在△ABM和△ADN中,,∴△ABM≌△ADN,∴∠BAM=∠DAN,∵∠MAN=45°,∴∠BAM+∠DAN=45°,∴∠BAM=22.5°.【点评】本题考查四边形综合题、等腰直角三角形性质、四点共圆、全等三角形的判定和性质等知识,解题的关键是利用四点共圆的性质解决问题,题目有点难,用到四点共圆.。
淄博市2021年数学中考一模试卷A卷
淄博市2021年数学中考一模试卷A卷姓名:________ 班级:________ 成绩:________一、选择题(共10小题,满分40分,每小题4分) (共10题;共34分)1. (4分)﹣2013的相反数是()A . ﹣2013B . 2013C .D . -2. (2分)(2018·禹会模拟) 如图所示的几何体的俯视图是()A .B .C .D .3. (4分) 2009年6月,全国参加高等院校统一招生考试的学生约10 200 000人,其中10 200 000用科学记数法表示应为()A . 10.2×105B . 1.02×107C . 0.102×108D . 1.02×1084. (4分) (2017九上·相城期末) 对于一组数据﹣1、4、﹣1、2下列结论不正确的是()A . 平均数是1B . 众数是-1C . 中位数是0.5D . 方差是3.55. (4分)(2020·怀化模拟) 已知二次函数()的图象如图所示,对称轴是直线,下列结论:①abc<0;②2a+b=0;③a﹣b+c>0;④4a﹣2b+c<0其中正确的是()A . ①②B . 只有①C . ③④D . ①④6. (2分)(2020·烟台) 下列关于数字变换的图案中,是中心对称图形但不是轴对称图形的是()A .B .C .D .7. (2分)(2017·肥城模拟) 如图,点A是反比例函数y= (>0)的图象上任意一点,AB∥x轴交反比例函数y=﹣的图象于点B,以AB为边作平行四边形ABCD,其中C,D在x轴上,则平行四边形ABCD的面积为()A . 2B . 3C . 4D . 58. (4分) (2012八下·建平竞赛) 在△ABC中,∠A、∠B、∠C的对边分别是、、,则下列说法中错误的是()A . 如果∠C-∠B=∠A,那么△ABC是直角三角形,∠C=90°B . 如果,则∠B=60°,∠A=30°C . 如果,那么△ABC是直角三角=D . 如果,那么△ABC是直角三角形9. (4分) (2018九上·韶关期末) 如图,⊙O的直径CD垂直弦AB于点E,且CE=2,OB=4,则AB的长为()A . 2B . 4C . 6D . 410. (4分)(2018·秀洲模拟) 如图,平面直角坐标系中,抛物线交x轴于点B,C,交y 轴于点A,点P(x,y)是抛物线上的一个动点,连接PA,AC,PC,记△ACP面积为S.当y≤3时,S随x变化的图象大致是()A .B .C .D .二、填空题(共6小题,满分30分,每小题5分) (共6题;共30分)11. (5分)若x2﹣y2﹣x+y=(x﹣y)•A,则A=________.12. (5分) (2017八下·莒县期中) 如图所示,矩形纸片ABCD中,AB=6cm,BC=8cm,现将其沿EF对折,使得点C与点A重合,则EF长为________cm.13. (5分) (2016七上·兴业期中) 填在下面各正方形中的四个数之间都有一定的规律,按此规律得出b=________.14. (5分) (2019九上·清江浦月考) 如图,在△ABC中,D是△ABC的重心, ,则△AEC的面积是________15. (5分)如图,五角星也可以看作是一个三角形绕中心O旋转________次得到的,每次旋转角度是________.16. (5分)已知⊙O的直径为10cm,若直线AB与⊙O相切.那么点O到直线AB的距离是________三、解答题(本题有8小题,第17~20题每题8分,第21题10分 (共8题;共68分)17. (8分)完成下列计算和解方程题(1) | ﹣ |+| ﹣1|﹣|3﹣ |(2)﹣﹣(3)(x﹣1)2﹣81=0(4) 8(x+2)3+27=0.18. (8分) (2018九下·盐都模拟) 化简:19. (8分)(2018·乌鲁木齐模拟) 如图,已知AB为⊙O的直径,点E在⊙O上,∠EAB的平分线交⊙O于点C,过点C作AE的垂线,垂足为D,直线DC与AB的延长线交于点P.(1)判断直线PC与⊙O的位置关系,并说明理由;(2)若tan∠P= ,AD=6,求线段AE的长.20. (8分)(2019·福州模拟) 某汽车销售公司销售某厂家的某款汽车,该款汽车现在的售价为每辆27万元,每月可售出两辆.市场调查反映:在一定范围内调整价格,每辆降低0.1万元,每月能多卖一辆.已知该款汽车的进价为每辆25万元.另外,月底厂家根据销售量一次性返利给销售公司,销售量在10辆以内(含10辆),每辆返利0.5万元:销售量在10辆以上,超过的部分每辆返利1万元.设该公司当月售出x辆该款汽车.(总利润=销售利润十返利)(1)设每辆汽车的销售利润为y万元,求y与x之间的函数关系式;(2)当x>10时,该公司当月销售这款汽车所获得的总利润为20.6万元,求x的值.21. (10.0分)为了了解学生关注热点新闻的情况,“两会”期间,小明对班级同学一周内收看“两会”新闻的次数情况作了调查,调查结果统计如图所示(其中男生收看次的人数没有标出).根据上述信息,解答下列各题:×(1)该班级女生人数是________,女生收看“两会”新闻次数的中位数是________;(2)对于某个群体,我们把一周内收看某热点新闻次数不低于次的人数占其所在群体总人数的百分比叫做该群体对某热点新闻的“关注指数”.如果该班级男生对“两会”新闻的“关注指数”比女生低,试求该班级男生人数;(3)为进一步分析该班级男、女生收看“两会”新闻次数的特点,小明给出了男生的部分统计量(如表).统计量平均数(次)中位数(次)众数(次)方差该班级男生根据你所学过的统计知识,适当计算女生的有关统计量,进而比较该班级男、女生收看“两会”新闻次数的波动大小.22. (12分)如图,在△ABC中,AB=BC, ∠ABC=90°,F为AB 延长线上的一点,点E在BC上,且AE=CF.(1)求证: △ABE≌△CBF.(2)若∠CAE=15°,求∠ACF的度数.23. (12分) (2019八上·天台月考)(1)【问题情境】课外兴趣小组活动时,老师提出了如下问题:如图①,在△ABC中,AD是△ABC的中线,若AB=10,AC=8,求AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD至点E,使DE=AD,连接BE.请根据小明的方法思考:Ⅰ.由已知和作图能得到△ADC≌△EDB,依据是________.A.SSS B.SAS C.AAS D.ASAⅡ.由“三角形的三边关系”可求得AD的取值范围是________.解后反思:题目中出现“中点”、“中线”等条件,可考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集中到同一个三角形之中.(2)【学会运用】如图②,AD是△ABC的中线,点E在BC的延长线上,CE=AB, ∠BAC=∠BCA, 求证:AE=2AD.24. (2分)已知抛物线y=x2﹣2mx+m2+m﹣1(m是常数)的顶点为P,直线l:y=x﹣1(1)求证:点P在直线l上。
【精选3份合集】山东省淄博市2020年中考一模数学试卷有答案含解析
中考数学模拟试卷(解析版)注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题1.已知m =12+,n =12-,则代数式223m n mn +-的值为 ( )A .±3B .3C .5D .9 解析:B【解析】【分析】由已知可得:2,(12)(12)1m n mn +==+-=-,223m n mn +-=2()5m n mn +-.【详解】由已知可得:2,(12)(12)1m n mn +==+-=-,原式=22()525(1)93m n mn +-=-⨯-==故选:B【点睛】考核知识点:二次根式运算.配方是关键.2.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是( )A .B .C .D .解析:B【解析】试题分析:从左面看易得第一层有2个正方形,第二层最左边有一个正方形.故选B.考点:简单组合体的三视图.3.如图,直线a∥b,直线c分别交a,b于点A,C,∠BAC的平分线交直线b于点D,若∠1=50°,则∠2的度数是()A.50°B.70°C.80°D.110°解析:C【解析】【分析】根据平行线的性质可得∠BAD=∠1,再根据AD是∠BAC的平分线,进而可得∠BAC的度数,再根据补角定义可得答案.【详解】因为a∥b,所以∠1=∠BAD=50°,因为AD是∠BAC的平分线,所以∠BAC=2∠BAD=100°,所以∠2=180°-∠BAC=180°-100°=80°.故本题正确答案为C.【点睛】本题考查的知识点是平行线的性质,解题关键是掌握两直线平行,内错角相等.4.某品牌的饮水机接通电源就进入自动程序:开机加热到水温100℃,停止加热,水温开始下降,此时水温(℃)与开机后用时(min)成反比例关系,直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时,接通电源后,水温y(℃)和时间x(min)的关系如图所示,水温从100℃降到35℃所用的时间是()A.27分钟B.20分钟C.13分钟D.7分钟解析:C【解析】【分析】先利用待定系数法求函数解析式,然后将y=35代入,从而求解.【详解】解:设反比例函数关系式为:kyx=,将(7,100)代入,得k=700,∴700yx =,将y=35代入700yx =,解得20x=;∴水温从100℃降到35℃所用的时间是:20-7=13,故选C.【点睛】本题考查反比例函数的应用,利用数形结合思想解题是关键.5.如图,四边形ABCD中,AC⊥BC,AD∥BC,BC=3,AC=4,AD=1.M是BD的中点,则CM的长为()A.32B.2 C.52D.3解析:C 【解析】【分析】延长BC 到E 使BE =AD ,利用中点的性质得到CM =12 DE =12AB ,再利用勾股定理进行计算即可解答. 【详解】 解:延长BC 到E 使BE =AD ,∵BC//AD,∴四边形ACED 是平行四边形,∴DE=AB,∵BC=3,AD =1,∴C 是BE 的中点,∵M 是BD 的中点,∴CM=12 DE =12AB , ∵AC⊥BC,∴AB=22AC BC +=224+3=5,∴CM=52 , 故选:C .【点睛】此题考查平行四边形的性质,勾股定理,解题关键在于作辅助线.6.如图,在ABC V 中,90ACB ∠=︒,分别以点A 和点C 为圆心,以大于12AC 的长为半径作弧,两弧相交于点M 和点N ,作直线MN 交AB 于点D ,交AC 于点E ,连接CD .若34B ∠=︒,则BDC ∠的度数是( )A .68︒B .112︒C .124︒D .146︒解析:B【解析】【分析】 根据题意可知DE 是AC 的垂直平分线,CD=DA .即可得到∠DCE=∠A,而∠A 和∠B 互余可求出∠A,由三角形外角性质即可求出∠CDA 的度数.【详解】解:∵DE 是AC 的垂直平分线,∴DA=DC,∴∠DCE=∠A,∵∠ACB=90°,∠B=34°,∴∠A=56°,∴∠CDA=∠DCE+∠A=112°,故选B .【点睛】本题考查作图-基本作图、线段的垂直平分线的性质、等腰三角形的性质,三角形有关角的性质等知识,解题的关键是熟练运用这些知识解决问题,属于中考常考题型.7.如图,在平面直角坐标系中,A (1,2),B (1,-1),C (2,2),抛物线y=ax 2(a≠0)经过△ABC 区域(包括边界),则a 的取值范围是( )A .1a ≤- 或 2a ≥B .10a -≤< 或 02a <≤C .10a -≤< 或112a <≤ D .122a ≤≤ 解析:B【解析】试题解析:如图所示:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最新山东省淄博市中考数学一模试卷一、选择题:本题共12小题,在每小题所给出的四个选项中,只有一个是正确的,请把正确的选项选出来.每小题4分,共48分,错选、不选或选出的答案超出一个,均记0分. 1.下列计算正确的是()A.(a+b)2=a2+b2B.(ab)2=ab2C.a•a2=a3 D.(a3)2=a52.已知实数a、b,若a>b,则下列结论正确的是()A.a﹣5<b﹣5 B.2+a<2+b C.D.3a>3b3.化简的值是()A.﹣3 B.3 C.±3 D.94.如图是小刚的一张脸,他对妹妹说“如果我用(0,2)表示左眼,用(2,2)表示右眼,那么嘴的位置可以表示成()A.(1,0)B.(﹣1,0)C.(﹣1,1)D.(1,﹣1)5.化简的结果是()A.B.a C.a﹣1 D.6.在下列四种图形变换中,本题图案不包含的变换是()A.位似 B.旋转C.轴对称D.平移7.下列说法正确的是()A.求sin30°的按键顺序是、30、=B.求23的按键顺序、2、、3、=C.求的按键顺序是、、8、=D.已知sinA=0.5018,用计算器求锐角A的大小,按键顺序是、、0.5018、= 8.用八个同样大小的小立方体粘成一个大立方体如图1,得到的几何体的三视图如图2所示,若小明从八个小立方体中取走若干个,剩余小立方体保持原位置不动,并使得到的新几何体的三视图仍是图2,则他取走的小立方体最多可以是()A.1个B.2个C.3个D.4个9.小明在超市帮妈妈买回一袋纸杯,他把纸杯整齐地叠放在一起,如图请你根据图中的信息,若小明把100个纸杯整齐叠放在一起时,它的高度约是()A.106cm B.110cm C.114cm D.116cm10.如图,在平面直角坐标系中,在x轴、y轴的正半轴上分别截取OA、OB,使OA=OB;再分别以点A、B为圆心,以大于AB长为半径作弧,两弧交于点C.若点C的坐标为(m ﹣1,2n),则m与n的关系为()A.m+2n=1 B.m﹣2n=1 C.2n﹣m=1 D.n﹣2m=111.如图,已知A、B两点的坐标分别为(2,0)、(0,2),⊙C的圆心坐标为(﹣1,0),半径为1.若D是⊙C上的一个动点,线段DA与y轴交于点E,则△ABE面积的最小值是()A.2 B.1 C.D.12.在平面直角坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D 的坐标为(0,2),延长CB交x轴于点A1,作正方形A1B1C1C;延长C1B1交x轴于点A2,作正方形A2B2C2C1;…,按这样的规律进行下去,第2016个正方形的面积为()A.5×()2016B.5×()2016C.5×()2015D.5×()4032二、填空题:本题共5小题,每小题4分,共20分,只要求填写最后结果.13.分解因式:x2+2x= .14.有四张不透明的卡片,正面写有不同命题(见图),背面完全相同.将这四张卡片背面朝上洗匀后,随机抽取一张,得到正面上命题是真命题的概率为.15.如图,△ABC中,∠ACB=90°,AB=8cm,D是AB的中点.现将△BCD沿BA方向平移1cm,得到△EFG,FG交AC于H,则GH的长等于cm.16.如图,正方形ABCD的边长为3cm,E为CD边上一点,∠DAE=30°,M为AE的中点,过点M作直线分别与AD、BC相交于点P、Q.若PQ=AE,则AP等于cm.17.如图,▱OABC的顶点B、C在第一象限,点A的坐标为(3,0),D为边AB的中点,反比例函数y=(k>0)的图象经过点C、D两点,若∠COA=60°,则k的值为.三、解答题:本大题共7小题,共52分.解答要写出必要的文字说明、证明过程或演算步骤. 18.解一元一次不等式组.19.已知:如图,E,F分别是▱ABCD的边AD,BC的中点.求证:AF=CE.20.从2013年1月7日起,中国中东部大部分地区持续出现雾霾天气.某市记者为了了解”雾霾天气的主要原因“,随机调查了该市部分市民,并对调查结果进行整理.绘制了如下尚不完整的统计图表.组别观点频数(人数)A 大气气压低,空气不流动80B 地面灰尘大,空气湿度低mC 汽车尾气排放nD 工厂造成的污染120E 其他60请根据图表中提供的信息解答下列问题:(1)填空:m= ,n= .扇形统计图中E组所占的百分比为%;(2)若该市人口约有100万人,请你估计其中持D组“观点”的市民人数;(3)若在这次接受调查的市民中,随机抽查一人,则此人持C组“观点”的概率是多少?21.校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于21米,在l上点D的同侧取点A、B,使∠CAD=30°,∠CBD=60°.(1)求AB的长(精确到0.1米,参考数据:=1.73,=1.41);(2)已知本路段对校车限速为40千米/小时,若测得某辆校车从A到B用时2秒,这辆校车是否超速?说明理由.22.已知关于x的一元二次方程x2﹣(2k+1)x+k2+2k=0有两个实数根x1,x2.(1)求实数k的取值范围;(2)是否存在实数k使得x1•x2﹣x12﹣x22≥0成立?若存在,请求出k的值;若不存在,请说明理由.23.如图,Rt△ABC中,∠C=90°,BC=6,AC=8.点P,Q都是斜边AB上的动点,点P从B向A运动(不与点B重合),点Q从A向B运动,BP=AQ.点D,E分别是点A,B以Q,P为对称中心的对称点,HQ⊥AB于Q,交AC于点H.当点E到达顶点A时,P,Q同时停止运动.设BP的长为x,△HDE的面积为y.(1)求证:△DHQ∽△ABC;(2)求y关于x的函数解析式并求y的最大值;(3)当x为何值时,△HDE为等腰三角形?24.已知:△ABC的高AD所在直线与高BE所在直线相交于点F.(1)如图1,若△ABC为锐角三角形,且∠ABC=45°,过点F作FG∥BC,交直线AB 于点G,求证:FG+DC=AD;(2)如图2,若∠ABC=135°,过点F作FG∥BC,交直线AB于点G,则FG、DC、AD之间满足的数量关系是;(3)在(2)的条件下,若AG=,DC=3,将一个45°角的顶点与点B重合并绕点B 旋转,这个角的两边分别交线段FG于M、N两点(如图3),连接CF,线段CF分别与线段BM、线段BN相交于P、Q两点,若NG=,求线段PQ的长.参考答案与试题解析一、选择题:本题共12小题,在每小题所给出的四个选项中,只有一个是正确的,请把正确的选项选出来.每小题4分,共48分,错选、不选或选出的答案超出一个,均记0分. 1.下列计算正确的是()A.(a+b)2=a2+b2B.(ab)2=ab2C.a•a2=a3 D.(a3)2=a5【考点】完全平方公式;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据积的乘方、完全平方公式、同底数幂的乘法,即可解答.【解答】解:A、(a+b)2=a2+2ab+b2,故错误;B、(ab)2=a2b2,故错误;C、a•a2=a3,正确;D、(a3)2=a6,故错误;故选:C.2.已知实数a、b,若a>b,则下列结论正确的是()A.a﹣5<b﹣5 B.2+a<2+b C.D.3a>3b【考点】不等式的性质.【分析】以及等式的基本性质即可作出判断.【解答】解:A、a>b,则a﹣5>b﹣5,选项错误;B、a>b,则2+a>2+b,选项错误;C、a>b,则>,选项错误;D、正确.故选D.3.化简的值是()A.﹣3 B.3 C.±3 D.9【考点】二次根式的性质与化简.【分析】由于=|a|,由此即可化简求解.【解答】解:=3.故选B.4.如图是小刚的一张脸,他对妹妹说“如果我用(0,2)表示左眼,用(2,2)表示右眼,那么嘴的位置可以表示成()A.(1,0)B.(﹣1,0)C.(﹣1,1)D.(1,﹣1)【考点】坐标确定位置.【分析】由“左眼”位置点的坐标为(0,2),“右眼”点的坐标为(2,2)可以确定平面直角坐标系中x轴与y轴的位置,从而可以确定“嘴”的坐标.【解答】解:根据题意,坐标原点是嘴所在的行和左眼所在的列的位置,所以嘴的坐标是(1,0),故选A.5.化简的结果是()A.B.a C.a﹣1 D.【考点】分式的乘除法.【分析】本题考查的是分式的除法运算,做除法运算时要转化为乘法的运算,注意先把分子、分母能因式分解的先分解,然后约分.【解答】解:=×=a.故选B.6.在下列四种图形变换中,本题图案不包含的变换是()A.位似 B.旋转C.轴对称D.平移【考点】几何变换的类型.【分析】观察本题中图案的特点,根据对称、平移、旋转、位似的定义作答.【解答】解:A、符合位似图形的定义,本题图案包含位似变换.错误;B、将图形绕着中心点旋转40°的整数倍后均能与原图形重合,本题图案包含旋转变换.错误;C、有9条对称轴,本题图案包含轴对称变换.错误;D、图形的方向发生了改变,不符合平移的定义,本题图案不包含平移变换.正确.故选:D.7.下列说法正确的是()A.求sin30°的按键顺序是、30、=B.求23的按键顺序、2、、3、=C.求的按键顺序是、、8、=D.已知sinA=0.5018,用计算器求锐角A的大小,按键顺序是、、0.5018、= 【考点】计算器—三角函数;计算器—数的开方.【分析】根据计算器求三角函数、计算器乘方、开方的方法解答即可.【解答】解:求sin30°的按键顺序是、30、=,A正确;求23的按键顺序2、、3、=,B错误;求的按键顺序是、8、=,C错误;已知sinA=0.5018,用计算器求锐角A的大小,按键顺序是先按shift键、0.5018、=,D错误,故选:A.8.用八个同样大小的小立方体粘成一个大立方体如图1,得到的几何体的三视图如图2所示,若小明从八个小立方体中取走若干个,剩余小立方体保持原位置不动,并使得到的新几何体的三视图仍是图2,则他取走的小立方体最多可以是()A.1个B.2个C.3个D.4个【考点】由三视图判断几何体.【分析】由于从八个小立方体中取走若干个,剩余小立方体保持原位置不动,并使得到的新几何体的三视图都相同,由主视图可知有2层2列,由左视图可知有2层2行,由俯视图可知最少有2个小立方体.【解答】解:由主视图和左视图可得每一层的每一行每一列都要保留一个立方体,故取走的小立方体最多可以是4个.具体可参看图形:故选D.9.小明在超市帮妈妈买回一袋纸杯,他把纸杯整齐地叠放在一起,如图请你根据图中的信息,若小明把100个纸杯整齐叠放在一起时,它的高度约是()A.106cm B.110cm C.114cm D.116cm【考点】二元一次方程组的应用.【分析】仔细观察图形,可知题中有两个等量关系:单独一个纸杯的高度+3个纸杯叠放在一起高出单独一个纸杯的高度=9,单独一个纸杯的高度+8个纸杯叠放在一起高出单独一个纸杯的高度=14.根据这两个等量关系,可列出方程组,再求解.【解答】解:设每两个纸杯叠放在一起比单独的一个纸杯增高xcm,单独一个纸杯的高度为ycm,则,解得则99x+y=99×1+7=106即把100个纸杯整齐的叠放在一起时的高度约是106cm.故选A.10.如图,在平面直角坐标系中,在x轴、y轴的正半轴上分别截取OA、OB,使OA=OB;再分别以点A、B为圆心,以大于AB长为半径作弧,两弧交于点C.若点C的坐标为(m ﹣1,2n),则m与n的关系为()A.m+2n=1 B.m﹣2n=1 C.2n﹣m=1 D.n﹣2m=1【考点】全等三角形的判定与性质;坐标与图形性质;三角形的角平分线、中线和高.【分析】根据OA=OB;再分别以点A、B为圆心,以大于AB长为半径作弧,两弧交于点C,得出C点在∠BOA的角平分线上,进而得出C点横纵坐标相等,进而得出答案.【解答】解:∵OA=OB;分别以点A、B为圆心,以大于AB长为半径作弧,两弧交于点C,∴C点在∠BOA的角平分线上,∴C点到横纵坐标轴距离相等,进而得出,m﹣1=2n,即m﹣2n=1.故选:B.11.如图,已知A、B两点的坐标分别为(2,0)、(0,2),⊙C的圆心坐标为(﹣1,0),半径为1.若D是⊙C上的一个动点,线段DA与y轴交于点E,则△ABE面积的最小值是()A.2 B.1 C.D.【考点】切线的性质;坐标与图形性质;三角形的面积;相似三角形的判定与性质.【分析】由于OA的长为定值,若△ABE的面积最小,则BE的长最短,此时AD与⊙O相切;可连接CD,在Rt△ADC中,由勾股定理求得AD的长,即可得到△ADC的面积;易证得△AEO∽△ACD,根据相似三角形的面积比等于相似比的平方,可求出△AOE的面积,进而可得出△AOB和△AOE的面积差,由此得解.【解答】解:若△ABE的面积最小,则AD与⊙C相切,连接CD,则CD⊥AD;Rt△ACD中,CD=1,AC=OC+OA=3;由勾股定理,得:AD=2;∴S △ACD=AD•CD=;易证得△AOE∽△ADC,∴=()2=()2=,即S△AOE=S△ADC=;∴S△ABE=S△AOB﹣S△AOE=×2×2﹣=2﹣;另解:利用相似三角形的对应边的比相等更简单!故选:C.12.在平面直角坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D 的坐标为(0,2),延长CB交x轴于点A1,作正方形A1B1C1C;延长C1B1交x轴于点A2,作正方形A2B2C2C1;…,按这样的规律进行下去,第2016个正方形的面积为()A.5×()2016B.5×()2016C.5×()2015D.5×()4032【考点】正方形的性质;坐标与图形性质.【分析】先求出正方形ABCD的边长和面积,再求出第一个正方形A1B1C1C的面积,得出规律,根据规律即可求出第2016个正方形的面积.【解答】解:∵点A的坐标为(1,0),点D的坐标为(0,2),∴OA=1,OD=2,∵∠AOD=90°,∴AB=AD=,∠ODA+∠OAD=90°,∵四边形ABCD是正方形,∴∠BAD=∠ABC=90°,S正方形ABCD==5,∴∠ABA1=90°,∠OAD+∠BAA1=90°,∴∠ODA=∠BAA1,∴△ABA1∽△DOA,∴,即,∴BA1=,∴CA1=,∴正方形A1B1C1C的面积==5×,…,第n个正方形的面积为5×,∴第2016个正方形的面积为5×()2015.故选C.二、填空题:本题共5小题,每小题4分,共20分,只要求填写最后结果.13.分解因式:x2+2x= x(x+2).【考点】因式分解-提公因式法.【分析】首先找出公因式,进而提取公因式得出答案.【解答】解:x2+2x=x(x+2).故答案为:x(x+2).14.有四张不透明的卡片,正面写有不同命题(见图),背面完全相同.将这四张卡片背面朝上洗匀后,随机抽取一张,得到正面上命题是真命题的概率为.【考点】概率公式;命题与定理.【分析】先判断命题的真假,再根据概率公式计算即可.【解答】解:①是真命题,②是真命题;③是假命题,因为两个锐角的和可能是锐角,可能是直角,也可能是钝角;④是真命题.故真命题3个,而命题有4个,是真命题的概率为.故答案为.15.如图,△ABC中,∠ACB=90°,AB=8cm,D是AB的中点.现将△BCD沿BA方向平移1cm,得到△EFG,FG交AC于H,则GH的长等于 3 cm.【考点】直角三角形斜边上的中线;等腰三角形的判定与性质;平移的性质.【分析】利用直角三角形斜边上的中线等于斜边的一半知AD=BD=CD=AB=4cm;然后由平移的性质推知GH∥CD;最后根据平行线截线段成比例列出比例式,即可求得GH的长度.【解答】解:∵△ABC中,∠ACB=90°,AB=8cm,D是AB的中点,∴AD=BD=CD=AB=4cm;又∵△EFG由△BCD沿BA方向平移1cm得到的,∴GH∥CD,GD=1cm,∴△AGH∽△ADC,∴=,即=,解得,GH=3 cm;故答案是:3.16.如图,正方形ABCD的边长为3cm,E为CD边上一点,∠DAE=30°,M为AE的中点,过点M作直线分别与AD、BC相交于点P、Q.若PQ=AE,则AP等于1或2 cm.【考点】全等三角形的判定与性质;正方形的性质;解直角三角形.【分析】根据题意画出图形,过P作PN⊥BC,交BC于点N,由ABCD为正方形,得到AD=DC=PN,在直角三角形ADE中,利用锐角三角函数定义求出DE的长,进而利用勾股定理求出AE的长,根据M为AE中点求出AM的长,利用HL得到三角形ADE与三角形PQN全等,利用全等三角形对应边,对应角相等得到DE=NQ,∠DAE=∠NPQ=30°,再由PN与DC平行,得到∠PFA=∠DEA=60°,进而得到PM垂直于AE,在直角三角形APM中,根据AM的长,利用锐角三角函数定义求出AP的长,再利用对称性确定出AP′的长即可.【解答】解:根据题意画出图形,过P作PN⊥BC,交BC于点N,∵四边形ABCD为正方形,∴AD=DC=PN,在Rt△ADE中,∠DAE=30°,AD=3cm,∴tan30°=,即DE=cm,根据勾股定理得:AE==2cm,∵M为AE的中点,∴AM=AE=cm,在Rt△ADE和Rt△PNQ中,,∴Rt△ADE≌Rt△PNQ(HL),∴DE=NQ,∠DAE=∠NPQ=30°,∵PN∥DC,∴∠PFA=∠DEA=60°,∴∠PMF=90°,即PM⊥AF,在Rt△AMP中,∠MAP=30°,cos30°=,∴AP===2cm;由对称性得到AP′=DP=AD﹣AP=3﹣2=1cm,综上,AP等于1cm或2cm.故答案为:1或2.17.如图,▱OABC的顶点B、C在第一象限,点A的坐标为(3,0),D为边AB的中点,反比例函数y=(k>0)的图象经过点C、D两点,若∠COA=60°,则k的值为4.【考点】反比例函数图象上点的坐标特征;反比例函数的性质;平行四边形的性质.【分析】作CE⊥x轴于点E,则∠CEO=90°,过B作BF⊥x轴于F,过D作DM⊥x轴于M,设C的坐标为(x,x),表示出D的坐标,代入反比例函数的解析式,求出k即可.【解答】解:作CE⊥x轴于点E,则∠CEO=90°,过B作BF⊥x轴于F,过D作DM⊥x 轴于M,则BF=CE,DM∥BF,BF=CE,∵D为AB的中点,∴AM=FM,∴DM=BF,∵∠COA=60°,∴∠OCE=30°,∴OC=2OE,CE=OE,∴设C的坐标为(x,x),∴AF=OE=x,CE=BF=x,OE=AF=x,DM=x,∵四边形OABC是平行四边形,A(3,0),∴OF=3+x,OM=3+x,即D点的坐标为(3+x,x),把C和D的坐标代入y=得:k=x•x,k=(3+x)•x,解得:x=0或2(x=0不符合题意舍去),k=4,故答案为:4.三、解答题:本大题共7小题,共52分.解答要写出必要的文字说明、证明过程或演算步骤. 18.解一元一次不等式组.【考点】解一元一次不等式组.【分析】先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可.【解答】解:∵解不等式①得:x>﹣3,解不等式②得:x≤2,∴不等式组的解集为﹣3<x≤2.19.已知:如图,E,F分别是▱ABCD的边AD,BC的中点.求证:AF=CE.【考点】平行四边形的判定与性质.【分析】由四边形ABCD是平行四边形,可得AD=BC,AD∥BC,又由E,F分别是AD,BC的中点,即可得AE=CF,则可证得四边形AFCE是平行四边形,继而证得结论.【解答】证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∵E,F分别是AD,BC的中点,∴AE=CF,∴四边形AFCE是平行四边形,∴AF=CE.20.从2013年1月7日起,中国中东部大部分地区持续出现雾霾天气.某市记者为了了解”雾霾天气的主要原因“,随机调查了该市部分市民,并对调查结果进行整理.绘制了如下尚不完整的统计图表.组别观点频数(人数)A 大气气压低,空气不流动80B 地面灰尘大,空气湿度低mC 汽车尾气排放nD 工厂造成的污染120E 其他60请根据图表中提供的信息解答下列问题:(1)填空:m= 40 ,n= 100 .扇形统计图中E组所占的百分比为15 %;(2)若该市人口约有100万人,请你估计其中持D组“观点”的市民人数;(3)若在这次接受调查的市民中,随机抽查一人,则此人持C组“观点”的概率是多少?【考点】频数(率)分布表;用样本估计总体;扇形统计图;概率公式.【分析】(1)求得总人数,然后根据百分比的定义即可求得;(2)利用总人数100万,乘以所对应的比例即可求解;(3)利用频率的计算公式即可求解.【解答】解:(1)总人数是:80÷20%=400(人),则m=400×10%=40(人),C组的频数n=400﹣80﹣40﹣120﹣60=100(人),E组所占的百分比是:×100%=15%;故答案为:40,100,15%;(2)100×=30(万人);所以持D组“观点”的市民人数为30万人;(3)随机抽查一人,则此人持C组“观点”的概率是=.答:随机抽查一人,则此人持C组“观点”的概率是.21.校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于21米,在l上点D的同侧取点A、B,使∠CAD=30°,∠CBD=60°.(1)求AB的长(精确到0.1米,参考数据:=1.73,=1.41);(2)已知本路段对校车限速为40千米/小时,若测得某辆校车从A到B用时2秒,这辆校车是否超速?说明理由.【考点】解直角三角形的应用.【分析】(1)分别在Rt△ADC与Rt△BDC中,利用正切函数,即可求得AD与BD的长,继而求得AB的长;(2)由从A到B用时2秒,即可求得这辆校车的速度,比较与40千米/小时的大小,即可确定这辆校车是否超速.【解答】解:(1)由題意得,在Rt△ADC中,AD==≈36.33(米),…2分在Rt△BDC中,BD=≈12.11(米),…4分则AB=AD﹣BD=36.33﹣12.11=24.22≈24.2(米)…6分(2)超速.理由:∵汽车从A到B用时2秒,∴速度为24.2÷2=12.1(米/秒),∵12.1×3600=43560(米/时),∴该车速度为43.56千米/小时,…9分∵大于40千米/小时,∴此校车在AB路段超速.…10分22.已知关于x的一元二次方程x2﹣(2k+1)x+k2+2k=0有两个实数根x1,x2.(1)求实数k的取值范围;(2)是否存在实数k使得x1•x2﹣x12﹣x22≥0成立?若存在,请求出k的值;若不存在,请说明理由.【考点】根与系数的关系;根的判别式.【分析】(1)根据已知一元二次方程的根的情况,得到根的判别式△≥0,据此列出关于k 的不等式[﹣(2k+1)]2﹣4(k2+2k)≥0,通过解该不等式即可求得k的取值范围;(2)假设存在实数k使得≥0成立.利用根与系数的关系可以求得,然后利用完全平方公式可以把已知不等式转化为含有两根之和、两根之积的形式≥0,通过解不等式可以求得k的值.【解答】解:(1)∵原方程有两个实数根,∴[﹣(2k+1)]2﹣4(k2+2k)≥0,∴4k2+4k+1﹣4k2﹣8k≥0∴1﹣4k≥0,∴k≤.∴当k≤时,原方程有两个实数根.(2)假设存在实数k使得≥0成立.∵x1,x2是原方程的两根,∴.由≥0,得≥0.∴3(k2+2k)﹣(2k+1)2≥0,整理得:﹣(k﹣1)2≥0,∴只有当k=1时,上式才能成立.又∵由(1)知k≤,∴不存在实数k使得≥0成立.23.如图,Rt△ABC中,∠C=90°,BC=6,AC=8.点P,Q都是斜边AB上的动点,点P从B向A运动(不与点B重合),点Q从A向B运动,BP=AQ.点D,E分别是点A,B以Q,P为对称中心的对称点,HQ⊥AB于Q,交AC于点H.当点E到达顶点A时,P,Q同时停止运动.设BP的长为x,△HDE的面积为y.(1)求证:△DHQ∽△ABC;(2)求y关于x的函数解析式并求y的最大值;(3)当x为何值时,△HDE为等腰三角形?【考点】二次函数的最值;等腰三角形的判定;相似三角形的判定与性质.【分析】(1)根据对称性可得HD=HA,那么可得∠HDQ=∠A,加上已有的两个直角相等,那么所求的三角形相似;(2)分0<x≤2.5;2.5<x≤5两种情况讨论,得到y关于x的函数关系式,再利用二次函数的最值即可求得最大值;(3)等腰三角形有两边相等,根据所在的不同位置再分不同的边相等解答.【解答】(1)证明:∵A、D关于点Q成中心对称,HQ⊥AB,∴∠HQD=∠C=90°,HD=HA,∴∠HDQ=∠A,∴△DHQ∽△ABC.(2)解:①如图1,当0<x≤2.5时,ED=10﹣4x,QH=AQtanA=x,此时y=(10﹣4x)×x=﹣+x,当x=时,最大值y=,②如图2,当2.5<x≤5时,ED=4x﹣10,QH=AQtanA=x,此时y=(4x﹣10)×x=﹣x=(x﹣)2﹣.当2.5<x≤5时,y有最大值,当x=5时,最大值为y=,∴y与x之间的函数解析式为y=,则当2.5<x≤5时,y有最大值,其最大值是y=.综上可得,y的最大值为.(3)解:①如图1,当0<x<2.5时,若DE=DH,∵DH=AH==x,DE=10﹣4x,∴10﹣4x=,x=.∵∠EDH>90°,∴EH>ED,EH>DH,即ED=EH,HD=HE不可能;②如图2,当2.5<x≤5时,若DE=DH,4x﹣10=,x=;若HD=HE,此时点D,E分别与点B,A重合,x=5;若ED=EH,则∠ADH=∠DHE,又∵点A、D关于点Q对称,∴∠A=∠ADH,∴△EDH∽△HDA,∴=,x=,∴当x的值为,,5,时,△HDE是等腰三角形.24.已知:△ABC的高AD所在直线与高BE所在直线相交于点F.(1)如图1,若△ABC为锐角三角形,且∠ABC=45°,过点F作FG∥BC,交直线AB 于点G,求证:FG+DC=AD;(2)如图2,若∠ABC=135°,过点F作FG∥BC,交直线AB于点G,则FG、DC、AD之间满足的数量关系是FG﹣DC=AD ;(3)在(2)的条件下,若AG=,DC=3,将一个45°角的顶点与点B重合并绕点B 旋转,这个角的两边分别交线段FG于M、N两点(如图3),连接CF,线段CF分别与线段BM、线段BN相交于P、Q两点,若NG=,求线段PQ的长.【考点】直角三角形的性质;三角形内角和定理;全等三角形的判定;矩形的判定.【分析】(1)首先证明∠CBE=∠DAC,∠AGF=∠BAD可推出FA=FG;(2)与(1)证明方法同理;(3)首先证明△FDC为等腰直角三角形,然后证明四边形DFHB为矩形.根据三角函数的计算得出.【解答】证明:(1)∵∠ADB=90°,∠ABC=45°,∴∠BAD=∠ABC=45°,∴AD=BD∵∠BEC=90°,∴∠CBE+∠C=90°,∵∠DAC+∠C=90°,∴∠CBE=∠DAC,∵GF∥BD,∴∠AGF=∠ABC=45°,∴∠AGF=∠BAD,∴FA=FG,∴FG+DC=FA+DF=AD;解:(2)FG﹣DC=AD;(3)如图,∵∠ABC=135°,∴∠ABD=45°,∵∠ADB=90°,∴∠DAB=∠DBA=45°,∴AD=BD,∵FG∥BC,∴∠G=∠DBA=∠DAB,∴AF=FG∴AG=5,FG2+AF2=AG2,∴FG=AF=5∵DC=3由(2)知FG﹣DC=AD,∴AD=BD=2,BC=1,DF=3,∴△FDC为等腰直角三角形∴FC=,分别过B,N作BH⊥FG于点H,NK⊥BG于点K,∴四边形DFHB为矩形,∴HF=BD=2 BH=DF=3,∴BH=HG=3,∴BG=∵sinG=,∴NK=×=,∴BK=∵∠MBN=∠HBG=45°,∴∠MBH=∠NBK,∵∠MHB=∠NKB=90°,∴△MBH∽△NBK∴,∴MH=1,∴FM=1,∵BC∥FG,∴∠BCF=∠CFN,∵∠BPC=∠MPF CB=FM,∴△BPC≌△MPF,∴PC=PF=FC=,∵∠BQC=∠NQF,∴△BCQ∽△NFQ,∴,∴,∴CQ=FC==,∴PQ=CP﹣CQ=.2016年6月15日。