第11章光学作业题目讲解 马文蔚第六版
《物理学》第六版-马文蔚ppt 第11章 光学 11-11双折射
第十一章 光学
5
物理学 第六版
非常光线 晶 体中各方向上传播 速度不同,随方向 改变而改变.
ne
c ve
ne 为主折射率
11-11 双折射
光轴
o光波阵面
ve
vo
e 光波阵面
第十一章 光学
6
物理学 第六版
方解石晶体
光轴 在方解石这 类晶体中存在一个 特殊的方向,当光 线沿这一方向传播 时不发生双折射现 象.
11-11 双折射 *11-12 偏振光的干涉
*11-14 几何光学
第十一章 光学
9பைடு நூலகம்
(一般情况,非常光不在入射面内)
第十一章 光学
3
物理学
11-11 双折射
第六版
实验证明: O 光和 e 光均为偏振光.
AB
o
e D
C
oe
第十一章 光学
4
物理学
11-11 双折射
第六版
产生双折射的原因
寻常光线 在晶 体中各方向上传播 速度相同.
c no vo 常量
光轴
o光波阵面
ve
vo
e 光波阵面
物理学 第六版
一
11-11 双折射
双折射的寻常光和非寻常光
折射定律
i
双折射现象
方解石晶体
n
玻璃
sin i n 恒量
sin
波 动动光光学学
第十一章 光学
1
物理学
11-11 双折射
第六版
光通过双折射晶体
第十一章 光学
2
物理学
11-11 双折射
第六版
寻常光线 服从折射定律的光线
非常光线 不服从折射定律的光线
内蒙古科技大学马文蔚大学物理(下册)第六版答案解析
第九章振动习题:P37~39 1,2,3,4,5,6,7,8,16.9-4 一质点做简谐运动,周期为T,当它由平衡位置向X 轴正方向运动时,从1/2 最大位移处到最大位移处这段路程所需的时间( )A、T/12B、T/8C、T/6D、T/4分析(C),通过相位差和时间差的关系计算。
可设位移函数y=A*sin(ωt),其中ω=2π/T;当y=A/2, ω t1= π /6 ;当y=A, ω t2= π /2 ;△ t=t2-t1=[ π /(2 ω )]-[ π /(6 ω )]= π/(3ω)=T/69-回图(a)中所阿的是两个简谐运动的曲线,若这两个简谐j⅛动可叠加* 则合成的余弦振动的初相位为()3 1(A)-7W (B)—IT(C)F (D)O分析与解由振动曲线可以知道,这是两个同振动方向、同频率简谐运动, 它们的相位差是TT(即反相位)•运动方程分别为X I= Acos ωt利%2= -^-CoS(((;« + 瓷)・它们的振幅不同.对于这样两个简谐运动M用旋转欠量送,如图(b)很方便A求得合运动方程为x=ycos ωt.因而正确答案为(D).9-目有一个弹簧振子,振幅4 =2-0 X 10-2 m,周期T = 1.0 s,初相<p = 3ιτ∕4.试写出它的运动方程,并作出X - 1图I e - i图和a - t图.解因3=X∕T,则运动方程/ 2πf≡½cos(ωt + φ) =ACUS根据题中给出的数据得X = 2. 0 Xio '2cos( 2irf + O- 75τr) ( m ) 振子的速度和加速度分别为t) = dx∕(It = -4π × 10^2Rin(2ττt + 0. 75ττ) (m * s^,)(Z = ∂2χ∕df2 = - 8TT2X 10 ^2cos( 2τrt + 0. 75τT) ( m ∙ s ^2) X-I^V-C及Oft图如图所示.9若简谐运动方程为x=0. 10 cθs(201r∕+0. 25ιτ)(m),求:(1)振幅,频率、角频率、周期和初相;(2) t=2s时的位移、速度和加速度.解(1)将x-0. IoeOS(20Trf + 0. 25Ir) ( m)与为=Λυos(<wi + ¢)比较后可得;振幅4=0. 10叫角频率e =20π√j,初相管=0. 25TF,则周期T = 2ττ∕ω = O. I s,频率P = 1∕71=10 Hz.(2) t=2s时的位移、速度、加速度分别为X =0. 10co√40π +0.25Tr) =7.07 ×W2 m1; = djj/dt = -2<ττsin(4θιτ +O.25ττ) = -4, 44 m ∙ E-Ia= d2x∕dt2= -40Ir i COS(40π +0.25TT) = -2. 79 X IO2m ∙ s^29-冋某振动质点的X"曲线如图(a)所示,试求:(1)运动方程;(2)点P对应的相位;(3)到达点尸相应位置所需的时间.第十章波动习题:P89~93 1,2,3,4,5,6,12,16,25,10-6 在驻波中,两个相邻波节间各质点的振动()A.振幅相同,相位相同B.振幅不同,相位相同C.振幅相同,相位不同D.振幅不同,相位不同答案:波函数叠加检验.(C)振幅相同,相位相反优质. 参考. 资料IQ +冋已知一波动方程为y =0. 05sin( IO J ni -2χ)(m)I(1)求波长、频率、波速和周期;(2)说明-τ =0时方程的意义,并作图表示.解(1)将题给的波动方程改写为y =0. 05cos[ 10ιτ( i -x∕5ττ}~ ττ∕2]( m) 题1。
物理学简明教程马文蔚第1至8章课后习题答案详解
1 -1 质点作曲线运动,在时刻t 质点的位矢为r ,速度为v ,速率为v ,t 至(t +Δt )时间内的位移为Δr , 路程为Δs , 位矢大小的变化量为Δr ( 或称Δ|r |),平均速度为v ,平均速率为v . (1) 根据上述情况,则必有( )(A) |Δr |= Δs = Δr(B) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d s ≠ d r(C) |Δr |≠ Δr ≠ Δs ,当Δt →0 时有|d r |= d r ≠ d s(D) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d r = d s (2) 根据上述情况,则必有( )(A) |v |= v ,|v |= v (B) |v |≠v ,|v |≠ v(C) |v |= v ,|v |≠ v (D) |v |≠v ,|v |= v分析与解 (1) 质点在t 至(t +Δt )时间内沿曲线从P 点运动到P′点,各量关系如图所示, 其中路程Δs =PP′, 位移大小|Δr |=PP ′,而Δr =|r |-|r |表示质点位矢大小的变化量,三个量的物理含义不同,在曲线运动中大小也不相等(注:在直线运动中有相等的可能).但当Δt →0 时,点P ′无限趋近P 点,则有|d r |=d s ,但却不等于d r .故选(B).(2) 由于|Δr |≠Δs ,故ts t ΔΔΔΔ≠r ,即|v |≠v . 但由于|d r |=d s ,故ts t d d d d =r ,即|v |=v .由此可见,应选(C). 1 -2 一运动质点在某瞬时位于位矢r (x,y )的端点处,对其速度的大小有四种意见,即(1)t r d d ; (2)t d d r ; (3)t s d d ; (4)22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x . 下述判断正确的是( )(A) 只有(1)(2)正确 (B) 只有(2)正确(C) 只有(2)(3)正确 (D) 只有(3)(4)正确分析与解 tr d d 表示质点到坐标原点的距离随时间的变化率,在极坐标系中叫径向速率.通常用符号v r 表示,这是速度矢量在位矢方向上的一个分量;td d r 表示速度矢量;在自然坐标系中速度大小可用公式t s d d =v 计算,在直角坐标系中则可由公式22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=t y t x v 求解.故选(D). 1 -3 一个质点在做圆周运动时,则有( )(A) 切向加速度一定改变,法向加速度也改变(B) 切向加速度可能不变,法向加速度一定改变(C) 切向加速度可能不变,法向加速度不变(D) 切向加速度一定改变,法向加速度不变分析与解 加速度的切向分量a t起改变速度大小的作用,而法向分量a n 起改变速度方向的作用.质点作圆周运动时,由于速度方向不断改变,相应法向加速度的方向也在不断改变,因而法向加速度是一定改变的.至于a t是否改变,则要视质点的速率情况而定.质点作匀速率圆周运动时, a t恒为零;质点作匀变速率圆周运动时, a t为一不为零的恒量,当a t改变时,质点则作一般的变速率圆周运动.由此可见,应选(B).1 -4 质点的运动方程为23010t t x +-=和22015t t y -=,式中x ,y 的单位为m,t 的单位为s。
大学物理_马文蔚__第五版_下册_第九章到第十一章课后答案剖析
第九章振动9-1一个质点作简谐运动,振幅为A,起始时刻质点的位移为2A-,且向x轴正方向运动,代表此简谐运动的旋转矢量为()题9-1图分析与解(b)图中旋转矢量的矢端在x轴上投影点的位移为-A/2,且投影点的运动方向指向O x轴正向,即其速度的x分量大于零,故满足题意.因而正确答案为(b).9-2已知某简谐运动的振动曲线如图(a)所示,则此简谐运动的运动方程为()()()()()()()()()cmπ32π34cos2Dcmπ32π34cos2Bcmπ32π32cos2Ccmπ32π32cos2A⎥⎦⎤⎢⎣⎡+=⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡+=⎥⎦⎤⎢⎣⎡-=txtxtxtx题9-2图分析与解由振动曲线可知,初始时刻质点的位移为–A/2,且向x轴负方向运动.图(b)是其相应的旋转矢量图,由旋转矢量法可知初相位为3/π2.振动曲线上给出质点从–A/2 处运动到+A处所需时间为 1 s,由对应旋转矢量图可知相应的相位差3/π4Δ=,则角频率()1s3/π4Δ/Δ-==tω,故选(D).本题也可根据振动曲线所给信息,逐一代入方程来找出正确答案.9-3 两个同周期简谐运动曲线如图(a ) 所示, x 1 的相位比x 2 的相位( )(A ) 落后2π (B )超前2π (C )落后π (D )超前π 分析与解 由振动曲线图作出相应的旋转矢量图(b ) 即可得到答案为(b ).题9-3 图9-4 当质点以频率ν 作简谐运动时,它的动能的变化频率为( )(A ) 2v (B )v (C )v 2 (D )v 4 分析与解 质点作简谐运动的动能表式为()ϕωω+=t A m E k 222sin 21,可见其周期为简谐运动周期的一半,则频率为简谐运动频率ν的两倍.因而正确答案为(C ). 9-5 图(a )中所画的是两个简谐运动的曲线,若这两个简谐运动可叠加,则合成的余弦振动的初相位为( )(A ) π23 (B )π21 (C )π (D )0 分析与解 由振动曲线可以知道,这是两个同振动方向、同频率简谐运动,它们的相位差是π(即反相位).运动方程分别为t A x ωcos 1=和()πcos 22+=t ωA x .它们的振幅不同.对于这样两个简谐运动,可用旋转矢量法,如图(b )很方便求得合运动方程为t A x ωcos 21=.因而正确答案为(D ).题9-5 图9-6 有一个弹簧振子,振幅m 10022-⨯=.A ,周期s 01.=T ,初相4/π3=.试写出它的运动方程,并作出t x -图、t -v 图和t a -图.题9-6 图 分析 弹簧振子的振动是简谐运动.振幅A 、初相ϕ、角频率ω是简谐运动方程()ϕω+=t A x cos 的三个特征量.求运动方程就要设法确定这三个物理量.题中除A 、ϕ已知外,ω可通过关系式T ω/π2=确定.振子运动的速度和加速度的计算仍与质点运动学中的计算方法相同.解 因T ω/π2=,则运动方程()⎪⎭⎫ ⎝⎛+=+=t π2cos cos T A t ωA x 根据题中给出的数据得 ()()m 75.0π2cos 100.22πt x +⨯=-振子的速度和加速度分别为()()-12s m π75.0π2sin 10π4d /d ⋅+⨯-==-t y x v ()()-1222s m π75.0π2cos 10π8d /d ⋅+⨯-==-t y x a t x -、t -v 及t a -图如图所示.9-7 若简谐运动方程为()()m π25.0π20cos 10.0+=t x ,求:(1) 振幅、频率、角频率、周期和初相;(2)s 2=t 时的位移、速度和加速度.分析 可采用比较法求解.将已知的简谐运动方程与简谐运动方程的一般形式()ϕω+=t A x cos 作比较,即可求得各特征量.运用与上题相同的处理方法,写出位移、速度、加速度的表达式,代入t 值后,即可求得结果.解 (1) 将()()m π25.0π20cos 10.0+=t x 与()ϕω+=t A x cos 比较后可得:振幅A =0.10m ,角频率1s π20-=ω,初相ϕ=0.25π,则周期s 1.0/π2==ωT ,频率Hz /1T =v .(2)s 2=t 时的位移、速度、加速度分别为 ()m 1007.7π25.0π40cos 10.02-⨯=+=t x()-1s m 44.4π25.0π40sin π2d /d ⋅-=+-==t x v()-22222s m 1079.2π25.0π40cos π40d /d ⋅⨯-=+-==t x a9-8 一远洋货轮,质量为m ,浮在水面时其水平截面积为S .设在水面附近货轮的水平截面积近似相等,水的密度为ρ,且不计水的粘滞阻力,证明货轮在水中作振幅较小的竖直自由运动是简谐运动,并求振动周期.分析 要证明货轮作简谐运动,需要分析货轮在平衡位置附近上下运动时,它所受的合外力F 与位移x 间的关系,如果满足kx F -=,则货轮作简谐运动.通过kx F -=即可求得振动周期k m ωT /π2/π2==.证 货轮处于平衡状态时[图(a )],浮力大小为F =mg .当船上下作微小振动时,取货轮处于力平衡时的质心位置为坐标原点O ,竖直向下为x 轴正向,如图(b )所示.则当货轮向下偏移x 位移时,受合外力为∑'+=F P F其中F '为此时货轮所受浮力,其方向向上,大小为gSx mg gSx F F ρρ+=+='题9-8 图则货轮所受合外力为kx gSx F P F -=-='-=∑ρ式中gS k ρ=是一常数.这表明货轮在其平衡位置上下所作的微小振动是简谐运动.由∑=t x m F 22d d /可得货轮运动的微分方程为 0d d 22=+m gSx t x //ρ 令m gS /ρω=2,可得其振动周期为gS ρm πωT /2/π2==9-9 设地球是一个半径为R 的均匀球体,密度33m kg 1055-⋅⨯=.ρ.现假定沿直径凿通一条隧道,若有一质量为m 的质点在此隧道内作无摩擦运动.(1) 证明此质点的运动是简谐运动;(2) 计算其周期.题9-9 图分析 证明方法与上题相似.分析质点在隧道内运动时的受力特征即可.证 (1) 取图所示坐标.当质量为m 的质点位于x 处时,它受地球的引力为2x m m G F x -= 式中G 为引力常量,x m 是以x 为半径的球体质量,即3/π43x ρm x =.令3/π4Gm ρk =,则质点受力kx Gmx ρF -==3/π4因此,质点作简谐运动.(2) 质点振动的周期为s 1007.5/π3/π23⨯===ρG k m T9-10 如图(a )所示,两个轻弹簧的劲度系数分别为1k 、2k .当物体在光滑斜面上振动时.(1) 证明其运动仍是简谐运动;(2) 求系统的振动频率.题9-10 图分析 从上两题的求解知道,要证明一个系统作简谐运动,首先要分析受力情况,然后看是否满足简谐运动的受力特征(或简谐运动微分方程).为此,建立如图(b )所示的坐标.设系统平衡时物体所在位置为坐标原点O ,Ox 轴正向沿斜面向下,由受力分析可知,沿Ox 轴,物体受弹性力及重力分力的作用,其中弹性力是变力.利用串联时各弹簧受力相等,分析物体在任一位置时受力与位移的关系,即可证得物体作简谐运动,并可求出频率υ.证 设物体平衡时两弹簧伸长分别为1x 、2x ,则由物体受力平衡,有2211sin x k x k mg ==θ (1)按图(b )所取坐标,物体沿x 轴移动位移x 时,两弹簧又分别被拉伸1x '和2x ',即21x x x '+'=.则物体受力为()()111222sin sin x x k mg x x k mg F '+-='+-=θθ (2) 将式(1)代入式(2)得1122x k x k F '-='-= (3) 由式(3)得11k F x /-='、22k F x /-=',而21x x x '+'=,则得到 ()[]kx x k k k k F -=+-=2121/式中()2121k k k k k +=/为常数,则物体作简谐运动,振动频率 ()m k k k k πm k ωv 2121/21/π21π2/+=== 讨论 (1) 由本题的求证可知,斜面倾角θ 对弹簧是否作简谐运动以及振动的频率均不产生影响.事实上,无论弹簧水平放置、斜置还是竖直悬挂,物体均作简谐运动.而且可以证明它们的频率相同,均由弹簧振子的固有性质决定,这就是称为固有频率的原因.(2) 如果振动系统如图(c )(弹簧并联)或如图(d )所示,也可通过物体在某一位置的受力分析得出其作简谐运动,且振动频率均为()m k k v /π2121+=,读者可以一试.通过这些例子可以知道,证明物体是否作简谐运动的思路是相同的.*9-11 在如图(a )所示装置中,一劲度系数为k 的轻弹簧,一端固定在墙上,另一端连接一质量为1m 的物体A ,置于光滑水平桌面上.现通过一质量m 、半径为R 的定滑轮B (可视为匀质圆盘)用细绳连接另一质量为2m 的物体C .设细绳不可伸长,且与滑轮间无相对滑动,求系统的振动角频率.题9-11 图分析 这是一个由弹簧、物体A 、C 和滑轮B 组成的简谐运动系统.求解系统的振动频率可采用两种方法.(1) 从受力分析着手.如图(b )所示,设系统处于平衡状态时,与物体A 相连的弹簧一端所在位置为坐标原点O ,此时弹簧已伸长0x ,且g m kx 20=.当弹簧沿x O 轴正向从原点O 伸长x 时,分析物体A 、C 及滑轮B 的受力情况,并分别列出它们的动力学方程,可解得系统作简谐运动的微分方程.(2)从系统机械能守恒着手.列出系统机械能守恒方程,然后求得系统作简谐运动的微分方程.解1 在图(b )的状态下,各物体受力如图(c )所示.其中()i F 0x x k +-=.考虑到绳子不可伸长,对物体A 、B 、C 分别列方程,有()22101d d tx m x x k F T =+-= (1) 22222d d tx m F g m T =- (2) ()2212d d 21tx mR J R F F T T ==-α (3) g m kx 20= (4)方程(3)中用到了22T T F F '=、11T T F F '=、22/mR J =及R a /=α.联立式(1) ~式(4) 可得 02d d 2122=+++x m m m k t x / (5) 则系统振动的角频率为 ()221//m m m k ++=ω解2 取整个振动装置和地球为研究系统,因没有外力和非保守内力作功,系统机械能守恒.设物体平衡时为初始状态,物体向右偏移距离x (此时速度为v 、加速度为a )为末状态,则由机械能守恒定律,有()20222212021212121x x k ωJ m m gx m E +++++-=v v 在列出上述方程时应注意势能(重力势能和弹性势能)零点的选取.为运算方便,选初始状态下物体C 所在位置为重力势能零点;弹簧原长时为弹性势能的零点.将上述方程对时间求导得()tx x x k t ωωJ t m t m g m d d d d d d d d 00212+++++-=v v v vv 将22/mR J =,v =R ω,22d /d d /d t x t =v 和02kx g m = 代入上式,可得 02d d 2122=+++x m m m k t x / (6) 式(6)与式(5)相同,表明两种解法结果一致.9-12 一放置在水平桌面上的弹簧振子,振幅A =2.0 ×10-2 m ,周期T =0.50s.当t =0 时,(1) 物体在正方向端点;(2) 物体在平衡位置、向负方向运动;(3) 物体在x =-1.0×10-2m 处, 向负方向运动; (4) 物体在x =-1.0×10-2 m 处,向正方向运动.求以上各种情况的运动方程.分析 在振幅A 和周期T 已知的条件下,确定初相φ是求解简谐运动方程的关键.初相的确定通常有两种方法.(1) 解析法:由振动方程出发,根据初始条件,即t =0 时,x =x 0 和v =v 0 来确定φ值.(2) 旋转矢量法:如图(a )所示,将质点P 在Ox 轴上振动的初始位置x 0 和速度v 0 的方向与旋转矢量图相对应来确定φ.旋转矢量法比较直观、方便,在分析中常采用.题9-12 图解 由题给条件知A =2.0 ×10-2 m ,1s π4/2-==T ω,而初相φ可采用分析中的两种不同方法来求.解析法:根据简谐运动方程()ϕω+=t A x cos ,当0t =时有()ϕω+=t A x cos 0,sin 0ωA -=v .当(1)A x =0时,1cos 1=ϕ,则01=ϕ;(2)00=x 时,0cos 2=ϕ,2π2±=,因00<v ,取2π2=; (3)m 100120-⨯=.x 时,50cos 3.=ϕ,3π3±= ,由00<v ,取3π3=; (4)m 100120-⨯-=.x 时,50cos 4.-=ϕ,3ππ4±= ,由00>v ,取3π44=. 旋转矢量法:分别画出四个不同初始状态的旋转矢量图,如图(b )所示,它们所对应的初相分别为01=ϕ,2π2=,3π3=,3π44=. 振幅A 、角频率ω、初相φ均确定后,则各相应状态下的运动方程为(1)()m tπcos4100.22-⨯=x(2)()()m /2πt π4cos 100.22+⨯=-x(3)()()m /3πt π4cos 100.22+⨯=-x(4)()()m /3π4t π4cos 100.22+⨯=-x 9-13 有一弹簧, 当其下端挂一质量为m 的物体时, 伸长量为9.8 ×10-2 m .若使物体上、下振动,且规定向下为正方向.(1) 当t =0 时,物体在平衡位置上方8.0 ×10-2 m 处,由静止开始向下运动,求运动方程.(2) 当t =0 时,物体在平衡位置并以0.6m·s -1的速度向上运动,求运动方程.分析 求运动方程,也就是要确定振动的三个特征物理量A 、ω和φ.其中振动的角频率是由弹簧振子系统的固有性质(振子质量m 及弹簧劲度系数k )决定的,即k m ω=/,k 可根据物体受力平衡时弹簧的伸长来计算;振幅A 和初相φ需要根据初始条件确定.题9-13 图解 物体受力平衡时,弹性力F 与重力P 的大小相等,即F =mg .而此时弹簧的伸长量Δl =9.8 ×10-2m .则弹簧的劲度系数k =F /Δl =mg /Δl .系统作简谐运动的角频率为1s 10-=∆==l g m k //ω(1) 设系统平衡时,物体所在处为坐标原点,向下为x 轴正向.由初始条件t =0 时,x 10 =8.0 ×10-2 m 、v 10 =0 可得振幅()m 10082210210-⨯=+=./ωv x A ;应用旋转矢量法可确定初相π1=[图(a )].则运动方程为()()m π10t cos 100.821+⨯=-x(2)t =0 时,x 20 =0、v 20 =0.6 m·s -1 ,同理可得()m 100622202202-⨯=+=./ωv x A ;2/π2=[图(b )].则运动方程为()()m π5.010t cos 100.622+⨯=-x9-14 某振动质点的x -t 曲线如图(a )所示,试求:(1) 运动方程;(2) 点P 对应的相位;(3) 到达点P 相应位置所需的时间.分析 由已知运动方程画振动曲线和由振动曲线求运动方程是振动中常见的两类问题.本题就是要通过x -t 图线确定振动的三个特征量A 、ω和0ϕ,从而写出运动方程.曲线最大幅值即为振幅A ;而ω、0ϕ通常可通过旋转矢量法或解析法解出,一般采用旋转矢量法比较方便.解 (1) 质点振动振幅A =0.10 m.而由振动曲线可画出t 0 =0 和t 1 =4 s时旋转矢量,如图(b ) 所示.由图可见初相3/π0-=(或3/π50=),而由()3201//ππω+=-t t 得1s 24/π5-=ω,则运动方程为 ()m 3/π24π5cos 10.0⎪⎭⎫ ⎝⎛-=t x题9-14 图(2) 图(a )中点P 的位置是质点从A /2 处运动到正向的端点处.对应的旋转矢量图如图(c ) 所示.当初相取3/π0-=时,点P 的相位为()000=-+=p p t ωϕϕ(如果初相取成3/π50=,则点P 相应的相位应表示为()π200=-+=p p t ω. (3) 由旋转矢量图可得()3/π0=-p t ω,则s 61.=p t .9-15 作简谐运动的物体,由平衡位置向x 轴正方向运动,试问经过下列路程所需的最短时间各为周期的几分之几? (1) 由平衡位置到最大位移处;(2) 由平衡位置到x =A /2 处;(3) 由x =A /2处到最大位移处.解 采用旋转矢量法求解较为方便.按题意作如图所示的旋转矢量图,平衡位置在点O .(1) 平衡位置x 1 到最大位移x 3 处,图中的旋转矢量从位置1 转到位置3,故2/πΔ1=,则所需时间 411//T t =∆=∆ωϕ(2) 从平衡位置x 1 到x 2 =A /2 处,图中旋转矢量从位置1转到位置2,故有6/πΔ2=,则所需时间 1222//T t =∆=∆ωϕ(3) 从x 2 =A /2 运动到最大位移x 3 处,图中旋转矢量从位置 2 转到位置3,有3/πΔ3=,则所需时间633//T t =∆=∆ωϕ题9-15 图9-16 在一块平板下装有弹簧,平板上放一质量为1.0 kg 的重物.现使平板沿竖直方向作上下简谐运动,周期为0.50s,振幅为2.0×10-2 m .求:(1) 平板到最低点时,重物对平板的作用力;(2) 若频率不变,则平板以多大的振幅振动时,重物会跳离平板? (3) 若振幅不变,则平板以多大的频率振动时, 重物会跳离平板?题9-16 图分析 按题意作示意图如图所示.物体在平衡位置附近随板作简谐运动,其间受重力P 和板支持力F N 作用,F N 是一个变力.按牛顿定律,有22d d ty m F mg F N =-= (1) 由于物体是随板一起作简谐运动,因而有()ϕωω+-==t A ty a cos d d 222,则式(1)可改写为()ϕωω++=t mA mg F N cos 2 (2)(1) 根据板运动的位置,确定此刻振动的相位ϕω+t ,由式(2)可求板与物体之间的作用力.(2) 由式(2)可知支持力N F 的值与振幅A 、角频率ω和相位(ϕω+t )有关.在振动过程中,当π=+t ω时N F 最小.而重物恰好跳离平板的条件为N F =0,因此由式(2)可分别求出重物跳离平板所需的频率或振幅.解 (1) 由分析可知,重物在最低点时,相位ϕω+t =0,物体受板的支持力为()N 9612222./=+=+=t mA mg mA mg F N πω重物对木块的作用力N F ' 与N F 大小相等,方向相反. (2) 当频率不变时,设振幅变为A ′.根据分析中所述,将N F =0及π=+t ω代入分析中式(2),可得m 102.6π4//2222-⨯==='gT ωm mg A(3) 当振幅不变时,设频率变为v '.同样将N F =0及π=+t ω代入分析中式(2),可得Hz 52.3/π21π22==='mA mg ωv 9-17 两质点作同频率、同振幅的简谐运动.第一个质点的运动方程为()ϕω+=t A x cos 1,当第一个质点自振动正方向回到平衡位置时,第二个质点恰在振动正方向的端点,试用旋转矢量图表示它们,并求第二个质点的运动方程及它们的相位差.题9-17 图解 图示为两质点在时刻t 的旋转矢量图,可见第一个质点M 的相位比第二个质点N 的相位超前2/π,即它们的相位差Δφ=π/2.故第二个质点的运动方程应为()2cos 2/πϕω-+=t A x9-18 图(a )为一简谐运动质点的速度与时间的关系曲线,且振幅为2cm ,求(1) 振动周期;(2) 加速度的最大值;(3) 运动方程.分析 根据v -t 图可知速度的最大值v max ,由v max =Aω可求出角频率ω,进而可求出周期T 和加速度的最大值a max =Aω2 .在要求的简谐运动方程x =A cos (ωt +φ)中,因为A 和ω已得出,故只要求初相位φ即可.由v -t 曲线图可以知道,当t =0 时,质点运动速度v 0 =v max /2 =Aω/2,之后速度越来越大,因此可以判断出质点沿x 轴正向向着平衡点运动.利用v 0 =-Aωsinφ就可求出φ.解 (1) 由ωA v =max 得1s 51-=.ω,则s 2.4/π2==ωT(2)222max s m 1054--⋅⨯==.ωA a(3) 从分析中已知2/sin 0ωA ωA =-=v ,即21sin /-=ϕ6/π5,6/π--=因为质点沿x 轴正向向平衡位置运动,则取6/π5-=,其旋转矢量图如图(b )所示.则运动方程为 ()()cm 6/π55.1cos 2-=t x题9-18 图9-19 有一单摆,长为1.0m ,最大摆角为5°,如图所示.(1) 求摆的角频率和周期;(2) 设开始时摆角最大,试写出此单摆的运动方程;(3) 摆角为3°时的角速度和摆球的线速度各为多少?题9-19 图分析 单摆在摆角较小时(θ<5°)的摆动,其角量θ与时间的关系可表示为简谐运动方程()ϕωθθ+=t cos max ,其中角频率ω仍由该系统的性质(重力加速度g 和绳长l )决定,即l g /=ω.初相φ与摆角θ,质点的角速度与旋转矢量的角速度(角频率)均是不同的物理概念,必须注意区分.解 (1) 单摆角频率及周期分别为s 01.2/π2;s 13.3/1====-ωT l g ω(2) 由0=t 时o max 5==θθ可得振动初相0=ϕ,则以角量表示的简谐运动方程为t θ13.3cos 36π=(3) 摆角为3°时,有()60cos max ./==+θθϕωt ,则这时质点的角速度为()()1max 2max max s2180800cos 1sin /d d --=-=+--=+-=..ωθϕωωθϕωωθθt t t线速度的大小为 1s 2180/d d --==.t l v θ讨论 质点的线速度和角速度也可通过机械能守恒定律求解,但结果会有极微小的差别.这是因为在导出简谐运动方程时曾取θθ≈sin ,所以,单摆的简谐运动方程仅在θ 较小时成立.9-20 为了测月球表面的重力加速度,宇航员将地球上的“秒摆”(周期为2.00s),拿到月球上去,如测得周期为4.90s,则月球表面的重力加速度约为多少? (取地球表面的重力加速度2E s m 809-⋅=.g )解 由单摆的周期公式g l T /π2=可知21T g /∝,故有2M 2E E M T T g g //=,则月球的重力加速度为 ()2E 2M E M s m 631-⋅==./g T T g9-21 一飞轮质量为12kg ,内缘半径r =0.6m,如图所示.为了测定其对质心轴的转动惯量,现让其绕内缘刃口摆动,在摆角较小时,测得周期为2.0s ,试求其绕质心轴的转动惯量.9-21 题图分析 飞轮的运动相当于一个以刃口为转轴的复摆运动,复摆振动周期为c /π2mgl J T =,因此,只要知道复摆振动的周期和转轴到质心的距离c l ,其以刃口为转轴的转动惯量即可求得.再根据平行轴定理,可求出其绕质心轴的转动惯量.解 由复摆振动周期c /π2mgl J T =,可得22π4/mgrT J =.则由平行轴定理得 222220m kg 8324⋅=-=-=./mr mgrT mr J J π9-22 如图(a )所示,质量为1.0 ×10-2kg 的子弹,以500m·s -1的速度射入木块,并嵌在木块中,同时使弹簧压缩从而作简谐运动,设木块的质量为4.99 kg ,弹簧的劲度系数为8.0 ×103 N·m -1 ,若以弹簧原长时物体所在处为坐标原点,向左为x 轴正向,求简谐运动方程.题9-22 图分析 可分为两个过程讨论.首先是子弹射入木块的过程,在此过程中,子弹和木块组成的系统满足动量守恒,因而可以确定它们共同运动的初速度v 0 ,即振动的初速度.随后的过程是以子弹和木块为弹簧振子作简谐运动.它的角频率由振子质量m 1 +m 2 和弹簧的劲度系数k 确定,振幅和初相可根据初始条件(初速度v 0 和初位移x 0 )求得.初相位仍可用旋转矢量法求.解 振动系统的角频率为 ()121s 40-=+=m m k /ω由动量守恒定律得振动的初始速度即子弹和木块的共同运动初速度v 0 为()12110s m 01-⋅=+=.m m v m v又因初始位移x 0 =0,则振动系统的振幅为 ()m 105.2//202020-⨯==+=ωωx A v v图(b )给出了弹簧振子的旋转矢量图,从图中可知初相位2/π0=,则简谐运动方程为()()m π0.540cos 105.22+⨯=-t x9-23 如图(a )所示,一劲度系数为k 的轻弹簧,其下挂有一质量为m 1 的空盘.现有一质量为m 2 的物体从盘上方高为h 处自由落入盘中,并和盘粘在一起振动.问:(1) 此时的振动周期与空盘作振动的周期有何不同? (2) 此时的振幅为多大?题9-23 图分析 原有空盘振动系统由于下落物体的加入,振子质量由m 1 变为m 1 + m 2,因此新系统的角频率(或周期)要改变.由于()2020/ωx A v +=,因此,确定初始速度v 0 和初始位移x 0 是求解振幅A 的关键.物体落到盘中,与盘作完全非弹性碰撞,由动量守恒定律可确定盘与物体的共同初速度v 0 ,这也是该振动系统的初始速度.在确定初始时刻的位移x 0 时,应注意新振动系统的平衡位置应是盘和物体悬挂在弹簧上的平衡位置.因此,本题中初始位移x 0 ,也就是空盘时的平衡位置相对新系统的平衡位置的位移.解 (1) 空盘时和物体落入盘中后的振动周期分别为k m ωT /π2/π21== ()k m m ωT /π2/π221+='='可见T ′>T ,即振动周期变大了.(2) 如图(b )所示,取新系统的平衡位置为坐标原点O .则根据分析中所述,初始位移为空盘时的平衡位置相对粘上物体后新系统平衡位置的位移,即g km g k m m k g m l l x 2211210-=+-=-= 式中l 1 =m 1/k 为空盘静止时弹簧的伸长量,l 2 =(m 1 +m 2)/k 为物体粘在盘上后,静止时弹簧的伸长量.由动量守恒定律可得振动系统的初始速度,即盘与物体相碰后的速度gh m m m m m m 22122120+=+=v v 式中gh 2=v 是物体由h 高下落至盘时的速度.故系统振动的振幅为()212202021/m m kh k g m ωx A ++='+=v 本题也可用机械能守恒定律求振幅A .9-24 如图所示,劲度系数为k 的轻弹簧,系一质量为m 1 的物体,在水平面上作振幅为A 的简谐运动.有一质量为m 2 的粘土,从高度h 自由下落,正好在(a )物体通过平衡位置时,(b )物体在最大位移处时,落在物体上.分别求:(1)振动周期有何变化? (2)振幅有何变化?题9-24图分析 谐振子系统的周期只与弹簧的劲度系数和振子的质量有关.由于粘土落下前后,振子的质量发生了改变,因此,振动周期也将变化.至于粘土如何落下是不影响振动周期的.但是,粘土落下时将改变振动系统的初始状态,因此,对振幅是有影响的.在粘土落到物体上的两种不同情况中,系统在水平方向的动量都是守恒的.利用动量守恒定律可求出两种情况下系统的初始速度,从而利用机械能守恒定律(或公式()2020/ωx A v +=)求得两种情况下的振幅.解 (1) 由分析可知,在(a )、(b )两种情况中,粘土落下前后的周期均为 k m ωT /π2/π21==()k m m ωT /π2/π221+='='物体粘上粘土后的周期T ′比原周期T 大.(2) (a ) 设粘土落至物体前后,系统振动的振幅和物体经过平衡位置时的速度分别为A 、v 和A ′、v ′.由动量守恒定律和机械能守恒定律可列出如下各式2/2/212v m A k =' (1)()2/2/2212v '+='m m A k (2)()v v '+=211m m m (3)联立解上述三式,可得()A m m m A 211+='/即A ′<A ,表明增加粘土后,物体的振幅变小了.(b ) 物体正好在最大位移处时,粘土落在物体上.则由动量守恒定律知它们水平方向的共同速度v ′=m 1v /(m 1 +m 2 ) =0,因而振幅不变,即A ′=A9-25 质量为0.10kg 的物体,以振幅1.0×10-2 m 作简谐运动,其最大加速度为4.0 m·s -1 求:(1) 振动的周期;(2) 物体通过平衡位置时的总能量与动能;(3) 物体在何处其动能和势能相等? (4) 当物体的位移大小为振幅的一半时,动能、势能各占总能量的多少?分析 在简谐运动过程中,物体的最大加速度2max ωA a =,由此可确定振动的周期T .另外,在简谐运动过程中机械能是守恒的,其中动能和势能互相交替转化,其总能量E =kA 2/2.当动能与势能相等时,E k =E P =kA 2/4.因而可求解本题.解 (1) 由分析可得振动周期s 314.0/π2/π2max ===a A ωT(2) 当物体处于平衡位置时,系统的势能为零,由机械能守恒可得系统的动能等于总能量,即J 100221213max 22k -⨯====.mAa mA E E ω(3) 设振子在位移x 0 处动能与势能相等,则有42220//kA kx =得 m 100772230-⨯±=±=./A x(4) 物体位移的大小为振幅的一半(即2x A =/)时的势能为4221212P /E A k kx E =⎪⎭⎫ ⎝⎛==则动能为 43P K /E E E E =-= 9-26 一氢原子在分子中的振动可视为简谐运动.已知氢原子质量m =1.68 ×10-27 Kg ,振动频率υ=1.0 ×1014 Hz ,振幅A =1.0 ×10-11m.试计算:(1) 此氢原子的最大速度;(2) 与此振动相联系的能量.解 (1) 简谐运动系统中振子运动的速度v =-A ωsin (ωt +φ),故氢原子振动的最大速度为12max s m 1028.62-⋅⨯===A πA ωv v(2) 氢原子的振动能量J 1031.32/202max -⨯==v m E9-27 质量m =10g 的小球与轻弹簧组成一振动系统, 按()()cm 3/ππ85.0+=t x 的规律作自由振动,求(1) 振动的角频率、周期、振幅和初相;(2) 振动的能量E ;(3) 一个周期内的平均动能和平均势能.解 (1) 将()()cm 3/ππ85.0+=t x 与()ϕω+=t A x cos 比较后可得:角频率1s π8-=ω,振幅A =0.5cm ,初相φ=π/3,则周期T =2π/ω=0.25 s(2) 简谐运动的能量 J 1090721522-⨯==.ωmA E (3) 简谐运动的动能和势能分别为()ϕωω+=t mA E K 222sin 21 ()ϕωω+=t mA E P 222cos 21 则在一个周期中,动能与势能对时间的平均值分别为()J 109534d sin 2115220222-⨯==+=⎰.ωϕωωmA t t mA T E T K ()J 109534d cos 2115220222-⨯==+=⎰.ωϕωωmA t t mA T E T P 9-28 已知两同方向、同频率的简谐运动的运动方程分别为()()m π75.010cos 05.01+=t x ;()()m π25.010cos 06.02+=t x .求:(1) 合振动的振幅及初相;(2) 若有另一同方向、同频率的简谐运动()()m 10cos 07033ϕ+=t x .,则3ϕ为多少时,x 1 +x 3 的振幅最大? 又3ϕ 为多少时,x 2 +x 3 的振幅最小?题9-28 图分析 可采用解析法或旋转矢量法求解.由旋转矢量合成可知,两个同方向、同频率简谐运动 的合成仍为一简谐运动,其角频率不变;合振动的振幅()12212221cos 2ϕϕ-++=A A A A A ,其大小与两个分振动的初相差12ϕϕ-相关.而合振动的初相位()()[]22112211cos cos sin sin arctan ϕϕϕϕϕA A A A ++=/解 (1) 作两个简谐运动合成的旋转矢量图(如图).因为2/πΔ12-=-=,故合振动振幅为 ()m 1087cos 2212212221-⨯=-++=.ϕϕA A A A A合振动初相位()()[]rad 1.48arctan11cos cos sin sin arctan 22112211==++=ϕϕϕϕϕA A A A /(2) 要使x 1 +x 3 振幅最大,即两振动同相,则由π2Δk =得,...2,1,0,π75.0π2π213±±=+=+=k k k要使x 1 +x 3 的振幅最小,即两振动反相,则由()π12Δ+=k 得 (),...2,1,0,π25.1π2π1223±±=+=++=k k k9-29 手电筒和屏幕质量均为m ,且均被劲度系数为k 的轻弹簧悬挂于同一水平面上,如图所示.平衡时,手电筒的光恰好照在屏幕中心.设手电筒和屏幕相对于地面上下振动的表达式分别为()11cos ϕω+=t A x 和()22cos ϕω+=t A x .试求在下述两种情况下,初相位φ1 、φ2 应满足的条件:(1) 光点在屏幕上相对于屏静止不动;(2) 光点在屏幕上相对于屏作振幅A ′=2A 的振动.并说明用何种方式起动,才能得到上述结果.题9-29 图分析 落在屏幕上的光点相对地面的运动和屏幕相对于地面的运动都已知道,且是两个简谐运动.因此由运动的合成不难写出光点相对屏的运动(实际上是两个同方向、同频率简谐运动的合成).根据相对运动公式,有屏对地光对屏光对地x x x +=依题意()()2211ϕωϕω+==+==t A x x t A x x cos cos 屏对地光对地所以 ()()212121cos cos ϕπωϕω++++='+=-=t A t A x x x x x 光对屏 可见光点对屏的运动就是两个同方向、同频率简谐运动()11cos ϕω+=t A x 和()22cos ϕπω++='t A x 的合成.用与上题相同的方法即可求解本题.其中合运动振幅()12222πcos 2-+++='A A A A . 解 (1) 根据分析和参考上题求解,当要求任一时刻光点相对于屏不动,即0=光对屏x ,就是当()π12π12+=-+k 时,即π212k +=时(,...,,210±±=k ),A ′=0.当光点相对于屏作振幅为2A 的运动时,要求π2π12k =-+,即()π1212-+=k .(2) 由以上求解可知,要使光点相对于屏不动,就要求手电筒和屏的振动始终要同步,即同相位,为此,把它们往下拉A 位移后,同时释放即可;同理,要使光点对屏作振幅为2A 的谐振动,两者必须相位相反,为此,让手电筒位于平衡点0 上方的-A 处,而屏则位于+A 处同。
大学物理(马文蔚_版)高等教育出版社_光学部分
第十一章光学1、在双缝干涉实验中,两缝间距为mm 30.0,用单色光垂直照射双缝,在离缝m 20.1的屏上测得中央明纹一侧第5条暗纹与另一侧第5条暗纹间的距离为mm 78.22,问所用光的波长为多少?解:双缝干涉暗纹条件2)12(λ+=k d D x ),2,1,0(⋅⋅⋅±±=k中央明纹一侧第5条暗纹对应于4=k ,由于条纹对称,该暗纹到中央明纹中心的距离为mm 39.11278.22==x那么由暗纹公式即可求得nm8.632m 10328.6)142(20.11030.01039.112)12(2733=⨯=+⨯⨯⨯⨯⨯⨯=+=---k D xd λ 2、用白光垂直入射到间距为mm 25.0=d 的双缝上,距离缝m 0.1处放置屏幕,求零级明纹同侧第二级干涉条纹中紫光和红光中心的间距(白光的波长范围是nm 760~400)。
解:第k 级明纹位置应满足λdDkx = ),2,1,0(⋅⋅⋅±±=k对紫光和红光分别取nm 4001=λ,nm 7602=λ;则同侧第二级条纹的间距m m 88.210)400760(25.0100.12)(6312=⨯-⨯⨯⨯=-=∆-λλdD k x 3、用58.1=n 的透明云母片覆盖杨氏双缝干涉装置的一条缝,若此时屏中心为第五级亮条纹中心,设光源波长为μm 55.0,(1)求云母片厚度。
(2)若双缝相距mm 60.0,屏与狭缝的距离为m 5.2,求0级亮纹中心所在的位置。
解:(1)由于云母片覆盖一缝,使得屏中心处的光程差变为λ5=∆,一条光路中插入厚度为e 的透明介质片光程变化e n )1(-。
所以λ5)1(=-=∆e n 解得云母片厚度μm 74.4158.155.0515=-⨯=-=n e λ(2)因为mm 29.260.055.05.2=⨯==∆d D x λ又由于中心位置为5级明纹中心,故0级条纹距中心为5倍条纹宽度,所以m m 45.1129.2555=⨯=∆=x x4、如图所示,在折射率为50.1的平板玻璃表面有一层厚度为nm 300,折射率为22.1的厚度均匀透明油膜,用白光垂直射向油膜,问:(1)哪些波长的可见光在反射光中干涉加强?(2)若要使反射光中nm 550=λ的光干涉加强,油膜的最小厚度为多少?解:(1)因反射光的反射条件相同(321n n n <<),故不计半波损失,由垂直入射0=i ,得反射光干涉加强的条件为Λ3,2,1 ,22===∆k k d n λ由上式可得:kd n 22=λ1=k 时: nm 732130022.121=⨯⨯=λ 红光2=k 时: nm 366230022.122=⨯⨯=λ 紫外 故反射中波长为nm 732的红光产生干涉加强。
第11章补充例题
第十一章补充例题
1 光程是 (A)光在介质中传播的几何路程. (B)光在介质中传播的几何路程乘以介质 的折射率.
(C)在相同时间内,光在真空中传播的路
程.
(D)真空中的波长乘以介质的折射率.
答案 (B)
第十一章 光学 1
物理学 第六版
第十一章补充例题
2 将折射率为1.4
的薄膜放入迈克耳孙 干涉仪的一臂时,由 此产生7条条纹的移 动.如果实验用光源 的波长为589.6 nm, 则膜厚=_______
第十一章 光学 7
物理学 第六版
第十一章补充例题
解 (1)d sin1=k, d sin2=(k+1)
即0.2d=60010-9k, 0.3d=600 10-9(k+1) 解得: d 6 103 mm (2)缺级
d k ' a k
对应最小的a,k´=1 ,而k=4
d 所以 a 1.5 103 mm 4
G1
G2
e
M1
n
M2
第十一章 光学
2
物理学 第六版
第十一章补充例题
解 2(n 1)e Δk
Δk e 2(n 1) 5 159 nm
插入后光路L2的光 程变为L2-2e+2ne= L2 +2(n-1)e光程改 变2(n-1)e
G1
M1
n
G2
e
M2
第十一章 光学
3
物理学 第六版
第十一章 光学
10
7 三个偏振片P1P2P3堆叠在一起,P1与P3 的偏振化方向相互垂直,P2与P1的偏振化方 向间的夹角为30,强度为I0的自然光垂直入 射到偏振片P1上,并依次透过偏振片P1P2P3 , 则通过三个偏振片后的光强为多少? 解
(NEW)马文蔚《物理学》(第6版)(上册)配套题库【名校考研真题+课后习题+章节题库+模拟试题】
目 录第一部分 名校考研真题第1章 质点运动学第2章 牛顿定律第3章 动量守恒定律和能量守恒定律第4章 刚体的转动第5章 静电场第6章 静电场中的导体与电介质第7章 恒定磁场第8章 电磁感应 电磁场第二部分 课后习题第1章 质点运动学第2章 牛顿定律第3章 动量守恒定律和能量守恒定律第4章 刚体的转动第5章 静电场第6章 静电场中的导体与电介质第7章 恒定磁场第8章 电磁感应 电磁场第三部分 章节题库第1章 质点运动学第2章 牛顿定律第3章 动量守恒定律和能量守恒定律第4章 刚体的转动第5章 静电场第6章 静电场中的导体与电介质第7章 恒定磁场第8章 电磁感应 电磁场第四部分 模拟试题马文蔚等《物理学》(第6版)配套模拟试题及详解第一部分 名校考研真题第1章 质点运动学一、选择题1.某物体的运动规律为,式中的k为大于零的常数,当t =0时,初速度为,则速度v与时间t的函数关系是( ).[郑州大学2007研]A.B.C.D.【答案】C2.一质点沿半径为R的圆周作为匀速率运动,每t秒转一圈,则在2t时间间隔中,其平均速度的大小与平均速率的大小分别为( ).[电子科技大学2006研]A.B.C.D.【答案】B二、填空题1.半径为R=2m飞轮作转速转动时,轮边缘上一点的运动学方程为(国际单位制).则当此点的速率v=30m/s时,其切向加速度为______,法向加速度为______.[南京航空航天大学2008研]【答案】6m/s2;450m/s22.一质点作平面运动,运动方程,则t时刻质点的速度为______,加速度为______.[南京理工大学2005研]【答案】3.一质点在平面上运动,已知质点位置矢量的表达式为:(a、b为常量),则该质点作______运动.[北京工业大学2004研]【答案】匀加速直线运动三、计算题1.已知某质点的运动方程为(SI),则在t=1s时该质点的切向加速度和法向加速度大小各为多少?[浙江大学2007研]解:,则:,则2.如图1-1所示,导弹A与靶机B在同一高度作水平飞行,某时刻导弹正处于原点O,而靶机则位于导弹正东1000米处,靶机以500米/秒的速度向东偏北30°的方向匀速飞行,导弹以1000米/秒的匀速率飞行,且飞行方向时正对靶机,求此刻导弹的加速度矢量和它的飞行轨道在O 点的曲率半径.[山东大学1997研]图1-1解:加速度,所以:m·s-2(垂直于速度方向向上)因为,所以曲率半径为 3.一正在行驶的汽船,发动机关闭后,得到一个与船速方向相反,大小与船速平方成正比的加速度.设关闭发动机时船的速度为,经过时间后减小为/2.求:(1)发动机关闭后,t时刻船的速度的大小;(2)发动机关闭后,经过时间t船行驶的距离x.[厦门大学2006研]解:设发动机关闭时船的位置为坐标原点.(1)由题意可知:两边积分,得:解得:代入条件t=10s,得:或。
大学物理第十一章光学经典题型及答案
十一章光学经典题型鸡答案一、简答题1、相干光产生的条件是什么?答:相干光产生的条件:两束光频率相同,振动方向相同,相位差恒定2、何谓光程?其物理意义是什么?答:介质折射率n和光在介质内走过的几何路程L的乘积nL叫光程,其物理意义是光程就是把光在媒质中通过的几何路程按相位差相等折合为真空中的路程.使用凸透镜不能引起附加的光程差。
3、什么是菲涅尔衍射、夫琅禾费衍射,两者的区别是什么?答:菲涅耳衍射:在这种衍射中,光源或显示衍射图样的屏,与衍射孔(或障碍物)之间距离是有限的,若光源和屏都距离衍射孔(或障碍物)有限远,也属于菲涅耳衍射。
夫琅禾费衍射:当把光源和屏都移到无限远处时,这种衍射叫做夫琅禾费衍射。
前者是光源—衍射屏、衍射屏—接收屏之间的距离均为有限远或是其中之一是有限远的场合;后者是衍射屏与两者的距离均是无穷远的场合。
理论上夫琅禾费衍射是菲涅耳衍射的一种特殊情形,当场点的距离逐渐增大时,由菲涅耳衍射向夫琅禾费衍射过渡。
4、简述何谓自然光、何谓偏振光、何谓部分偏振光?答:一般光源发出的光,包含着各个方向的光矢量,没有哪一个方向占优势,即在所有可能的方向上,E的振幅都相等,这样的光叫做自然光。
振动只在某一固定方向上的光,叫做线偏振光,简称偏振光。
若某一方向的光振动比与之相垂直方向上的光振动占优势,那么这种光叫做部分偏振光。
5、简述布儒斯特定律的主要内容及发生该现象的条件是什么?答:入射角i 改变时,反射光的偏振化程度也随之改变,当入射角B i 满足12tan n n i B =时,反射光中就只有垂直入射面的光振动,而没有平行于入射面的光振动,这时反射光为偏振光,而折射光仍为部分偏振光,这种规律叫做布儒斯特定律。
条件是入射角B i 满足12tan n n i B =时,可发生。
二、选择题1、杨氏双缝干涉实验是( A ):(A) 分波阵面法双光束干涉 (B) 分振幅法双光束干涉(C) 分波阵面法多光束干涉 (D) 分振幅法多光束干涉2、来自不同光源的两束白光,例如两束手电筒光照射在同一区域内,是不能产生干涉图样的,这是由于( C ):(A) 白光是由不同波长的光构成的 (B) 两光源发出不同强度的光(C) 两个光源是独立的,不是相干光源 (D) 不同波长的光速是不同的3、在相同的时间内,一束波长为λ的单色光在空气中和在玻璃中( C ):(A) 传播的路程相等,走过的光程相等(B) 传播的路程相等,走过的光程不相等(C) 传播的路程不相等,走过的光程相等(D) 传播的路程不相等,走过的光程不相等4、光在真空中和介质中传播时,正确的描述是( C ):(A) 波长不变,介质中的波速减小 (B) 介质中的波长变短,波速不变(C) 频率不变,介质中的波速减小 (D) 介质中的频率减小,波速不变5、在双缝干涉实验中,若单色光源S 到两缝S 1、S 2距离相等,则观察屏上中央明条纹位于图中O 处,现将光源S 向下移动到示意图中的S '位置,则( B )(A) 中央明纹向上移动,且条纹间距增大(B) 中央明纹向上移动,且条纹间距不变(C) 中央明纹向下移动,且条纹间距增大(D) 中央明纹向下移动,且条纹间距不变6、如图所示,折射率分别为2n ,厚度为e 的透明介质薄膜的上方和下方的透明介质的折射率分别为1n 和3n ,且21n n <,32n n >,若用波长为λ的单色光平行光垂直入射到该薄膜上,则从薄膜上、下两表面反射的光束的光程差是( B ):(A) e n 22 (B) 222λ−e n (C) λ−e n 22 (D) 2222n e n λ−7、在杨氏双缝干涉实验中,正确的叙述是( B ):(A) 增大双缝间距,干涉条纹间距也随之增大(B) 增大缝到观察屏之间的距离,干涉条纹间距增大(C) 频率较大的可见光产生的干涉条纹间距较大(D) 将整个实验装置放入水中,干涉条纹间距变大8、由两块玻璃片(7511.n =)所形成的空气劈尖,其一端厚度为零,另一端厚度为0.002cm ,现用波长为7000 Å的单色平行光,从入射角为30︒角的方向射在劈尖的表面,则形成的干涉条纹数为( A ):(A) 27 (B) 56 (C) 40 (D) 1009、光波从光疏媒质垂直入射到光密媒质,当它在界面反射时,其( C ):(A) 相位不变 (B) 频率增大 (C) 相位突变 (D)频率减小10、如图所示,波长为λ的平行单色光垂直入射在折射率为2n 的薄膜上,经上下两个表面反射的两束光发生干涉。
大学物理(普通物理学第六版)111第十一章(二)
一. 选择题[ B ]自测4. 一个动量为p 的电子,沿图示方向入射并能穿过一个宽度为D 、磁感强度为B(方向垂直纸面向外)的均匀磁场区域,则该电子出射方向和入射方向间的夹角为(A) p eBD 1cos -=α. (B) peBD 1sin -=α.(C) ep BD 1sin-=α. (D) epBD 1cos -=α. 提示:[ D ]2. A 、B 两个电子都垂直于磁场方向射入一均匀磁场而作圆周运动.A 电子的速率是B 电子速率的两倍.设R A ,R B 分别为A 电子与B 电子的轨道半径;T A ,T B 分别为它们各自的周期.则 (A) R A ∶R B =2,T A ∶T B =2. (B) R A ∶R B 21=,T A ∶T B =1. (C) R A ∶R B =1,T A ∶T B 21=. (D) R A ∶R B =2,T A ∶T B =1. 提示:[ C ]3. 如图所示,在磁感强度为B 的均匀磁场中,有一圆形载流导线,a 、b 、c是其上三个长度相等的电流元,则它们所受安培力大小的关系为 (A) F a > F b > F c . (B) F a < F b < F c . (C) F b > F c > F a . (D) F a > F c > F b .提示:[A ]4. 如图,无限长直载流导线与正三角形载流线圈在同一平面内,若长直导线固定不动,则载流三角形线圈将 (A) 向着长直导线平移. (B) 离开长直导线平移. (C) 转动. (D) 不动.提示:[ D ]基础6. 两个同心圆线圈,大圆半径为R ,通有电流I 1;小圆半径为r ,通有电流I 2,方向如图.若r << R (大线圈在小线圈处产生的磁场近似为均匀磁场),当它们处在同一平面内时小线圈所受磁力矩的大小为 (A)Rr I I 22210πμ. (B)Rr I I 22210μ.(C)rR I I 22210πμ. (D) 0.提示:二. 填空题自测10. 如图所示,一半径为R ,通有电流为I 的圆形回路,位于Oxy 平面内,圆心为O .一带正电荷为q 的粒子,以速度v沿z 轴向上运动,当带正电荷的粒子恰好通过O 点时,作用于圆形回路上的力为_0_,作用在带电粒子上的力为_0_.基础14. 如图,在粗糙斜面上放有一长为l 的木制圆柱,已知圆柱质量为m ,其上绕有N 匝导线,圆柱体的轴线位于导线回路平面内,整个装置处于磁感强度大小为B 、方向竖直向上的均匀磁场中.如果绕组的平面与斜面平行,则当通过回路的电流I =()NlB mg 2/时,圆柱体可以稳定在斜面上不滚动.提示:自测12. 磁场中某点处的磁感强度为)SI (20.040.0j i B-=,一电子以速度j i 66100.11050.0⨯+⨯=v (SI)通过该点,则作用于该电子上的磁场力F 为)(10814N k-⨯.(基本电荷e =1.6×10-19C)提示:基础19. 如图,一个均匀磁场B 只存在于垂直于图面的P 平面右侧,B的方向垂直于图面向里.一质量为m 、电荷为q 的粒子以速度v 射入磁场.v在图面内与界面P 成某一角度.那么粒子在从磁场中射出前是做半径为qBm v的圆周运动.如果q > 0时,粒子在磁场中的路径与边界围成的平面区域的面积为S ,那么q < 0时,其路径与边界围成的平面区域的面积是S qB mv -⎪⎪⎭⎫⎝⎛2π.5. 如图所示,在真空中有一半径为a 的3/4圆弧形的导线,其中通以稳恒电流I ,导线置于均匀外磁场B 中,且B与导线所在平面垂直.则该载流导线bc 所受的磁力大小为aIB 2.6.氢原子中电子质量m ,电荷e ,它沿某一圆轨道绕原子核运动,其等效圆电流的磁矩大小p m 与电子轨道运动的动量矩大小L 之比=Lp m m e 2. 提示:三. 计算题自测18. 如图所示线框,铜线横截面积S = 2.0 mm 2,其中OA 和DO '两段保持水平不动,ABCD 段是边长为a 的正方形的三边,它可绕OO '轴无摩擦转动.整个导线放在匀强磁场B 中,B的方向竖直向上.已知铜的密度ρ = 8.9×103 kg/m 3,当铜线中的电流I =10 A时,导线处于平衡状态,AB 段和CD 段与竖直方向的夹角α =15°.求磁感强度B的大小.解:线圈的电流如图所示,才能保持平衡。
内蒙古科技大学马文蔚大学物理下册第六版答案精编版
第九章振动习题:P37~39 1,2,3,4,5,6,7,8,16.9-4 一质点做简谐运动,周期为T,当它由平衡位置向X轴正方向运动时,从1/2最大位移处到最大位移处这段路程所需的时间( )A、T/12B、T/8C、T/6D、T/4分析(C),通过相位差和时间差的关系计算。
可设位移函数y=A*sin(ωt),其中ω=2π/T;当 y=A/2,ωt1=π/6;当 y=A,ωt2=π/2;△t=t2-t1=[π/(2ω)]-[π/(6ω)]=π/(3ω)=T/6第十章波动习题:P89~93 1,2,3,4,5,6,12,16,25,10-6在驻波中,两个相邻波节间各质点的振动():A.振幅相同,相位相同B.振幅不同,相位相同C.振幅相同,相位不同D.振幅不同,相位不同答案:波函数叠加检验.(C) 振幅相同,相位相反第十一章光学P177~182 1,2,3,4,5,6,7,8,11,23,26,31,37,38.11-4 、在迈克尔逊干涉仪的一条光路中,放入一片折射率为n=1.4的透明介质薄膜后,干涉条纹产生了7.0条条纹移动.如果入射光波长为589nm,则透明介质薄膜厚度为( )A 10307.5nmB 1472.5nmC 5153.8nmD 2945.0nm答案(C)由2(n-1)t=N得出11-26、 某人用迈克尔逊干涉仪测量一光波的波长,当可动反射镜M 移动了0.310mm 的过程中,观察到干涉条纹移动了1100条,求该光波的波长解:d=N /2, =563.6nm第十二章 气体动理论习题:P220~222 1,2,3,5,13,14,24.12-2 1 mol的氦气和1 mol的氧气(视为刚性双原子分子理想气体)。
当温度为T时,期内能分别为:A 3/2RT,5/2kTB 3/2kT,5/2kTC 3/2kT,3/2kTD 3/2RT,5/2RT答案:D (由1mol理想气体的内能定义式得出)12-13 当氢气和氦气的压强、体积和温度都相等时,它们的质量比和内能比各为多少?(氢气视为刚性双原子分子理想气体)解:质量比等于摩尔质量比,为1:2内能比等于自由度比,为5:3第十三章热力学基础习题:P270~275 1,2,3,4,5,6,7,9,11,12,15,25,27.13-4 气体经历如图所示的循环过程,在这个循环过程中,外界传给气体的净热量是答案:A 3.2*10^4JB 1.8*10^4JC 2.4*10^4JD 0J答案B,由循环所围成的面积计算得出。
马文蔚《物理学》(第6版)(下册)配套题库【名校考研真题+课后习题+章..
目 录第一部分 名校考研真题第9章 振 动第10章 波 动第11章 光 学第12章 气体动理论第13章 热力学基础第14章 相对论第15章 量子物理第二部分 课后习题第9章 振 动第10章 波 动第11章 光 学第12章 气体动理论第13章 热力学基础第14章 相对论第15章 量子物理第三部分 章节题库第9章 振 动第10章 波 动第11章 光 学第12章 气体动理论第13章 热力学基础第14章 相对论第15章 量子物理第四部分 模拟试题马文蔚等《物理学》配套模拟试题及详解第一部分 名校考研真题第9章 振 动一、选择题一弹簧振子,重物的质量为m ,弹簧的劲度系数为k ,该振子作振幅为A 的简谐振动.当重物通过平衡位置且向规定的正方向运动时开始计时,则其振动方程为( ).[电子科技大学2007研]A.B .C .D.E.二、填空题一物体作简谐振动,其振动方程为(国际单位制).则此简谐振动的周期为______;当t =0.6s 时,物体的速度为______.[南京航空航天大学2008研]三、计算题1.考虑n =2摩尔的理想气体氦气,置于一垂直放置的圆柱体所缸中,如图9-1所示.水平放置的活塞可以在气缸中无摩擦上下运动.活塞质量为,气缸截面积为.活塞被一无质量的弹簧与气缸上端连接,活塞向下运动时将氦气向下压缩,活塞上方为真空.系统开始阶段活塞与氦气处于平衡状态时,弹簧处于未形变状态,氦气压强为B【答案】1.2s ;-20.9cm/s【答案】、温度为、体积为.假定弹簧弹性常数,气体常数,对于单原子氦气,热容比.活塞在平衡位置作小幅谐振动,计算其谐振频率f.[南京大学2006研]图9-1解:对弹簧,由牛顿第二定律可得: ①由于振动很快,系统来不及与外界发生热量交换,视为绝热过程,因此有:由于活塞在平衡位置作小幅谐振动,因此V0与V之间的变化很小,利用泰勒展开得: ②将②式代入①式有: ③初始时活塞处于平衡状态,有: ④将④代入③有: 整理得: 解得振动频率为: 2.质量分别为和的两个物体A、B,固定在倔强系数为的弹簧两端,竖直地放在水平桌面上,如图9-2所示.用一力垂直地压在A上,并使其静止不动.然后突然撤去,问欲使B离开桌面至少应多大?[中科院–中科大2007研]图9-2解:欲使B刚好弹起,则A到达最高点时弹簧的伸长量至少应为.假设力F作用下弹簧的压缩量为(初始位置),弹簧无变形时A的坐标为0(平衡位置).运动方程为: 当时,,则方程的解为:利用对称性,在最高点有.整理可得:又,于是:3.如图9-3所示,已知轻弹簧的劲度系数为k,定滑轮可看作质量为M,半径为R的均质圆盘,物体的质量为m,试求:(1)系统的振动周期;(2)当将m托至弹簧原长并释放时,求m的运动方程(以向下为正方向).[南京理工大学2005研]图9-3 图9-4解:(1)受力分析如图9-4所示,设平衡位置为原点,向下为正,则将物体拉至处时:对m:对: (为角加速度)解得:即: 则系统振动圆频率: 振动周期: (2)设振动方程,其中,.初始条件,当时: 解得: 求得m的运动方程为: 第10章 波 动一、选择题一平面简谐波沿x 轴正方向传播,振幅为A ,频率为.设时刻的波形曲线如图10-1所示,则x=0处质点的振动方程为( ).[电子科技大学2006研]图10-1A.B .C .D.二、填空题1.一质点沿x 轴作简谐振动,它的振幅为A ,周期为T .时,质点位于x 轴负向离平衡最大位移的一半处且向负方向运动,则质点的振动方程为x =______.在一周期内质点从初始位置运动到正方向离平衡位置为最大位移的一半处的时间为______.[南京航空航天大学2007研]2.一平面简谐机械波在弹性媒质中传播,一媒质质元在通过平衡位置时,其振动动能与弹性势能______(填相同或不同).[湖南大学2007研]B 【答案】【答案】相同【答案】3.以波速u 向x 正方向传播的平面简谐波,振幅为A ,圆频率为,设位于坐标处的质点,t =0时,位移,且向y 负方向运动,则该质点的振动方程为______,该平面简谐波的波动方程(波函数)为______.[南京理工大学2005研]三、计算题1.火车以匀速行驶而过,铁路边探测器所测得的火车汽笛最高和最低频率分别为和,设声速为,求火车的行驶速度.[南京大学2006研]解:由多普勒效应可得: ① ②①、②两式相除,得:解得火车车速为:2.一列平面简谐纵波在均匀各向同性弹性介质中传播,求单位体积介质所具有的能量?(自设相关物理量).[北京师范大学2008研]解:波动方程:振动速度: 设介质的密度为,用dV 表示体元体积,则该体积元动能:体积应变: 则势能: 因为,所以: 则有: 所以,单位体积介质所具有的能量为:【答案】3.已知一平面简谐波的表达式为y=0.25cos(125t-0.37x)(SI).(1)分别求x1=10m,x2=25m两点处质点的振动方程.(2)求x1、x2两点间的振动相位差.(3)求x1点在t=4s时的振动位移.[浙江大学2008研]解:(1),(2)由,可得: 所以: (3)时的振动位移为:4.甲火车以43.2千米/小时的速度行驶,其上一乘客听到对面驶来的乙火车鸣笛声的频率为v1=512赫兹;当这一火车过后,听其鸣笛声的频率为v2=428赫兹.求乙火车上的人听到乙火车鸣笛的频率v0和乙火车对于地面的速度u.设空气中声波的速度为340米/秒.[中科院—中科大2009研]解:由题可得: 其中,v=340m/s,v0=43.2km/h=12m/s.解得:v0=468Hz,u=18.4m/s=66.3km/h5.如图10-2所示,一平面简谐波沿x轴正方向传播,已知振幅为A,频率为,波速为u.(1)若t=0时,原点O处质元正好由平衡位置向位移正方向运动,写出此波的波函数.(2)若该波在离原点处被竖直的墙面反射,欲使坐标原点处为波节,求满足的条件(设反射时无能量损失).[厦门大学2006研]图10-2解:(1)t=0时,y0=0,u0>0,所以初始相位,故波动方程为:(2)欲使波在x0处反射后到达y0处与原行波叠加产生波节,则原点O处两振动必须反相.即:所以有: ,k=0,1,2,…6.已知一平面余弦波振幅A=0.03m,波速u=1ms-1,波长,若以坐标原点O处质点恰好在平衡位置且向负方向运动时作为计时起点,求:(1)O点振动方程.(2)波动方程.(3)与原点相距处,t=1秒时,质点的位移、速度;(4)和两点间的相位差.[南京航空航天大学2006研]解:(1)设O点振动方程为:.其中,,由题意知:.于是: (2)波动方程为:.得:(3)与原点相距处,波动方程:得质点速度: 当t=1秒时: (4)相位差: 7.设入射波的表达式为,在处发生反射,反射点为一固定端,设反射时无能量损失,求:(1)反射波的表达式.(2)合成的驻波的表达式.(3)波腹和波节的位置.[湖南大学2007研]解:(1)反射波的表达式为: (2)驻波的表达式为:(3)由,可得波腹位置为:由,可得波节位置为:,8.图10-3所示为一沿x轴正方向传播的平面余弦行波在t=2s时刻的波形曲线,波速u=0.5m/s,求:(1)原点o的振动方程;(2)波动方程.[电子科技大学2007研]图10-3解:(1)由已知得:.可得振动方程:(2)波动方程为: 9.一横波沿绳子传播,其波的表达式为.(1)求此波的振幅、波速、频率和波长.(2)求绳子上各质点的最大振动速度和最大振动加速度.(3)求处和处二质点振动的相位差.[宁波大学2009研]解:(1)将波的表达式与标准形式比较,得:,(2) (3),二振动反相.第11章 光 学一、选择题1.在迈克耳孙干涉仪的一条光路中,放入一折射率为n 厚度为d 的透明介质片后,两光路光程差的改变量为( ).[暨南大学2010研]A.B.C.D.【解析】迈克尔孙干涉仪的原理为光的干涉,两束光进过G1平面镜被分为两束光,这两束光发生干涉.当在其中一条光路中放入折射率为n 的厚透明介质时,被放入介质的那条光路光程将发生变化,由于需要两次穿过新加入的透明介质,故光程差的改变量为:.2.自然光从空气入射到某介质表面上,当折射角为30°时,反射光是完全偏振光,则此介质的折射率为( ).[暨南大学2010研]A.B.C.D.3.若把牛顿环装置(都是用折射率为1.52的玻璃制成的)由空气搬入折射率为1.33的水中,则干涉条纹( ).[暨南大学2010研]C【答案】B【答案】当折射光线与反射光线垂直时反射完全偏振光,由折射公式得.【解析】A .中心暗斑变成亮斑B .间距不变C .变疏D .变密【解析】设牛顿环中某处的空气薄层厚度为e ,互相干涉的两束反射光的光程差为,若n 增大,则每个位置处的光程差增大,形成更大级数的干涉条纹,所以条纹变密.4.根据惠更斯——菲涅耳原理,若已知光在某时刻的波阵面为S ,则S 的前方某点P 的光强度决定于波阵面S 上所有面积元发出的子波各自传到P 点的( ).[暨南大学2010研]A .振动的相干叠加B .振动振幅之和C .光强之和D .振动振幅平方之和5.在单缝夫琅和费衍射实验中,波长为l 的单色光垂直入射在宽度为a=4l 的单缝上,对应于衍射角为30°的方向,单缝处波阵面可分成的半波带数目为( ).[暨南大学2010研]A .2个B .6个C .4个D .8个D【答案】A【答案】由惠更斯—菲涅耳原理,统一波阵面各点发出的子波,经传播而在空间某点相遇,发生的是相干叠加.【解析】C【答案】可近似将单缝所在平面看作波阵面,则每一半波带都沿单缝方向,设总半波带【解析】得N=4.6.一束白光垂直入射在光栅上,在形成的同一级光栅光谱中,偏离中央明纹最远的是( ).[暨南大学2010研]A .紫光B .黄光C .红光D .绿光【解析】根据光栅公式,同一级条纹满足,可见光中红光波长最长,故偏离中央明纹最远.7.光强为I 0的自然光依次垂直通过两个偏振片,且此两偏振片的偏振化方向夹角a=45°,若不考虑偏振片的反射和吸收,则透射偏振光的强度I 是( ).[暨南大学2010研]A.B.C.D.由此可得,8.一光波分别通过两种不同介质的光程相同,则( ).[暨南大学2011研]数为N ,则C【答案】A【答案】自然光经过任一偏振片后光强减半,再经过另一个偏振片,根据马吕斯定律【解析】A .光波通过这两种介质的时间不相同B .光波通过这两种介质的时间相同C .光波通过这两种介质后的位相不相同D .光波通过这两种介质后的位相相同9.在迈克耳孙干涉仪的一臂中放入一折射率为厚度为的透明介质片,同时在另一臂中放入一折射率为厚度为的透明介质片,设没有放两透明介质片时两臂的光程差为 则放入两透明介质片后两臂的光程差为( ).[暨南大学2011研]A.;B .C.D.10.关于光学仪器的分辨本领,下述表述错误的是( ).[暨南大学2011研]A .分辨本领受到衍射极限的限制B .分辨本领和光学仪器的通光口径有关C .分辨本领和照明光的波长有关D .分辨本领和照明光的强度有关B【答案】光程差公式为 L =nd ,在不同介质中光速不同,v =c/n,故传播时间为 t =d/v =L/c ,对不同的介质相同.出射光的位相与入射光有关,故不能确定.【解析】B【答案】放入介质片后,相应光路中的光两次经过此介质,光程变化为2nd ,所以放入两个介质片后,两臂的光程差变化为2(n2-n1)d【解析】D【答案】光学仪器的分辨率,与由衍射导致的像点的展宽有关,而衍射条纹与通光孔径【解析】11.自然光从空气入射到某透明介质表面上,则( ).[暨南大学2011研]A .反射光一定是完全偏振光B .反射光一定是部分偏振光C .折射光一定是部分偏振光D .折射光一定是完全偏振光12.眼镜片上的增透膜是根据光的以下什么现象做成的( ).[暨南大学2011研]A .光的干涉B .光的衍射C .光的布儒斯特定律D .光的马吕斯定律13.光强度( ).[暨南大学2011研]A .和光波的振幅成正比B .和光波的振幅的平方成正比C .和光波的位相成正比D .和光波的位相的平方成正比和波长有关,与光强无关.C【答案】根据菲涅耳反射折射公式,自然光入射产生的反射和折射光都将变成部分偏振光.但当入射角为布鲁斯特角时,反射光为完全偏振光.【解析】A【答案】增透膜的原理是通过在镜片表面镀膜,使得某波长的光在膜前后表面反射光之间光程差是半波长的奇数倍,从而使反射光相干抵消,增加透射.【解析】B【答案】光强度是单位面积单位时间内辐射光的平均能量,此平均能量与电场分量或磁场分量的振幅的平方成正比,而由于是时间平均效果,与位相无关.【解析】14.一束白光垂直入射在单缝上,在第一级夫琅和费衍射明纹中,靠近中央明纹的颜色是( ).[暨南大学2011研]A .紫光B .黄光C .红光D .绿光【解析】单缝衍射明纹满足,故条纹到中央明纹的距离与波长正相关,所以紫光一级明纹最靠近中间.15.光强为I0的自然光依次垂直通过三个偏振片,且第一和第三偏振片的偏振化方向夹角a=90°,第二和第三偏振片的偏振化方向夹角a=45°,若不考虑偏振片的反射和吸收,则从第三偏振片透射出的光强I 是( ).[暨南大学2011研]A.B.C.D.二、填空题1.一个平凸透镜的顶点和一平板玻璃接触,用单设光垂直照射,观察反射光形成的牛顿环,测得中央暗斑外第k 个暗环半径为r 1.现将透镜和玻璃板之间的空气换成某种液体(其折射率小于玻璃的折射率),第k 个暗环的半径变为变为r 2,由此可知该液体的折射率为______.[南京航空航天大学2008研]A【答案】C【答案】自然光经过第一个偏振片,光强减半.第一偏振片的偏振方向与第二个,第二个与第三个,夹角都是45°,根据马吕斯定律,【解析】2.自然光入射到空气和某玻璃的分界面上,当入射角为60°时,反射光为完全偏振光,则该玻璃的折射率为______;一束强度为的自然光垂直入射于两种平行放置且透光轴方向夹角为60°的偏振片上,则透射光强度为______.[南京理工大学2005研]三、计算题1.一平凸透镜置于一平板玻璃上,波长为6700Å的红光垂直从上方入射,由透镜凸表面和平板玻璃表面反射的光形成牛顿环干涉条纹.透镜和平玻璃的接触点处为暗纹,测得第12条暗纹的半径为11mm ,求透镜的曲率半径R .[暨南大学2010研]解:牛顿环上r半径处空气层的厚度为第12条暗纹处与第一条暗纹处光程差相差11个波长,可得透镜的曲率半径为 2.(5分)将麦克耳孙干涉仪的一臂稍微调长(移动镜面),观察到有150条暗纹移过视场.若所用光的波长为480nm ,求镜面移动的距离.[暨南大学2010研]解:在迈克尔孙干涉仪中,沿两条光路的光发生干涉,它们之间光程差每变化一个波长,则有一条暗纹移过视场.设镜面移动距离为d,则得.3.在杨氏双缝实验中,两缝相距2mm ,用l =750nm 和l¢=900nm 的混合光照明,若屏幕到缝的距离为2m ,问两种波长的光的干涉明纹重合的位置到中央明纹中线的最小距离为多少?[暨南大学2010研]解:双缝干涉第k级干涉明纹满足,【答案】【答案】要想使不同波长的两束光条纹重合,需要某级条纹距离相同,即可得,k最小值为6,故4.如何利用偏振片和波晶片(1/4波片、半波片等)将一束自然光转化为圆偏振光?又如何利用波晶片将一线偏振光的偏振方向旋转90度?[暨南大学2010研]解:(1)首先将自然光通过偏振片,变成线偏光.然后使线偏光通过1/4波片,保证线偏振方向与波片光轴方向呈45°角,从而出射的o光和e光方向相同,振幅相等,相位差,从而变成圆偏振光.(2)首先将线偏光通过一个1/4波片,变成圆偏光,再经过一个与原偏振方向垂直的偏振片,变成新方向的线偏光.5.白光垂直照射到一厚度为370nm的肥皂膜(膜的两侧都为空气)上,设肥皂的折射率为1.32,试问该膜的正面呈现什么颜色?[暨南大学2011研]解:肥皂膜前后表面反射光的光程差为青色光的波长范围是476-495 nm,所以L正好是青色光波长的二倍;红色光的波长范围是 620-750 nm,所以L正好是红色光波长的3/2倍.所以前后表面反射的红光相干相消,青光相干相长,所以呈青色.6.用波长500nm的单色光垂直照射到宽0.5mm的单缝上,在缝后置一焦距为0.5m的凸透镜,用一屏来观察夫琅和费衍射条纹,求在屏上中央明纹的宽度和第一级明纹的宽度?并定性解释级次越高,明纹的强度越低的原因.[暨南大学2011研]解:(1)单缝夫琅禾费衍射产生暗纹条件为中央和第一级明纹处衍射角很小,可以近似.所以各暗纹距离中央的位置为所以中央明纹和第一级明纹的宽度分别为(2)明纹级次越高,说明单缝两个位置单色光距明纹处的光程差越大,相位差越大.根据光振幅矢量性,相同幅值的相干光相位差越大,合成振幅越小,从而光强越低.7.请解释为什么劈尖干涉条纹是等间距的直条纹而牛顿环是非等间距的圆条纹?如果看到牛顿环的中央是暗纹,解释之?[暨南大学2011研]解:(1)根据干涉原理,不论是劈尖干涉条纹还是牛顿环条纹,相邻条纹处干涉光光程差的差为.因为劈尖上到顶点的距离和厚度成正比,而厚度和光程差成正比,所以会形成等间距的直条纹;而牛顿环空气层厚度与光程差成正比,但由于棱镜下表面是球形,使得厚度与到中心的水平距离不成正比,所以形成非等间距的圆条纹.(2)中央处空气层厚度为0,棱镜底面与平面玻璃表面发射光的光程差为0.但光由光疏介质(空气)进入光密介质(平面玻璃)进行反射时会产生半波损失,使得两束相干光完全相消,出现中央暗纹.8.杨氏双缝实验中,在两缝S1和S2前分别放置两偏振片P1和P2,在两缝S1和S2后放置一偏振片P3,如图11-1所示,照明光为一自然光.问 (1) 当P1和P2偏振化方向相同,P1和P3偏振片的偏振化方向夹角为45°,屏上是否会出现干涉条纹?为什么?(2)当P1和P2偏振化方向垂直,P1和P3偏振片的偏振化方向夹角为45°,屏上是否会出现干涉条纹?为什么?[暨南大学2011研]图11-1解:(1)会出现干涉条纹.因为经过两个偏振片的光具有相同的偏振方向,都沿P3的方向偏振,所以同频率的光会产生相干叠加,出现干涉条纹.(2)会出现干涉条纹.因为虽然经过第一个偏振片的两束光具有垂直的偏振方向,但由于两束光的偏振方向都与P3偏振化方向呈45°角,根据马吕斯定律,经过P3后的两束光偏振方向相同,且振幅相等.所以依然会产生干涉条纹.9.(1)迈克尔逊干涉仪的M2镜前,当插入一薄玻璃片时,可以观察到有150条干涉条纹向一方移过.若玻璃片的折射率为n=1.632,所用单色光的波长为500nm,试求玻璃片的厚度.(2)用钠光灯(,)照明迈克尔逊干涉仪,首先调整干涉仪得到最清晰的干涉条纹,然后移动M1,干涉图样逐渐变得模糊,到第一次干涉现象消失时,M1由原来位置移动了多少距离?[南京大学2006研]解:(1)插入玻璃片后,光程差改变量为,则:解得玻璃片厚度: (2)干涉条纹消失,即、两个波长照射下的亮纹和暗纹重合,即:解得: 10.试按下列要求设计光栅:当白光垂直照射时,在30°衍射方向上观察到波长为600nm 的第二级主极大,且能分辨Δλ=0.05nm的两条谱线,同时该处不出现其他谱线的主极大.[浙江大学2008研]解:由光栅方程: .则:当时,可得: 当,.因为时,主极大,即缺级,因此有:所以有: 11.如图11-2所示,有一缝宽分别为a和2a、两缝中心相距为d的双缝衍射屏,今在缝宽为2a的左半缝前覆盖一个宽度为a的相移片.导出正入射时其夫琅禾费衍射强度分布公式.[山东大学1997研]图11-2解:x方向振幅: y方向振幅: 光强: 12.如图11-3所示,在偏振化方向夹角为60°的两偏振片和之间插入一个四分之一波片C,其光轴与两偏振片偏振化方向的夹角均为30°.一强度为的自然光先后通过偏振片、四分之一波片C和偏振片,求出射的光强度.[厦门大学2006研]图11-3解:经过P1后: ,经过四分之一波片后: ,得出射光振幅: 出射光光强: 第12章 气体动理论一、选择题若为气体分子速率分布函数,则的物理意义是( ).[电子科技大学2005研]A .速率区间内的分子数B .分子的平均速率C .速率区间内的分子数占总分子数的百分比D .速率分布在附近的单位速率区间中的分子数二、填空题1.三个容器A 、B 、C 中装有同种理想气体,其分子数密度n 相同,而最概然速率之比为,则单位体积内的内能之比为______.[南京航空航天大学2007研]2.一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m .根据理想气体的分子模型和统计假设,分子速度在x 方向的分量平方的平均值为______.[北京工业大学2004研]3.由绝热材料包围的窗口被隔板隔为两半,左边是理想气体,右边真空,如果把隔板撤去,气体将进行自由膨胀过程,达到平衡后气体的温度______(填升高、降低或不变),气体的熵______(填增加、减小或不变).[湖南大学2007研]4.27℃的1mol 氧气分子的最概然速率为______,其物理意义为______,分子的平均平动动能为______,1mol 理想氧气的内能为______.[南京理工大学2005研]三、计算题B【答案】1∶4∶9【答案】【答案】不变;增加【答案】【答案】1.设气体分子的速率分布满足麦克斯韦分布律.(1)求气体分子速率与最可几速率相差不超过0.5%的分子占全部分子的百分之几?(2)设氦气的温度为300K,求速率在3000~3010m/s之间的分子数与速率在1500~1510m/s之间的分子数之比.(3)某种气体的温度为100K和400K时的最可几速率分别为和.在100K时与相差不超过1m/s的分子数为总数的a%,求400K时与相差不超过1m/s的分子数占总数的百分比.[南京大学2006研]解:(1)设气体分子速率与最可几速率相差不超过0.5%的分子数为,全部分子数为,则:(2)设速率在3000~3010m/s之间的分子数为,速率在1500~1510m/s之间的分子数为,则:(3)2.1摩尔双原子理想气体的某一过程的摩尔热容量,其中为定容摩尔热容量,R 为气体的普适恒量.(1)导出此过程的过程方程;(2)设初态为(,),求沿此过程膨胀到时气体的内能变化,对外做功及吸热(或放热).[北京师范大学2006研]解:(1)理想气体的状态方程为,其微分形式为:由热力学第一定律,则:由上述两式消去,得: 则由的积分可得:上式即为双原子分子理想气体的过程方程.(2)初态,其中;末态.由过程方程,可知:所以,末态为.①气体内能的变化:②对外做功: ③吸收的热量:负号表示与题设相反,即此过程向外放热 .3.0.2g氢气盛于3.0 L的容器中,测得压强为8.31×104Pa,则分子的最概然速率、平均速率和方均根速率各为多大?[浙江大学2008研]解:气体状态方程: 最概然速率:平均速率:方均根速率: 4.设有N个气体分子组成的系统,每个分子质量为m,分子的速率分布函数为求:(1)常数a.(2)分子的平均速率.(3)若分子只有平动,且忽略分子间的相互作用力,求系统的内能E.[厦门大学2006研]解:(1)由归一化条件可得:解得: (2)N个分子的平均速度:=(3)由,得:5.许多星球的温度达到108K,在这温度下原子已经不存在了,而氢核(质子)是存在的,若把氢核视为理想气体,求:(1)氢核的方均根速率是多少?(2)氢核的平均平均平动动能是多少电子伏特?[宁波大学2009研](普适气体常量,玻尔兹曼常量)解:(1)由于,而氢核,所以有:(2)第13章 热力学基础一、选择题在一定量的理想气体向真空作绝热自由膨胀,体积由增至,在此过程中气体的( ).[电子科技大学2007研]A.内能不变,熵增加B.内能不变,熵减少C.内能不变,熵不变D.内能增加,熵增加二、填空题热力学第二定律表明在自然界中与热现象有关的实际宏观过程都是不可逆的.开尔文表述指出了______的过程是不可逆的,而克劳修斯表述指出了______的过程是不可逆的.[北京工业大学2004研]三、计算题1.假设地球大气为干燥空气,导热性能不好.气流上升缓慢,可以视为准静态过程.试导出大气的垂直温度梯度dT/dz,并估算其量值的大小.[南京大学2005研]解:对于绝热过程有: 对上式两边同时求导,得:于是有: 对于大气层,气压强变化满足,再结合理想气体状态方程,得:A【答案】功变热;热传导【答案】。
大学物理 第十一章 波动光学 复习题及答案详解
大学物理第十一章波动光学复习题及答案详解第十一章波动光学第一部分一、填空题:1、波长为?的平行单色光垂直照射到如题4-1图所示的透明薄膜上,膜厚为e,折射率为n,透明薄膜放空气中,则上下两表面反射的两束反射光在相遇处的位相差???。
2、如题4-2图所示,假设有两个同相的相干点光源S1和S2,发出波长为?的光。
A是它们连线的中垂线上的一点。
若在S1与A之间插入厚度为e、折射率为n的薄玻璃片,则两光源发出的光在A点的位相差???。
若已知?=5000A,n?,A点恰为??第四级明纹中心,则e?A。
? n eS1S2enA题4-1图题4-2图3、一双缝干涉装置,在空气中观察时干涉条纹间距为。
若整个装置放在水中,干涉条纹的间距将为mm。
4、在空气中有一劈尖形透明物,其劈尖角???10rad,在波长??7000A的单色光垂直照射下,测得两相邻干涉明条纹间距l?,此透明材料的折射率n?。
5、一个平凸透镜的顶点和一个平板玻璃接触,用单色光垂直照射,观察反射光形成的牛顿环,测得第k级暗环半径为r1。
现将透镜和玻璃板之间的空气换成某种液体,第k级暗环的半径变为r2,此可知该液体的折射率为。
6、若在麦克尔逊干涉仪的可动反射镜M移动的过程中,观察到干涉条纹移动了??4?2300条,则所用光波的波长为A。
7、光强均为I0的两束相干光相遇而发生干涉时,在相遇区域内有可能出现的最大光强是。
8、为了获得相干光,双缝干涉采用方法,劈尖干涉采用方法。
9、劳埃德镜实验中,光屏中央为条纹,这是因为产生。
二、选择题1、在真空中波长为?的单色光,在折射率为n的透明介质中从A沿某路径传播到B,若A,B两点位相差为3?,则此路径AB的光程为?? 3??n 2、在单缝夫琅和费衍射实验中,波长为?的单色光垂直入射到宽度为a=4?的单缝上,对应于衍射角30?的方向,单缝处波阵面可分成的半波带数目为(A) 2 个.(B) 4个. (C) 6 个.(D) 8个. 3、如图4-4所示,用波长为?的单色光照射双缝干涉实验装置,若将一折射率为n、劈尖角为? 的透明劈尖b插入光线2中,则当劈尖b缓慢地向上移动时(只遮住s2) ,屏C上的干涉条纹(A) 间隔变大,向下移动. (B) 间隔变小,向上移动. (C) 间隔不变,向下移动. (D) 间隔不变,向上移动. 4、用白光光源进行双缝实验,若用一个纯红色的滤光片遮 C 1 b 2 图4-4 O s1 ? s s2 盖一条缝,用一个纯蓝色的滤光片遮盖另一条缝,则干涉条纹的宽度将发生变化。
《物理学》第六版-马文蔚ppt 第11章 光学 11-1相干光
激
En
发
态
E h
基态 原子能级及发光跃迁
第十一章 光学
2
物理学 第六版
1 2
11-1 相干光
P
普通光源发光特点: 原子发光是断续 的,每次发光形成一个短短的波列, 各原 子各次发光相互独立,各波列互不相干.
第十一章 光学
3
物理学 第六版
2 相干光的产生
振幅分割法
11-1 相干光
波阵面分割法
s1
物理学
11-1 相干光
第六版
一 光是一种电磁波
平面电磁波方程
E
E0
cos
(t
r u
)
H
H0
cos (t
r) u
光矢量 E 矢量能引起人眼视觉和底
片感光,叫做光矢量.
真空中的光速 c 1
0 0
第十一章 光学
1
物理学 第六版
可见光的范围
二 相干光
1 普通光源的~ 760 nm : 7.51014 ~ 4.31014 Hz
光源 *
s2
第十一章 光学
4
物理学 第六版
选择进入下一节:
本章目录
11-0 教学基本要求 11-1 相干光
11-2 杨氏双缝干涉 劳埃德镜
11-3 薄膜干涉
11-4 劈尖 牛顿环 迈克耳孙干涉仪
11-5 光的衍射
第十一章 光学
5
大学物理下光学部分答案(马文蔚版)
光的干涉一、选择题1、 有下列说法:其中正确的是A 、从一个单色光源所发射的同一波面上任意选取的两点光源均为相干光源;B 、从同一单色光源所发射的任意两束光,可视为两相干光束;C 、只要是频率相同的两独立光源都可视为相干光源;D 、两相干光源发出的光波在空间任意位置相遇都以产生干涉现象。
[ A ]2、 折射率为n 2、厚度为e 的透明介质薄膜的上方和下方的透明介质的折射率分别为n 1和n 3,已知n 1<n 2<n 3,若用波长为λ的单色平行光垂直入射到该薄膜上,则从薄膜上、下两表面反射的光束(1)与(2)的光程差是 A 、2n 2e B 、2n 2e-λC 、2n 2e-λD 、2n 2e-λ/2n 2 [ A ]3、 用两根直径分别为d 1和d 2的细金属丝将两块平板玻璃垫起来。
形成一个空气劈。
如果将两金属丝拉近,这时:A 、条纹宽度变宽,两金属丝间的条纹数变少;B 、条纹宽度不变,两金属丝间的条纹数变少;C 、条纹宽度变窄,两金属丝间的条纹数不变;D 、条纹宽度不变,两金属丝间的条纹数不变。
[ C ] 二、填空题4、 如图所示,双缝干涉实验装置中两个缝用厚度均为e ,折射率分别为n 1和n 2的透明介质膜覆盖( n 1 > n 2 ),波长为λ的平行单色光照射双缝,双缝间距为d ,在屏幕中央O 处(S 1O = S 2O ),两束相干光的位相差122()n n e πφλ∆=-5、 用波长为λ的平行单色光垂直照射折射率为n 的劈尖薄膜,形成等厚干涉条纹,若测得相邻明条纹的间距为l ,则劈尖角θ=arcsin()2nlλ6、 由两块玻璃片组成空气劈形膜,当波长为λ的单色平行光垂直入射时,测得相邻明条纹的距离为L 1。
在相同的条件下,当玻璃间注满某种透明液体时,测得两相邻明条纹的距离为L 2。
则此液体的折射率为12L L 。
7、 已知在迈克尔逊干涉仪中使用波长为λ的单色光,在干涉仪的可动反射镜移动一距离d过程中,干涉条纹将移动2dλ条。
内蒙古科技大学马文蔚大学物理(下册)第六版答案解析
内蒙古科技大学马文蔚大学物理(下册)第六版答案解析-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第九章振动习题:P37~39 1,2,3,4,5,6,7,8,16.9-4 一质点做简谐运动,周期为T,当它由平衡位置向X轴正方向运动时,从1/2最大位移处到最大位移处这段路程所需的时间( )A、T/12B、T/8C、T/6D、T/4分析(C),通过相位差和时间差的关系计算。
可设位移函数 y=A*sin(ωt),其中ω=2π/T;当 y=A/2,ωt1=π/6;当 y=A,ωt2=π/2;△t=t2-t1=[π/(2ω)]-[π/(6ω)]=π/(3ω)=T/6第十章波动习题:P89~93 1,2,3,4,5,6,12,16,25,10-6 在驻波中,两个相邻波节间各质点的振动():A.振幅相同,相位相同B.振幅不同,相位相同C.振幅相同,相位不同D.振幅不同,相位不同答案:波函数叠加检验.(C) 振幅相同,相位相反第十一章光学P177~182 1,2,3,4,5,6,7,8,11,23,26,31,37,38.11-4 、在迈克尔逊干涉仪的一条光路中,放入一片折射率为n=1.4的透明介质薄膜后,干涉条纹产生了7.0条条纹移动.如果入射光波长为589nm,则透明介质薄膜厚度为( )A 10307.5nmB 1472.5nmC 5153.8nmD 2945.0nm答案(C)由2(n-1)t=N得出11-26、某人用迈克尔逊干涉仪测量一光波的波长,当可动反射镜M移动了0.310mm的过程中,观察到干涉条纹移动了1100条,求该光波的波长解:d=N /2, =563.6nm习题:P220~222 1,2,3,5,13,14,24.12-2 1 mol的氦气和1 mol的氧气(视为刚性双原子分子理想气体)。
当温度为T时,期内能分别为:A 3/2RT,5/2kTB 3/2kT,5/2kTC 3/2kT,3/2kTD 3/2RT,5/2RT答案:D (由1mol理想气体的内能定义式得出)12-13 当氢气和氦气的压强、体积和温度都相等时,它们的质量比和内能比各为多少(氢气视为刚性双原子分子理想气体)解:质量比等于摩尔质量比,为1:2内能比等于自由度比,为5:3第十三章热力学基础习题:P270~275 1,2,3,4,5,6,7,9,11,12,15,25,27.13-4 气体经历如图所示的循环过程,在这个循环过程中,外界传给气体的净热量是答案:A 3.2*10^4JB 1.8*10^4JC 2.4*10^4JD 0J答案B,由循环所围成的面积计算得出。
《物理学》第六版-马文蔚ppt 总目录
面向21世纪课程教材
总目录
第六版
东南大学等七所工科院校 编 马文蔚 改编
物 理 学 第六版
电子教案
主 编 何跃娟 吴亚敏 陈 健 陈国庆
2021/8/7
高等教育出版社
高等第几教章物育输理电入相学子关内音容像出版社
1
物理学 第六版
物理学
第六版
总目录
第01章 质点运动学
第02章 牛顿定律
第03章 动量守恒定律和能量守恒定律
第04章 刚体转动和流体运动
第05章 静电场
第06章 静电场中的导体和电介质
第07章 恒定磁场 第08章 电磁感应 电磁场
物理学
物理学 第六版
物理学
第六版
第09章 振动
第1章 气体动理论
第13章 热力学基础
第14章 相对论
第15章 量子物理
物理学
总目录
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
s; n
n
4.88107 m
488nm
Vn
c
51014 Hz
(3)几何路程SC SA AB BC SA d BC 0.111m
cos1
光程 SA 1+AB n+BC1=0.114m
11-14
已知:杨氏干涉实验
n1, n2, ,中央明纹变
• 求解:λ’
• 解:根据题意知牛顿环干涉暗环半径公式
r kR
• 其中k =0,1,2…,k =0,对应牛顿环中心 的暗斑,k=1 和k =4 则对应第一和第四暗环, 由它们之间的间距
r r4 r1 R
• 所以知 r
• 因此,两种波长前后对比
r r • 得到: λ′=546 nm
• 解:根据分析,对应于同一观察点,两 次衍射的光程差相同,由于衍射明纹条
件 bsin 2k 1
2
• 由比较法得
2k1 11 2k2 12
• 将已知条件 2 600 nm,k2 2, k1 3 • 带入上式,得
•
1
2k2 12
2k1 1
•得
k / k 2 / 1 3 / 2
• 显然,第一次重合是λ1 的第3 级明纹与λ2 的 第2级明纹重合,
• 第二次重合是λ1 的第6 级明纹与λ2 的第4级 明纹重合.
• 此时,k=6,k′=4,φ=60°,则光栅常数
d k1/sin 3.05106 m 3.05 μm
2nb 2nx
11-20
• 折射率为1.60的两块标准平面玻璃板之间 形成一个劈形膜(劈尖角θ 很小).用 波长λ=600 nm 的单色光垂直入射,产 生等厚干涉条纹.假如在劈形膜内充满n =1.40 的液体时的相邻明纹间距比劈形 膜内是空气时的间距缩小Δl =0.5 mm, 那么劈尖角θ 应是多少?
n2 n1
移过的条纹数
11-16
11-17
• 利用空气劈尖测细丝直径.如图所示,已知λ =589.3 nm,L =2.888 ×10-2m,测得30 条条 纹的总宽度为4.259 ×10-3 m,求细丝直径d.
• 解 由分析知,相邻条纹间距
b x N 1
• 则细丝直径为
d L N 1 5.75105 m
Io
I
I o
解:根据题意得
2
I1
I cos2
I cos2
60
1 4
I
I1
I 4I1
Happy Ending
• 已知:n2 =1.2 ,n3 =1.50 ,dm =1.1 μm,λ =600 nm
• 求解:(1)明纹or 暗纹? • (2)k=?
• 解 (1) 根据分析,由
k
明条纹
2n2d
2 k
1
2
暗条纹k 0,1,2,...
• 知油膜周边处d =0,即Δ=0 符合干涉加 强条件,故油膜周边是明环.
• 已知:n=1.6,λ=600 nm,n‘=1.40, Δl =0.5 mm
• 求解:劈尖角θ
•解
劈形膜内为空气时
l空 2
• 劈形膜内为液体时 l液 2n
l l空 l液 2 2n
11 / n 1.71104 rad
2l
11-22
L 4918m
11-33
• 一束平行光垂直入射到某个光栅上,该 光束中包含有两种波长的光:λ1 =440 nm 和λ2 =660 nm.实验发现,两种波 长的谱线(不计中央明纹)第二次重合 于衍射角φ=60°的方向上,求此光栅的 光栅常数.
• 解 由光栅方程和题目可知
dsin k1 k2
• 解(1)单缝衍射中的明纹条件为
bsin 2k 1
2 sin tan x
f
bx f
2k
1
2
d f
考虑可见光的范围
所以只能取k=3;k=4
所以只能取k=3;k=4Fra bibliotek11-29
• 一单色平行光垂直照射于一单缝,若其 第三条明纹位置正好和波长为600 nm的 单色光垂直入射时的第二级明纹的位置 一样,求前一种单色光的波长.
ch11 作业题目讲解 马文蔚第六版
11-10
• 解:根据题意得,屏上暗纹的位置
11-11
已知:,屏距d,条纹间距12.2mm
求:缝间距d
解: 条纹等宽且对称分布,知道条纹宽度
10 x=12.210-3
又
x=
d d
d
d x
300 103 12.2 104
546109
1.34104 m
11-13
已知:, n, d, , SA BC 5cm
求解:(1)1; (2) n ,Vn , n (3)光程
解:(1)由折射定律得
1
arcsin(sin ) arcsin(sin 30
n
1.23
) 24
(2) n
c n
2.44108 m /
r (k 1) R
2 n2
•
根据题意得: dk 2rk 2
(k 1)R
2
dk 2rk 2
(k 1) R
2 n2
•
得到: 1
1 n2
dk dk
1.4 1.27
n 1.22
11-24
• 如图所示,折射率n2 =1.2 的油滴落在n3 = 1.50 的平板玻璃上,形成一上表面近似于球面 的油膜,测得油膜中心最高处的高度dm =1.1 μm,用λ=600 nm 的单色光垂直照射油膜,求 (1) 油膜周边是暗环还是明环? (2) 整个 油膜可看到几个完整的暗环?
为第5级明纹
求解:玻璃片厚度d
解:玻璃片产生附加光程,使条纹移动
无玻璃片时 1 r1 r2 k1
有玻璃片时1 [(n1 1)d r1] [(n2 1)d r2 ] k2
因此两者之差2 1 (n2 n1)d (k2 k1) 5
d 5 8m
• (2) 油膜上任一暗环处满足
2n2d 2k 1 / 2 k 0,1,2,...
• 令d =dm ,解得
•
k =3.9
• 故油膜上出现的完整暗环共有4 个,即
• k =0,1,2,3.
衍射部分的习题
11-27
• 如图所示,狭缝的宽度b =0.60 mm,透镜焦 距f =0.40m,有一与狭缝平行的屏放置在透镜 焦平面处.若以波长为600 nm的单色平行光垂 直照射狭缝,则在屏上离点O 为x=1.4 mm处 的点P看到的是衍射明条纹.试求:(1) 点P 条纹的级数;(2) 从点P 看来对该光波而言, 狭缝的波阵面可作半波带的数目.
• 在利用牛顿环测未知单色光波长的实验 中,当用已知波长为589.3 nm的钠黄光 垂直照射时,测得第一和第四暗环的距 离为Δr=4.00 ×10exp-3 m;当用波长未 知的单色光垂直照射时,测得第一和第 四暗环的距离为Δr′=3.85 ×10exp-3 m, 求该单色光的波长.
• 已知:牛顿环λ=589.3 nm,Δr=4.00 ×10-3 m,Δr′=3.85 ×10-3 m,Δk=3
428 .6
nm
Happy Ending
11-31
• 迎面而来的一辆汽车的两车头灯相距为1m,
问在汽车离人多远时,它们刚能为人眼分辨? (设瞳孔直径为3mm,光在空气中的波长
500nm )。
解:恰能分辨时, 0
1 L
1.22
D
1.22
500 10 9 310 3
11-37
• 测得一池静水的表面反射出来的太阳光是线偏 振光,求此时太阳处在地平线的多大仰角处? (水的折射率为1.33)
• 解:根据布儒斯特定律
i0
i
π 2
θ
arctan
n2 n1
π arctan n2 36.9o
2
n1
11-38
• 已知自然光通过两个偏振化方向相交60°的偏振片, 透射光强为I1,今在 这两偏振片之间再插入另一偏 振片,它的偏振化方向与前两个偏振片的偏振化方 向均夹30°角,则透射光强为多少?
10-23
• 在牛顿环实验中,当透镜与玻璃之间填 充以某种液体时,第10个亮环的直径由
• r=4.00 ×10-2 m变为r‘=4.00 ×10-2 m, 试求这种液体的折射率。
• 已知:k=10,牛顿环,r=4.00 ×10-2 m 变为r‘=4.00 ×10-2 m
• 求解:液体的折射率
• 解 :该题目条件下,牛顿环明纹半径的 计算公式为: