最新华师大版八年级数学上册知识点总结

合集下载

华东师大版八年级上册数学知识点集及思维导图

华东师大版八年级上册数学知识点集及思维导图

初中数学知识点华东师大版初中数学八年级上册 第11章 数的开方 知识点 典型例题、平方根 .平方根 1)定 已知正数m 有两个平方义:如果一个数的平方等于a ,那么这个数叫做a 的平方根.(2)表示方法:)0(,≥±a a . (3)性质:正数有两个互为相反数的平方根;零的平方根是零;负数没有平方根.2.算术平方根 (1)定义:正数a 的正的平方根,叫做a 的算术平方根.0的算术平方根是0.(2)表示方法:)0(,≥a a .(3)重要性质:双重非负性:)0(,0≥≥a a其他具有非负性的式子:a n a n ,(2为正整数).运算性质:如果几个非负数的和为0,那么每一个非负数都为0. (4)运算性质:一个非负数的算术平方根的平方等于它本身,)0(,)(2≥=a a a . 一个实数的平方的算术平方根等于它的绝对值,a a =2. 3.开平方定义:求一个非负数的平方根的运算,叫做开平方. 二、立方根 1.立方根 (1)定义:如果一个数的立方等于a ,那么这个数叫做a 的立方根.(2)表示方法:3a . (3)性质:正数的立方根是正数,负数的立方根是负数,0的立方根是0.(4)运算性质:a a a ==3333)(. 三、实数 1.无理数定义:无限不循环小数叫做无理数. 2.实数有理数和无理数统称实数. 3.实数的分类 按定义分:⎪⎩⎪⎨⎧⎩⎨⎧无理数分数整数有理数实数按性质分:根,分别是a+3与2a -15,求a 的值,并求这个正数m.已知a a -=-22,求a 的取值范围.若0a 2=++c b ,求a 、b 、c 的值.已知实数a 、b 、c 在数轴上的位置如图所示,化简:222)(c a c b a a ---++一个数的立方根是它本身,则这个数是 .计算:=-33)2( .有下列各数:2π,0,9,32.0 ,2-1,722,⋅⋅⋅3030030003.0,其中无理数有 . 求一个无理数的整数部分和小数部分:已知a 是11的整数部分,b 是11的小数部分,求a 和b 的值.⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负无理数负有理数负实数零正无理数正有理数正实数实数 4.实数与数轴上点的关系 实数与数轴上的点一一对应. 5.实数大小比较常有方法平方法;做差法;倒数法;做商法比较大小:23____32 32____3-5+华东师大版初中数学八年级上册 第12章 整式的乘除 知识点典型例题一、幂的运算 1.同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加.已知32=x ,求32+x 的值.华东师大版初中数学八年级上册第13章全等三角形知识点典型例题一、命题、定理与证明1.命题(1)定义:表示判断的语句叫做命题.(2)组成:命题是由条件和结论两部分组成。

最新华东师大版八年级数学上册知识点总结

最新华东师大版八年级数学上册知识点总结

例:
的平方和减去它们的积的 2
逆用

定义:把一个多项式化为几
常考点:
个整式的积的形式;叫做多 ①两种因式分解法一起运用
项式的因式分解 (先提公因式;然后再运用公
因式分解的方法:
式法)
因式分解
①提公因式法
例:
②运用乘法公式法
=
=(a+b)(a-b)
②“1”常Байду номын сангаас要变成“”
例:
第十三章:全等三角形
知识点
2 / 16
常运用于股市与气温的统计
15 / 16
综合考查
①扇形统计图与条形统计图一起考;条形统计图的具体数据为 频数;扇形统计图的百分比为频率;从而可以根据公式计算出
总次数 ②根据统计表;会制作条形统计图(单位值;间隔值要相等)
③根据统计表;会制作扇形统计图(计算百分比和百分数) ④扇形圆心角的度数=百分比

幂的乘方
幂的乘方;底数不变;指数 逆用:

相乘
例:

积的乘方;把积的每一个因 逆用:

式分别相乘;再把所得的幂 例=1
积的乘法
相乘
=
=
同底数幂相处;底数不变; 逆用:
同底数幂的除法 指数相减
例:若=2;则的值是?
单项式与单项式相乘;只要
单项式与单项式相 将它们的系数、相同的字母
乘 的幂分别相乘;对于只在一
⑤扇形的面积之比=各部分所占百分数之比=各部分圆心角之比
16 / 16

个单项式中出现的字母;连

同它的指数一起作为积的一

个因式
乘 单项式与多项式相 单项式与多项式相乘;将单

最新华东师大版八年级数学上册知识点总结

最新华东师大版八年级数学上册知识点总结

最新华东师大版八年级数学(shùxué)上册知识点总结最新华东师大版八年级数学(shùxué)上册知识点总结华师版八年级上册知识点总结第十一章:数的开方知识点平方根内容概念:如果一个数的平方等于a,那么这个数叫做a的平方根算术(suànshù)平方根:正数a的正的平方根记作:a性质:正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根概念:如果一个数的立方等于a,那么这个数叫做a的立方根性质:任何实数的立方根只有一个,正数的立方根是正数,负数的立方根是负数,0的立方根是0考点:①〔a的取值范围(fànwéi)a≥〕②(的取值范围≥)③(a的取值范围为任意实数)(≥)④==(多项式与多项式多项式与多项式相乘,先用一个多项式的每一项分别(fēnbié)乘以另一个多项式的每一项,再把所得的积相加例:〔某+2〕〔某3〕=+=例:24÷=〔24÷〕〔÷〕〔÷〕=8整式的除法单项式相除,把系数、同底数幂分别相除作为商的因式,对单项式除于单项式于只在被除式中出现的字母,那么连同它的指数一起作为商的一个因式多项式除于单项式,先用这个多项式除于单项式多项式的每一项除于这个单项式,再把所得的商相加例:(9+)÷(3某)=9÷÷+÷=3+例:(a+b)(a-b)=逆用:=(a+b)(a-b)例:(+)=++逆用++=(+)例:()=+逆用+=()常考点:①两种因式分解法一起运用〔先提公因式,然后再运用公式法〕例:++=++=(+)乘法公式平方差公式两数和与这两数差的积,等于这两数的平方差两数和的平方公式两数和的平方,等于这两数的平方和加上它们的积的2倍两数差的平方公式两数差的平方,等于这两数的平方和减去它们的积的2倍定义:把一个多项式化为几个整式的积的形式,叫做多项式的因式分解因式分解的方法:因式分解①提公因式法②运用乘法公式法=(a+b)(a-b)++=(+)+=()②“1〞常常要变成“12〞例:=()=+〔〕第十三章:全等三角形知识点全等三角形内容性质:全等三角形的对应边和对应角相等三角形全等的判定:1.〔边边边〕S.S.S.:如果两个三角形的三条边都对应地相等,那么这两个三角形全等。

(完整版)华师大版八年级数学上册知识点总结

(完整版)华师大版八年级数学上册知识点总结

八年级数学上册复习提纲第11章数的开方§11.1平方根与立方根一、平方根1、平方根的定义:如果一个数的平方等于a,那么这个数叫做a的平方根。

(也叫做二次方根)即:若x2=a,则x叫做a的平方根。

2、平方根的性质:(1)一个正数有两个平方根。

它们互为相反数;(2)零的平方根是零;(3)负数没有平方根。

二、算术平方根1、算术平方根的定义:正数a的正的平方根,叫做a的算术平方根。

2、算术平方根的性质:(1)一个正数的算术平方根只有一个且为正;(2)零的算术平方根是零;(3)负数没有算术平方根;(4)算术平方根的非负性:a ≥0。

三、平方根和算术平方根是记号:平方根±a(读作:正负根号a);算术平方根a(读作根号a)即:“±a”表示a的平方根,或者表示求a的平方根;“a”表示a的算术平方根,或者表示求a的算术平方根。

其中a叫做被开方数。

∵负数没有平方根,∴被开方数a必须为非负数,即:a≥0。

四、开平方:求一个非负数的平方根的运算,叫做开平方。

其实质就是:已知指数和二次幂求底数的运算。

五、立方根1、立方根的定义:如果一个数的立方等于a,那么这个数叫做a的立方根。

(也叫做三次方根)即:若x3=a,则x叫做a的立方根。

2、立方根的性质:(1)一个正数的立方根为正;(2)一个负数的立方根为负;(3)零的立方根是零。

3、立方根的记号:3a(读作:三次根号a),a称为被开方数,“3”称为根指数。

3a中的被开方数a的取值范围是:a为全体实数。

六、开立方:求一个数的立方根的运算,叫做开立方。

其实质就是:已知指数和三次幂求底数的运算。

七、注意事项:1、“±a”、“a”、“3a”的实质意义:“±a”→问:哪个数的平方是a;“a”→问:哪个非负数的平方是a;“3a”→问:哪个数的立方是a。

2、注意a和3a中的a的取值范围的应用。

如:若3x有意义,则x取值范围是。

(∵x-3≥0,∴x≥3)(填:x ≥3)若32009x -有意义,则x 取值范围是 。

初二数学华师大版知识点

初二数学华师大版知识点

初二数学华师大版知识点初二上学期数学知识点归纳三角形知识概念1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

2、三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

3、高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

4、中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线。

5、角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

6、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。

7、多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。

8、多边形的内角:多边形相邻两边组成的角叫做它的内角。

9、多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。

10、多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。

11、正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形。

12、平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面。

13、公式与性质:(1)三角形的内角和:三角形的内角和为180°(2)三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和。

性质2:三角形的一个外角大于任何一个和它不相邻的内角。

(3)多边形内角和公式:边形的内角和等于?180°(4)多边形的外角和:多边形的外角和为360°(5)多边形对角线的条数:①从边形的一个顶点出发可以引条对角线,把多边形分成个三角形。

②边形共有条对角线。

八年级下册数学复习资料正方形1、正方形的概念有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。

2、正方形的性质(1)具有平行四边形、矩形、菱形的一切性质;(2)正方形的四个角都是直角,四条边都相等;(3)正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角;(4)正方形是轴对称图形,有4条对称轴;(5)正方形的一条对角线把正方形分成两个全等的等腰直角三角形,两条对角线把正方形分成四个全等的小等腰直角三角形;(6)正方形的一条对角线上的一点到另一条对角线的两端点的距离相等。

华东师大八年级数学上册知识点

华东师大八年级数学上册知识点

八年级上册知识点第11章数的平方平方根与立方根一、平方根的概念如果一个数的平方等于a,那么这个数叫做a的平方根。

二、平方根的性质1.一个正数有两个平方根,它们互为相反数。

2.0有一个平方根,就是它本身。

3.负数没有平方根。

三、算术平方根正数a的正的平方根,叫做a的算术平方根,记作a,读作“根号a”;另一个平方根是它的相反数,即-a。

因此,正数a的平方根可以记作±a,其中a称为被开方数。

0的算术平方根是0,负数没有算术平方根。

四、平方根与算术平方根的区别与联系1.概念不同;2.表示方法不同;3.个数及取值不同。

五、开平方求一个非负数的平方根的运算,叫做开平方。

六、立方根1.概念:如果一个数的立方等于a,那么这个数叫做a的立方根。

2.性质:任何数(正数、负数和0)的立方根只有一个。

3.表示:数a的立方根,记作3a,读作“三次根号a”。

其中a称为被开方数,3是根指数。

4.一个正数只有一个正的立方根,一个负数只有一个负的立方根,0的立方根是0。

七、开立方求一个数的立方根的运算,叫做开立方。

实数一、无理数1.无线不循环小数叫做无理数。

2.无理数与有理数的区别(1)有理数是有限小数或无限循环小数,而无理数是无限不循环小数。

(2)所有的有理数都能写成分数的形式(整数可以看成分母是1的分数),而无理数不能写成分数的形式。

二、实数及其分类1.实数的概念有理数和无理数统称为实数,即实数包括有理数和无理数。

2.实数的分类(1)按概念分类正整数整数0有理数负整数正分数分数实数负分数正有理数无理数负有理数(2)按正负分类正整数正有理数正实数正分数实数0负整数负有理数负实数负分数负无理数三、实数与数轴上点的关系实数与数轴上的点意义对应。

四、实数的有关概念1.一个正实数的绝对值是它本身,一个负实数的绝对值是它的相反数,0的绝对值是0。

2.一个数的绝对值是非负数,即a≥0,因此,在实数范围内,绝对值最小的数是零.两个相反数的绝对值相等.第12章整式的乘除幂的运算一、同底数幂的意义及同底数幂的乘法法则1.同底数幂的意义同底数幂是指底数相同的幂。

华师版数学八年级上册知识点总结

华师版数学八年级上册知识点总结
/ 7 做全等图形 一个图形经过翻折、平移和旋转等变换所得到的新图形一定与原图形全等;反过来,两个全等的图形经过上述变换后一定能够互相重合。 章节 知识点 了解 理解 掌握 运用 第十五章 平移与旋转 如果两个多边形是全等图形,也成为全等多边形,两个全等的多边形,经过变换而重合,相互重合的顶点叫做对应顶点,相互重合的边叫做对应边,相互重合的角叫做对应角。 性质:全等多边形的对应边相等、对应角相等。 判定:边、角分别对应相等的两个多边形全等。 性质:全等三角形的对应边相等、对应角相等。 判定:如果两个三角形的边、角分别对应相等,那么这两个三角形全等。 用轴对称、平移和旋转及其组合进行简单图案设计。 第十六章 平行四边形的认识 平行四边形的定义:两组对边分别平行的四边形叫做平行四边形。 平行四边形的性质 (1)平行四边形的对边平行且相等。 (2)平行四边形相邻的角互补,对角相等 (3)平行四边形的对角线互相平分。 (4)平行四边形是中心对称图形,对称中心是对角线的交点。 若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段的中点是对角线的交点,并且这条直线二等分此平行四边形的面积。 推论:夹在两条平行线间的平行线段相等。 平行四边形的判定 (1)定义:两组对边分别平行的四边形是平行四边形 (2)定理1:两组对角分别相等的四边形是平行四边形 (3)定理2:两组对边分别相等的四边形是平行四边形 (4)定理3:对角线互相平分的四边形是平行四边形 (5)定理4:一组对边平行且相等的四边形是平行四边形 两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线的距离。 平行线间的距离处处相等。 平行四边形的面积:S平行四边形=底边长×高=ah 矩形的定义:有一个角是直角的平行四边形叫做矩形。 矩形的性质 (1)矩形的对边平行且相等 (2)矩形的四个角都是直角 (3)矩形的对角线相等且互相平分 (4)矩形既是中心对称图形又是轴对称图形;对称中心是对角线的交点(对称中心到矩形四个顶点的距离相等);对称轴有两条,是对边中点连线所在的直线。

12.4+整式的除法+++知识考点梳理(课件)2024-2025学年华东师大版数学八年级上册

12.4+整式的除法+++知识考点梳理(课件)2024-2025学年华东师大版数学八年级上册






返回目录
续表
运算中的系数包括它前面的符号
不要遗漏只在被除式里含有的字母
注意
注意运算顺序
单项式除以单项式,结果仍是单项式
12.4.1 单项式除以单项式
返回目录
归纳总结


(1)单项式除以单项式的结果还是单项式;(2)单项

单 式相除的结果是否正确,可由单项式的乘法验证.


12.4.1 单项式除以单项式


解题通法 单项式除以单项式的计算关键是分清单项式
中的系数、相同字母,注意混合运算的顺序.
12.4.1 单项式除以单项式
易 ■计算时漏掉只在被除式中含有的字母

6b2c÷9a2b 的结果是 (

计算:-3a


4
A.
ab
B. -3a4bc



C.
-3a3b2c
D. -


返回目录

a4bc


(2)求值:给出字母的值时一般直接代入;给出字母
的代数式时一般整体代入.
[答案] 解:x2y·(3xy)2+(-x2y)3÷x2
=x2y·9x2y2+(-x6y3)÷x2
=9x4y++(-1÷1)(x6y3÷x2)
=9x4y3-x4y3
=8x4y3.
12.4.1 单项式除以单项式
返回目录
思路点拨 先计算积的乘方,再计算单项式的乘法和除


题 法,最后合并同类项即可.



华东师大版八年级数学上册知识点总结

华东师大版八年级数学上册知识点总结


再将所得的积相加
因式分解
+ + = ( + )
例: + +
= ( + + )=( + )
例:() − = () −
− + = ( − )
= ( + )( − )
第十三章:全等三角形
知识点
内容
备注
全等三角形
性质:全等三角形的对应边和对应角相等
三角形全等的判定:
1. (边边边)S.S.S.:如果两个三角形的三条
边都对应地相等,那么这两个三角形全等。
2.(边、角、边)S.A.S.:如果两个三角形的其
中两条边都对应地相等,且两条边夹着的角都
对应地相等,那么这两个三角形全等。



例:√=2, √( − ) =—2
1. 包括有理数和无理数
考点:
判断下列的数哪些是无
2. 实数与数轴上的点一一对应
理数?
常见的无理数(无限不循环小数) 有理数:分数和整数的统称
有:①π
22
如: ,0. 2̇8̇, 0 都是有理数

7
②开方开不尽的数,如√, √等
第十一章:数的开方
第十二章:整式的乘除
知识点
内容
同底数幂相乘,底数不变,指
同底数幂的乘法




幂的乘方
幂的乘方,底数不变,指数相

积的乘法
同底数幂的除法
单项式与单项式相
乘整式的源自乘数相加 × = +
单项式与多项式相


乘 ( ) =
积的乘方,把积的每一个因式

华东师大版八级数学上册知识点总结

华东师大版八级数学上册知识点总结

②? ������������������ 是等
已知:DA=DB
腰三角形,因此
结论:点 D 在线段 AB 的垂直平分线上
具有等腰三角
形的一切性质
性质定理:角平分线上的点到角两边的距离相

已知:OP 平分∠AOB,且 PD⊥ ������������,PE⊥ ������������,
结论:PE=PD
的 除
于只在被除式中出现的字母, 则连同它的指数一起作为商
=(24÷ ������)(������������ ÷ ������)(������������ ÷ ������������)


的一个因式
=8������������
多项式除于单项式 多项式除于单项式,先用这个 多项式的每一项除于这个单 例 :
备注
逆用:������������+������ = ������������ × ������������
例:������������+������=������������ × ������������
幂的乘方,底数不变,指数相
乘 (������������)������ = ������������������
角平分线
互逆命题与 互逆定理 尺规作图 等边三角形
点的距离相等
若直线 EF 是线
已知:若 EF⊥ ������������,垂足为点 C,AC=BC,点 D
段 AB 的垂直平
是直线 EF 上任意一点
分线,
结论:DA=DB
则:
性质定理的逆定理:到线段两端点距离相等的
① DA=DB
点在线段的垂直平分线上
������������ + ������������������ + ������������ = (������ + ������)������ ������������ − ������������������ + ������������ = (������ − ������)������

(完整版)最新华东师大版八年级数学上册知识点总结

(完整版)最新华东师大版八年级数学上册知识点总结
华师版八年级上册知识点总结
第十一章:数的开方
知识点
内容
概念:如果一个数的平方等于 a,那
么这个数叫做 a 的平方根
算术平方根:正数 a 的正的平方根
平方根
立方根
实数
记作:√a
性质:正数有两个平方根,它们互
为相反数,0 的平方根是 0,负数
没有平方根
概念:如果一个数的立方等于 a,
那么这个数叫做 a 的立方根
= ( + )( − )
第十三章:全等三角形
知识点
全等三角形
内容
备注
性质:全等三角形的对应边和对应角相等
三角形全等的判定:
1. (边边边)S.S.S.:如果两个三角形的三条
边都对应地相等,那么这两个三角形全等。
2.(边、角、边)S.A.S.:如果两个三角形的其
中两条边都对应地相等,且两条边夹着的角都
第一个命题的结论是第二个命题的条件,那么
这两个命题叫做互逆命题
考点:判断一个命题或定理
的逆命题为真为假
五个基本的作图方法:
考点:综合考察,例如用尺
规作图画直角三角形,等腰
三角形等等
①作一条线段等于已知线段
②作一个角等于已知角③作已知角的平分线
④过一点作已知线段的垂线
⑤作已知线段的垂直平分线
D
A
性质:①是特殊的等腰三角形,因此具有等腰
对应地相等,那么这两个三角形全等。
3.(角、边、角)A.S.A.:如果两个三角形的其
中两个角都对应地相等,且两个角夹着的边都
对应地相等的话,那么这两个三角形全等。
4.(角、角、边)A.A.S.:如果两个三角形的其
中两个角都对应地相等,且对应相等的角所对

华师大版八年级数学上册知识点归纳总结

华师大版八年级数学上册知识点归纳总结

华师大版八年级数学上册知识点归纳总结证明·:AB //FC ,: 噜乙A =LA.C F.在!::i.AD E和l:J.CFE中.贮竺�D E =邓,:.� 山WE 兰A C FE .全等三角形的性质全等三角形的性质是中考必考内容`常用上明两条线段相等或两个角相等�(无乒中名l 已知: A 如闵M -3-9.AB/! CD , E. 是店的中点,CE =D E .求证:(l)LA EC=乙B ED ;(2)AD =B C . 关已词平行线的性质、全等三角形的判定和性证明(l )':.AB f/CD 喊...乙邸c=L5-CD ,LAED立即C ·:cE=DE, 付...乙ED C=L E C D .:. LABD =乙BEC ,:. 乙AEC=LB1ID .i'1)':E 是B 的中点'.赢.AE =B E .在凶E D 和应E C中.·-1�:� 瓦.£.B EC E D =E C, ·互�E D 竺NJEC(S.A .S .}.: . AD =BC. 尺规作图一种作图方式是不足尺规作图关处是它所使用的工具是不是没有刻度的直尺和吩枝如作图工具是没有刻度的立尺和囡规忒是尺规作图,否则不是近年来有关尺规作图问题时常在考试中出戊,气为选择还和块空见但也时含出现几何综合超. ,'i l ,'l i ','l I l B 如图M -3,-11所示,已知如6.4.B C 中.乙er=,90•, 利用尺规按下列要求作图(保陌作图拫迹):(1炸L.ACB的平分线CD ,交AB于点D;.(2)延,长AC到点E,使C�CB,连接BE .在你作出的图形}中,试判断C D 与B双内位悝关系,井证明你的结论厂M -3r-一II 关诅词尺规作图l 邓)作C D //B E. • .., 明:·:e n 早分LAC B 且乙从邓=90•.,.飞Ltf CD .;;;L JJ,C D=45仑·叉·:CE=CB , :. LEBC'= L B E c=4S "'. ·: 乙B CD=乙E B C =4s •,CJ 4如图M -J -]O 所示.在fiAB C中,L C =殉,:乙B =30句,以A 为阅心.任意长为半径面弧分别:关罚词分,虳过程可知AD 是乙B .4C 的平分线,故OO正确.因为乙C =90•,乙B =:3,o •停ch 、、B 所以乙B A C ""'60户,所以图M -3一lO 乙BAD =LC ,A D =L B =3o •所以AD=DB,故@正确.因为AD 司DB,由线段垂直平分线的判定定理可得点D 在AB 的中垂线上故@正确.答案C / 亡勹. 图M -3一1.21.M -3-12. ;. CD//BE.命题与定理这种题型在每年中考中都会高频出现逌常以某些概念、性质.定理及易混淆知识点为及材,以选择处、判断题的形式勺\。

华师版数学八年级上册知识点总结

华师版数学八年级上册知识点总结

华师版数学八年级上册知识点双向细目表ba 11梯形的判定(1)定义:一组对边平行而另一组对边不平行的四边形是梯形。

(2)一组对边平行且不相等的四边形是梯形。

章节知识点了解理解掌握运用第十六章平行四边形的认识一般地,梯形的分类如下:一般梯形梯形直角梯形特殊梯形等腰梯形等腰梯形的定义:两腰相等的梯形叫做等腰梯形。

等腰梯形的性质(1)等腰梯形的两腰相等,两底平行。

(2)等腰梯形同一底上的两个角相等,同一腰上的两个角互补。

(3)等腰梯形的对角线相等。

(4)等腰梯形是轴对称图形,它只有一条对称轴,即两底的垂直平分线。

等腰梯形的判定(1)定义:两腰相等的梯形是等腰梯形(2)定理:在同一底上的两个角相等的梯形是等腰梯形(3)对角线相等的梯形是等腰梯形。

(选择题和填空题可用)梯形的面积: (1)如图,DEABCDSABCD•+=)(21梯形(2)梯形中有关图形的面积:①BACABDSS∆∆=;②BOCAODSS∆∆=;③BCDADCSS∆∆=有关中点四边形问题的知识点:(1)顺次连接任意四边形的四边中点所得的四边形是平行四边形;(2)顺次连接矩形的四边中点所得的四边形是菱形;(3)顺次连接菱形的四边中点所得的四边形是矩形;(4)顺次连接等腰梯形的四边中点所得的四边形是菱形;(5)顺次连接对角线相等的四边形四边中点所得的四边形是菱形;(6)顺次连接对角线互相垂直的四边形四边中点所得的四边形是矩形;(7)顺次连接对角线互相垂直且相等的四边形四边中点所得的四边形是正方形;四边形、矩形、菱形、正方形、。

华师大版数学八年级上册知识点汇总

华师大版数学八年级上册知识点汇总

华师大版数学八年级上册知识点汇总第一章数的开方重点知识点知识点一:平方根和立方根类型项目平方根立方根被开方数非负数任意实数符号表示a±3a 性质一个正数有两个平方根,且互为相反数;零的平方根为零;负数没有平方根;一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零;重要结论⎩⎨⎧<-≥==≥=)0()0()0()(22a a a a a a a a a 333333)(aa aa a a -=-==知识点二:实数有理数和无理数统称为实数.1.实数的分类按定义分:实数⎧⎨⎩有理数:有限小数或无限循环小数无理数:无限不循环小数按与0的大小关系分:实数0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正有理数正数正无理数负有理数负数负无理数知识点诠释:(1)所有的实数分成三类:有限小数,无限循环小数,无限不循环小数.其中有限小数和无限循环小数统称有理数,无限不循环小数叫做无理数.等;②有特殊意义的数,如π;③有特定结构的数,如0.1010010001…(3)凡能写成无限不循环小数的数都是无理数,并且无理数不能写成分数形式.(4)实数和数轴上点是一一对应的.2.实数与数轴上的点的对应关系数轴上的任何一个点都对应一个实数,反之任何一个实数都能在数轴上找到一个点与之对应,即实数与数轴上的点一一对应.3.实数的三个非负性及性质在实数范围内,正数和零统称为非负数。

我们已经学习过的非负数有如下三种形式:(1)任何一个实数a 的绝对值是非负数,即|a |≥0;(2)任何一个实数a 的平方是非负数,即2a ≥0;0≥(0a ≥).非负数具有以下性质:(1)非负数有最小值零;(2)有限个非负数之和仍是非负数;(3)几个非负数之和等于0,则每个非负数都等于0.4.实数的运算数a 的相反数是-a ;一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.有理数的运算法则和运算律在实数范围内仍然成立.实数混合运算的运算顺序:先乘方、开方、再乘除,最后算加减.同级运算按从左到右顺序进行,有括号先算括号里.5.实数的大小的比较有理数大小的比较法则在实数范围内仍然成立.法则1.实数和数轴上的点一一对应,在数轴上表示的两个数,右边的数总比左边的数大;法则2.正数大于0,0大于负数,正数大于一切负数,两个负数比较,绝对值大的反而小;法则3.两个数比较大小常见的方法有:求差法,求商法,倒数法,估算法,平方法.第二章整式的乘除重点知识点知识点一、幂的运算1.同底数幂的乘法:(m n ,为正整数);同底数幂相乘,底数不变,指数相加.2.幂的乘方:(m n ,为正整数);幂的乘方,底数不变,指数相乘.3.积的乘方:(n 为正整数);积的乘方,等于各因数乘方的积. 4.同底数幂的除法:(a ≠0,m n ,为正整数,并且m n >).同底数幂相除,底数不变,指数相减.5.零指数幂:()010.a a =≠即任何不等于零的数的零次方等于1.知识点诠释:公式中的字母可以表示数,也可以表示单项式,还可以表示多项式;灵活地双向应用运算性质,使运算更加方便、简洁.知识点二、整式的乘法和除法1.单项式乘以单项式单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.2.单项式乘以多项式单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.即mc mb ma c b a m ++=++)((c b a m ,,,都是单项式).3.多项式乘以多项式多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.即()()a b m n am an bm bn ++=+++.知识点诠释:运算时,要注意积的符号,多项式中的每一项前面的“+”“-”号是性质符号,单项式乘以多项式各项的结果,要用“+”连结,最后写成省略加号的代数和的形式.根据多项式的乘法,能得出一个应用比较广泛的公式:()()()2x a x b x a b x ab ++=+++.4.单项式相除把系数、相同字母的幂分别相除作为商的因式,对于只在被除式里出现的字母,则连同它的指数一起作为商的一个因式.5.多项式除以单项式先把这个多项式的每一项分别除以单项式,再把所得的商相加.即:()am bm cm m am m bm m cm m a b c++÷=÷+÷+÷=++知识点三、乘法公式1.平方差公式:两个数的和与这两个数的差的积,等于这两个数的平方差.22()()a b a b a b +-=-知识点诠释:在这里,a b ,既可以是具体数字,也可以是单项式或多项式.平方差公式的典型特征:既有相同项,又有“相反项”,而结果是“相同项”的平方减去“相反项”的平方.2.完全平方公式:两数和(差)的平方等于这两数的平方和加上(减去)这两数乘积的两倍.()2222a b a ab b +=++;2222)(b ab a b a +-=-知识点诠释:公式特点:左边是两数的和(或差)的平方,右边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍.知识点四、因式分解把一个多项式化成几个整式的积的形式,像这样的式子变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式.因式分解的方法主要有:提公因式法,公式法等.知识点诠释:落实好方法的综合运用:首先提取公因式,然后考虑用公式;两项平方或立方,三项考虑完全平方;四项以上想分组,分组分得要合适;几种方法反复试,最后须是连乘式;因式分解要彻底,一次一次又一次.第三章全等三角形重点知识点知识点一、全等三角形的性质和判定1.全等三角形的性质全等三角形对应边相等,对应角相等.2.全等三角形的判定定理全等三角形判定1——“角边角”:两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA”).全等三角形判定2——“边角边”:两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS”).全等三角形判定3——“边边边”:三边对应相等的两个三角形全等.(可以简写成“边边边”或“SSS”).全等三角形判定4——“角角边”:两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS”).知识点诠释:(1)如何选择三角形证全等,可以从求证出发,看求证的线段或角(用等量代换后的线段、角)在哪两个可能全等的三角形中,可以证这两个三角形全等.(2)可以从已知出发,看已知条件确定证哪两个三角形全等.(3)由条件和结论一起出发,看它们一同确定哪两个三角形全等,然后证它们全等.(4)如果以上方法都行不通,就添加辅助线,构造全等三角形.3.判定直角三角形全等的特殊方法——斜边直角边定理斜边直角边定理(或简记为HL):斜边和一条直角边分别相等的两个直角三角形全等.知识点诠释:判定两个直角三角形全等的方法共有5种:SAS、ASA、AAS、SSS、HL.证明两个直角三角形全等,首先考虑用斜边、直角边定理,再考虑用一般三角形全等的证明方法.知识点二、等腰三角形1.等腰三角形的性质及其作用性质1:等腰三角形的两个底角相等(简称“等边对等角”).性质1用之证明同一个三角形中的两角相等,是证明角相等的一个重要依据.性质2:等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合(简称“三线合一”).性质2用来证明线段相等,角相等,垂直关系等.2.等腰三角形的判定如果一个三角形中有两个角相等,那么这两个角所对的边也相等(简称“等角对等边”).知识点诠释:等腰三角形的判定是证明两条线段相等的重要定理,是将三角形中的角的相等关系转化为边的相等关系的重要依据.等腰三角形的性质定理和判定定理是互逆定理.3.等边三角形的性质和判定:性质:等边三角形三个内角都相等,并且每一个内角都等于60°.判定:(1)三条边都相等的三角形是等边三角形;(2)三个角都相等的三角形是等边三角形;(3)有一个角是60°的等腰三角形是等边三角形.知识点诠释:由等边三角形的“三线合一”可得:在直角三角形中,30°所对的直角边等于斜边的一半.知识点三、尺规作图、命题、定理与逆命题、逆定理1.尺规作图只能使用圆规和没有刻度的直尺这两种工具作几何图形的方法称为尺规作图.知识点诠释:(1)要熟练掌握直尺和圆规在作图中的正确应用,对于作图要用正确语言来进行表达.(2)掌握五种基本作图:作一条线段等于已知线段;作一个角等于已知角;作已知角的平分线;经过一已知点作已知直线的垂线;作已知线段的垂直平分线.并能利用本章的知识理解这些基本作图的方法.2.命题与逆命题判断一件事件的句子叫命题.其判断为正确的命题叫做真命题;其判断为错误的命题叫做假命题.对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题.知识点诠释:(1)对于命题的定义要正确理解,也即是通过这句话可以确定一件事是发生了还是没发生,如果这句话不能对于结果给予肯定或者否定的回答,那它就不是命题.(2)每一个命题都可以写成“如果…,那么…”的形式,“如果”后面为题设部分,“那么”后面为结论部分.(3)所有的命题都有逆命题.原命题正确,它的逆命题不一定正确.3.定理与逆定理数学中,有些命题可以从基本事实或者其他真命题出发,用逻用推理的方法判断它们是正确的,并且可以作为进一步判断其他命题真假的依据,这样的真命题叫做定理.如果一个定理的逆命题也是真命题,那就称它为原定理的逆定理.知识点诠释:(1)定理的作用不仅在于它揭示了客观事物的本质属性,而且可以作为进一步确认其他命题真假的依据.(2)一个命题是真命题,但是它的逆命题不一定是真命题的,所以不是每个定理都有逆定理.知识点四、角平分线、线段垂直平分线的性质定理及其逆定理1.角平分线性质定理及其逆定理角平分线上的点到角两边的距离相等;逆定理:角的内部到角两边的距离相等的点在角的平分线上.知识点诠释:性质定理的前提条件是已经有角平分线了,即角被平分了;逆定理则是在结论中确定角被平分,一定要注意着两者的区别,在使用这两个定理时不要混淆了.2.线段垂直平分线(也称中垂线)的性质定理及其逆定理线段的垂直平分线上的点到线段两端的距离相等;逆定理:到线段两端距离相等的点在线段的垂直平分线上.知识点诠释:性质定理的前提条件是线段已经有了中垂线,从而可以得到线段相等;逆定理则是在结论中确定线段被垂直平分,一定要注意着两者的区别,前者在题设中说明,后者则在最终的结论中得到,所以在使用这两个定理时不要混淆了.第四章勾股定理重点知识点知识点一、勾股定理1.勾股定理:直角三角形两直角边a b 、的平方和等于斜边c 的平方.(即:222a b c +=)2.勾股定理的应用勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用是:(1)已知直角三角形的两边,求第三边;(2)利用勾股定理可以证明有关线段平方关系的问题;(3)求作长度为的线段.知识点二、勾股定理的逆定理1.原命题与逆命题如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题.如果把其中一个叫做原命题,那么另一个叫做它的逆命题.2.勾股定理的逆定理勾股定理的逆定理:如果三角形的三边长a b c 、、,满足222a b c +=,那么这个三角形是直角三角形.应用勾股定理的逆定理判定一个三角形是不是直角三角形的基本步骤:(1)首先确定最大边,不妨设最大边长为c ;(2)验证2c 与22a b +是否具有相等关系,若222a b c +=,则△ABC 是以∠C 为直角的直角三角形,反之,则不是直角三角形.3.勾股数满足不定方程222x y z +=的三个正整数,称为勾股数(又称为高数或毕达哥拉斯数),显然,以x y z 、、为三边长的三角形一定是直角三角形.常见的勾股数:①3、4、5;②5、12、13;③8、15、17;④7、24、25;⑤9、40、41.如果(a b c 、、)是勾股数,当t 为正整数时,以at bt ct 、、为三角形的三边长,此三角形必为直角三角形.观察上面的①、②、④、⑤四组勾股数,它们具有以下特征:1.较小的直角边为连续奇数;2.较长的直角边与对应斜边相差1.3.假设三个数分别为a b c 、、,且a b c <<,那么存在2a b c =+成立.(例如④中存在27=24+25、29=40+41等)知识点三、勾股定理与勾股定理逆定理的区别与联系区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理;联系:勾股定理与其逆定理的题设和结论正好相反,两者互为逆定理,都与直角三角形有关.第五章数据的收集与表示重点知识点知识点一、数据的收集1.收集数据的步骤(1)明确调查问题;(2)确定调查对象;(3)选择调查方法;(4)展开调查;(5)记录结果;(6)分析结果,得出结论.2.频数与频率频数表示每个对象出现的次数;频率表示每个对象出现的次数与总次数的比值.频数与频率都能够反映每个对象出现的频繁程度.但在总次数不相等时,应比较频率而不是频数.知识点诠释:收集数据时,通常采用画“正”字的方法记录数据出现的频数.知识点二、数据的表示1.统计表和统计图:统计表:利用表格将要统计的数据填入相应的表格内,表格统计法可以很好地整理数据;统计图:利用“条形图”、“扇形图”、“折线图”描述数据,这样做的最大优点是将表格中的数据所呈现出来的信息直观化.2.三种统计图(1)条形统计图是用宽度相同的条形的高低或长短来表示数据的统计图,它可以很直观地反映出数据的数量特征,便于比较大小,但不能清楚地反映各部分占总体的百分比.如果有两个研究对象,常常把这两个对象的相应数据并列表示在同一幅条形统计图中.(2)扇形统计图是用整个圆代表所研究的总体,用圆中各个扇形代表组成总体的各个部分,扇形圆心角的大小反映出各组成部分的数量在总数量中所占份额的大小.从扇形上可清楚地看出各部分量和总数量之间的关系,但不能直接表示出各个项目的具体数据.(3)折线统计图是用折线表示数量变化规律的统计图.如果关注的是某种现象随时间变化而发生的变化,常常以时间为水平放置的数轴,以折线的起伏直观地反映出数量随时间所发生的相应变化.折线图不但可以表示出数量的多少,而且能够清楚地表示出数量的增减变化情况,但不能清楚地反映数据的分布情况.知识点诠释:三种统计图都有各自的优缺点,在实际生活中我们常常将它们结合起来使用.。

八年级数学华师大版知识点

八年级数学华师大版知识点

八年级数学华师大版知识点八年级的数学课程将涉及更多的代数、几何和统计概念,涵盖了从数字和计算到方程和函数的各个领域。

在华师大版教材中,这些数学知识点被分为六个单元。

单元一:代数初步此单元介绍代数中的基本概念和技能,包括如何使用文字和符号表示数字运算,如何使用方程式解决问题,以及如何绘制坐标系。

其中,一些关键的知识点包括:1. 代数表达式代数表达式描述数字和文字之间的关系。

例如,3x + 2是一个代数表达式,其中x是未知数。

2. 方程方程是一个包含等号的代数表达式,它描述了未知数的取值。

解方程可以使我们找到未知数的值。

3. 坐标系坐标系是一个由x轴和y轴组成的二维图形,可以用来描述点的位置。

这个单元将介绍如何绘制坐标系,以及如何在坐标系中定位和表示点。

单元二:线性方程组此单元介绍如何使用线性方程组解决实际问题,例如如何解决包含两个未知数的方程。

其中,一些关键的知识点包括:1. 线性方程组线性方程组是一个包含两个或多个方程的代数系统。

这些方程可以同时解决多个未知数,例如:2x + y = 53x - y = 22. 解线性方程组为了解决线性方程组,我们需要使用代数技巧将方程分解为未知数的值。

我们可以使用方法,如代入法、消元法、高斯消元法等解决这些方程。

单元三:几何初步此单元介绍几何中的基本概念和技能,包括如何计算面积和周长、如何计算体积和表面积、如何使用比例和相似来处理形状。

其中,一些关键的知识点包括:1. 面积和周长面积描述了一个形状的大小,即其所占据的空间。

周长是形状的边缘长度。

在这个单元中,我们将介绍如何计算方形、三角形、矩形、圆形的周长和面积。

2. 体积和表面积体积描述了一个三维形状占据的空间。

表面积是一个三维形状外部的所有面积的总和。

在这个单元中,我们将介绍如何计算立方体、圆柱体、圆锥体、球体的体积和表面积。

单元四:比例和相似此单元介绍如何使用比例和相似处理形状和大小的变化,学习如何计算边长、角度和比例。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学上册复习提纲第11章数的开方§11.1平方根与立方根一、平方根1、平方根的定义:如果一个数的平方等于a,那么这个数叫做a的平方根。

(也叫做二次方根)即:若x2=a,则x叫做a的平方根。

2、平方根的性质:(1)一个正数有两个平方根。

它们互为相反数;(2)零的平方根是零;(3)负数没有平方根。

二、算术平方根1、算术平方根的定义:正数a的正的平方根,叫做a的算术平方根。

2、算术平方根的性质:(1)一个正数的算术平方根只有一个且为正;(2)零的算术平方根是零;(3)负数没有算术平方根;(4)算术平方根的非负性:a ≥0。

三、平方根和算术平方根是记号:平方根±a(读作:正负根号a);算术平方根a(读作根号a)即:“±a”表示a的平方根,或者表示求a的平方根;“a”表示a的算术平方根,或者表示求a的算术平方根。

其中a叫做被开方数。

∵负数没有平方根,∴被开方数a必须为非负数,即:a≥0。

四、开平方:求一个非负数的平方根的运算,叫做开平方。

其实质就是:已知指数和二次幂求底数的运算。

五、立方根1、立方根的定义:如果一个数的立方等于a,那么这个数叫做a的立方根。

(也叫做三次方根)即:若x3=a,则x叫做a的立方根。

2、立方根的性质:(1)一个正数的立方根为正;(2)一个负数的立方根为负;(3)零的立方根是零。

3、立方根的记号:3a(读作:三次根号a),a称为被开方数,“3”称为根指数。

3a中的被开方数a的取值范围是:a为全体实数。

六、开立方:求一个数的立方根的运算,叫做开立方。

其实质就是:已知指数和三次幂求底数的运算。

七、注意事项:1、“±a”、“a”、“3a”的实质意义:“±a”→问:哪个数的平方是a;“a”→问:哪个非负数的平方是a;“3a”→问:哪个数的立方是a。

2、注意a和3a中的a的取值范围的应用。

如:若3x有意义,则x取值范围是。

(∵x-3≥0,∴x≥3)(填:x ≥3)若32009x -有意义,则x 取值范围是 。

(填:全体实数)3、33a a -=-。

如:∵3273-=-,3273-=-,∴332727-=-4、对于几个算数平方根比较大小,被开方数越大,其算数平方根的值也越大。

如:256710>>>>等。

23和32怎么比较大小?(你知道吗?不知道就问!!!!!!!)5、算数平方根取值范围的确定方法:关键:找邻近的“完全平方数的算数平方根”作参照。

如:确定7的取值范围。

∵4<7<9,∴2<7<3。

6、几个常见的算数平方根的值:414.12≈,732.13≈,236.25≈,449.26≈,646.27≈。

八、补充的二次根式的部分内容1、二次根式的定义:形如a (a ≥0)的式子,叫做二次根式。

2、二次根式的性质:(1)b a ab •=(a ≥0,b ≥0);(2) b a b a =(a ≥0,b >0); (3) a a =2)((a ≥0); (4) ||2a a =3、二次根式的乘除法:(1)乘法:ab b a =•(a ≥0,b ≥0);(2)除法:ba b a=(a ≥0,b >0)§11.2实数与数轴一、无理数1、无理数定义:无限不循环小数叫做无理数。

2、常见的无理数:(1)开方开不尽的数。

如:256710,,,,,2532617102-++-,,,等。

(2)“π”类的数。

如:π,π-,3π,π1,π2等。

(3)无限不循环小数。

如:2.1010010001……,-0.234242242224……,等二、实数1、实数定义:有理数与无理数统称为实数。

2、与实数有关的概念:(1)相反数:实数a 的相反数为-a 。

若实数a 、b 互为相反数,则a+b =0。

(2)倒 数:非零实数a 的倒数为a 1(a ≠0)。

若实数a 、b 互为倒数,则ab =1。

(3)绝对值:实数a 的绝对值为:⎪⎩⎪⎨⎧<-=>=)0()0(0)0(||a a a a a a 3、实数的运算:有理数的所有运算法则及运算律均适用于实数的运算。

4、实数的分类:(1)按照正负性分为:正实数、零、负实数三类。

(2)按照定义分为:5、几个“非负数”:(1)a 2≥0;(2)|a|≥0;(3)a ≥0。

6、实数与数轴上的点是一一对应关系。

第12章 整式的乘除§12.1幂的运算一、同底数幂的乘法1、法则:a m ·a n ·a p ·……=a m+n+p+……(m 、n 、p ……均为正整数)文字:同底数幂相乘,底数不变,指数相加。

2、注意事项:(1)a 可以是实数,也可以是代数式等。

如:π2·π3·π4=π2+3+4=π9;(-2)2·(-2)3=(-2)2+3=(-2)5=-25; (2)3·(2)4=(2)3+4=(2)7;(a+b )3·(a+b )4·(a+b )= (a+b )3+4+1=(a+b )8(2)一定要“同底数幂”“相乘”时,才能把指数相加。

(3二、幂的乘方1、法则:(a m )n =a mn (m 、n 均为正整数)。

推广:{[(a m )n ]p }s =a mn p s文字:幂的乘方,底数不变,指数相乘。

2、注意事项:(1)a 可以是实数,也可以是代数式等。

如:(π2)3=π2×3=π6;[(2)3]4=(2)3×4=(2)12;[(a-b )2]4= (a-b )2×4=(a-b )8(2)运用时注意符号的变化。

(3)注意该法则的逆应用,即:a mn = (a m )n ,如:a 15= (a 3)5= (a 5)3三、积的乘方1、法则:(ab )n =a n b n (n 为正整数)。

推广:(acde )n =a n c n d n e n文字:积的乘方等于把积的每一个因式都分别乘方,再把所得的幂相乘。

2、注意事项:(1)a 、b 可以是实数,也可以是代数式等。

如:(2π)3=22π2=4π2;(2×3)2=(2)2×(3)2=2×3=6;(-2abc )3=(-2)3a 3b 3c 3=-8a 3b 3c 3;[(a +b )(a -b )]2=(a +b )2(a -b )2(2)运用时注意符号的变化。

(3)注意该法则的逆应用,即:a n b n =(ab )n ;如:23×33= (2×3)3=63,(x +y )2(x -y )2=[(x +y )(x -y )]2四、同底数幂的除法1、法则:a m ÷a n =a m-n (m 、n 均为正整数,m >n ,a ≠0)文字:同底数幂相除,底数不变,指数相减。

2、注意事项:(1)a 可以是实数,也可以是代数式等。

如:π4÷π3=π4-3=π;(-2)5÷(-2)3=(-2)5-3=(-2)2=4; (2)6÷(2)4=(2)6-4=(2)2=2;(a+b )16÷(a+b )14= (a+b )16-14=(a+b )2=a 2+2ab +b 2(2)注意a ≠0这个条件。

(3)注意该法则的逆应用,即:a m-n = a m ÷a n ;如:a x-y = a x ÷a y ,(x +y )2a-3=(x +y )2a÷(x +y )3§12.2 整式的乘法一、单项式与单项式相乘法则:单项式与单项式相乘,只要将它们的系数与系数相乘,相同字母的幂相乘,多余的字母照搬到最后结果中。

如:(-5a 2b 2)·(-4 b 2c )·(-23ab )=[(-5)×(-4)×(-23)]·(a 2·a )·(b 2·b 2)·c=-30a 3b 4c二、单项式与多项式相乘法则:(乘法分配律)只要将单项式分别去乘以多项式的每一项,再将所得的积相加。

如:22(3)(21)x x x --+-=(-3x 2)·(-x 2)+(-3x 2)·2 x 一(-3x 2)·1=432363x x x -+三、多项式与多项式相乘法则:(1)将一个多项式中的每一项分别乘以另一个多项式的每一项,再将所得的积相加。

如:(m+n )(a +b )= ma+mb+na +nb(2)把其中一个多项式看成一个整体(单项式),去乘以另一个多项式的每一项,再按照单项式与多项式相乘的法则继续相乘,最后将所得的积相加。

如:(m+n )(a +b )= (m+ n )a+( m +n )b = ma+ na+mb +nb§12.3 乘法公式一、两数和乘以这两数的差1、公式:(a+b )(a-b )=a 2-b 2;名称:平方差公式。

2、注意事项:(1)a 、b 可以是实数,也可以是代数式等。

如:(10+9)(10-9)=102-92=100-81=19;(2xy+a )(2xy-a )=(2xy )2-a 2=4 x 2y 2-a 2;(a+b+π)( a+b -π)=(2xy )2-a 2=4 x 2y 2-a 2;(2)注意公式中的第一项、第二项各自相同,中间是“异号”的情况,才能用平方差公式。

(3)注意公式的来源还是“多项式×多项式”。

二、完全平方公式1、公式:(a±b)2=a2±2a b+b2;名称:完全平方公式。

2、注意事项:(1)a、b可以是实数,也可以是代数式等。

如:(2+3)2=(2)2+2×2×3+32=2+62+9=11+62;(mn-a)2=(mn)2-2mn·a+ a2= m2n2-2mna+ a2;( a+b -π)2=( a+b)2-2( a+b)π+π2= a2+2a b+b2-2πa-πb +π2;(2)注意公式运用时的对位“套用”;(3)注意公式中“中间的乘积项的符号”。

3、补充公式:(a+ b+ c)2=a2+c2+b2+2a b+2bc+2ca特别提醒:利用乘法公式进行整式的运算时注意“思维顺序”是:“一看二套三计算”。

§12.4 整式的除法一、单项式除以单项式法则:单项式相除,只要将它们的系数与系数相除,相同字母的幂相除,只在被除式中出现的字母,则连同它的指数一起作为商的一个因式。

如:-21a2b3c÷3ab=(-21÷3)·a2-1·b3-1·c =-7ab2c(2x2y)3·(-7xy2)÷14x4y3=8x6y3·(-7xy2)÷14x4y3=[8×(-7)]·x6+1y3+2÷14x4y3 =(-56÷14)·x7-4·y5-3=-4x3y25(2a+b)4÷(2a+b)2=(5÷1)(2a+b)4-2=5(2a+bz2=5(4a2+4ab+b2)=20a2+20ab+5b2二、多项式除以单项式法则:(乘法分配律)只要将多项式的每一项分别去除以单项式,再将所得的商相加。

相关文档
最新文档