第九章 人工神经网络

合集下载

人工神经网络

人工神经网络
• 输入层: 被记作第0层。该层负责接收来自 网络外部信息
x1
o1
x2
o2
…… xn
输入层
人工神经网络


隐藏层
… …… om
输出层
第30页
– 第j层: 第j-1层直接后继层(j>0),它直接接 收第j-1层输出。
– 输出层: 它是网络最终一层,含有该网络最大 层号,负责输出网络计算结果。
– 隐藏层: 除输入层和输出层以外其它各层叫隐 藏层。隐藏层不直接接收外界信号,也不直接 向外界发送信号
函数饱和值为0和1。 S形函数有很好增益控制
人工神经网络
第19页
4.S形函数
o a+b
c=a+b/2
(0,c)
net
a
人工神经网络
第20页
联接模式
人工神经网络
第21页
联接模式
• 层次(又称为“级”)划分,造成了神经 元之间三种不一样互连模式:
• 1、 层(级)内联接 • 层内联接又叫做区域内(Intra-field)联接
人工神经网络
第3页
人工神经网络概念
• 1) 一组处理单元(PE或AN); • 2) 处理单元激活状态(ai); • 3) 每个处理单元输出函数(fi); • 4) 处理单元之间联接模式; • 5) 传递规则(∑wijoi); • 6) 把处理单元输入及当前状态结合起来产生激
活值激活规则(Fi); • 7) 经过经验修改联接强度学习规则; • 8) 系统运行环境(样本集合)。
本集来说,误差不超出要求范围。
人工神经网络
第40页
Delta规则
Widrow和Hoff写法: Wij(t+1)=Wij(t)+α(yj- aj(t))oi(t) 也能够写成: Wij(t+1)=Wij(t)+∆ Wij(t) ∆ Wij(t)=αδjoi(t) δj=yj- aj(t) Grossberg写法为: ∆ Wij(t)=αai(t)(oj(t)-Wij(t)) 更普通Delta规则为: ∆ Wij(t)=g(ai(t),yj,oj(t),Wij(t))

《人工神经网络》课件

《人工神经网络》课件
添加项标题
动量法:在梯度下降法的基础上,引入动量项,加速收敛速 度
添加项标题
RMSProp:在AdaGrad的基础上,引入指数加权移动平 均,提高了算法的稳定性和收敛速度
添加项标题
随机梯度下降法:在梯度下降法的基础上,每次只使用一个 样本进行更新,提高了训练速度
添加项标题
AdaGrad:自适应学习率算法,根据历史梯度的平方和来 调整学习率,解决了学习率衰减的问题
情感分析:分析文本中的情感 倾向,如正面评价、负面评价 等
推荐系统
推荐系统是一种基于用户历史行为 和偏好的个性化推荐服务
推荐算法:协同过滤、深度学习、 矩阵分解等
添加标题
添加标题
添加标题
添加标题
应用场景:电商、社交媒体、视频 网站等
应用效果:提高用户满意度、增加 用户粘性、提高转化率等
Part Six
类型:Sigmoid、 Tanh、ReLU等
特点:非线性、可 微分
应用:深度学习、 机器学习等领域
权重调整
权重调整的目的:优化神经网络的性能 权重调整的方法:梯度下降法、随机梯度下降法等 权重调整的步骤:计算损失函数、计算梯度、更新权重 权重调整的影响因素:学习率、批次大小、优化器等
Part Four
《人工神经网络》PPT 课件
,
汇报人:
目录
01 添 加 目 录 项 标 题 03 神 经 网 络 基 础 知 识 05 神 经 网 络 应 用 案 例 07 未 来 发 展 趋 势 与 挑 战
02 人 工 神 经 网 络 概 述 04 人 工 神 经 网 络 算 法 06 神 经 网 络 优 化 与 改 进
深度学习算法
卷积神经网络(CNN):用于图像处理和识别 循环神经网络(RNN):用于处理序列数据,如语音识别和自然语言处理 长短期记忆网络(LSTM):改进的RNN,用于处理长序列数据 生成对抗网络(GAN):用于生成新数据,如图像生成和文本生成

人工神经网络教学课件

人工神经网络教学课件
2006年
Hinton等人提出了深度学习的概念,使得神经网络的层次和参数数量大大增加,提高了模型的表示能力和泛化能力。
1997年
Bengio等人提出了卷积神经网络(CNN),用于图像识别和处理。
感知机模型:由输入层、隐藏层和输出层组成,通过权重和激活函数实现非线性映射,完成分类或识别任务。
人工神经网络的基本结构
人工神经网络教学课件
目录
CONTENTS
人工神经网络简介人工神经网络的基本结构常见的人工神经网络模型人工神经网络的训练与优化人工神经网络的应用场景人工神经网络的未来展望
人工神经网络简介
人工神经网络是一种模拟生物神经网络结构和功能的计算模型,由多个神经元相互连接而成,通过训练和学习来处理和识别数据。
适用于小样本数据集和高维数据集
支持向量机在小样本数据集和高维数据集上表现良好,因为它主要基于数据的内积运算,而不是计算输入空间中的距离。这使得它在文本分类、生物信息学等领域得到广泛应用。
核函数的选择对模型性能影响较大
支持向量机通过核函数将输入空间映射到高维特征空间,然后在这个空间中找到最优决策边界。不同的核函数会导致不同的决策边界,因此选择合适的核函数对模型性能至关重要。
总结词
自然语言处理是人工神经网络的另一个应用领域,通过训练神经网络理解和生成自然语言文本,实现文本分类、情感分析、机器翻译等功能。
自然语言处理是利用人工神经网络对自然语言文本进行分析、理解和生成,广泛应用于搜索引擎、智能问答、新闻推荐等领域。通过训练神经网络理解和生成自然语言文本,可以实现文本分类、情感分析、机器翻译等功能,提高自然语言处理的准确性和效率。
人工神经网络具有自适应性、非线性、并行处理和鲁棒性等特点,能够处理复杂的模式识别和预测问题。

《人工神经网络》课件

《人工神经网络》课件

拟牛顿法
改进牛顿法的不足,使用正定矩阵近 似Hessian矩阵,提高优化效率。
共轭梯度法
结合梯度下降法和共轭方向的思想, 在每一步迭代中选择合适的共轭方向 进行搜索。
遗传算法
模拟生物进化过程的优化算法,通过 选择、交叉、变异等操作寻找最优解 。
正则化技术
L1正则化
对权重参数的绝对值进行惩罚总结词
自然语言处理是利用人工神经网络对自然语言文本进行分析和处理的技术。
详细描述
自然语言处理是实现人机文本交互的关键技术之一,通过训练神经网络对大量文本数据进 行学习,可以实现对文本的自动分类、情感分析、机器翻译等功能。
具体应用
在社交媒体领域,自然语言处理技术可以用于情感分析和舆情监控;在新闻媒体领域,可 以用于新闻分类和摘要生成;在机器翻译领域,可以用于实现多语言之间的自动翻译。
06
人工神经网络的未 来展望
新型神经网络模型的研究
持续探索新型神经网络模型
随着技术的不断发展,新型神经网络模型的研究将不断涌现,以解决传统模型无法处理 的复杂问题。这些新型模型可能包括更复杂的拓扑结构、更高效的参数优化方法等。
结合领域知识进行模型设计
未来的神经网络模型将更加注重与领域知识的结合,以提高模型的针对性和实用性。例 如,在医疗领域,结合医学影像和病理学知识的神经网络模型能够更准确地辅助医生进
THANKS
感谢您的观看
文字、人脸等目标的技术。
02 03
详细描述
图像识别是人工神经网络应用的重要领域之一,通过训练神经网络对大 量图像数据进行学习,可以实现对图像的自动分类、目标检测、人脸识 别等功能。
具体应用
在安防领域,图像识别技术可以用于人脸识别和视频监控;在医疗领域 ,可以用于医学影像分析;在电商领域,可以用于商品图片的自动分类 和检索。

人工神经网络是什么

人工神经网络是什么

⼈⼯神经⽹络是什么⽬录⼀、⼈⼯神经⽹络⼈⼯智能的主流研究⽅法是连接主义,通过⼈⼯构建神经⽹络的⽅式模拟⼈类智能。

⼈⼯神经⽹络(Artificial Neural Network,即ANN ),是20世纪80 年代以来⼈⼯智能领域兴起的研究热点。

它从信息处理⾓度对⼈脑神经元⽹络进⾏抽象,建⽴某种简单模型,按不同的连接⽅式组成不同的⽹络。

⼈⼯神经⽹络借鉴了⽣物神经⽹络的思想,是超级简化版的⽣物神经⽹络。

以⼯程技术⼿段模拟⼈脑神经系统的结构和功能,通过⼤量的⾮线性并⾏处理器模拟⼈脑中众多的神经元,⽤处理器复杂的连接关系模拟⼈脑中众多神经元之间的突触⾏为。

⼆、⽣物神经⽹络⼈脑由⼤约千亿个神经细胞及亿亿个神经突触组成,这些神经细胞及其突触共同构成了庞⼤的⽣物神经⽹络每个神经元伸出的突起分为树突和轴突。

树突分⽀⽐较多,每个分⽀还可以再分⽀,长度⼀般⽐较短,作⽤是接受信号。

轴突只有⼀个,长度⼀般⽐较长,作⽤是把从树突和细胞表⾯传⼊细胞体的神经信号传出到其他神经元。

⼤脑中的神经元接受神经树突的兴奋性突触后电位和抑制性突触后电位,产⽣出沿其轴突传递的神经元的动作电位。

⽣物神经⽹络⼤概有以下特点:1. 每个神经元都是⼀个多输⼊单输出的信息处理单元,神经元输⼊分兴奋性输⼊和抑制性输⼊两种类型2. 神经细胞通过突触与其他神经细胞进⾏连接与通信,突触所接收到的信号强度超过某个阈值时,神经细胞会进⼊激活状态,并通过突触向上层神经细胞发送激活细号3. 神经元具有空间整合特性和阈值特性,较⾼层次的神经元加⼯出了较低层次不具备的“新功能”4. 神经元输⼊与输出间有固定的时滞,主要取决于突触延搁外部事物属性⼀般以光波、声波、电波等⽅式作为输⼊,刺激⼈类的⽣物传感器。

三、硅基智能与碳基智能⼈类智能建⽴在有机物基础上的碳基智能,⽽⼈⼯智能建⽴在⽆机物基础上的硅基智能。

碳基智能与硅基智能的本质区别是架构,决定了数据的传输与处理是否能够同时进⾏。

人工神经网络

人工神经网络

⼈⼯神经⽹络⼀.相关知识1.背景:从⼀颗受精卵成长为⼀个复杂的多细胞⽣物,神经系统在⽣物的成长中起着主导作⽤,神经系统分为中枢神经系统和周围神经系统两⼤部分主要组成。

其中中枢系统主要分布在脑和脊髓中,分布在脑部的神经系统主要起传递、储存和加⼯信息,产⽣各种⼼理活动,⽀配与控制⽣物⾏为的作⽤。

我们把⼈的这种特性拿出来放到计算机中,也就是让计算机像⼈脑⼀样能较精确地处理信息,⼈脑中的神经系统变成计算机中的⼈⼯神经⽹络,⽣物神经系统的基本组成单位--神经细胞,对应⼈⼯神经⽹络中的神经元。

⽣物神经系统的主要功能是通过经验能对外界的信息作出正确的回应,⽐如⼀个⼈⼩时候不会⽤筷⼦,但是看得多了,别⼈教导,他就会⽤筷⼦了,我们想让⼈⼯神经⽹络也能通过学习经验(已有的训练数据)来对外界作出正确回应(预测正确未知样本),⼈类的学习过程相当于神经⽹络的训练过程。

2.神经⽹络的特点:(1)对于监督学习来说,在数据量⼩时,模型的精确度⼤概率取决于算法的设计,⽽当数据量⾜够⼤时,⼀般⽽⾔,⼀个规模⾜够⼤的神经⽹络⾮常擅长计算从样本数据到真实值的精确映射函数,所以⽐机器学习的算法效果好;(2)对于⾮结构化数据,神经⽹络能更好的解释它(结构化数据:每个特征都有明确定义;⾮结构化数据:⽐如图像的像素或⽂本的⽂字、语⾳序列之类)(3)神经⽹络对很多好的算法的兼容性很好,这使得神经⽹络的计算增快,提⾼了迭代速度3.相关应⽤:真实预测、推荐⼴告(标准的神经⽹络)、计算机视觉(图像数据-CNN)、语⾔识别(序列数据-RNN)、机器翻译(RNN)、⽆⼈驾驶(混合)⼆.神经⽹络简介1.符号定义2.神经⽹络演变(1)神经元:神经元是神经⽹络的基本组成单元,它从前⾯的神经元处接收信息,处理完信息后将结果传给后⾯的神经元,是信息的处理单元。

传输信息的通道在⽣物神经⽹络上为“突触”,在⼈⼯神经⽹络中⽤赋予权重的连接线来表⽰。

【1】单输⼊单输出的单个神经元:接收前输⼊a,⽤线性或⾮线性转换对输⼊进⾏处理,得到新的特征a'并输出。

人工神经网络

人工神经网络
最近十多年来,人工神经网络的研究工作不断深入,已经取得了很大的进展,其在模式识别、智能机器人、 自动控制、预测估计、生物、医学、经济等领域已成功地解决了许多现代计算机难以解决的实际问题,表现出了 良好的智能特性。
神经元
如图所示 a1~an为输入向量的各个分量 w1~wn为神经元各个突触的权值 b为偏置 f为传递函数,通常为非线性函数。以下默认为hardlim() t为神经元输出 数学表示 t=f(WA'+b) W为权向量 A为输入向量,A'为A向量的转置 b为偏置 f为传递函数
分类
根据学习环境不同,神经网络的学习方式可分为监督学习和非监督学习。在监督学习中,将训练样本的数据 加到网络输入端,同时将相应的期望输出与网络输出相比较,得到误差信号,以此控制权值连接强度的调整,经 多次训练后收敛到一个确定的权值。当样本情况发生变化时,经学习可以修改权值以适应新的环境。使用监督学 习的神经网络模型有反传网络、感知器等。非监督学习时,事先不给定标准样本,直接将网络置于环境之中,学 习阶段与工作阶段成为一体。此时,学习规律的变化服从连接权值的演变方程。非监督学习最简单的例子是Hebb 学习规则。竞争学习规则是一个更复杂的非监督学习的例子,它是根据已建立的聚类进行权值调整。自组织映射、 适应谐振理论网络等都是与竞争学习有关的典型模型。
神经网络在很多领域已得到了很好的应用,但其需要研究的方面还很多。其中,具有分布存储、并行处理、 自学习、自组织以及非线性映射等优点的神经网络与其他技术的结合以及由此而来的混合方法和混合系统,已经 成为一大研究热点。由于其他方法也有它们各自的优点,所以将神经网络与其他方法相结合,取长补短,继而可 以获得更好的应用效果。目前这方面工作有神经网络与模糊逻辑、专家系统、遗传算法、小波分析、混沌、粗集 理论、分形理论、证据理论和灰色系统等的融合。

人工神经网络方法

人工神经网络方法
与其他算法比较:相比于传统的循环神 经网络(RNN),LSTM具有更好的性 能和更强的泛化能力,能够更好地处理 序列数据中的长期依赖关系。
04
人工神经网络的实现
数据预处理
数据清洗:去除异常值、缺失值和重复值 数据转换:将数据转换为适合神经网络处理的格式 数据标准化:将数据缩放到统一的标准范围内 数据归一化:将数据缩放到[0,1]或[-1,1]范围内
网络训练
训练方法:通过有标签数据进行优化 训练过程:前向传播和反向传播 训练目的:最小化损失函数 训练技巧:梯度下降法、批量梯度下降法、随机梯度下降法等
模型评估与调优
模型评估指标:准确率、召回率、F1值等 过拟合与欠拟合问题:介绍过拟合和欠拟合的概念及解决方法 超参数优化:介绍常见的超参数优化方法,如网格搜索、随机搜索等 模型调优技巧:介绍一些常用的模型调优技巧,如特征选择、数据增强等
03
常见的人工神经网络算法
感知机算法
定义:感知机算法是一种二类分类的线性分类模型 特点:简单、易于实现、训练速度快 应用:模式识别、文本分类、图像识别等领域 局限:只能处理线性可分的数据集
多层感知机算法
定义:多层感知机是一种前馈人工神经网络模型,由输入层、隐藏层和输出层组成。 作用:用于分类和识别复杂模式。 工作原理:通过反向传播算法对网络进行训练,不断调整权重以最小化输出误差。 应用领域:图像识别、语音识别、自然语言处理等。

通过训练,人 工神经网络可 以学习和识别
模式
人工神经网络 广泛应用于图 像识别、语音 识别、自然语 言处理等领域
人工神经网络 由输入层、隐 藏层和输出层 组成,通过权
重连接
人工神经网络的基本原理
神经元模型:模拟生物神经元的基本结构和功能 前向传播:输入信号通过神经元网络传递,经过各层处理后得到输出结果 反向传播:根据输出结果和实际值的误差,调整网络中的权重和偏置参数 训练过程:反复迭代前向传播和反向传播,逐渐优化网络性能

现代电路理论与设计第9章人工神经网络(放映)

现代电路理论与设计第9章人工神经网络(放映)
针对资源受限的场景,设计更为高效、轻量级的人工神经网络 模型,以满足实时性和低功耗的需求。
结合符号逻辑、统计模型和人工神经网络的优势,发展混合智 能系统,以实现更全面的智能表现。
研究如何将不同模态的数据(如文本、图像、音频等)进行有 效的融合,以提升人工神经网络在多模态任务上的性能。
THANKS FOR WATCHING
详细描述
反向传播算法的基本思想是将输出层的误差反向传播到输入 层,并根据误差的梯度调整各层的权重和阈值,以使误差逐 渐减小。该算法需要预先设定好神经元的激活函数、学习率 和迭代次数等参数。
径向基函数网络算法
总结词
径向基函数网络算法是一种特殊的神经网络算法,它采用径向基函数作为激活函 数,能够实现输入到输出的非线性映射。
详细描述
深度学习算法的核心思想是通过逐层传递的方式将低层次的特征组合成高层次的特征表示,从而在更高层次上抽 象出数据的复杂特征。该算法能够自动提取数据的特征,避免了手工设计特征的繁琐过程,适用于大规模的数据 集和复杂的任务。
支持向量机算法
总结词
支持向量机算法是一种有监督学习算法,它通过找到能够将不同类别的数据点 最大化分隔的决策边界来实现分类。
深度学习框架
云平台和分布式计算
利用云计算和分布式计算技术,将人 工神经网络模型部署在云端或分布式 环境中,实现大规模数据处理和模型 训练。
利用深度学习框架如TensorFlow、 PyTorch等,可以方便地构建、训练 和部署人工神经网络模型。
人工神经网络的训练与优化
训练数据集
为了训练人工神经网络,需要准备大量的标注数据集,用于训练和验 证模型的准确性和泛化能力。
2006年,Hinton等人提出了深度学习的 概念,推动了人工神经网络的发展和应 用。

人工神经网络

人工神经网络

人工神经网络大脑是由约100亿个高度互联的神经元组成的,这些神经元构成一个协同处理的复杂网络结构,即神经网络,成为认知的物质与生理基础。

人工神经网络是模拟大脑构建的计算模型,由大量模拟神经元的处理单元——人工神经元构成,形成一个大规模的非线性自适应系统,拥有学习、记忆、计算以及智能处理能力,可以在一定程度上模拟人脑的信息储存、检索和处理能力。

6.1 感知机6.1.1 感知机模型1957年康奈尔大学的Rosenblatt提出了感知机的概念。

感知机模拟生物神经元,接收一个或者多个输入,处理后输出一个结果。

图6-1是感知机的示意图。

图6-1 感知机示意图感知机可以有一到多个输入,每个输入带有一个权重w,用来表示该输入的i和b构成了感知机的参数集合。

感知机重要程度,每个感知机有一个偏置b,wi计算输入的线性组合(或者叫作预激活)并将其交予激活函数f(a)得到输出y。

激活函数用于模拟生物神经元的激活与非激活状态,通常采用阶梯函数、sigmoid函数和分段线性函数及其变体。

图6-2给出了几种激活函数的定义和图形。

图6-2 几种激活函数6.1.2 感知机学习策略依据训练样本的数据确定wi 和b(不区分的时候统一记为θi)值的过程就是感知机的学习过程,其学习算法基于误差驱动。

首先,将未经学习的θi设置为0或者很小的随机值,然后对训练集中的每个样本进行分类预测,并根据预测结果更新参数值。

参数更新依据式(6-1)进行。

其中是样本j的实际类别;yj (t)是样本j的本次预测类别;xji是样本j的第i个特征;η是控制学习速率的超参数,叫作学习率。

显然,如果预测正确-yj(t)=0,则参数不需要更新,否则更新参数,这种更新规则类似于梯度下降算法。

学习遍历训练集中的每个样本称为一个训练周期(Epoch)。

如果在一个训练周期内对所有样本都分类正确,则模型达到收敛状态,停止训练;否则,进入下一周期,直至模型收敛,或者达到最大训练周期数。

人工神经网络课件

人工神经网络课件
人工神经网络课件
目录
• 神经网络基本概念 • 前馈神经网络 • 反馈神经网络 • 深度学习基础 • 优化算法与技巧 • 实践应用与案例分析
01 神经网络基本概念
生物神经网络简介
01
02
03
生物神经网络组成
生物神经网络由大量神经 元通过突触连接而成,具 有并行处理、分布式存储 和自学习等特性。
信号传递方式
每次只利用一个样本的梯度信息进行参数更新,计算量小,收敛速度快,但容易受到噪声干扰, 陷入局部最优解。
小批量梯度下降法(Mini-Batch Gradie…
折中方案,每次利用一小批样本的梯度信息进行参数更新,兼具批量梯度下降法和随机梯度下降 法的优点。
正则化方法防止过拟合
L1正则化(Lasso)
01
RNN在自然语言处理领域有广泛应用,如机器翻译、文本生成、情感分析等,同时也可以应用于语音识别 和图像处理等领域。
05 优化算法与技巧
梯度下降法及其改进算法
批量梯度下降法(Batch Gradient Des…
利用整个数据集的梯度信息进行参数更新,计算量大,收敛速度慢,但能找到全局最优解。
随机梯度下降法(Stochastic Gradien…
03 反馈神经网络
反馈神经网络结构
01
02
03
04
神经元之间相互连接,形成反 馈回路。
网络中的每个神经元都接收来 自其他神经元的信号,并产生
输出信号。
输出信号会再次作为输入信号 反馈到网络中,影响其他神经
元的输出。
通过不断调整神经元之间的连 接权重,网络可以学习并适应
不同的输入模式。
Hopfield网络模型与算法
批处理、随机梯度下降等优化策略

人工智能9人工神经网络基础

人工智能9人工神经网络基础

第九章人工神经网络基础人工神经网络(Artificial Neural Network, ANN)是在模拟人脑神经系统的基础上实现人工智能的途径,因此认识和理解人脑神经系统的结构和功能是实现人工神经网络的基础。

而人脑现有研究成果表明人脑是由大量生物神经元经过广泛互连而形成的,基于此,人们首先模拟生物神经元形成人工神经元,进而将人工神经元连接在一起形成人工神经网络。

因此这一研究途径也常被人工智能研究人员称为“连接主义”(connectionism)。

又因为人工神经网络开始于对人脑结构的模拟,试图从结构上的模拟达到功能上的模拟,这与首先关注人类智能的功能性,进而通过算法来实现的符号式人工智能正好相反,为了区分这两种相反的途径,我们将符号式人工智能称为“自上而下的实现方式”,而称人工神经网络称为“自下而上的实现方式”。

人工神经网络中存在两个基本问题。

第一个问题是人工神经网络的结构问题,即如何模拟人脑中的生物神经元以及生物神经元之间的互连方式的问题。

确定了人工神经元模型和人工神经元互连方式,就确定好了网络结构。

第二个问题是在所确定的结构上如何实现功能的问题,这一般是,甚至可以说必须是,通过对人工神经网络的学习来实现,因此主要是人工神经网络的学习问题。

具体地说,是如何利用学习手段从训练数据中自动确定神经网络中神经元之间的连接权值的问题。

这是人工神经网络中的核心问题,其智能程度更多的反映在学习算法上,人工神经网络的发展也主要体现在学习算法的进步上。

当然,学习算法与网络结构是紧密联系在一起的,网络结构在很大程度上影响着学习算法的确定。

本章首先阐述人脑神经系统,然后说明人工神经元模型,进而介绍人工神经网络的基本结构类型和学习方式。

9.1 人脑神经系统人工神经网络是在神经细胞水平上对人脑的简化和模拟,其核心是人工神经元。

人工神经元的形态来源于神经生理学中对生物神经元的研究。

因此,在叙述人工神经元之前,首先介绍目前人们对生物神经元的构成及其工作机理的认识。

人工神经网络

人工神经网络

人工神经网络人工神经网络人脑具有高度智能的复杂系统,它不必采用繁复的数字计算和逻辑运算,却能灵活处理各种复杂的,不精确的和模糊的信息。

人脑的信息处理机制极其复杂,从结构上看它是包含有140亿神经细胞的大规模神经网络。

单个神经元细胞的工作速度并不高(毫秒级),但它通过超并行处理使得整个系统实现处理的高速性和信息表现的多样性。

每个神经元都包括三个主要部分:树突、细胞体和轴突。

树突的作用是向四方收集由其他神经细胞传来的信息。

细胞体是神经元接受与处理信息的部件。

轴突的功能是传出从细胞体送来的信息。

在两个神经细胞之间的相互连接触点称为突触。

每个神经元具有兴奋和抑制两种状态,只有当所有外来刺激(输入)作用之和超过某一阀值后,神经元由抑制变为兴奋,并输出电脉冲。

神经元之间连接的强弱可随外部的激励信号自适应地变化。

这就是一般神经网络建模的生物依据。

人工神经网络(Artificial Neutral Networks,简称ANN)是由大量简单的基本元件——神经元相互连接,模拟人的大脑神经处理信息的方式,进行信息并行处理和非线性转换的复杂网络系统。

人工神经网络的基本单元的神经元模型,它有四个基本要素:(1)一个求和单元,用于求取各输入信号的加权和(线性组合)。

(2)每个神经元有一个阈值。

(3)一组连接(对应于生物神经元的突触),连接强度有个连接上的权值表示,权值为正表示激活,为负表示抑制。

(4)一个激活函数,起映射作用并将神经元输出幅度限制在一定范围内。

首先构筑合适的人工神经网络结构,固定处理单元(神经元)的数目,然后通过信息样本对神经网络的训练,不断改变处理单元间的连接强度对网络进行训练,使其具有人的大脑的记忆、辨识能力,完成各种信息的处理功能。

人工神经网络具有良好的自学习、自适应、联想记忆、并行处理和非线形转换的能力,避免了复杂数学推导,在样本缺损和参数漂移的情况下,仍能保证稳定的输出。

神经网络除在模式识别、非线性动态处理及自动控制等领域显示出极强的生命力外,还在预测、评价等方面取得了很好的应用效果。

人工神经网络

人工神经网络

x 0
i 1 i i
r
x 0
i 1 i i
r
5、算法实现
由于:
a xi i
i 1
r
1 x1 1 x2 2
假设:
xr r
X [1, x1, x2 ,
W [ , 1, 2 ,
单层感知器模型:
r y f xi i i 1
1 , if x 0 其中: f ( x) sgn( x) 1 , if x 0
xi
y
:输入数据 :输出数据
这是一个而分类问题,我们假设输出为1的对应类别为 l1, 输出为-1的对应类别为 l 2 。
人工神经网络
王刚
1、基本概念
人工神经网络(Artifical Neural Network,ANN),是由 大量处理单元(神经元 Neurons )广泛互连而成的网络,是 对人脑的抽象、简化和模拟,反映人脑的基本特性。
人工神经网络是由简单的处理单元所组成的大量并行分 布的处理机,这种处理机具有存储和应用经验知识的自然特 性,它与人脑的相似之处概括为两方面:
学习速率退火策略: (k )
1 k /
0
7、编程示例
语音信号识别:
f ( x) 1 1 e x
阈值函数:
分段线性函数:
Sigmoid函数:
4、单层前向网络
在众多人工神经网络模型中,最为简单的就是所谓的单 层前向网络,它是指拥有的计算节点(神经元)是“单层” 的。这里主要介绍的单层感知器和自适应线性元件模型均属 于典型单层前向网络。 感知器是神经网络用来进行模式识别的一种最简单模型, 但是由单个神经元组成的单层感知器只能用来实现线性可分 的两类模式的识别。 在信号处理领域,单个神经元也用来作为自适应线性元 件进行自适应滤波,Widrow和Hoff在1960年提出了易实现但 效 率 高 的 自 适 应 滤 波 的 LMS 算 法 ( Least Mean Square algorithm),可以称之为最小均方误差或梯度算法。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人工智能原理与应用
第九章 人工神经网络
9.2
感知器模型及其学习算法
•9.2.3 线性不可分问题 •单层感知器不能表达的问题被称为线性不可分问题。 1969年,明斯基证明了“异或”问题是线性不可分问题: “异或”(XOR)运算的定义如下:
0, y(x1 , x 2 ) 1,
if x 1 x 2 其他
人工智能原理与应用
第九章 人工神经网络
9.1
神经网络的基本概念及组成特性
9.1.2 人工神经网络的组成与结构
1. 人工神经网络的组成 人工神经网络(简称ANN)是由大量处理单元经广泛互连而组 成的人工网络,用来模拟脑神经系统的结构和功能。而这些处理单 元我们把它称作人工神经元。 人工神经网络(ANN)可看成是以人工神经元为节点,用有向 加权弧连接起来的有向图。在此有向图中,人工神经元就是对生物 神经元的模拟,而有向弧则是轴突—突触—树突对的模拟。有向弧 的权值表示相互连接的两个人工神经元间相互作用的强弱。
人工智能原理与应用
第九章 人工神经网络
教材简介:


称:人工智能原理与应用
者:张仰森
出版社:高等教育出版社 章 节:共十章
主讲教师:
宗春梅
人工智能原理与应用
第九章 人工神经网络
人工神经网络是集脑科学、神经心理学和信息科学 等多学科的交叉研究领域,是近年来高科技领域的一个 研究热点。它的研究目标是通过研究人脑的组成机理和 思维方式,探索人类智能的奥秘,进而通过模拟人脑的 结构和工作模式,使机器具有类似人类的智能。它已在 模式识别、机器学习、专家系统等多个方面得到应用, 成为人工智能研究中的活跃领域。本章将简要介绍神经 网络基本的概念、模型以及学习算法。
人工智能原理与应用
第九章 人工神经网络
9.1
神经网络的基本概念及组成特性
3.人工神经网络的结构 人工神经网络中,各神经元的不同连接方式就构成 了网络的不同连接模型。常见的连接模型有: • 前向网络。 • 从输入层到输出层有反馈的网络。 • 层内有互联的网络。 • 互联网络。
人工智能原理与应用
第九章 人工神经网络
人工智能原理与应用
第九章 人工神经网络
9.2
感知器模型及其学习算法
•9.2.4 多层感知器
• 在单层感知器的输入部分和输出层之间加入一层或多层处理单元, 就构成了二层或多层感知器。
• 在多层感知器模型中,只允许某一层的连接权值可调,这是因为无
法知道网络隐层的神经元的理想输出,因而难以给出一个有效的多层 感知器学习算法。
人工智能原理与应用
第九章 人工神经网络
9.3 反向传播模型及其学习算法
• B-P算法的网络结构是一个前向多层网络,如图所示。
人工智能原理与应用
第九章 人工神经网络
9.3 反向传播模型及其学习算法
9.3.2 反向传播网络的学习算法
B-P算法的学习目的是对网络的连接权值进行调整,使得调整后的 网络对任一输入都能得到所期望的输出。 • 学习过程由正向传播和反向传播组成。 • 正向传播用于对前向网络进行计算,即对某一输入信息,经过网 络计算后求出它的输出结果。 • 反向传播用于逐层传递误差,修改神经元间的连接权值,以使网 络对输入信息经过计算后所得到的输出能达到期望的误差要求。
人工智能原理与应用
第九章 人工神经网络
9.1
神经网络的基本概念及组成特性
突触是神经元之间相互连接的接口部分,即一个神经元的神经 末梢与另一个神经元的树突相接触的交界面,位于神经元的神经末梢 尾端。突触是轴突的终端。
2. 神经元的功能特性 (1)时空整合功能。 (2)神经元的动态极化性。 (3)兴奋与抑制状态。 (4)结构的可塑性。 (5)脉冲与电位信号的转换。 (6)突触延期和不应期。 (7)学习、遗忘和疲劳。
人工智能原理与应用
第九章 人工神经网络
9.1
神经网络的基本概念及组成特性
图9.2 人工神经网络的组成
图9.3 M-P神经元模型
人工智能原理与应用
第九章 人工神经网络
9.1
神经网络的基本概念及组成特性
2. 人工神经元的工作过程
对于某个处理单元(神经元)来说,假设来自其他处理单元(神 经元)i的信息为Xi,它们与本处理单元的互相作用强度即连接权值为 Wi, i=0,1,…,n-1,处理单元的内部阈值为θ。那么本处理单元(神经元) 的输入为 n 1
人工智能原理与应用
第九章 人工神经网络
9.2
感知器模型及其学习算法
异或问题是一个只有两个输入和一个输出,且输入输出都只取1 和0两个值的问题,分析起来比较简单。对于比较复杂的多输入变 量函数来说,到底有多少是线性可分的?多少是线性不可分的呢? 相关研究表明(参见文献 [19]) ,线性不可分函数的数量随着输 入变量个数的增加而快速增加,甚至远远超过了线性可分函数的个 数。也就是说,单层感知器不能表达的问题的数量远远超过了它所 能表达的问题的数量。这也难怪当Minsky给出单层感知器的这一致 命缺陷时,会使人工神经网络的研究跌入漫长的黑暗期。
人工智能原理与应用
第九章 人工神经网络
9.1
神经网络的基本概念及组成特性
1. 生物神经元的结构
9.1.1 生物神经元的结构与功能特性
神经细胞是构成神经系统的基本单元,称之为生物神经元,简称 神经元。神经元主要由三部分构成: (1)细胞体;(2)轴突;(3)树突; (如图9.1)
图9.1 生物神经元结构
人工智能原理与应用
wx
i i 0
i
(9.1.1)
而处理单元的输出为
y f(
w x )
i i i 0
n 1
(9.1.2)
式中,xi为第i个元素的输入,wi为第i个处理单元与本处理单元的互联 权重。f称为激发函数或作用函数,它决定节点(神经元)的输出。
人工智能原理与应用
第九章 人工神经网络
9.1
神经网络的基本概念及组成特性
n 1
激发函数一般具有非线性特性,常用的非线性激发函数如图所示
这里,= wixi 称为激活值
i 0
(a)阈值型 (b)分段线性型 (c) Sigmoid函数型 (d)双曲正切型
图 常用的激发函数
人工智能原理与应用
第九章 人工神经网络
9.1
神经网络的基本概念及组成特性
• 阈值型函数又称阶跃函数,它表示激活值σ 和其输出f(σ )之间的关系。 阈值型函数为激发函数的神经元是一种最简单的人工神经元,也就是我们 前面提到的M-P模型。 • 线性分段函数可以看作是一种最简单的非线性函数,它的特点是将函数 的值域限制在一定的范围内,其输入、输出之间在一定范围内满足线性关 系,一直延续到输出为最大域值为止。但当达到最大值后,输出就不再增 大。 • S型函数是一个有最大输出值的非线性函数,其输出值是在某个范围内连 续取值的。以它为激发函数的神经元也具有饱和特性。 • 双曲正切型函数实际只是一种特殊的S型函数,其饱和值是-1和1。
人工智能原理与应用
第九章 人工神经网络
Hale Waihona Puke 9.2感知器模型及其学习算法
• 9.2.2 单层感知器模型的学习算法
• 算法思想:首先把连接权和阈值初始化为较小的非零随机数,然后 把有n个连接权值的输入送入网络,经加权运算处理,得到的输出 如果与所期望的输出有较大的差别,就对连接权值参数按照某种算 法进行自动调整,经过多次反复,直到所得到的输出与所期望的输 出间的差别满足要求为止。 • 为简单起见,仅考虑只有一个输出的简单情况。设xi(t)是时刻t感知 器的输入(i=1,2,......,n),ωi(t)是相应的连接权值,y(t)是实际的输 出,d(t)是所期望的输出,且感知器的输出或者为1,或者为0,则 单层感知器的学习算法请参见教材P325
人工智能原理与应用
第九章 人工神经网络
9.3 反向传播模型及其学习算法
B-P算法的学习过程如下:
(1)选择一组训练样例,每一个样例由输入信息和期望的输出结 果两部分组成。 (2)从训练样例集中取一样例,把输入信息输入到网络中。 (3)分别计算经神经元处理后的各层节点的输出。 (4)计算网络的实际输出和期望输出的误差。 (5)从输出层反向计算到第一个隐层,并按照某种能使误差向减 小方向发展的原则,调整网络中各神经元的连接权值。 (6)对训练样例集中的每一个样例重复(3)—(5)的步骤,直 到对整个训练样例集的误差达到要求时为止。
其相应的逻辑运算真值表如表9-1所示。(见教材)
人工智能原理与应用
第九章 人工神经网络
9.2
感知器模型及其学习算法
由于单层感知器的输出为 y(x1,x2)=f(ω 1×x1+ω 2×x2-θ ) 所以,用感知器实现简单逻辑运算的情况如下: (1)“与”运算(x1∧x2) 令ω 1= ω 2=1,θ =2,则 y=f(1×x1+1×x2-2) 显然,当x1和x2均为1时,y的值1;而当x1和x2有一个为0时,y的值就为 0。 (2)“或”运算(x1∨x2) 令ω 1= ω 2=1, θ =0.5 y=f(1×x1+1×x2-0.5) 显然,只要x1和x2中有一个为1,则y的值就为1;只有当x1和x2都为0时, y的值才为0。
人工智能原理与应用
第九章 人工神经网络
9.2
感知器模型及其学习算法
•9.2.1 感知器模型 • 感知器模型是美国学者罗森勃拉特(Rosenblatt)为研究大脑的存储、 学习和认知过程而提出的一类具有自学习能力的神经网络模型,它 把神经网络的研究从纯理论探讨引向了从工程上的实现。 • Rosenblatt提出的感知器模型是一个只有单层计算单元的前向神经 网络,称为单层感知器。 •教材中图9.5所示的即为一个单层感知器模型。
相关文档
最新文档