计算机组成原理组成课程设计

合集下载

计算机组成原理课设

计算机组成原理课设

计算机组成原理课程设计目录目录第1章设计概述 (1)1.1设计题目 (1)1.2设计目的 (1)1.3设备器材 (1)第2章设计原理及内容 (2)2.1设计基本原理 (2)2.2需执行的机器指令 (2)2.3数据通路图 (3)2.4微指令格式 (4)2.5微程序地址的转移 (5)2.6机器指令的写入、读出和执行 (5)第3章设计与操作步骤 (7)3.1编写机器指令 (7)3.2绘制微程序流程图 (7)3.3编写微指令 (7)3.4连接实验线路 (9)3.5写指令 (10)3.5.1写微指令 (10)3.5.2 写机器指令 (10)3.6运行程序 (11)3.6.1单步运行程序 (11)3.6.2连续运行程序 (11)第4章遇到问题及解决方法 (12)4.1遇到问题 (12)4.2解决方法 (12)参考文献 (13)设计总结 (14)第1章设计概述1.1设计题目基本模型机的设计与实现。

1.2设计目的1.掌握机器指令与微程序的对应关系。

2.掌握机器指令的执行流程。

3.掌握机器指令的微程序的编制、写入。

4.在掌握部件单元电路实验的基础上,进一步将组成系统,构成一台基本模型计算机。

5.为其定义10条机器指令,并编写相应的微程序,上机调试,掌握整机概念。

1.3设备器材TDN-CM计算机组成原理教学实验系统一台,排线若干。

第2章设计原理及内容2.1设计基本原理部件实验过程中,各部件单元的控制信号是人为模拟产生的,而本次实验将能在微程序控制下自动产生各部件单元控制信号,实现特定指令的功能。

这里,计算机数据通路的控制将由微程序控制器来完成,CPU从内存中取出一条机器指令到指令执行结束的一个指令周期全部由微指令组成的序列来完成,即一条机器指令对应一段微程序。

本系统使用两种外部设备,一种是二进制代码开关(DATA UNIT),它作为输入设备;另一种是发光二极管(BUS UNIT上的一组发光二极管),它作为输出设备。

计算机组成原理教案

计算机组成原理教案

计算机组成原理教案一、概述计算机组成原理是计算机科学与技术专业的一门基础课程,主要介绍计算机硬件系统的原理和结构。

本节课程将系统讲解计算机组成原理的相关知识,包括计算机系统的层次结构、指令系统、数据表示、计算机运算、控制单元、存储器等内容。

二、计算机系统的层次结构1. 计算机系统的五大组成部分计算机系统由五大组成部分构成,包括输入设备、输出设备、运算器、控制器和存储器。

其中,输入设备用于接收外部信息,输出设备用于显示处理结果,运算器执行程序运算,控制器控制程序执行,存储器存储数据和程序。

2. 计算机系统的层次结构计算机系统的层次结构分为硬件层和软件层,硬件层包括处理器、存储器、输入输出设备等;软件层包括系统软件和应用软件。

硬件层和软件层相互配合,共同完成计算机系统的功能。

三、指令系统1. 指令系统的基本概念指令系统是计算机执行程序的基本单位,包括指令集合、地址寻址方式、指令格式等。

指令集合是计算机可以执行的指令的集合,地址寻址方式是指令中操作数的寻址方式,指令格式定义了指令的组成形式。

2. 指令执行过程指令的执行过程包括取指、分析指令、执行指令和结果存储等步骤。

取指是从存储器中读取指令,分析指令是对指令进行解码,执行指令是根据指令操作码执行相应操作,结果存储是将执行结果存储到指定位置。

四、数据表示1. 数字系统数字系统是计算机数据的表示方式,常用的数字系统包括二进制、八进制、十进制和十六进制等。

在计算机系统中,二进制是最基本的数据表示方式。

2. 数据表示格式数据在计算机中以位、字节、字等单位来表示,位是最小的数据单元,字节由8位组成,字由若干字节构成。

在计算机中,数据的表示格式包括无符号数表示和有符号数表示。

五、计算机运算1. 计算机的算术逻辑单元计算机的算术逻辑单元(ALU)是计算机执行算术和逻辑运算的核心组件,包括加法、减法、与、或、非等运算。

ALU通过控制单元的指令执行相应的运算操作。

2. 运算指令的执行运算指令包括算术运算指令和逻辑运算指令,算术运算指令用于执行加减乘除等算术运算,逻辑运算指令用于执行与或非等逻辑运算。

计算机组成原理》课程标准

计算机组成原理》课程标准

计算机组成原理》课程标准计算机组成原理》课程标准一、课程基本情况课程名称:计算机组成原理适用专业:计算机应用专业课程性质:专业核心课程计划学时:60学时二、制定课程标准的依据本课程教学标准依据中职计算机应用专业的专业教学标准中的人才培养目标和培养规格以及对计算机组成原理课程教学目标要求而制定,用于指导计算机组成原理课程教学和课程建设。

三、课程性质本课程是计算机应用专业的一门专业核心课程。

通过介绍计算机硬件基本结构、工作原理和分析设计方法等方面的知识,培养学生对计算机的整机概念有较完整清晰的认识,对计算机的硬件结构有深刻的理解和对硬件的分析与设计方法有一定的认识。

同时也为研究后续课程打下一定的基础。

四、本课程与前续课程和后续课程的关系本课程研究和训练之前,学生应已修完如下课程:计算机应用基础、数字电路,而他的后续课程是计算机系统结构、计算机组成原理。

本课程在他的前续课程和后续课程之间起到了纽带的作用。

五、课程的教育目标1.知识、能力目标知道《计算机组成原理》这门学科的性质、地位和独立价值;理解计算机系统的五大组成部件的概念、功能以及整机的工作原理;理解数值数据的表示方法、运算器的计算方法,了解非数值数据的表示方法和常用编码;理解各个部件的组成结构和基本功能;掌握基本的定点数的加、减运算和实现的基本逻辑电路框图以及浮点数的表示方法;掌握指令的概念、功能以及指令的各种寻址方式和指令类型;知道存储器层次结构和主存系统的设计方法;掌握CPU的功能及组成;理解几种常见的外围设备的信息交换方式;了解常用的外围设备和使用方法;理解组合逻辑控制器和微程序控制器的基本的设计和分析方法。

2.方法、过程目标通过本课程的研究,培养学生通过计算机组成原理实验,进一步理解计算机内部的工作原理及计算机整机系统的基本设计和分析方法,具备一定的专业知识技能。

通过“完整工作过程”的研究和体验,培养学生分析问题、解决问题的能力和团结、协作的团队精神。

组成原理课程设计任务书--余三码十进制加法器

组成原理课程设计任务书--余三码十进制加法器
学会对简单逻辑电路的基本运用。
四、时间安排
12月31日:Quartus II的安装及使用
1月4日:具体电路设计
1月5日:利用Quartus II进行电路设计和仿真
1月6日:调试,撰写课程设计说明书,答辩
系(教研室)主任签字:2012年1月9日
《计算机组成原理》课程设计任务书
器单元电路的设计与实现
指导教师
答疑教师
设计时间
设计要求
一、设计目的
1.对已学过的组成原理知识知识进行综合运用;
2.能按要求设计出具有一定功能的逻辑电路。
二、设计任务
1、已知余三编码由四位二进制组成,2十进制一位数的余三码进行相加要对最后的运算结果进行调整,若结果无进位,则从和数中减去3,若结果有进位,则在和数中加上3,设计具有此功能的加法逻辑电路。
2、利用Quartus II完成电路图的绘制,选择合适的逻辑电路和芯片。
3、对所设计的电路分析其性能优劣,并与所熟悉的其他电路做比较,总结各自优缺点。
4、利用软件进行仿真。
三、知识点掌握
掌握基本二进制加法器的逻辑电路;
利用已知的二进制加法器设计具有其他功能的逻辑电路。
掌握基本进位链的使用;
巩固计算机中减法是由加负数补码来实现的规则;

计算机组成原理实验及课程设计课程设计

计算机组成原理实验及课程设计课程设计

计算机组成原理实验及课程设计前言计算机组成原理课程是计算机科学与技术专业的核心课程,是培养学生计算机系统硬件方面的基础理论和实践技能的重要课程。

其中,计算机组成原理实验及课程设计是该课程的重要组成部分。

本文将围绕该课程设计展开,介绍该课程的实验及课程设计的内容、目的和实施方法。

实验内容计算机组成原理实验是学生对于课堂理论学习的巩固与实践,其内容包括以下主要实验:1. 数据通路实验数据通路实验是将计算机内部各功能部件(如寄存器、ALU、控制器等)之间的数据流动情况进行分析、了解与掌握。

实验采用VHDL硬件描述语言,通过Quartus II软件进行电路设计和仿真,最终通过FPGA验证实验结果。

2. 单周期CPU实验单周期CPU实验是针对数据通路实验的基础进行拓展,实现完整的计算机CPU 功能。

实验使用Verilog HDL描述单周期MIPS指令集CPU,掌握计算机指令的执行过程,了解指令执行的时间和机器周期、时序控制以及数据传输问题。

3. 多周期CPU实验多周期CPU实验是在单周期CPU实验的基础上进行深入拓展,实现更加高效、复杂的CPU功能。

实验使用Verilog HDL描述多周期MIPS指令集CPU,掌握多周期CPU的时序控制、流水线操作、数据冲突处理等相关问题,深入研究CPU性能优化技术。

4. 总线实验总线实验是针对计算机内部各个部件之间数据传输的技术问题进行研究,实验设计并实现一个通用总线结构。

实验中将涉及到总线的基础知识、总线协议的分析、总线结构的设计及实现,熟悉总线设计原理、总线的基本特性和数据交换的逻辑流程。

课程设计计算机组成原理课程设计是对于理论与实践知识的融合,其内容主要包括以下几部分:1. 计算机硬件设计通过计算机硬件设计,学生将在实践中巩固计算机硬件方面的知识,加深对计算机硬件工作原理的理解和掌握。

学生需要根据自己的设计目标和要求,按照计算机硬件设计的流程进行设计,最终完成指定任务。

计算机组成课程设计

计算机组成课程设计

计算机组成课程设计1. 简介计算机组成是计算机科学与技术专业中非常重要的一门课程,其内容涉及到计算机的最基本的构成原理和技术。

本文主要介绍了计算机组成课程设计所涉及到的内容和思路。

2. 设计目标计算机组成课程设计的目标是通过实现一个简易的计算机系统来加深对计算机组成原理的理解和掌握。

同时,该系统也兼具一些具体的使用功能,如简单的数学运算、常规的输入输出等。

在课程设计过程中,需要深入理解计算机的不同层次与模块之间的相互关联。

3. 设计实现3.1 总体设计在课程设计中,需要实现一个基于指令周期的基本计算机。

该计算机由控制器、存储器、输入输出设备、算术逻辑单元等组成。

其中,控制器负责指令译码和时序控制;存储器负责数据和指令存储;算术逻辑单元则是负责运算和逻辑控制的核心部分。

输入输出设备则是提供人机交互的界面。

3.2 具体实现具体而言,需要实现以下功能:•输入模块:通过读取键盘输入,将字符转化为计算机可识别的数据;•输出模块:将计算机计算结果输出到屏幕上显示;•存储器:存储指令和数据;•控制器:实现时序控制、指令译码等;•算术逻辑单元:负责计算和逻辑控制。

4. 设计流程在进行计算机组成课程设计时,需要遵循以下步骤:4.1 分析需求首先需要分析计算机的需求,包括计算机所能完成的功能,以及需要实现的自定义指令。

4.2 设计硬件根据需求分析,设计计算机硬件、决定基础电路板的器材类型以及电路搭建。

4.3 编写底层代码根据硬件设计完成后,进行底层代码的编写,包括各基本电路的操作码设计,程序编写等。

4.4 代码调试在完成底层代码的编写后,对代码进行调试以及理解硬件字节码逻辑,查看是否正确实现硬件的逻辑纽带及外界设备的交互。

4.5 系统测试完成调试后进行系统测试,包括指令测试、数据测试和IOR(V)测试等,以检测计算机组成系统的正确性和可靠性。

5. 总结计算机组成课程设计是计算机科学与技术专业中重要的一个课程,其设计目的是帮助学生深刻理解计算机原理以及对计算机组成逻辑的理解和掌握。

《计算机组成原理》教案

《计算机组成原理》教案

《计算机组成原理》教案一、教学目标1. 了解计算机硬件的基本组成和功能,理解计算机的工作原理。

2. 掌握计算机的各个组成部分的作用和相互关系,包括CPU、内存、输入输出设备等。

3. 理解计算机的指令系统,包括指令的格式、寻址方式和指令的执行过程。

4. 掌握计算机的存储系统,包括主存、缓存和外存等。

二、教学内容1. 计算机硬件的基本组成和功能2. 计算机的各个组成部分的作用和相互关系3. 计算机的指令系统4. 计算机的存储系统三、教学方法1. 采用讲授法,讲解计算机硬件的基本组成和功能,以及各个组成部分的作用和相互关系。

2. 通过案例分析,让学生理解计算机的指令系统,以及指令的执行过程。

3. 通过实验操作,让学生掌握计算机的存储系统,包括主存、缓存和外存等。

四、教学准备1. 教学PPT2. 计算机组成原理相关教材3. 实验设备五、教学过程1. 引入:通过讲解计算机的基本组成和功能,引起学生对计算机组成原理的兴趣。

2. 讲解:讲解计算机的各个组成部分的作用和相互关系,以及计算机的指令系统和存储系统。

3. 案例分析:通过案例分析,让学生理解计算机的指令系统,以及指令的执行过程。

4. 实验操作:让学生通过实验操作,掌握计算机的存储系统,包括主存、缓存和外存等。

5. 总结:对本节课的内容进行总结,强调重点和难点。

6. 作业布置:布置相关作业,巩固所学知识。

六、教学评估1. 课堂参与度评估:观察学生在课堂上的参与程度,包括提问、回答问题、讨论等。

2. 作业完成情况评估:检查学生完成作业的质量,包括理解程度、解答准确性等。

3. 实验报告评估:对学生的实验报告进行评估,包括实验操作的正确性、实验结果的分析和总结等。

七、教学反思在教学过程中,教师应不断反思自己的教学方法和效果,根据学生的反馈和实际情况进行调整。

教师也应鼓励学生提出问题和意见,促进教学相长。

八、教学拓展1. 计算机网络原理:介绍计算机网络的基本原理,包括网络结构、通信协议等。

计算机组成原理简明教程课程设计

计算机组成原理简明教程课程设计

计算机组成原理简明教程课程设计1. 课程背景计算机组成原理是计算机科学与技术专业的一门基础课程,课程内容涵盖计算机硬件的组成、运行原理和体系结构等方面,是学生们理解和掌握计算机硬件基本工作原理的必修课程。

本课程设计旨在提高学生对计算机硬件体系结构的理解和掌握,以及编写简单汇编程序的能力。

2. 课程目标本课程设计的目标为:1.学习计算机硬件组成的基本原理和体系结构;2.分析计算机系统的层次结构,并理解其运行原理;3.掌握8086汇编语言的基本指令和程序设计思路;4.提高学生逻辑思维和问题分析的能力。

3. 课程内容课程设计的内容包括以下几个方面:3.1 计算机硬件组成基本原理介绍计算机硬件的组成和功能,包括CPU、存储器、输入输出设备等硬件元件的功能及其相互关系。

3.2 计算机体系结构介绍计算机体系结构及其层次结构,包括指令集、寄存器、程序计数器、内存地址和数据总线等基本概念。

3.3 8086汇编语言介绍8086汇编语言的基本语法、指令系统和程序设计思路,通过实例演示学生如何编写简单汇编程序,例如计算机加法、乘法和阶乘等。

3.4 程序设计思路和问题分析通过实例分析,引导学生理解程序设计的思路,培养学生分析和解决问题的能力。

4. 课程安排本课程设计安排10周时间,每周3学时,总计30学时,具体课程安排如下表所示:课程内容学时安排计算机硬件组成基本原理2学时计算机体系结构3学时8086汇编语言12学时程序设计思路和问题分析13学时5. 教学方法本课程设计采用讲授、分析和实践相结合的教学方法,重点培养学生的实际操作能力。

同时,注重与企业实际需求的结合,引导学生合理应用所学知识。

6. 教学评价本课程设计的教学评价方式包括课堂考勤、作业实验、期中测验、期末实验和报告等几个方面,帮助学生巩固所学知识,发现和解决问题。

7. 结束语计算机组成原理是计算机专业的基础课程,对于提高学生的计算机理论基础、培养实际操作能力具有非常重要的意义。

计算机组成原理课程设计

计算机组成原理课程设计

计算机组成原理课程设计计算机组成原理课程设计一、课程背景计算机组成原理是一门涉及计算机硬件设计、结构原理及计算机工作原理的课程,通过本课程的学习,学生们可以掌握计算机系统的功能,掌握计算机系统结构及其各部分的功能特征等,为学习计算机学科的其他课程打下基础。

二、课程教学内容1. 计算机组成原理掌握计算机组成原理,以及不同分类方式下的计算机架构。

2. 计算机硬件系统的基础掌握计算机硬件系统的结构和功能,以及计算机硬件系统的技术特征和性能指标。

3. 掌握计算机组成与控制的基本原理掌握计算机组成原理,以及计算机控制的基本原理,包括计算机控制的思维方式和算法。

4. 计算机性能分析掌握计算机性能分析的基本知识,包括性能分析的概念、原理和方法及性能分析的工具等。

5. 计算机组成原理的实际应用通过课程设计,锻炼学生的计算机组成原理的实际应用能力,帮助学生在计算机设计过程中更好地使用计算机组成原理的技术。

三、课程教学安排1. 学习理论在本课程中,首先通过课堂讲解和实验室实习,学习相关理论知识,掌握计算机组成原理的基本概念、结构及性能分析的原理、计算机控制的基本原理及方法等。

2. 课程设计通过课程设计,锻炼学生的计算机组成原理的实际应用能力。

课程设计的内容包括:设计一个计算机系统结构,确定各部分的功能特点和性能指标;分析计算机性能,比较不同设计方案的优劣;分析计算机控制的基本原理,设计一个计算机控制系统;应用计算机组成原理设计一个系统等。

四、课程考核根据本课程实际教学情况,实行期中考试和期末考试相结合的考核制度,比重分别为50%和50%。

期中考试着重考查学生理论知识,期末考试着重考查学生的应用能力,两次考试比重相当,有助于引导学生良好的学习状态。

《计算机组成原理》教案

《计算机组成原理》教案

《计算机组成原理》教案教学目标:1.了解计算机的基本组成结构和工作原理;2.掌握计算机硬件组成部分的功能、特点和工作原理;3.了解计算机内部数据的表示和处理方式;4.掌握计算机软件与硬件之间的协作关系。

教学内容:1.计算机的基本组成结构和工作原理;2.计算机硬件组成部分的功能、特点和工作原理;3.计算机内部数据的表示和处理方式;4.计算机软件与硬件之间的协作关系。

教学过程:一、导入(10分钟)通过提问和引入相关问题,引起学生对计算机组成原理的兴趣,激发学习动机。

二、知识讲解(30分钟)1.计算机的基本组成结构和工作原理(10分钟)-计算机的五大组成部分:中央处理器、存储器、输入设备、输出设备、控制器;-计算机的工作原理:采用冯·诺依曼体系结构,以程序控制和数据流动为主要特征。

2.计算机硬件组成部分的功能、特点和工作原理(10分钟)-中央处理器(CPU):运算和控制的核心,包括运算器和控制器;-存储器:存储数据和程序的地方,包括主存储器和辅助存储器;-输入设备:将外部数据输入计算机,如键盘、鼠标、扫描仪等;-输出设备:将计算机处理结果输出到外部,如显示器、打印机、扬声器等;-控制器:指挥各部件进行协调工作,实现程序的执行。

3.计算机内部数据的表示和处理方式(5分钟)-二进制表示:计算机只能理解二进制代码;-补码表示:用于表示有符号数,简化了数据的加减运算;-浮点数表示:用于表示实数,采用指数和尾数的形式。

4.计算机软件与硬件之间的协作关系(5分钟)-系统软件:提供计算机基本功能和资源管理,如操作系统;-应用软件:为用户提供各类应用功能和服务,如文字处理软件、图像处理软件等;-编译器和解释器:将高级语言程序翻译成机器语言的工具。

三、实践操作与讨论(30分钟)1.分组讨论:请学生分组,针对不同的硬件组成部分,讨论其功能、特点和工作原理,并给出实际例子进行说明。

2.实际操作:将学生分组进行实际操作,通过拆装计算机硬件组件的过程,加深对计算机硬件组成部分的理解和认识。

计算机组成原理与设计课程设计

计算机组成原理与设计课程设计

计算机组成原理与设计课程设计导言计算机组成原理与设计是计算机专业的核心课程,主要介绍计算机系统硬件的组成和工作原理,以及计算机系统的设计和实现方法。

本课程的设计旨在帮助学生深入了解计算机系统硬件的基本原理和设计方法,为学生今后的学习和工作奠定坚实的基础。

课程目标本课程旨在使学生:•了解计算机系统硬件的基本组成和工作原理;•掌握计算机系统的主要部件的功能和原理;•具备设计和实现简单计算机系统的能力;•培养学生的系统思维和分析能力。

教学内容1.计算机系统的基本组成和工作原理1.计算机的基本层次结构2.计算机的工作原理3.计算机系统性能指标2.处理器的基本组成和工作原理1.处理器的指令执行过程2.处理器的运算单元和控制单元3.处理器的主要指令集和寻址方式3.存储器的基本组成和工作原理1.存储器的层次结构2.存储器的访问机制3.存储器的组织和管理4.输入输出设备的基本组成和工作原理1.输入输出设备的分类和特点2.输入输出设备与计算机的接口方式3.输入输出设备的控制方式5.计算机系统的设计和实现方法1.组成原理的设计流程和方法2.计算机系统的体系结构设计和性能分析3.计算机系统的从软件到硬件实现教学方法本课程采用理论教学与实验教学相结合的教学方法,通过理论讲解、设计实践、案例分析等方式,帮助学生深入理解计算机系统的原理和方法,掌握计算机系统的设计和实现技能。

1.理论讲解:讲解计算机系统的基本原理和设计方法;2.设计实践:设计和实现简单计算机系统,提升学生的实践能力;3.案例分析:分析和讨论实际计算机系统的结构和性能,培养学生的系统分析和思维能力。

实验内容1.计算机硬件的组装和调试实验1.了解计算机硬件的基本组成和工作原理;2.掌握计算机硬件的组装和调试方法;3.熟悉计算机硬件的故障排除和维护方法。

2.指令执行过程模拟实验1.理解指令的执行过程和执行时间;2.学习指令系统的设计方法;3.掌握指令执行过程的模拟方法,加深对计算机系统的理解和认识。

计算机组成原理课设

计算机组成原理课设

计算机组成原理课设计算机组成原理是计算机科学与技术的一门基础课程,旨在介绍和解释计算机的构成和工作原理。

它涵盖了计算机硬件和软件的各个方面,包括计算机的基本组成部分、数据的表示和处理、存储器和输入输出设备、指令集和指令执行、中央处理器和控制单元等。

在计算机组成原理课程设计中,学生通常需要完成一个实践性的课程项目,该项目旨在巩固和应用所学的理论知识,并锻炼学生的计算机系统设计和实现能力。

下面是一些常见的计算机组成原理课设问题及解释:1. 单周期CPU设计:单周期CPU是一种简单的CPU设计方法,每条指令的执行周期相同。

在课设中,你需要设计并实现一个单周期CPU,包括指令的取指、译码、执行和存储器访问等阶段,并能够正确执行一些基本的指令。

2. 流水线CPU设计:流水线CPU是一种高效的CPU设计方法,将指令的执行划分为多个阶段,使得每个阶段可以并行执行不同的指令。

在课设中,你需要设计并实现一个流水线CPU,包括指令的取指、译码、执行、访存和写回等阶段,并考虑流水线的数据冒险和控制冒险问题。

3. 存储器层次结构设计:存储器层次结构是计算机中用于存储数据的层次化结构,包括高速缓存、主存和辅助存储器等。

在课设中,你需要设计一个具有多级缓存的存储器层次结构,考虑缓存的替换策略和写策略,并通过性能评测来验证你的设计。

4. 控制器设计:控制器是计算机中的一个关键部件,用于控制指令的执行和数据的传输。

在课设中,你需要设计一个控制器,能够正确解析指令,生成各个部件的控制信号,并实现指令的执行和数据的传输。

以上仅是计算机组成原理课设中的一些常见问题,具体的课程要求可能会有所差异。

在进行课设时,你需要仔细研究课程教材和相关资料,理解和掌握相关的概念和理论知识,并结合实践进行设计和实现。

通过课设的完成,你可以更好地理解计算机组成原理的核心概念,并提升自己的计算机系统设计和实现能力。

计算机组成原理课程设计

计算机组成原理课程设计

计算机组成原理 课程设计一、课程目标知识目标:1. 让学生掌握计算机硬件的基本组成,包括CPU、内存、硬盘、输入输出设备等,并了解各部件的功能和工作原理。

2. 使学生了解并理解计算机的指令系统,包括指令的种类、格式和执行过程。

3. 帮助学生理解计算机的性能指标,如主频、缓存、运算速度等,并学会分析不同硬件配置对计算机性能的影响。

技能目标:1. 培养学生运用所学知识分析和解决实际问题的能力,例如根据需求选择合适的计算机硬件配置。

2. 提高学生的动手实践能力,通过组装和拆解计算机硬件,加深对计算机组成原理的理解。

3. 培养学生查阅资料、自主学习的能力,以便在课后拓展相关知识。

情感态度价值观目标:1. 培养学生对计算机科学的兴趣和热情,激发他们探索计算机技术发展的积极性。

2. 增强学生的团队合作意识,通过小组讨论和实践活动,学会与他人合作共同解决问题。

3. 引导学生关注计算机技术在生活中的应用,认识到科技对社会的推动作用,培养创新精神和责任感。

本课程针对高中年级学生,结合计算机组成原理的教学要求,将课程目标分解为具体的学习成果,以便进行后续的教学设计和评估。

课程性质为理论联系实践,注重培养学生的实际操作能力和创新思维。

在教学内容上,紧密联系课本知识,突出重点,使学生能够在实践中掌握计算机组成原理的相关知识。

二、教学内容1. 计算机硬件基本组成- 课本第二章:介绍CPU、内存、硬盘、输入输出设备等硬件的基本概念、功能及工作原理。

- 教学大纲:安排2课时,通过讲解、图示和实物展示,使学生了解各硬件部件的作用及相互关系。

2. 计算机指令系统- 课本第三章:讲解指令的种类、格式和执行过程,以及指令系统的发展。

- 教学大纲:安排2课时,通过实例分析、指令执行流程图解,帮助学生理解计算机指令系统的基本原理。

3. 计算机性能指标与硬件配置- 课本第四章:介绍计算机性能指标,分析不同硬件配置对计算机性能的影响。

- 教学大纲:安排2课时,结合实际案例,让学生学会分析硬件配置对计算机性能的影响,并能根据需求选择合适的硬件配置。

计算机组成原理课程设计

计算机组成原理课程设计

计算机组成原理课程设计
计算机组成原理课程设计
一、课程介绍
本课程主要介绍计算机组成原理,包括计算机的结构,功能,性能,介绍CPU,存储器,总线,输入/输出系统,及这些部件之间的工作关系。

二、课程目标
1. 学生能够认识计算机的概念、主要组成部分及功能。

2. 了解计算机基本工作原理,包括CPU,存储器,总线,输入/输出系统,以及这些部件之间的工作关系。

3. 掌握主要软件技术,包括汇编语言,编译语言,操作系统等。

三、内容安排
本课程包括以下主要内容:
1. 计算机基本概念:计算机的构成,计算机系统和计算机网络。

2. CPU:架构、指令集、运算法则和程序控制。

3. 存储器:存储器的类型、特性和性能。

4. 总线:总线的结构、架构及特点。

5. 输入输出系统:计算机系统的输入输出结构、设备接口、通信协议。

6. 汇编语言程序设计:汇编语言基本语法,程序编写及调试。

7. 编译语言程序设计:编译语言程序设计,程序语言、数据结构、程序编写及调试。

8. 操作系统程序设计:操作系统概念、基本功能结构,虚拟存储器,任务调度,工作管理,系统文件管理等。

四、课程评价
课程主要采用学习报告、小组讨论、实验报告等方式进行评价。

计算机组成原理课程设计完整版

计算机组成原理课程设计完整版

目录1 需求分析 (1)1.1课程设计目的 (1)1.2课程设计内容及要求 (1)1.3TDN-CM++计算机组成原理实验教学系统特点 (2)1.4微指令格式分析 (2)1.5指令译码电路分析 (5)1.6寄存器译码电路分析 (6)1.7时序分析 (7)2 总体设计 (9)2.1数据格式和机器指令描述 (9)2.2机器指令设计 (11)3 详细设计 (16)3.1控制台微程序流程的详细设计 (16)3.2运行微程序流程的详细设计 (19)4 实现阶段 (31)4.1所用模型机数据通路图及引脚接线图 (31)4.2 测试程序及结果 (33)心得体会 (35)参考资料 (36)1 需求分析1.1 课程设计目的本课程设计是计算机科学与技术专业重要的实践性教学环节之一,是在学生学习完《计算机组成原理》课程后进行的一次全面的综合设计。

目的是通过一个完整的8位指令系统结构(ISA)的设计和实现,加深对计算机组成原理课程内容的理解,建立起整机系统的概念,掌握计算机设计的基本方法,培养学生科学的工作作风和分析、解决实际问题的工作能力。

1.2 课程设计内容及要求基于TDN-CM++计算机组成原理实验教学系统,设计和实现一个8位指令系统结构(ISA),通过调试和运行,使设计的计算机系统能够完成指定的功能。

设计过程中要求考虑到以下各方面的问题:(1)指令系统风格(寄存器-寄存器,寄存器-存储器,存储器-存储器);(2)数据类型(无符号数,有符号数,整型,浮点型);(3)存储器划分(指令,数据);(4)寻址方式(立即数寻址,寄存器寻址,直接寻址等);(5)指令格式(单字节,双字节,多字节);(6)指令功能类别(算术/逻辑运算,存储器访问,寄存器操作,程序流控制,输入/输出)。

要求学生综合运用计算机组成原理、数字逻辑和汇编语言等相关课程的知识,理解和熟悉计算机系统的组成原理,掌握计算机主要功能部件的工作原理和设计方法,掌握指令系统结构设计的一般方法,掌握并运用微程序设计(Microprogramming)思想,在设计过程中能够发现、分析和解决各种问题,自行设计自己的指令系统结构(ISA)。

计算机组成原理课程设计3篇

计算机组成原理课程设计3篇

计算机组成原理课程设计第一篇:CPU设计计算机中心处理器(Central Processing Unit, CPU)是计算机的心脏,它负责执行指令,完成计算和控制计算机的所有运算和数据传输。

在计算机组成原理课程设计中,设计一块CPU是非常重要的一步。

CPU的设计与制作需要有一定的基础和经验。

首先,需要了解CPU的工作原理和基本组成,包括寄存器、ALU、控制器和数据通路等。

其次,需要掌握数字逻辑、硬件描述语言和电子工艺制作等知识和技能,以实现CPU的具体功能。

设计一块CPU可分为以下几个步骤:1.确定CPU的整体架构和指令集。

根据需求和实际应用,确定CPU的整体架构和指令集。

可以参考现有的CPU设计,并根据实际情况进行优化和改进。

2.编写CPU的硬件描述语言代码。

使用硬件描述语言(如VHDL)编写CPU的硬件描述语言代码,包括寄存器、ALU、控制器和数据通路等。

3.使用仿真工具进行验证。

使用仿真工具模拟CPU的运行过程,验证硬件描述语言代码的正确性和功能实现。

4.设计和制作PCB电路板。

将CPU的硬件描述语言代码转换为PCB电路板设计,并制作出实际的电路板。

5.测试CPU的性能和功能。

对制作出的CPU进行测试,验证其性能和功能可靠性。

CPU的设计和制作是计算机组成原理课程设计中非常关键的一步,它直接影响到完成整个计算机系统的可靠性和性能。

因此,设计和制作一块优秀的CPU需要耐心和实践经验的积累。

第二篇:存储器设计存储器是计算机系统中重要的组成部分,用于存储数据和程序。

存储器需要具有读、写、删等常见操作,设计一块性能良好和容量适中的存储器是计算机组成原理课程设计的核心内容之一。

存储器的设计和制作需要掌握数字电路设计、电子工艺制作和人机交互等知识和技能。

下面是存储器设计的主要步骤:1.确定存储器的类型和容量。

根据实际需要和使用场景,确定存储器的类型和容量,包括SRAM、DRAM、FLASH等。

2.设计存储器的电路和控制线路。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

计算机组成原理课程设计报告
设计题目:中央处理器--微程序控制器设计
目录
一、课题分析...........................................................
1.1、设计目的......................................................
1.2、设计任务......................................................
5
4.2微程序控制器的设计..............................................
4.2.1 设计要求.................................................
4.2.2 设计内容.................................................
4.3、指令周期流程图................................................
4.4、机器指令设计............................... 错误!未指定书签。

4.5系统组成框图 ...................................................
4.6、各部件功能....................................................
17
通过计算机组成原理理论课和几次实验的学习,编写相应的微程序,完成由基本单元电路构成一台基本模型机,再经过调试指令和模型机使其在微程序的控制下自动产生各部件单元的正常工作控制信号。

在设计基本模型机的实验基础上,完成这次的课程设计。

这次的课程设计将
能在微程序控制下自动产生各部件单元控制信号,实现特定指令的功能。

这里,计算机数据通路的控制将由微程序控制器来完成,CPU从内存中取出一条机器指令到指令执行结束的一个指令周期,全部由微指令组成的序列来完成,即一条机器指令对应一条微程序。

1.1、设计目的
1.3、课程设计题目分析
基于我们对简单和复杂模型机的理解和实验,我们对课程设计分析
1.3.1、课题设计准备
⑴、确定设计目标
确定所设计计算机的功能和用途。

⑵、确定指令系统
确定数据的表示格式、位数、指令的编码、类型、需要设计哪些指令及使用的寻址方式。

确定相对应指令所包含的微操作。

⑶、总体结构与数据通路
写入到控制存储器中的相应单元中。

⑺、组装、调试
在总调试前,先按功能模块进行组装和分调,因为只有各功能模块工作正常后,才能保证整机的正常运行。

1.3.2读/写操作的认识
机器指令码的前4位为操作码。

其中IN为单字长,其余为双字长指令,XXXXXXXX为addr对应的二进制地址码。

为了向RAM中装入程序和数据,检查写入是否正确,并能启动程序执行,还必须设计三
”时,
START
二、总体设计
2.1、设计原理
CPU由运算器(ALU)、微程序控制器(MC)、通用寄存器(RO)、指令寄存器(IR)、程序计数器(PC)和地址寄存器(AR)组成,如图1所示。

这个CPU在写入相应的微指令后,就具备了执行机器指令的功能,但是机器指令一般存放在主存当中,CPU必须和主存挂接后,才有实际的意义,所以还需要在该CPU的基础上增加一个主存和基本的输入输出部件,以构成一个简单的模型计算机。

OUT(R0) A->OUT 0111 0000
HLT NOP 1000 0000
均为单字节指令,********为addr对应的二进制地址码。

微程序控制器实验的指
令是通过手动给出的,现在要求CPU自动从存储器读取指令并执行。

三、方案比较
方案一:
(1) 选定CPU中所使用的产要器件;
以便
(2) 构成一个总框图草图,进行各逻辑部件之间的互相连接,即初步确定数据通路,使得由指令系统所包涵的数据通路都能实现,并满足技术指标的要求。

(3) 检验全部指令周期的操作序列,确定所需要的控制点和控制信号。

(4) 检查所设计的数据通路,尽可能降低成本,简化线路。

方案二:
⑴、用基本的五条机器指令编写实验程序。

程序如下:(地址和内容都是十六进制,机器指令的前4位为操作码。


地址内容助记符说明
8
08 00
0A 01 存储器0A地址单元的数据,可自定。

0B 求和结果保存在存储器0B地址单元。

微指令的微代码如下:(内容是十六进制)
十六进制地址八进制地址内容十六进制地址八进制地址内容
00 00 108101 0D 15 018202
01 01 82ED01 0E 16 0FE000
0B 13 8EED01 18 30 118A06
0C 14 96ED01
⑵、修改和编写实验仪RAM和ROM数据。

方案比较:
由于方案二更符合本次课程设计的内容,而且是基于我们平时做的基本模型机(包括简单模型机和复杂模型机两部分)的基础,所以做起来比较容易。

因此,我们选择了方案二。

4.2微程序控制器的设计
4.2.1 设计要求
1.将所编写的微程序存储到控制存储器中;
2.用单步执行微指令方式执行微程序并观测所发出的控制信号;
3.每组编写的程序必须有助记符表示的汇编语言源程序,并把源程序翻译成机器指令代码,并记录相关实验结果;
4. 提交微程序流程图、对应的二进制微代码表
图 2 指令周期流程4.4、机器指令设计
表三机器指令程序
BUS,
BUS,
BUS,低电平有效。

6.SW-BUS 微程序控制器的输出信号,控制8位数据开关SW7-SW0的开关量是否送到总线,低电平有效。

7.LDR0 微程序控制器的输出信号,控制把总线上的数据打入寄存器R0。

8.LDDR1 微程序控制器的输出信号,控制把总线上的数据打入运算暂存器DR1。

9.LDDR2 微程序控制器的输出信号,控制把总线上的数据打入运算暂存器DR2。

10.LDIR 微程序控制器的输出信号,控制把总线上的数据(指令)输入到指令寄存器IR中。

4.7微指令格式
表四微指令格式
4.8微程序流程图
图4 微程序流程图
4.9二进制代码表
表五二进制代码表
停机指令HLT
5.2课程设计的收获
在此次课程设计中,通过华瑞老师的悉心教导,让我从中获得了很多,一开始,我们这学期学习的是理论知识,动手能力很差,在课程设计中,老师让我们理论联系实际,不仅加强了理论知识,还提高了我们的动手能力,并更加深入的
了解了理论知识,特别是微程序控制器模型机的CPU设计相关知识的认识。

我从中学到的有设计指令流程和微程序控制器,以及他的具体操作和控制。

六、存在问题及改进建议
通过这次课程设计,加强了我们动手、思考和解决问题的能力。

我终于知道了只有亲自动手才能过学到知识的道理!
七、参考文献及相关网址
1.《计算机组成原理(第四版·立体化教材)》,白中英主编,08年1月第四版,科学出版社。

2.《计算机组成原理及系统结构实验指导书(V1.01)》,湖北众友科技实业股
份有限公司。

相关文档
最新文档