华师版初中数学八年级上期中试题

合集下载

华师大版八年级上册数学期中考试试卷及答案

华师大版八年级上册数学期中考试试卷及答案

河南沈丘外语中学2021年八年级〔上〕期中数学试卷〔华师版〕一. 选择题〔每题3分,共30分.每题都有四个选项,其中有且只有一个选项是正确的〕 1、以下说法正确的选项是…………………………………………… 〔 〕 A .1的立方根是1±; B .24±=; C 、81的平方根是3±; D 、0没有平方根; 2、在以下实数中,无理数是〔 〕A .35-B .2πC .01.0D .327-3、 以下计算结果正确的选项是. …………………( )A.. 336x x x += B. 34b b b ⋅= C. 326428a a a ⋅= D. 22532a a -=.4、 以下多项式相乘,结果为1662-+a a 的是………………… 〔 〕 A. )8)(2(--a a B. )8)(2(-+a a C. )8)(2(+-a a D. )8)(2(++a a5、如m x +与3+x 的乘积中不含..x 的一次项....,那么m 的值为…………………〔 〕 A .3- B .3 C . 0D . 16、以下式子从左到右的变形中,属于因式分解的是 …………………( )A 、2(1)(1)1x x x +-=-B 、221(2)1x x x x -+=-+C 、22()()a b a b a b -=+- D 、()()mx my nx ny m x y n x y +++=+++7.由以下条件不能判断△ABC 是直角三角形的是〔 〕A .∠A :∠B :∠C=3:4:5 B .∠A :∠B :∠C=2:3:5C .∠A -∠C =∠BD .222AC BC AB =-8、如下图:求黑色局部〔长方形〕的面积为…………………( )A 、24B 、30C 、48D 、18 9、估算324+的值是…………………( ) A .在5和6之间 B .在6和7之间 C .在7和8之间D .在8和9之间10.和数轴上的点一一对应的数是…………………( )A 、分数B 、有理数C 、无理数D 、实数 二.填空题〔每空3分,共27分〕 11. 33x =,那么x =______12, 假设5,4m nx x ==.那么m nx-=_______.13.如图1,在边长为a 的正方形中剪去一个边长为b 的小正形〔a >b 〕,把剩下局部拼成一个 梯形〔如图2〕,利用这两幅图形面积,可以验证的乘法公式是 14. 计算:x 3.(2x 3)2÷()24x =___________15.分解因式,直接写出结果)(6)(4)(8a x c x a b a x a ---+-=16.3=-b a ,2=b a ,那么22b a +的值为 。

华师大版八年级数学上册期中试题答案

华师大版八年级数学上册期中试题答案

华师大版八年级上期期中质量评估数 学 答 案 一.选择题(每小题3分,共24分)9. ±8 10. 34a 11. B 12. 13 13. 如果两个三角形全等,那么它们的对应边相等。

14. 135° 15. 20 16. 172.5° 三.解答题 (共72分)17.因式分解(每小题4分,共8分) (1)y y 482-解:原式=4y (2y -1).............4分 (2) ()22241m m -+解:原式=(m 2+1+2m )(m 2+1-2m ).....2分=(m+1)2(m -1)2 ..... 4分 18.计算(1,2每小题4分,3小题6分,共14分) (1)100029998100002⨯-22222210000(100002)(100002)10000(100002).........................1000010000 4...............................34......................... ...................................--⨯+........1=--===-+分2分分解:原式..4分(2) (16x 3-8x 2+4x )÷(-2x )284 2.............4x x =-+-解:原式分(3)已知:()()237121,10.064x y -=+=-()()237121,10.06471110.8=184, 1.8..............................22,=18, 1.8. (4401)3............................x y x y x y x x y -=+=--=±+=--=-≥=-==--=解:因为所以,所以或分由题意可知所以分原式......................................6分 19.先化简,再求值(每小题6分,共12分)(1)2585344212m m m n m m n m n --++--==-()(),其中,.22222=8+5151610..................2=325.....................................................421=322521=3+50=38......4..........................................m m mn m mn m mn m n -----==--⨯-⨯⨯--⨯解:原式分分当,时,原式()...6分(2)22[(2)42]2x y y xy x --+÷, 其中 2,1==y x2222=[x 4442]2..............2[x 2]21 (42)131,2=12= (622)xy y y xy x xy x x y x y -+-+÷=-÷=-==⨯--当解:原式分分时,原式分20.阅读下面因式分解的过程(6分)22222627233927................2(3)6(36)(36)....................4(3)(9)...............................6x x x x x x x x x --=-••+--=--=-+--=+-分分分21.(10分)证明:(1)∵AB=AC,D 是BC 的中点, ∴∠BAE=∠EAC,......................2分在△ABE 和△ACE 中,,......3分∴△ABE≌△ACE(SAS ),∴BE=CE; ....................4分 (2)∵∠BAC=45°,BF⊥AF, ∴△ABF 为等腰直角三角形,∴AF=BF, ....................6分 ∵AB=AC,点D 是BC 的中点,∴AD⊥BC, ......................7分 ∴∠EAF+∠C=90°, ∵BF⊥AC,∴∠CBF+∠C=90°,∴∠EAF=∠CBF, ........................8分在△AEF 和△BCF 中,,∴△AEF≌△BCF(ASA ).....................9分 ∴AE =BC .....................10分 22.(10分) 解:(1)∵1t =秒,∴313BP CQ ==⨯=厘米,........................1分 ∵10AB =厘米,点D 为AB 的中点,∴5BD =厘米...................................2分 又∵835PC =-=厘米,∴PC BD =. ....................................3分 又∵AB AC =,AQCDBPAQD∴B C ∠=∠, ...................................5分 ∴BPD CQP △≌△.................................6分 (2)∵P Q v v ≠, ∴BP CQ ≠,.........................7分又∵BPD CQP △≌△,B C ∠=∠,则45BP PC CQ BD ====,,....8分 ∴点P ,点Q 运动的时间433BP t ==秒,...........................9分 ∴515443Q CQ v t===厘米/秒.................................... 10分 23.(12分) 解:(1)EP=FQ ,理由如下:................................1分 如图1,∵Rt △ABE 是等腰三角形,∴EA=BA . ∵∠PEA+∠PAE=90°,∠PAE+∠BAG=90°,∴∠PEA=∠BAG.................................2分 在△EAP 与△ABG 中,∴△EAP ≌△ABG (AAS ), ∴EP=AG............3分同理AG=FQ .............4分 ∴EP=FQ .............5分(2)如图2,HE=HF ......... 6分 理由:过点E 作EP ⊥GA ,FQ ⊥GA ,垂足分别为P 、Q .............7分 由(1)知EP=FQ . 在△EPH 与△FQH 中,∵∴△EPH ≌△FQH (AAS ). ∴HE=HF ;............9分 (3)288............12分。

华师大版八年级数学上册期中测试题(含答案)

华师大版八年级数学上册期中测试题(含答案)

华师大版八年级数学上册期中测试题(含答案)(本试卷满分120分,考试时间120分钟)第Ⅰ卷(选择题共24分)一、选择题(本大题共8小题,每小题3分,共24分)1.下列运算正确的是(B)A.a3·a2=a6B.(a2b)3=a6b3C.a8÷a2=a4D.a+a=a22.如图,在数轴上表示15的点可能是(B)A.点P B.点Q C.点M D.点N3.下列各命题的逆命题成立的是(C)A.全等三角形的对应角相等B.如果两个数相等,那么它们的绝对值相等C.两直线平行,同位角相等D.如果两个角都是45°,那么这两个角相等4.若a=3-8,b=16,那么a b的值等于(D)A.-8 B.8 C.-16 D.165.下列多项式,能用公式法分解因式的有(A)①x2+y2②-x2+y2③-x2-y2④x2+xy+y2⑤x2+2xy-y2⑥-x2+4xy-4y2A.2个B.3个C.4个D.5个6.已知△ABC≌△DEF,AB=2,AC=4,若△DEF的周长为偶数,则EF的取值为(B) A.3 B.4C.5 D.3或4或57.当x=1时,ax+b+1的值为-2,则(a+b-1)(1-a-b)的值为(A)A.-16 B.-8 C.8 D.168.★如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于点E,则下列结论:①AD平分∠CDE;②∠BAC=∠BDE;③DE平分∠ADB;④BE+AC=AB,其中正确的有(B)A.2个B.3个C.4个D.1个第8题图第13题图第Ⅱ卷(非选择题共96分)二、填空题(本大题共8小题,每小题3分,共24分)9.-64的立方根是-4 ,327的平方根为± 3 .10.计算:(-a)2·(-a)3=-a5 .11.分解因式:1-x2+2xy-y2=(1+x-y)(1-x+y) .12.已知x-y=6,则x2-y2-12y=36 .13.如图,已知AB=BC,要使△ABD≌△CBD,还需要添加一个条件,你添加的条件是∠ABD=∠CBD或AD=CD .(只需写一个,不添加辅助线)14.如图,∠ABC=50°,AD垂直且平分BC于点D,∠ABC的平分线BE交AD于点E,连结EC,则∠AEC的度数是115 度.第14题图第15题图第16题图15.★如图,在Rt△ABC中,∠C=90°,AC=12 cm,BC=6 cm,一条线段PQ=AB,P,Q两点分别在AC和过点A且垂直于AC的射线AX上运动,要使△ABC和△QP A全等,则AP=6cm或12cm .16.★如图,C是△ABE的BE边上一点,F在AE上,D是BC的中点,且AB=AC=CE,对于下列结论:①AD⊥BC;②CF⊥AE;③∠1=∠2;④AB+BD=DE.其中正确的结论有 ①④ (填序号).三、解答题(本大题共8小题,共72分) 17.(8分)计算: (1)3125-3216-121; 解:原式=5-6-11=-12.(2)(-2a 2b )2·(6ab )÷(-3b 2);解:原式=4a 4b 2·6ab ÷(-3b 2)=[4×6÷(-3)]a 4+1b 2+1-2=-8a 5b.(3)[(x +y )2-(x -y )2]÷2xy ;解:原式=[x 2+2xy +y 2-(x 2-2xy +y 2)]÷2xy =(x 2+2xy +y 2-x 2+2xy -y 2)÷2xy =4xy÷2xy =2.(4)(3x -y )2-(3x +2y )(3x -2y ).解:原式=(9x 2-6xy +y 2)-(9x 2-4y 2)=9x 2-6xy +y 2-9x 2+4y 2=-6xy +5y 2.18.(6分)若a -b +6与|a +b -8|互为相反数,求4a +3b 的算术平方根.解:依题意得⎩⎨⎧a -b +6=0,a +b -8=0,∴⎩⎨⎧a =1,b =7,则4a +3b =25,∴4a +3b =25=5.19.(8分)已知2x =4y +1,27y =3x -1,求x -y 的值. 解:∵2x =4y +1,∴2x =22y +2,∴x =2y +2.① 又∵27y =3x -1,∴33y =3x -1,∴3y =x -1.② 把①代入②,得y =1,∴x =4, ∴x -y =3.20.(8分)如图,已知AB ∥CF ,点E 为DF 的中点,若AB =7 cm ,CF =4 cm ,求BD 的长.解:∵AB ∥FC ,∴∠ADE =∠EFC. ∵E 是DF 的中点,∴DE =EF ,在△ADE 与△CFE 中,⎩⎨⎧∠ADE =∠EFC ,DE =EF ,∠AED =∠CEF ,∴△ADE ≌△CFE(A.S.A.), ∴AD =CF =4 cm ,∴BD =AB -AD =7-4=3 cm.21.(8分)分解因式: (1)m 4-2⎝⎛⎭⎫m 2-12; 解:原式=m 4-2m 2+1=(m 2-1)2=(m +1)2(m -1)2.(2)x 2-9y 2+x +3y .解:原式=(x 2-9y 2)+(x +3y)=(x +3y)(x -3y)+(x +3y)=(x +3y)(x -3y +1).22.(10分)一个开口的长方体盒子,是从一块正方形的马口铁的每个角剪掉一个36 cm 2的正方形后,再把它的边折起来做成的,如图,量得这个盒子的容积是150 cm 3,求原正方形的边长是多少?(1)由题意可知剪掉正方形的边长为________cm ; (2)设原正方形的边长为x cm ,请你用x 表示盒子的容积. 解:(1)因为剪掉一个36 cm 2的正方形, 所以剪掉正方形的边长是6 cm , 故答案为6.(2)因为设原正方形的边长为x cm , 所以盒子的容积为6(x -12)2 cm 3. ∴6(x -12)2=150,解得x =17或7, ∵x>12,∴x =7(舍去), 则原正方形的边长为17 cm.23.(10分)如图,已知BD 为∠ABC 的平分线,AB =BC ,点P 在BD 上,PM ⊥AD 于点M ,PN ⊥CD 于点N ,求证:PM =PN .证明:∵BD 为∠ABC 的平分线, ∴∠ABD =∠CBD.在△ABD 和△CBD 中,⎩⎨⎧AB =CB ,∠ABD =∠CBD ,BD =BD ,∴△ABD ≌△CBD(S.A.S.).∴∠ADB =∠CDB ,即BD 平分∠ADC. ∵点P 在BD 上,PM ⊥AD ,PN ⊥CD , ∴PM =PN.24.(14分)如图,在△ABC 中,AC =BC ,∠ACB =90°,点D 是AB 的中点,点E 是AB 边上一点.(1)BF ⊥CE 于点F ,交CD 于点G (如图①).求证:AE =CG ;(2)AH ⊥CE ,垂足为点H ,交CD 的延长线于点M (如图②),找出图中与BE 相等的线段,并证明.(1)证明:∵点D 是AB 中点,AC =BC ,∠ACB =90°, ∴CD ⊥AB ,∠ACD =∠BCD =45°,∴∠CAD =∠CBD =45°, ∴∠CAE =∠BCG ,又∵BF ⊥CE ,∴∠CBG +∠BCF =90°, 又∵∠ACE +∠BCF =90°,∴∠ACE =∠CBG ,在△AEC 和△CGB 中,⎩⎨⎧∠CAE =∠BCG ,AC =BC ,∠ACE =∠CBG ,∴△AEC ≌△CGB(A.S.A.), ∴AE =CG. (2)解:BE =CM.证明:∵CH ⊥HM ,CD ⊥ED ,∴∠CMA +∠MCH =90°,∠BEC +∠MCH =90°, ∴∠CMA =∠BEC , 又∵∠ACM =∠CBE =45°,在△BCE 和△CAM 中,⎩⎨⎧∠BEC =∠CMA ,∠ACM =∠CBE ,BC =AC ,∴△BCE ≌△CAM(A.A.S.), ∴BE =CM.。

最新华师大版八年级上册数学期中测试卷及答案

最新华师大版八年级上册数学期中测试卷及答案

最新华师大版八年级上册数学期中测试卷及答案班级___________ 姓名___________ 成绩_______题号 一 二 三 总分 得分一.选择题(每小题3分,共24分)1. 9的算术平方根是( )(A ) 3± (B ) 3 (C ) 3- (D ) 81 2. 如图,数轴上点N 表示的数可能是( )(A )2 (B )3 (C )5 (D )103. 在实数0,π,227,2,-9中,无理数的个数是( )(A )1 (B )2 (C )3 (D ) 4 4. 下列等式从左到右的变形中,属于因式分解的是( )(A )()()3392-+=-x x x (B )1)5(152-+=-+x x x x(A ) (D )5. 下列命题中,是假命题的是( )(A )互补的两个角不能都是锐角 (B )所有的直角都相等 (C )乘积是1的两个数互为倒数 (D )若 ,,c a b a ⊥⊥则c b ⊥ 6. 小明认为下列括号内都可以填4a ,你认为使等式成立的只能是( )(A )=12a ( )3 (B )=12a ( )4(C )=12a ( )2(D )=12a ( )6()()xx x x x 322342+-+=+-()()4222-=-+x x x7. 如图,一块三角形玻璃碎成了4块,现在要到玻璃店去配一块与原来的三角形玻璃完全一样的玻璃,那么最省事的办法是带( )去 (A ) ① (B ) ② (C ) ③ (D) ④图(1) 图(2)7题图 8题图8. 图(1)是一个长为2a ,宽为2()b a >b 的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是( )(A) 2ab (B) 2()a b + (C )2()a b - (D)22a b -二、填空题(每小题3分,共18分)9. 下列结论:①数轴上的点只能表示有理数;②任何一个无理数都能用数轴上的点表示;③实数与数轴上的点一一对应;④有理数有无限个,无理数有有限个。

华师大版-学年度上学期八年级期中考试数学试题(有答案)

华师大版-学年度上学期八年级期中考试数学试题(有答案)

2018年秋华师大版数学八年级上册中期考试题内容:第11章~第13章,总分:150分,时间:120分钟;姓名: ;成绩: ;一、选择题(4×12=48分) 1.7的平方根记作( )A.77 C.7 D.7-2.实数-1.3,16,1π-,5,38-,13,2.121121112…(每两个2之间依次增加一个1)中,无理数有( )个A.1个B.2个C.3个D.4个 3.实数a 、b 满足1a ++4a 2+4ab+b 2=0,则b a 的值为( ) A .2 B .12C .﹣2D .-124.关于13的叙述,错误的是( )A .13是有理数B .面积为12的正方形边长是13 C. 13是13的平方根 D .在数轴上可以找到表示13的点 5.下列运算正确的是( )A .(a ﹣3)2=a 2﹣9B .a 2•a 4=a 8C .9=±3D .38-=﹣26.小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:a ﹣b ,x ﹣y ,x+y ,a+b ,x 2﹣y 2,a 2﹣b 2分别对应下列六个字:华、爱、我、中、游、美,现将(x 2﹣y 2)a 2﹣(x 2﹣y 2)b 2因式分解,结果呈现的密码信息可能是( ) A .我爱美 B .中华游 C .爱我中华D .美我中华7.若x 2+(m -1)x+16是一个完全平方式,则m 等于( ) A .9或-7 B .5或-3 C .9 D .58.7张如图1的长为a ,宽为b (a >b )的小长方形纸片,按图2的方式不重叠地放在矩形ABCD 内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S ,当BC 的长度变化时,按照同样的放置方式,S 始终保持不变,则a ,b 满足( )A .a=52b B .a=3bC .a=72b D .a=4b9.如图,在△ABC和△DEF中,∠B=∠DEF,AB=DE,添加下列一个条件后,仍然不能证明△ABC≌△DEF,这个条件是()A.∠A=∠D B.BC=EF C.∠ACB=∠F D.AC=DF10.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个 B.2个 C.3个 D.4个11.已知:如图,在长方形ABCD中,AB=4,AD=6.延长BC到点E,使CE=2,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC﹣CD﹣DA向终点A运动,设点P的运动时间为t秒,当t的值为()秒时.△ABP和△DCE全等.A.1 B.1或3 C.1或7 D.3或712.如图,AB⊥FB,AG⊥EG,垂足分别为B、G,且AB=AG,AE=AF,分别过点B,G作EF 所在直线的垂线,垂足分别为C,D,若BC=DG,CF=4,则DE的长为()A.1 B.2 C.3 D.4二、填空题(4×6=24分)13.81的算术平方根是 ;14.在如图所示的数轴上,点C 与点B 关于点A 对称,C 、A 两点对应的实数分别是 和1,则点B 对应的实数为 .15.如图,从边长为(a+3)的正方形纸片中剪去一个边长为3的正方形,剩余部分沿虚线又剪拼成一个如图所示的长方形(不重叠无缝隙),则拼成的长方形的另一边长 .16.已知,x =52-y+1,则432x y ⋅= ,224455x xy y ++= ;17.如图,在△ABC 中,分别以AC 、BC 为边作等边三角形ACD 和等边三角形BCE ,连接AE 、BD 交于点O ,则∠AOB 的度数为 .18.如图,点P 是∠AOB 内任意一点,OP=5cm ,点M 和点N 分别是射线OA 和射线OB 上的动点,△PMN 周长的最小值是5cm ,则∠AOB 的度数是 ;三、解答题(6×4=24分) 19.计算:23241227--20.计算:2(a-2b)2-3a(a-b)+(a+3b)(a-3b)21.分解因式:3m2-6m+3-12n222.如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.求证:BC∥EF.四、解答题(10×3=30分)23.如果ax+b=0,其中a,b为有理数,x为无理数,那么a=0且b=0.(1)如果(a﹣2)2+b+3=0,其中a、b为有理数,试求a,b的值;(2)如果(2+ 2a﹣(1﹣2b=5,其中a、b为有理数,求a+2b的值.24.(1)已知m+2的算术平方根是4,2m+n+1的立方根是3,求m﹣n的平方根.(2)如果2x2-4x+3y2+12y+14=0,求x+y的立方根.25.已知ΔABC的三边长为a、b、c;(1)如果a2+b2+C2=23,ab+bc+ac=49,求ΔABC的周长;(2)如果a(a-b)+b(b-c)+C(c-a)=0,请判断ΔABC的形状。

华师大版数学八年级上册期中综合检测试题(含答案)

华师大版数学八年级上册期中综合检测试题(含答案)

期中综合检测试卷(第11章~第13章)(满分:120分)一、选择题(每小题3分,共30分)1.下列说法正确的是(D)A.-4的立方是64 B.0.1的立方根是0.001 C.4的算术平方根是16 D.9的平方根是±32.在实数0.3,0,7,π2,0.123 456…中,无理数的个数是(B)A.2 B.3C.4 D.53.下列运算正确的是(A)A.(a2)m=a2m B.(2a)3=2a3C.a3·a-5=a-15D.a3÷a-5=a-24.若(m-1)2+n+2=0,则(m+n)2019的值是(A)A.-1 B.0C.1 D.25.把多项式4x2y-4xy2-x3分解因式的结果是(B)A.4xy(x-y)-x3B.-x(x-2y)2C.x(4xy-4y2-x2) D.-x(-4xy+4y2+x2)6.若(y+3)(y-2)=y2+my+n,则m、n的值分别为(D)A.5,6 B.5,-6C.1,6 D.1,-67.如图,将图1中阴影部分无重叠、无缝隙地拼成图2,根据两个图形中阴影部分的面积关系得到的等式是(C)A.a2-b2=(a+b)(a-b) B.a2+2ab+b2=(a+b)2C.a2-2ab+b2=(a-b)2D.(a+b)2-(a-b)2=4ab解析:图1中阴影部分的面积为a2-2ab+b2,图2中阴影部分的面积为(a-b)2,所以a2-2ab +b2=(a-b)2.8.如图,D为△ABC内一点,CD平分∠ACB,BE⊥CD,垂足为点D,交AC于点E,若∠A=∠ABE ,AC =5,BC =3,则BD 的长为( A )A .1B .1.5C .2D .2.59.如图,在△ABC 中,∠ABC =45°,AC =8 cm ,F 是高AD 和BE 的交点,则BF 的长是( C )A .4 cmB .6 cmC .8 cmD .9 cm解析:∵F 是高AD 和BE 的交点,∴∠ADB =∠AEF =90°,∴∠CAD +∠AFE =90°,∠DBF +∠BFD =90°.∵∠AFE =∠BFD ,∴∠CAD =∠FBD .∵∠ADB =90°,∠ABC =45°,∴∠BAD =45°=∠ABD ,∴AD =BD .在△DBF 和△DAC 中,∵⎩⎪⎨⎪⎧∠FBD =∠CAD ,BD =AD ,∠FDB =∠CDA ,∴△DBF ≌△DAC (A .S .A .),∴BF =AC =8 cm.10.如图,在△ABC 中,∠C =90°,AD 平分∠BAC 交BC 于点D ,DE ⊥AB 于点E ,则下列结论:①AD 平分∠CDE ;②∠BAC =∠BDE ;③DE 平分∠ADB ;④若AC =4BE ,则S △ABC =8S △BDE .其中正确的有( B )A .1个B .2个C .3个D .4个解析:∵AD 平分∠BAC ,∴∠DAC =∠DAE .∵∠C =90°,DE ⊥AB ,∴∠C =∠AED =90°.∵AD =AD ,∴△DAC ≌△DAE (A .A .S .),∴∠CDA =∠EDA ,∴AD 平分∠CDE ,∴①正确;无法证明∠BDE =60°,∴③DE 平分∠ADB 错误;∵BE +AE =AB ,AE =AC ,AC =4BE ,∴AB =5BE ,AE =4BE ,∴S △ADB =5S △BDE ,S △ADC =4S △BDE ,∴S △ABC =9S △BDE ,∴④错误;∵∠BDE =90°-∠B ,∠BAC =90°-∠B ,∴∠BDE =∠BAC ,∴②正确.二、填空题(每小题3分,共18分) 11.(1)19的算术平方根是__13__;(2)-64的立方根是__-4__.12.因式分解:4+12(x-y)+9(x-y)2=__(3x-3y+2)2__.13.如图,在四边形ABCD中,AB∥CD,连结BD.请添加一个适当的条件:__AB=CD(答案不唯一)__,使△ABD≌△CDB.(只需写一个)14.如图,在△ABC中,∠C=31°,∠ABC的平分线BD交AC于点D,如果DE垂直平分BC,那么∠A=__87__°.15.在△ABC中,∠ABC=45°,AC=8 cm,F是高AD和BE的交点,则BF的长是__8__cm__.16.22+4+1=3,32+6+1=4,42+8+1=5,52+10+1=6,…,请用含n(n≥2且为正整数)的等式表示它们的规律:__n2+2n+1=n+1__.三、解答题(共72分)17.(7分)已知4是3a-2的算术平方根,2-15a-b的立方根为-5.(1)求a和b的值;(2)求2b-a-4的平方根.解:(1)∵4是3a-2的算术平方根,∴3a-2=16,∴a=6.∵2-15a-b的立方根为-5,∴2-15a-b=-125,∴2-15×6-b=-125,∴b=37.(2)由(1)可得,2b-a-4=2×37-6-4=64,64的平方根为±8,∴2b-a-4的平方根为±8.18.(8分)(1)先化简,再求值:(a-b)2+b(3a-b)-a2,其中a=2,b=6;解:原式=a2-2ab+b2+3ab-b2-a2=ab.当a=2,b=6时,原式=2×6=12.(2)已知2a2+3a-6=0,求代数式3a(2a+1)-(2a+1)(2a-1)的值.解:∵2a2+3a-6=0,即2a2+3a=6,∴原式=6a2+3a-4a2+1=2a2+3a+1=6+1=7.19.(8分)如图,在四边形ABCD中,点E在AD上,其中∠BAE=∠BCE=∠ACD=90°,且BC=EC,求证:△ABC≌△DEC.证明:如图,∵∠BCE =∠ACD =90°,∴∠3+∠4=∠4+∠5,∴∠3=∠5.在△ACD 中,∠ACD =90°,∴∠2+∠D =90°.∵∠BAE =∠1+∠2=90°,∴∠1=∠D .在△ABC 和△DEC 中,∵⎩⎪⎨⎪⎧∠1=∠D ,∠3=∠5,BC =EC ,∴△ABC ≌△DEC (A .A .S .).20.(8分)若⎝⎛⎭⎫x 2+3mx -13(x 2-3x +n )的积中不含x 和x 3项. (1)求m 2-mn +14n 2的值;(2)求代数式(-18m 2n )2+(9mn )2+(3m )2017n 2019的值.解:⎝⎛⎭⎫x 2+3mx -13(x 2-3x +n )=x 4+(3m -3)x 3+⎝⎛⎭⎫n -9m -13x 2+(3mn +1)x -13n .由积中不含x 和x 3项,得⎩⎪⎨⎪⎧3m -3=0,3mn +1=0,解得⎩⎪⎨⎪⎧m =1,n =-13.(1)原式=⎝⎛⎭⎫m -12n 2=⎝⎛⎭⎫762=4936. (2)原式=324m 4n 2+81m 2n 2+(3m )2017n 2019=324×19+81×19+32017×⎝⎛⎭⎫-132019=36+9+⎣⎡⎦⎤3×⎝⎛⎭⎫-132017×⎝⎛⎭⎫-132=45-19=4049.21.(9分)如图,已知四边形ABCD 中,∠C =∠D =90°,AE 平分∠DAB ,BE 平分∠ABC ,且点E 在CD 上.(1)求证:DE =CE ; (2)求∠AEB 的度数.(1)证明:如图1,过点E 作EF ⊥AB 于点F .∵∠C =∠D =90°,AE 平分∠BAD ,BE 平分∠ABC ,∴EF =DE =CE ,即DE =CE . (2)解:如图2,延长AE 、BC 交于点M .在△ADE 和△MCE 中,∵⎩⎪⎨⎪⎧∠D =∠E CM ,DE =CE ,∠AED =∠MEC ,∴△ADE ≌△MCE ,∴AE =ME ,∠DAE =∠M .∵AE 平分∠BAD ,∴∠DAE =∠BAE ,∴∠M =∠BAE ,∴AB =BM .∵AE =ME ,∴BE ⊥AM ,∴∠AEB =90°.22.(10分)如图,在△ABC 中,AB =BC =AC =12 cm ,现有两点M 、N 分别从点A 、B 同时出发,沿三角形的边运动,已知点M 的速度为1 cm /s ,点N 的速度为2 cm/s .当点N 第一次到达点B 时,点M 、N 同时停止运动.(1)当点M 、N 运动多少秒时,M 、N 两点重合?(2)当点M 、N 运动多少秒后,点M 、N 与△ABC 中的某个顶点可构成等腰三角形?解:(1)设点M 、N 运动x s 后,M 、N 两点重合,则x ×1+12=2x ,解得x =12,故当点M 、N 运动12 s 时,M 、N 两点重合.(2)设点M 、N 运动t s 后,点M 、N 与△ABC 中某个顶点可构成等腰三角形.①当点M 在AC 上,点N 在AB 上时,AM =AN ,△AMN 为等腰三角形,即t =12-2t ,解得t =4;②当点M 、N 均在AC 上时,BM =BN ,△BMN 为等腰三角形,则CM =AN ,即12-t =2t -12,解得t =8;③当点M 、N 均在BC 上时,点N 已经追过点M ,AM =AN ,△AMN 为等腰三角形,则CM =BN ,即t -12=36-2t ,解得t =16.综上所述,当点M 、N 运动4 s 或8 s 或16 s 后,点M 、N 与△ABC 中的某个顶点可构成等腰三角形.23.(10分)如图,在△ABC 中,∠ABC =45°,CD ⊥AB 于点D ,AC 的垂直平分线BE 与CD 交于点F ,与AC 交于点E .(1)判断△DBC 的形状,并证明你的结论; (2)求证:BF =AC ; (3)求证:CE =12BF .(1)解:△DBC 是等腰直角三角形.证明:∵∠ABC =45°,CD ⊥AB ,∴∠BCD =45°,∴BD =CD ,∴△DBC 是等腰直角三角形. (2)证明:∵BE 垂直平分AC ,∴∠BDC =∠BEC =90°.∵∠BFD =∠CFE ,∴∠DBF =∠DCA .在△BDF 与△CDA 中,⎩⎪⎨⎪⎧∠BDF =∠CDA =90°,BD =CD ,∠DBF =∠DCA ,∴△BDF ≌△CDA ,∴BF =AC .(3)证明:由(2)可知,BF =AC .∵BE 是AC 的垂直平分线,∴CE =12AC ,∴CE =12BF .24.(12分)已知D 为△ABC 所在平面内一点,且DB =DC ,DE ⊥AB ,DF ⊥AC ,垂足分别为点E 、F ,DE =DF .(1)当点D 在BC 边上时(如图),判断△ABC 的形状,并证明你的结论;(2)当点D 在△ABC 内部时,(1)中的结论是否仍然成立?若成立,请证明;若不成立,请举出反例(画图说明,不需证明);(3)当点D 在△ABC 外部时,(1)中的结论是否仍然成立?若成立,请证明;若不成立,请举出反例(画图说明不需证明).解:(1)△ABC 是等腰三角形.证明:∵DE ⊥AB ,DF ⊥AC ,∴∠BED =∠CFD =90°.在Rt △EBD与Rt △FCD 中,∵⎩⎪⎨⎪⎧DE =DF ,DB =DC ,∴Rt △EBD ≌Rt △FCD (H .L .),∴∠EBD =∠FCD ,∴AB =AC ,∴△ABC 是等腰三角形. (2)当点D 在△ABC 内部时,(1)中的结论仍然成立.证明:如图1,∵DE⊥AB ,DF ⊥AC ,∴∠BED =∠CFD =90°.在Rt △EBD 与Rt △FCD 中,∵⎩⎪⎨⎪⎧DE =DF ,DB =DC ,∴Rt △EBD≌Rt △FCD (H .L .),∴∠EBD =∠FCD .∵DB =DC ,∴∠DBC =∠DCB ,∴∠EBD +∠DBC =∠FCD +∠DCB ,即∠EBC =∠FCB ,∴AB =AC ,∴△ABC 是等腰三角形. (3)当点D 在△ABC 外部时,(1)中的结论不一定成立,反例如图2.。

华师大版八年级上册数学期中考试试题及答案

华师大版八年级上册数学期中考试试题及答案

华师大版八年级上册数学期中考试试卷一、选择题。

(每小题只有一个正确答案)1.若24,a =1=-,则+a b 的值是( )A .1B .-3C .1或-3D .-1或32.在 -1,0,1 )A .B .-1C .0D .13.在112,0.16166166616666,3.1415926,1000π四个数中无理数有几个( ) A .1个B .2个C .3个D .4个 4.下列各式从左到右的变形是分解因式的是A .2222()()a b a b a b a -=+-+B .2()22a b c ab ac +=+C .3222(1)x x x x x -+=-D .221(1)x x x x+=+ 5.小明在利用完全平方公式计算一个二项整式的平方时,不小心用墨水把正确结果的最后一项染黑了,正确的结果为2912a ab -+( ),则被染黑的这一项应是( )A .22bB .23bC .24bD .24b - 6.下列运算正确的是( )A .3a+2a =5a 2B .(﹣a )3•(﹣a 2)=﹣a 5C .3a 2﹣2a =aD .(2a 3b 2﹣4ab 4)÷(﹣2ab 2)=2b 2﹣a 27.若3x 2﹣5x +1=0,则5x (3x ﹣2)﹣(3x +1)(3x ﹣1)=( )A .﹣1B .0C .1D .﹣2 8.给出下列4个命题:①同旁内角互补;②相等的角是对顶角;③等角的补角相等;④两直线平行,同位角相等.其中,假命题的个数为( )A .1B .2C .3D .49.如图,已知:AC =DF ,AC ∥FD ,AE =DB ,判断△ABC ≌△DEF 的依据是( )A .SSSB .SASC .ASAD .AAS 10.如图,CD ⊥AB 于点D ,点E 在CD 上,下列四个条件:①AD =ED ;②∠A =∠BED ;③∠C =∠B ;④AC =EB ,将其中两个作为条件,不能判定△ADC ≌△EDB 的是A .①②B .①④C .②③D .②④二、填空题11.已知有理数 x , y , z 满足0= ,那么 ()2x yz - 的平方根为________. 12.100100(4)(0.25)-⨯-=__________ ;2205204206-⨯=_______13.已知a =2019x+2016,b =2019x+2017,c =2019x+2018,则多项式a 2+b 2+c 2﹣ab ﹣bc ﹣ac 的值为_____.14.如图,点D 、E 分别在线段AB ,AC 上,AE=AD ,不添加新的线段和字母,要使△ABE ≌△ACD ,需添加的一个条件是_____(只写一个条件即可).15.设a ,b a b <<,是,则a b =____. 16.如果29x mx -+是一个完全平方式,则m 的值是____.三、解答题17.计算下列各题:①|1②(-1)20193. 18.分解因式: (1)2(2)36a b a b --+(2)24()x y x y --19.规定两正数a ,b 之同的一种运算,记作:E(a ,b),如果a c =b ,那么E(a ,b)=c .例如23=8,所以E(2,8)=3(1)填空:E(3,27)= ,E 11,216⎛⎫ ⎪⎝⎭= (2)小明在研究这和运算时发现一个现象:E(3n ,4n )=E(3,4)小明给出了如下的证明:设E(3n ,4n )=x ,即(3n )x =4n ,即(3n ,4n )=4n ,所以3x =4,E(3,4)=x ,所以E(3n ,4n )=E(3,4),请你尝试运用这种方法说明下面这个等式成立:E(3,4)+E(3,5)=E(3,20)20.先化简,再求值;当240x -,求()()()()32322524x y x y x y x y x ⎡⎤+--+-÷⎣⎦的值21.如图,点M 、N 在线段AC 上,AM =CN ,AB//CD ,AB =CD .(1)请说明△ABN ≌△CDM 的理由;(2)线段BM 与DN 平行吗?说明理由.22.如图所示,A ,E ,F ,C 在一条直线上,AE CF =,过E ,F 分别作DE AC ⊥,BF AC ⊥,垂足分别为E ,F ,且AB CD =.(1)ABF ∆与CDE ∆全等吗?为什么?(2)求证:EG FG =.23.如图,已知在△ABC 中,AB =AC ,BC =12厘米,点D 为AB 上一点且BD =8厘米,点P 在线段BC 上以2厘米/秒的速度由B 点向C 点运动,设运动时间为t ,同时,点Q 在线段CA 上由C 点向A 点运动.(1)用含t 的式子表示PC 的长为 ;(2)若点Q的运动速度与点P的运动速度相等,当t=2时,三角形BPD与三角形CQP是否全等,请说明理由;24.如图,点B,E,C,F在一条直线上,AB=DE,AC =DF,BE=CF.求证:△ABC ≌△DEF;25.如图所示,在四边形ABCD中,CD∥AB,∠ABC的平分线与∠BC D的平分线相交于点F,BF与CD的延长线交于点E,连接CE.求证:(1)△BCE是等腰三角形.(2)BC=AB+CD参考答案1.C【分析】根据题意,利用平方根,立方根的定义求出a ,b 的值,再代入求解即可.【详解】解:24,a =1,=-2,a ∴=±1b =-,∴当2,a =-1b =-时,213a b +=--=-;∴当2,a =1b =-时,211a b +=-=.故选:C .【点睛】本题考查的知识点是平方根以及立方根的定义,根据定义求出a ,b 的值是解此题的关键. 2.A【分析】实数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【详解】根据实数比较大小的方法,可得<-1<0,∴在-1,0,这四个数中,最小的数是故选A .【点睛】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小. 3.A【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.【详解】解:112,0.16166166616666,3.1415926属于有理数;1000π属于无理数.则有1个无理数.故应选A【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.4.C【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,据此逐项判断即可.【详解】∵(a+b)(a−b)+a2不是几个整式的积的形式,∴从左到右的变形不是分解因式,∴选项A不符合题意;∵2ab+2ac不是几个整式的积的形式,∴从左到右的变形不是分解因式,∴选项B不符合题意;∵x3−2x2+x=x(x−1)2,∴∴从左到右的变形是分解因式,∴选项C符合题意;∵(11x)不是整式,∴从左到右的变形不是分解因式,∴选项D不符合题意.故选:C.【点睛】此题主要考查了因式分解的意义和应用,要熟练掌握,解答此题的关键是要明确:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.5.C【分析】利用完全平方公式的结构特征判断即可.解:∵9a2+12ab+4b2=(3a+2b)²,∴被染黑的这一项应是4b2,故选:C.【点睛】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.6.D【分析】直接利用合并同类项法则以及整式的乘除运算法则分别化简得出答案.【详解】解:A、3a+2a=5a,故此选项错误;B、(-a)3•(-a2)=a5,故此选项错误;C、3a2-2a,无法计算,故此选项错误;D、(2a3b2-4ab4)÷(-2ab2)=2b2-a2,正确.故选:D.【点睛】此题主要考查了合并同类项以及整式的乘除运算,正确掌握相关运算法则是解题关键.7.A【分析】先利用单项式乘多项式的法则以及平方差公式进行计算,再合并同类项,化为2(3x2﹣5x)+1,然后将3x2﹣5x=﹣1整体代入计算即可.【详解】∵3x2﹣5x+1=0,∴3x2﹣5x=﹣1,∴5x(3x﹣2)﹣(3x+1)(3x﹣1)=15x2﹣10x﹣9x2+1=6x2﹣10x+1=2(3x2﹣5x)+1=2×(﹣1)+1=﹣1.【点睛】本题主要考查整式的混合运算,掌握单项式乘多项式的法则,平方差公式以及合并同类项法则,是解题的关键.8.B【分析】根据平行线的判定方法对①进行判断;据对顶角的定义对②进行判断;根据平行线的性质对④进行判断;根据补角的定义对③进行判断.【详解】两直线平行,同旁内角互补,所以①错误;相等的角不一定是对顶角,所以②错误;等角的补角相等,所以③正确;两条平行直线被第三条直线所截,同位角相等,所以④正确;;故选B.【点睛】本题主要考查了平行线的性质及判定,对顶角的性质等,熟练掌握各性质定理是解答此题的关键.9.B【分析】根据两直线平行内错角相等,再根据SAS 即可证明ABC DEF ∆≅∆.【详解】解://AC FD ,∴CAD ADF ∠=∠,AE DB =,ED AB ∴=,AC DF =,在△ABC 和△DEF 中AC DF CAD ADF AB DE =⎧⎪∠=∠⎨⎪=⎩()ABC DEF SAS ∴∆≅∆,故选B .【点睛】本题主要考查了全等三角形的判定,关键是根据两直线平行内错角相等解答.10.C【分析】根据全等三角形的判定定理以及直角三角形全等判定定理依次进行判断即可.【详解】A :∵CD ⊥AB∴∠CDA=∠BDE又∵AD =ED ;②∠A =∠BED∴△ADC ≌△EDB (ASA )所以A 能判断二者全等;B :∵CD ⊥AB∴△ADC 与△EDB 为直角三角形∵AD=ED,AC=EB∴△ADC ≌△EDB (HL )所以B 能判断二者全等;C :根据三个对应角相等无法判断两个三角形全等,所以C 不能判断二者全等;D :∵CD ⊥AB∴∠CDA=∠BDE又∵∠A =∠BED ,AC =EB∴△ADC ≌△EDB (AAS )所以D 能判断二者全等;所以答案为C 选项.【点睛】本题主要考查了三角形全等判定定理的运用,熟练掌握相关概念是解题关键.11.±2【分析】结合题意,根据绝对值的非负性得到x=0, y-1=0, z-2=0,即可得到x ,y ,z ,再代入()2x yz -计算即可得到答案.【详解】解:由题意得:x=0, y-1=0, z-2=0, 则y=1, z=2.∴(x-yz)2=(0-1×2)2=4.则(x-yz)2的平方根为±2.【点睛】本题考查平方根和绝对值的非负性,解题的关键是掌握绝对值的非负性.12.1 1.【分析】根据同底数幂的法则和平方差公式进行计算即可.【详解】()100100100(4)(0.25)40.251-⨯-=⨯=()()22222052042062052051205120520511-⨯=--+=-+=故答案为1;1【点睛】本题考查同底数幂相乘及运用平方差公式进行简便运算,熟记运算法则是关键.13.3【分析】根据a=2019x+2016,b=2019x+2017,c=2019x+2018,可以得到a-b 、a-c 、b-c 的值,然后利用完全平方公式将题目中的式子变形,即可求得所求式子的值.【详解】解:∵a=2019x+2016,b=2019x+2017,c=2019x+2018,∴a-b=-1,a-c=-2,b-c=-1,∴a 2+b 2+c 2-ab-bc-ac =2222222222a b c ab bc ac ++--- =222()()()2a b a c b c -+-+-=222(1)(2)(1)2-+-+- =3,故答案为:3.【点睛】本题考查因式分解的应用,解答本题的关键是明确题意,利用因式分解的方法解答. 14.∠B=∠C (答案不唯一).【详解】由题意得,AE=AD ,∠A=∠A (公共角),可选择利用AAS 、SAS 、ASA 进行全等的判定,答案不唯一:添加,可由AAS 判定△ABE ≌△ACD ;添加AB=AC 或DB=EC 可由SAS 判定△ABE ≌△ACD ;添加∠ADC=∠AEB 或∠BDC=∠CEB ,可由ASA 判定△ABE ≌△ACD .15.9【分析】a 、b 的值,代入求出即可.【详解】∵23,∴a =2,b =3,∴b a =32=9.故答案为:9.【点睛】本题考查了估算无理数的大小的应用,关键是求出a 、b 的值.16.±6【分析】利用完全平方公式的结构特征判断即可得到m 的值.【详解】∵29x mx -+是一个完全平方式,∴6m -=±,解得:6m =±,故答案为:±6.【点睛】本题考查了完全平方式,熟练掌握完全平方公式的结构特征是解本题的关键.17.(1)43-;(2)-1.【分析】(1)去掉绝对值,然后利用二次根式乘法运算法则计算,最后做加减即可;(2)算乘方、化简立方根,然后利用二次根式乘法运算法则计算,最后相加即可.【详解】解:(1)原式-1-23×12 =43-;(2)原式=-1+2-3+1=-1.【点睛】本题考查了实数的混合运算,解题的关键是牢记有关法则的情况下认真的计算. 18.(1)()(2)23a b a b ---;(2)2(2)x y -【分析】(1)把后面两项当作整体,然后各项提取公因式(a-2b )即可;(2)先去括号,然后根据完全平方公式分解 .【详解】解:(1)原式=()()()()2232223a b a b a b a b ---=---;(2)原式=()222442x yx y x y -+=-.【点睛】本题考查因式分解,根据具体整式的特点选用合适的方法分解因式是解题关键. 19.(1)3;4;(2)证明见解析.【分析】(1)根据规定的两数之间的运算法则:知4311327,,216⎛⎫== ⎪⎝⎭ 从而可得答案;(2)设E (3,4)=x ,E (3,5)=y ,根据定义得:34,35,x y ==利用同底数幂的乘法可得答案.【详解】解:(1)∵3327,=∴E (3,27)=3; ∵411,216⎛⎫= ⎪⎝⎭ ∴11,4,216E ⎛⎫= ⎪⎝⎭ 故答案为:3;4;(2)设E (3,4)=x ,E (3,5)=y ,则34,35,x y ==∴3334520,x y x y +=•=⨯=∴E (3,20)=x+y ,∴E (3,4)+E (3,5)=E (3,20).【点睛】本题是利用新定义考查幂的运算的逆运算,掌握幂的运算,同底数幂的乘法运算是解题的关键.20.2x y -,-4【分析】原式中括号中利用平方差公式,以及多项式乘以多项式法则计算,再利用多项式除以单项式法则计算得到最简结果,利用非负数的性质求出x 与y 的值,代入计算即可求出值.【详解】原式=()222294510244x y x xy xy y x ⎡⎤--+--÷⎣⎦=()222294510244x y x xy xy y x ---++÷=()2484x xy x -÷=2x y -,由|240x -,得到240x -=,10x y -+=,解得:x =2,y =3,则原式=26-=4-.【点睛】本题考查非负数的性质和整式的混合运算,掌握绝对值,算术平方根的非负性,以及整式的混合运算法则为解题关键.21.(1)见解析;(2)BM//DN ,理由见解析【分析】(1)由SAS 证明△ABN ≌△CDM 即可;(2)首先证明△ABM ≌△CDN 得到∠AMB=∠DNC ,求出∠BMN=∠DNM ,即可得出结论.【详解】(1)证明:∵AB//CD ,∴∠A =∠C ,∵AM =AN ,∴AN =CM ,在△ABN 和△CDM 中,AB CD A C AN CM =⎧⎪∠=∠⎨⎪=⎩,∴△ABN ≌△CDM (SAS );(2)BM//DN ,理由如下:在△ABM 和△CDN 中,AB CD A C AM CN =⎧⎪∠=∠⎨⎪=⎩,∴△ABM ≌△CDN (SAS ),∴∠AMB =∠DNC ,∵∠AMB+∠BMN =180°,∠DNC+∠MND =180°,∴∠BMN =∠DNM ,∴BM//DN .【点睛】本题考查了全等三角形的判定和性质、平行线的判定与性质;解题的关键是证明三角形全等,属于中考常考题型.22.(1)ABF ∆与CDE ∆全等,理由见解析;(2)见解析【分析】(1)由垂直的定义得出∠AFB=∠CED=90°,证出AF=CE ,由HL 证明Rt △ABF ≌Rt △CDE 即可;(2)由全等三角形的性质得出BF=DE ,证明△DEG ≌△BFG (AAS ),即可得出EG=FG .【详解】(1)ABF ∆与CDE ∆全等,理由如下:DE AC ⊥,BF AC ⊥,90AFB CED ∴∠=∠=︒,AE CF =,AE EF CF EF ∴++=,即AF CE =,在Rt ABF ∆和Rt CDE ∆中,AB CDAF CE =⎧⎨=⎩,Rt Rt ()ABF CDE HL ∴∆∆≌;(2)证明:Rt Rt ()ABF CDE HL ∆∆≌,BF DE ∴=,在DEG ∆和BFG ∆中,GED GFBDGE BGF DE BF∠=∠⎧⎪∠=∠⎨⎪=⎩,()DEG BFG AAS ∴∆∆≌,∴EG =FG..【点睛】本题考查了全等三角形的判定与性质、垂直的定义;证明三角形全等是解题的关键. 23.(1)(12﹣2t )cm ;(2)全等,理由见解析【分析】(1)先表示出BP ,根据PC=BC-BP ,可得出答案;(2)根据时间和速度分别求得两个三角形中的边的长,根据SAS 判定两个三角形全等.【详解】解:(1)根据题意,则BP=2t,则PC=BC﹣BP=12﹣2t;故答案为:(12﹣2t)cm.(2)当t=2时,BP=CQ=2×2=4厘米,∵BD=8厘米.又∵PC=BC﹣BP,BC=12厘米,∴PC=12﹣4=8厘米,∴PC=BD,又∵AB=AC,∴∠B=∠C,在△BPD和△CQP中,BD PCB C BP CQ=⎧⎪∠=∠⎨⎪=⎩,∴△BPD≌△CQP(SAS);【点睛】此题考查了全等三角形的判定,主要运用了路程=速度×时间的公式,要求熟练运用全等三角形的判定和性质.24.见解析【分析】根据SSS证明三角形全等即可;【详解】证明:∵BE=CF,∴BE+EC=CF+EC,∴BC=EF,在△ABC和△DEF中,∵AB DE AC DF BC EF=⎧⎪=⎨⎪=⎩,∴△ABC ≌△DEF(SSS).【点睛】本题主要考查了全等三角形的判定,准确分析证明是解题的关键.25.(1)见解析;(2)见解析【分析】(1)根据角平分线的性质得到12ABF CBF ABC ∠=∠=∠,在根据平行线的性质得到ABF E ∠=∠,进而得到E CBF ∠=∠,即可得到结果(2)根据角平分线的性质和平行线的性质得到90BFC ∠=︒,证明△ABF ≌△DEF ,即可得到结果;【详解】(1)∵BF 平分∠ABC , ∴12ABF CBF ABC ∠=∠=∠, ∵CD ∥AB ,∴ABF E ∠=∠,∴E CBF ∠=∠,∴BC=CE ,∴△BCE 是等腰三角形.(2)∵CF 平分∠BCE , ∴12BCF BCE ∠=, ∵CD ∥AB ,∴180ABC BCE ∠+∠=︒,∴90CBF BCF ∠+∠=︒,∴90BFC ∠=︒,即 CF ⊥BE ,又BC=CE ,∴BF=EF ,在△ABF 和△DEF 中,∵ABF E AFB DFE BF EF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABF ≌△DEF ;∴AB=DE ,∴BC=CE=DE+CD=AB+CD,因此BC=AB+CD.【点睛】本题主要考查了角平分线的性质,平行线的性质,全等三角形的证明,准确分析判断是解题的关键.。

华师大版八数上册数学期中测试卷及答案.doc

华师大版八数上册数学期中测试卷及答案.doc

).A. -J16 = ±4B. ± V16 = 4C. = -3 D . J (-4)= -445.6. c 、 A 、—4x — 4 B 、+x —4在 m{a - x^x - b)-mn{a - x^b - x)中,公因式是(B 、m(a - x)C 、m(a - x)(& - x) A 、m 下列等式中成立的B 、a 2在 3.14,堀,41,0.12,4/ _io a b +9b 2•a 3 = a 5 C 、(2ab 2)3 = 6a 3b 6D DD22〃一3.14—, ,0. 2020020002-,—— 6。

+ 9-V216,7.A. 1B. 2C . D. 4下列式总能成立的A. —1)~ — ci~ —1B . (a + l)~ —+ a + l C. (a + 1)(Q — 1)—『—d D. (Q +1)(1 — ci)— 1 — /1、下列各式中,正确的友情提示:2012-2013学年第一学期期中试卷八年级数学同学们,现在是展示你实力的时候,只要你仔细审题,认真答题,积极地发 挥,就会有满意的收获.放松一点,相信自己.祝你成功!一、选择题(请精心选一选,你一定能选准!每小题3分,共30分)2、下列计算中,正确的是( ). A ・(Q 'T = / B. (—3/)3 = —9Q 63、下列多项式是完全平方式的是(无理数有若x2 +mx + 16是一个完全平方式,则〃的取值是(A. 8B. -8C. ±8D. ±49.已知a + /? = 2,则a2-b~+4b的值是( )A. 2B. 3C. 4D. 6我们已经接触了很多代数恒等式,知道可以用一些硬纸片拼成的图形面积来解释一些代数恒等式.例如图(3)可以用来解释(a + by~(a-by =4ab.那么通过图(4)面积的计算,验证了一个恒等式,此等式是( )A. a~ —b =(cz + b)(a-b)B. (a-Z?) = a~ — 2ab +C. (a + = a" + 2ab + bD. (a -Z?)(a + 2b)= ci + ab - 2Z?二、填空题(请耐心填一填,你一定能填好!每空1分,共20分)10.25的平方根是±5 ;,的算术平方根是2/3 ;—27的立方根是-39 一11.2-V3的相反数是,绝对值是-12.若一个正数的两个平方根是2a-1和-a + 2,则。

华师大版八年级上册数学期中考试试题含答案

华师大版八年级上册数学期中考试试题含答案

华师大版八年级上册数学期中考试试卷一、选择题。

(每小题只有一个正确答案)1.下列说法正确的是()A.16的平方根是4 B5±C.-8的立方根是-2 D.1的立方根是±12.下列计算正确的是()A.a3+a3=a6B.(-2x)3=-8x3C.(y3)2y4=y9D.623÷=a a a3.某同学不小心把一块三角形的玻璃打碎成了三块,如图所示,现要到玻璃店去配一块完全一样的玻璃,需要带去三块玻璃中的()A.第①块B.第②块C.第③块D.第①②块4.下列语句中,不是命题的是()A.同位角相等B.整数和分数都是有理数C.内错角相等,两直线平行D.过点A作直线AB∥CD5.若一个正数的两个平方根分别是2m-4与3m-1,则m的值是()A.1 B.-1 C.-3 D.-3或16.下列因式分解正确的是()A.x2+9=(x+3)2B.a2+2a+4=(a+2)2C.a3-4a2=a2(a-4)D.1-4x2=(1+4x)(1-4x)7)A.点P B.点Q C.点M D.点N8.如图,已知AC=BD,BM=CN,根据下列条件能够判定△ABM≌△DCN的是()A.BM∥CN B.∠A=∠D C.AM∥DN D.∠M=∠N9.通过计算,比较图1,图2中阴影部分的面积,可以验证的算式是()A .()a b x ab ax -=-B .()()2a x b x ab ax bx x --=--+C .()()a x b x ab ax bx --=--D .()b a x ab bx -=-10.如图,已知∠ABC=∠DCB ,下列所给条件不能证明△ABC ≌△DCB 的是( )A .∠A=∠DB .AB=DC C .∠ACB=∠DBCD .AC=BD二、填空题11____.12.若249x mx ++是一个完全平方式,则m 的值是_______.13.如图,将△ABC 绕点A 旋转180°与△AED 重合,若∠B =34°,∠BAC =87°,AB =12cm ,BC =15cm ,则∠D = ,AE = .14.如果213n m x y -与35m x y -是同类项,那么代数式2221m mn n -++的值是______. 15.如图,在△ABC 中,AD ⊥BC ,BE ⊥AC ,垂足分别为点D 、E ,AD 与BE 相交于点F. 若BF =AC ,AD =12cm ,则BD 的长为______.16.如图,在等边三角形ABC 中,BD=CE,AD,BE 交于点F,则AFE ∠=_________;三、解答题17.计算:(1()223- (2)112213233x x x x ⎛⎫⎛⎫--+ ⎪ ⎪⎝⎭⎝⎭ (3)2[(2)(2)(2)2(2)]2x y x y x y x x y x -+-+--÷18.如图,数轴上表示1的点分别为A ,B ,点B 和点C 关于点A 对称.(1)请求出点C 到原点O 的距离d 1,以及点B 到表示2的点的距离d 2,并比较d 1、d 2的大小.(2)设点C 表示的数是x ,请计算:23x π-+-.19.已知,如图,AB =AC ,BD =CD ,DE ⊥AB 于点E ,DF ⊥AC 于点F.求证:(1)△ACD ≌△ABD ;(2)DE =DF.20即23<.的整数部分是22.现已知m 是n 的小数部分,求m -n 的值.21.先化简,再求值:()()()221222ab ab a b ab ⎡⎤+--+÷-⎣⎦,其中a ,b 满足等式30.2a -=22.如图,是方城县潘河的某一段,现要测量河的宽度(即河两岸相对的两点A 、B 间的距离),先在AB 的垂线BF 上取两点C 、D ,使BC =CD ,再定出BF 的垂线DE ,使点A 、C 、E 在同一条直线上,直接在河岸上测量DE 的长度就知道河的宽度AB 了,你知道这是为什么吗?请先判断DE 和AB 大小关系,然后说明理由.23.同学们知道数学中的整体思想吗?在解决某些问题时,常常需要运用整体的方式对问题进行处理,如:整体思考、整体变形、把一个式子看作整体等,这样可以使问题简化并迅速求解.试运用整体的数学思想方法解决下列问题:(1)把下列各式分解因式:①()()11x x x --- ②()()221a b a b ++++ (2)①已知12,,2a b ab +==则22a b ab +的值为 . ②已知226,3,x y x y -=+=那么x y -= .③已知3,2,a b ab +==求22a b +的值.24.如图,△ABC,△CDE均是等腰直角三角形,∠ACB=∠DCE=90°,点E在AB上,求证:△CDA≌△CEB.25.问题背景:如图①,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E、F分别是BC、CD上的点.且∠EAF=60°.探究图中线段BE、EF、FD之间的数量关系.解法探究:小明同学通过思考,得到了如下的解决方法.延长FD到点G,使DG=BE,连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,从而可得结论.(1)请先写出小明得出的结论,并在小明的解决方法的提示下,写出所得结论的理由. 解:线段BE、EF、FD之间的数量关系是:.理由:延长FD到点G,使DG=BE,连结AG.(以下过程请同学们完整解答)(2)拓展延伸:如图②,在四边形ABCD中,AB=AD,若∠B+∠D=180°,E、F分别是BC、CD上的点.且∠EAF=12∠BAD,则(1)中的结论是否仍然成立?若成立,请再把结论写一写;若不成立,请直接写出你认为成立的结论.参考答案1.C【分析】根据平方根、算术平方根和立方根的定义求解即可.【详解】解:A. 16的平方根是±4,故本选项错误;B. 5=,故本选项错误;C. -8的立方根是-2,正确;D. 1的立方根是1,故本选项错误;故选C.【点睛】本题考查了平方根、算术平方根以及立方根,正确把握定义是解题关键.2.B【分析】根据合并同类项、积的乘方、幂的乘方以及同底数幂除法法则逐项计算即可.【详解】解:A. a3+a3=2a3,故本选项错误;B. (-2x)3=-8x3,正确;C. (y3)2y4=y6·y4=y10,故本选项错误;D. 624÷=,故本选项错误,a a a故选:B.【点睛】本题考查了合并同类项、积的乘方、幂的乘方以及同底数幂除法,熟练掌握运算法则是解题关键.3.C【分析】根据全等三角形的判定,已知两角和夹边,就可以确定一个三角形.【详解】解:根据全等三角形的判定可知,第三块玻璃包括了两角和它们的夹边,能配一块完全一样的玻璃,其余选项均不满足全等三角形的判定定理,故只有带③去才能配一块完全一样的玻璃,故选C.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL,做题时要根据已知条件进行选择运用.4.D【分析】根据命题的定义进行判断即可.【详解】解:A、两直线平行,同位角相等,原命题是假命题;B、整数和分数都是有理数,是真命题;C、内错角相等,两直线平行,是真命题;D、过点A作直线AB∥CD,不是命题;故选:D.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”的形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.5.A【分析】根据平方根的定义得出2m−4+3m−1=0,求解即可得出答案.【详解】解:∵一个正数的两个平方根分别是2m−4与3m−1,∴2m−4+3m−1=0,∴m=1;故选A.【点睛】本题考查了平方根的定义,能得出关于m的方程是解此题的关键,注意:一个正数有两个平方根,它们互为相反数.【分析】试题分析:A、B无法进行因式分解;C正确;D、原式=(1+2x)(1-2x)故选C,考点:因式分解【详解】请在此输入详解!7.B【分析】【详解】解:∵23,∴Q,故选:B.【点睛】本题考查了实数与数轴和估算无理数的大小等知识点,8.A【分析】根据线段和差可得AB=CD,根据SAS选择证明三角形全等的条件即可.【详解】解:∵AC=BD,∴AC+CB=BD+CB,即AB=CD,∵BM=CN,∴当∠ABM=∠NCD时,△ABM≌△DCN,结合各选项可知,由BM∥CN可推出∠ABM=∠NCD,故选A.【点睛】本题考查全等三角形的判定,平行线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.【分析】图1阴影部分面积等于阴影长方形面积;图2中阴影部分面积等于大长方形减去两个空白长方形面积再加上中间交叉的小正方形面积,然后根据面积相等可得答案.【详解】解:图1中阴影部分面积=(a−x)(b−x),图2中阴影部分面积=ab−ax−bx+x2,由图形可知,图1,图2中阴影部分的面积相等,∴(a−x)(b−x)=ab−ax−bx+x2,故选:B.【点睛】本题考查了多项式乘以多项式的几何背景,正确表示出阴影部分的面积是解题的关键.10.D【详解】A.添加∠A=∠D可利用AAS判定△ABC≌△DCB,故此选项不合题意;B.添加AB=DC可利用SAS定理判定△ABC≌△DCB,故此选项不合题意;C.添加∠ACB=∠DBC可利用ASA定理判定△ABC≌△DCB,故此选项不合题意;D.添加AC=BD不能判定△ABC≌△DCB,故此选项符合题意.故选D.11.±3【详解】,±.∴9的平方根是3故答案为±3.12.±14【分析】根据完全平方公式的结构特征求解即可.【详解】解:∵222++=++是一个完全平方式,497x mx x mx∴m =±14,故答案为:±14. 【点睛】本题考查完全平方公式,解题的关键是正确理解完全平方公式,本题属于基础题型. 13.59° 12cm .【分析】根据旋转的性质得出∠D =∠C ,AE =AB ,进而求出即可.【详解】解:∵将△ABC 绕点A 旋转180°与△AED 重合,∴△ABC ≌△AED ,∴∠D =∠C ,AE =AB =12cm ,∵∠B =34°,∠BAC =87°,∴∠C =180°−34°−87°=59°,∴∠D =59°,故答案为:59°,12cm .【点睛】此题主要考查了旋转的性质以及三角形内角和定理的运用,根据已知得出∠C 的度数是解题关键.14.2【分析】根据同类项的定义,列出关于m ,n 的方程,求解即可得出m 、n 的值,再代入所求式子计算即可.【详解】解:∵213n m x y -与35m x y -是同类项,∴213n m m -=⎧⎨=⎩,解得23n m =⎧⎨=⎩, ∴222221()1(32)12m mn n m n -++=-+=-+=,故答案为:2【点睛】本题考查了同类项的定义,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同,属于基础题.15.12cm【分析】根据同角的余角相等可得∠DBF=∠DAC,然后由条件可证明△BDF≌△ADC,根据全等三角形的性质可得BD=AD=12cm.【详解】解:∵AD⊥BC,BE⊥AC,∴∠BDF=∠ADC=∠BEC=90°,∴∠DBF+∠C=∠C+∠DAC=90°,∴∠DBF=∠DAC,在△BDF和△ADC中,BDF ADCDBF DAC BF AC∠∠⎧⎪∠∠⎨⎪⎩===,∴△BDF≌△ADC(AAS),∴BD=AD,∵AD=12cm,∴BD=12cm.故答案为:12cm.【点睛】本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(对应边相等、对应角相等)是解题的关键.16.60°【分析】根据等边三角形的性质可得AB=BC,∠ABC=∠C=60°,然后利用“边角边”证明△ABD和△BCE全等,根据全等三角形对应角相等可得∠BAD=∠CBE,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠AFE=∠ABC,从而得解.【详解】解:在等边△ABC中,AB=BC,∠ABC=∠C=60°,在△ABD和△BCE中,∵60AB BC ABC C BD CE =⎧⎪∠=∠=︒⎨⎪=⎩,∴△ABD ≌△BCE (SAS ),∴∠BAD=∠CBE ,在△ABF 中,∠AFE=∠BAD+∠ABF=∠CBE+∠ABF=∠ABC=60°,即∠AFE=60°.故答案为:60°.【点睛】本题考查了等边三角形的性质,全等三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,证明△ABD 和△BCE 全等是解本题的难点,也是关键. 17.(1)-1;(2)4x -;(3)y x --.【分析】(1)直接化简各数进而得出答案;(2)直接去括号进而合并同类项得出答案;(3)直接利用乘法公式及单项式乘多项式法则去括号进而合并同类项,根据多项式除以单项式的法则得出答案.【详解】解:(1)原式2411=-+=-;(2)原式22224x x x x x =---=-;(3)原式22222[(44)(4)(42)]2x xy y x y x xy x =-++---÷()22222444422x xy y x y x xy x =-++--+÷()2222xy x x =--÷ y x =--.【点睛】此题主要考查了整式的混合运算以及实数的混合运算,熟练掌握运算法则是解题关键. 18.(1)d 1=d 2=,d 1=d 2;(2+π−3.【分析】(1)由对称可知AB =AC ,根据两点间距离的求法列方程求出C 点表示的数,然后再表示出d1、d2即可;(2)由x的值去绝对值符号,计算即可.【详解】解:(1)∵点B和点C关于点A对称,∴AB=AC,1=1−x,∴x=,∴C点表示∴d1=,∵d2=,∴d1=d2;(2)∵x=∴|x−2|+|3−π|=2|+|3−π|(π−3π−3.【点睛】本题考查实数与数轴;熟练掌握实数与数轴的关系,数轴上点的距离求法,绝对值的性质是解题的关键.19.(1)见解析;(2)见解析.【分析】(1)利用SSS可直接证明△ACD≌△ABD;(2)利用全等三角形对应角相等得到∠EAD=∠FAD,即AD为角平分线,再由DE⊥AB,DF⊥AC,利用角平分线的性质即可得证.【详解】证明:(1)在△ACD和△ABD中,AC AB CD BD AD AD ⎧⎪⎨⎪⎩===,∴△ACD≌△ABD(SSS);(2)∵△ACD≌△ABD,∴∠EAD=∠FAD,即AD平分∠EAF,∵DE⊥AE,DF⊥AF,∴DE=DF.【点睛】此题考查了全等三角形的判定和性质以及角平分线的性质,熟练掌握全等三角形的判定与性质是解本题的关键.20.9【分析】的范围,进而求出m 、n ,计算即可.【详解】解:∵119<<16,∴34<,∴6<<7,∴m =6,n 3,∴m−n =6−3)=9【点睛】本题考查的是估算无理数的大小,掌握“逼近法”估算无理数大小是解题的关键. 21.1ab +;-1.【分析】先算括号内的多项式乘多项式,合并同类项,再算多项式除以单项式得到最简结果,然后根据非负数的性质求出a 、b 的值,最后代入求出即可.【详解】解:原式()()2222222a b ab a b ab =---+÷-()()22ab a b ab =--÷-1ab =+;∵a ,b 满足等式302a -=, ∴302a -=,403b +=, ∴32a =,43b =-, ∴原式341121123ab ⎛⎫=+=⨯-+=-+=- ⎪⎝⎭. 【点睛】本题考查了算术平方根,绝对值的非负性和整式的化简求值,能正确根据整式的运算法则进行化简是解此题的关键.22.AB =DE ,理由见解析.【分析】首先由BF ⊥AB ,DE ⊥BD ,可得∠ABC =∠CDE =90°,再由条件BC =CD ,∠ACB =∠ECD ,利用ASA 证出△ABC ≌△EDC ,根据全等三角形对应边相等可得到AB =DE .【详解】解:AB =DE ,理由:∵BF ⊥AB ,DE ⊥BD ,∴∠ABC =∠CDE =90°,在△ABC 和△EDC 中,ABC CDE CB CD ACB ECD ∠∠⎧⎪⎨⎪∠∠⎩===,∴△ABC ≌△EDC (ASA ),∴AB =DE ,∴在河岸上测量DE 的长度就知道河的宽度AB 了.【点睛】此题主要考查了全等三角形的应用,关键是掌握判定两个三角形全等的方法:SSS 、SAS 、ASA 、AAS 、HL .23.(1)①()21x -;②()21a b ++;(2)①1;②2;③5.【分析】(1)①原式提取公因式()1x -即可;②原式利用完全平方公式分解即可;(2)①原式提取公因式ab 进行因式分解,然后整体代入即可求值;②已知等式利用平方差公式进行因式分解,即可求出所求式子的值;③原式利用完全平方公式变形,把已知等式代入计算即可求出值.【详解】解:(1)①原式=()()()2111x x x --=-;②原式=()21a b ++;(2)①∵12,2a b ab +==, ∴原式=ab (a +b )=1;②∵()()226x y x y x y -=+-=,3x y +=,∴x−y =2;③∵a +b =3,ab =2,∴原式=()22945a b ab +-=-=.【点睛】此题考查了提公因式法与公式法分解因式,完全平方公式以及平方差公式的应用,熟练掌握公式及法则是解本题的关键.24.证明见解析.【分析】根据等腰直角三角形的性质得出CE=CD ,BC=AC ,再利用全等三角形的判定证明即可.【详解】解:∵△ABC 、△CDE 均为等腰直角三角形,∠ACB=∠DCE=90°,∴CE=CD ,BC=AC ,∴∠ACB ﹣∠ACE=∠DCE ﹣∠ACE ,∴∠ECB=∠DCA , 在△CDA 与△CEB 中,{BC ACECB DAC EC DC=∠=∠=,∴△CDA ≌△CEB .【点睛】本题考查全等三角形的判定;等腰直角三角形.25.(1)EF =BE +FD ,理由见解析;(2)结论EF =BE +FD 仍然成立,理由见解析.【分析】(1)延长FD 到点G .使DG =BE .连结AG ,即可证明△ABE ≌△ADG ,可得AE =AG ,再证明△AEF ≌△AGF ,可得EF =FG ,即可解题;(2)延长FD 到点G .使DG =BE .连结AG ,求出∠B =∠ADG ,即可证明△ABE ≌△ADG ,可得AE =AG ,再证明△AEF ≌△AGF ,可得EF =FG ,即可解题.【详解】证明:(1)EF=BE+FD;理由:延长FD到点G,使DG=BE,连结AG.在△ABE和△ADG中,DG BEB ADG AB AD⎧⎪∠∠⎨⎪⎩===,∴△ABE≌△ADG(SAS),∴AE=AG,BE=DG,∠BAE=∠DAG,∵∠EAF=12∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD−∠EAF=∠EAF,即∠EAF=∠GAF,在△AEF和△AGF中,AE AGEAF GAF AF AF⎧⎪∠∠⎨⎪⎩===,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+FD;(2)结论EF=BE+FD仍然成立;理由:如图②,延长FD到点G.使DG=BE.连结AG,∵∠B+∠ADF=180°,∠ADG+∠ADF=180°,∴∠B=∠ADG,在△ABE和△ADG中,DG BEB ADG AB AD⎧⎪∠∠⎨⎪⎩===,∴△ABE≌△ADG(SAS),∴AE=AG,BE=DG,∠BAE=∠DAG,∵∠EAF=12∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD−∠EAF=∠EAF,即∠EAF=∠GAF,在△AEF和△AGF中,AE AGEAF GAF AF AF⎧⎪∠∠⎨⎪⎩===,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+FD.【点睛】本题主要考查了全等三角形的判定和性质,通过作辅助线构造全等三角形,并两次证明全等是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1












_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_



_
_
_
_
_
_
_
_
_
_
_
_
_
_


线



















































线
2015年秋2017级期中数学试题

一、基础解答题(每小题4分,共60分)
计算题(1—12题)

1、24125 2、364216 3、43aag

4、93aa 5、 4(2)x 6、2325(4)abbcg

7、 23217abcab 8、222(3)xxxyy 9、(5)(6)xx
10、22(3)(3)aa 11、2(2)ba 12、32212(2)()xxyx
分解因式(13-15题)
13、2224168mxnxx 14、424xy 15、2214xxyy

二、基础简单融合题(每题6分,共48分)
16计算232233(4)(4)2754 17、计算423323153(2)()ababab

虎中2015年秋2017级期中数学试题
2

18、计算: 232335222()()(2)xxxxx 19、解方程2128(2)0x
20、计算:2246.5293.0453.4853.48 21、计算:223(1)5(1)(1)2(1)mmmm
22、分解因式:22(2)(2)abba 23、分解因式: 4438(2)(7)xyxxyxy
三、运用基础知识解决简单问题(每小题8分,共24分)
24、已知2221,3xyxy,求xy的值。

虎中2015年秋2017级期中数学试题
3

25、
如图,现有正方形卡片A类,B类和长方形卡片C类若干张(边长如图)。现
准备用A类卡片4张,B类卡片16张拼一个正方形,则还需要C类卡片多少张?

26、
已知2()(21)xaxbx的积中不含x的二次项和一次项,求

22
(2)2()()()abababab
的值。

四、综合探究题(18分)
27、如下数表是由从1 开始的连续自然数组成,观察规律并完成各题的解答.(8分)

虎中2015年秋2017级期中数学试题
4

(1)表中第8行的最后一个数是 ,它是自然数 的平方,第8行共有 个数;
(2)用含n的代数式表示:第n行的第一个数是 ,最后一个数是 ,第n行
共有 个数;
(3)求第n行各数之和.

【解】(1)64,8,15;

(2)2(1)1n,2n,21n;
(3)第2行各数之和等于3×3;第3行各数之和等于5×7;第4行各数之和等于7×7-13;
类似的,第n行各数之和等于2(21)(1)nnn=322331nnn.
28、
由多项式乘多项式的法则可得:
(a+b)(a2-ab+b2)=a3-a2b+ab2+a2b-ab2+b3=a3+b3,即(a+b)(a2-ab+b2)=a3+b3,
我们把这个等式叫做多项式乘法的立方和公式;同样可得到:
22
()()abaabb

33
ab

,我们把这个等式叫做多项式乘法的立方差公

式.如:2(2)(24)xxx22(2)(22)xxx= 2(2)(24)xxx332x

3
8x

又如2(21)(421)xxx22(21)[(2)(2)11]xxx33(2)1x381x
请你运用立方和和立方差公式解答下列问题:(10分)
1、计算:(1)22(25)(41025)abaabb

(2) 2222(3)(2)(24)(39)xyxyxxyyxxyy

2、将下列各式因式分解:66xy
3、已知:226xy,2xy。求66xy的值。

虎中2015年秋2017级期中数学试题

相关文档
最新文档