苏教版六年级数学下册知识点总结(学生版)

合集下载

苏教版六年级数学下册第二单元知识点归纳

苏教版六年级数学下册第二单元知识点归纳

第二单元(圆柱和圆锥)知识点归纳 第一课时:1. 圆柱的特点:上下两个面是相同的圆形,圆柱的侧面是曲面,上下一样粗。

2. 圆锥有一个顶点,一个底面和一个侧面,底面是一个圆,侧面是一个曲面。

3. 围成圆柱的面还有一个曲面,叫做圆柱的侧面,圆柱的两个底面之间的距离叫做圆柱的高,圆柱有无数条高。

4. 以圆锥的顶点到底面圆心的距离是圆锥的高,圆锥有一条高。

第二课时:1. 圆柱的侧面积=底面周长(π×R )×高2. 圆柱的底面积(S )=π×r 23. 圆柱的表面积=侧面积+底面积×2第四课时1.圆柱的体积=底面积×高第五课时1. 体积是以外面量的,容积是以里面量的,容器的体积比它的容积大2. 圆柱的高不变,直径、半径扩大几倍,体积扩大原来体积的平方倍。

第六课时:1.圆锥的体积=底面积×高×13 ,不能忘记13。

第七课时:1.很多题目都会用等底等高的圆柱和圆锥的体积之间的关系去求圆柱和圆锥的体积。

(体积之和是几份?找准总份数、体积之差是几份,然后找到对应量,最后用总份数对应的量÷总份数=一份对应的量)2.圆锥的体积也是与它等底等高的长方体体积的1 33.已知圆锥的体积,要先求出和这个圆锥等底等高的圆柱的体积乘3,再除以底面积,最后求出高。

与求体积除以3相反。

培优:1.一个圆锥形容器里倒了一半高度的水,高是容器的一半,水面底面半径就是容器底面半径的一半,即12,则设容器的高度为h,水面高度为12h,所以得出结论:水面高是容器的一半,水面底面积是容器底面积的14;水的体积则是圆锥容器的18。

2.往圆柱形容器里加水,水的体积=底面积(水)×高(水),容器的容积=底面积(容)×高(容),因为底面积(水)和底面积(容)是一样的,则可以把底面积看成a,转化成:水的体积=a×高(水),容器的容积= a×高(容),所以,水的体积占容器容积水的体积容器的容积=a×高(水)a×高(容)=高(水)高(容),(根据分数的性质,分子和分母同时除以相同的数),所以水的体积占容器容积的比就是水面的高度占容器高度的比。

苏教版六年级数学下册知识点梳理归纳及复习要点

苏教版六年级数学下册知识点梳理归纳及复习要点

苏教版六年级数学下册知识点梳理归纳及复习要点一、知识点梳理归纳第一单元扇形统计图一、扇形统计图的意义:用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间的关系。

也就是各部分数量占总数的百分比(因此也叫百分比图)。

二、常用统计图的优点:1、条形统计图:可以清楚的看出各种数量的多少。

2、折线统计图:不仅可以看出各种数量的多少,还可以清晰看出数量的增减变化情况。

3、扇形统计图:能够清楚的反映出各部分数量同总数之间的关系。

三、扇形面积的大小表示的意义:在同一个圆中,扇形的大小与这个扇形的圆心角的大小有关,圆心角越大,扇形越大。

(因此扇形面积占圆面积的百分比,同时也是该扇形圆心角度数占圆周角度数的百分比。

)第二单元圆柱和圆锥知识点一:圆柱、圆锥的认识相关概念:①圆柱由一个上底面、一个下底面和一个侧面组成。

上下底面是两个完全相同的圆形;侧面是一个曲面。

②圆柱的高:上下底面之间的距离。

圆柱有无数条高,每条高相等。

③圆锥由一个底面和一个侧面组成。

底面是一个圆形;侧面是一个曲面。

④圆锥的高:圆锥的定点到底面圆心的距离。

圆锥只有一条高。

知识点二:圆柱侧面积的计算方法理解掌握:圆柱的侧面展开图:有可能是长方形,也有可能是正方形。

①假如是长方形,那么长方形的长a,就是圆柱底面的周长C,宽b就是圆柱的高h。

长方形的面积 S=a×b=C×h=2πr×h=2πrh,就是圆柱的侧面积。

②假如是正方形,那么正方形的边长a既等于圆柱底面的周长C,也等于圆柱的高h,也就是说底面周长和高相等。

正方形的面积 S=a×a=C×h=2πr×h=2πrh,就是圆柱的侧面积。

所以圆柱的侧面积公式=Ch或者=2πrh或者=πdh知识点三:圆柱表面积的计算方法理解掌握:圆柱的表面积由一个侧面加上两个底面组成,计算方法是S表=S侧+2S底,因为S侧=Ch,S底=πr2,所以S表=Ch+2πr2 =2πrh+2πr2用乘法分配率得圆柱的表面积公式 =2πr(h+r)例1:一个圆柱形的罐头盒,高是12.56厘米,它的侧面展开图是一个正方形,做一个这样的罐头盒需要多少铁皮?解析:本题中罐头盒的侧面展开图是正方形,说明圆柱的底面周长和高相等,都等于12.56厘米,可以根据圆的周长公式C=2πr,把r先求出,最后再用圆柱的表面积公式。

苏教版六年级下册数学知识要点总结

苏教版六年级下册数学知识要点总结

苏教版六年级下册数学知识要点总结
本文档旨在总结苏教版六年级下册数学课程的主要知识要点,
帮助学生复和掌握相关知识。

1. 整数的运算
- 整数的加法和减法运算:正数与正数相加、负数与负数相加、正数与负数相加的规律
- 整数的乘法和除法运算:正数与正数相乘、负数与负数相乘、正数与负数相乘的规律
- 整数的运算定律:加法和乘法的结合律、交换律和分配律
2. 分数的运算
- 分数的加法和减法运算:通分、化简、按规定格式进行计算
- 分数的乘法和除法运算:乘法的规律、除法的规律、分子分
母的计算
3. 小数的认识与运算
- 小数的表示方法:有限小数和循环小数
- 小数的加法和减法运算:按规定格式进行计算
- 小数的乘法和除法运算:乘法的规律、除法的规律、小数位数的控制
4. 平面图形的认识与计算
- 点、线、面的基本概念与特征
- 三角形、四边形、圆的性质与判断
- 平面镶嵌图形的认识与构造
5. 条形统计图的制作与分析
- 数据收集与整理
- 条形统计图的制作步骤
- 数据的分析与解读
以上是苏教版六年级下册数学课程的主要知识要点总结。

希望这份文档能够对学生的学习和复习有所帮助。

小学苏教版六年级下册数学知识点总结

小学苏教版六年级下册数学知识点总结

苏教版六年级(下册)数学知识点总结第一单元扇形统计图一、扇形统计图的意义:用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间的关系。

也就是各部分数量占总数的百分比(因此也叫百分比图)。

二、常用统计图的优点:1、条形统计图:可以清楚的看出各种数量的多少。

2、折线统计图:不仅可以看出各种数量的多少,还可以清晰看出数量的增减变化情况。

3、扇形统计图:能够清楚的反映出各部分数量同总数之间的关系。

三、扇形面积的大小表示的意义:在同一个圆中,扇形的大小与这个扇形的圆心角的大小有关,圆心角越大,扇形越大。

(因此扇形面积占圆面积的百分比,同时也是该扇形圆心角度数占圆周角度数的百分比。

)第二单元圆柱和圆锥知识点一:圆柱、圆锥的认识相关概念:①圆柱由一个上底面、一个下底面和一个侧面组成。

上下底面是两个完全相同的圆形;侧面是一个曲面。

②圆柱的高:上下底面之间的距离。

圆柱有无数条高,每条高相等。

③圆锥由一个底面和一个侧面组成。

底面是一个圆形;侧面是一个曲面。

④圆锥的高:圆锥的定点到底面圆心的距离。

圆锥只有一条高。

知识点二:圆柱侧面积的计算方法理解掌握:圆柱的侧面展开图:有可能是长方形,也有可能是正方形。

①假如是长方形,那么长方形的长a,就是圆柱底面的周长C,宽b就是圆柱的高h。

长方形的面积S=a×b=C×h=2πr×h=2πrh,就是圆柱的侧面积。

②假如是正方形,那么正方形的边长a既等于圆柱底面的周长C,也等于圆柱的高h,也就是说底面周长和高相等。

正方形的面积S=a×a=C×h=2πr×h=2πrh,就是圆柱的侧面积。

所以圆柱的侧面积公式S=Ch或者S=2πrh或者S=πdh知识点三:圆柱表面积的计算方法理解掌握:圆柱的表面积由一个侧面加上两个底面组成,计算方法是S表=S侧+2S底,因为S侧=Ch,S底=πr2,所以S表=Ch+2πr2=2πrh+2πr2用乘法分配率得圆柱的表面积公式S表=2πr(h+r)例1:一个圆柱形的罐头盒,高是12.56厘米,它的侧面展开图是一个正方形,做一个这样的罐头盒需要多少铁皮?解析:本题中罐头盒的侧面展开图是正方形,说明圆柱的底面周长和高相等,都等于12.56厘米,可以根据圆的周长公式C=2πr,把r先求出,最后再用圆柱的表面积公式。

苏教版六年级数学下册复习重点整理

苏教版六年级数学下册复习重点整理

苏教版六年级数学下册复习重点整理1 每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2 1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3 速度×时间=路程路程÷速度=时间路程÷时间=速度4 单价×数量=总价总价÷单价=数量总价÷数量=单价5 工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6 加数+加数=和和-一个加数=另一个加数7 被减数-减数=差被减数-差=减数差+减数=被减数8 因数×因数=积积÷一个因数=另一个因数9 被除数÷除数=商被除数÷商=除数商×除数=被除数小学数学图形计算公式1 正方形C周长S面积a边长周长=边长×4C=4a面积=边长×边长S=a×a2 正方体V:体积a:棱长表面积=棱长×棱长×6S表=a×a×6体积=棱长×棱长×棱长V=a×a×a3 长方形C周长S面积a边长周长=(长+宽)×2C=2(a+b)面积=长×宽S=ab4 长方体V:体积s:面积a:长b: 宽h:高(1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)(2)体积=长×宽×高V=abh5 三角形s面积a底h高面积=底×高÷2s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高6 平行四边形s面积a底h高面积=底×高s=ah7 梯形s面积a上底b下底h高面积=(上底+下底)×高÷2s=(a+b)× h÷2S面积C周长∏ d=直径r=半径(1)周长=直径×∏=2×∏×半径C=∏d=2∏r(2)面积=半径×半径×∏9 圆柱体v:体积h:高s;底面积r:底面半径c:底面周长(1)侧面积=底面周长×高(2)表面积=侧面积+底面积×2(3)体积=底面积×高(4)体积=侧面积÷2×半径10 圆锥体v:体积h:高s;底面积r:底面半径体积=底面积×高÷3总数÷总份数=平均数和差问题的公式(和+差)÷2=大数(和-差)÷2=小数和倍问题和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数)差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数)小学奥数公式和差问题的公式(和+差)÷2=大数(和-差)÷2=小数和倍问题的公式和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数) 差倍问题的公式差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数) 植树问题的公式1 非封闭线路上的植树问题主要可分为以下三种情形:⑴如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距-1全长=株距×(株数-1)株距=全长÷(株数-1)⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1全长=株距×(株数+1)株距=全长÷(株数+1)2 封闭线路上的植树问题的数量关系如下株数=段数=全长÷株距全长=株距×株数株距=全长÷株数盈亏问题的公式(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份数相遇问题的公式相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间追及问题的公式追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间流水问题顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2水流速度=(顺流速度-逆流速度)÷2浓度问题的公式溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量利润与折扣问题的公式利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)(一)数的读法和写法1.整数的读法:从高位到低位,一级一级地读。

苏教版六年级数学下册知识点总结

苏教版六年级数学下册知识点总结

苏教版六年级数学下册知识点总结小学六年级数学下册知识点:圆柱和圆锥1.认识圆柱和圆锥,掌握它们的基本特征。

认识圆柱的底面、侧面和高。

认识圆锥的底面和高。

2.探索并掌握圆柱的侧面积、表面积的计算方法,以及圆柱、圆锥体积的计算公式,会运用公式计算体积,解决有关的简单实际问题。

3.通过观察、设计和制作圆柱、圆锥模型等活动,了解平面图形与立体图形之间的联系,发展学生的空间观念。

4.圆柱的两个圆面叫做底面,周围的面叫做侧面,底面是平面,侧面是曲面。

5.圆柱的侧面沿高展开后是长方形,长方形的长等于圆柱底面的周长,长方形的宽等于圆柱的高,当底面周长和高相等时,侧面沿高展开后是一个正方形。

6.圆柱的表面积=圆柱的侧面积+底面积×2即S表=S侧+S底×2或2πr×h+2×π。

7.圆柱的侧面积=底面周长×高即S侧=Ch或2πr×。

8.圆柱的体积=圆柱的底面积×高,即V=sh或πr2×。

进一法:实际中,使用的材料都要比计算的结果多一些,因此,要保留数的时候,省略的位上的是4或者比4小,都要向前一位进1。

这种取近似值的方法叫做进一法。

9.圆锥只有一个底面,底面是个圆。

圆锥的侧面是个曲面。

10.从圆锥的顶点到底面圆心的距离是圆锥的高。

圆锥只有一条高。

(测量圆锥的高:先把圆锥的底面放平,用一块平板水平地放在圆锥的顶点上面,竖直地量出平板和底面之间的距离)11.把圆锥的侧面展开得到一个扇形。

12.圆锥的体积等于与它等底等高的圆柱体积的三分之一,即V锥=1/3Sh或πr2×h÷。

13.常见的圆柱圆锥解决问题:①压路机压过路面面积(求侧面积);②压路机压过路面长度(求底面周长);③水桶铁皮(求侧面积和一个底面积);④厨师帽(求侧面积和一个底面积);通风管(求侧面积)。

小学6年级毕业考试数学重难知识点工程问题基本公式:①工作总量=工作效率×工作时间②工作效率=工作总量÷工作时间③工作时间=工作总量÷工作效率基本思路:①假设工作总量为“1”(和总工作量无关);②假设一个方便的数为工作总量(一般是它们完成工作总量所用时间的最小公倍数),利用上述三个基本关系,可以简单地表示出工作效率及工作时间.关键问题:确定工作量、工作时间、工作效率间的两两对应关系。

苏教版小学数学六年级下册本册知识清单

苏教版小学数学六年级下册本册知识清单

样的小数叫作循环小数。

读数前通常先把这个数从右往左每四位一分级,每一级中间哪一个数位上一个计数整数部分按照整“点”;即使是连续的整数部分按照整小数点写在个位的”后面是几就读作”后面是几就读作几。

负数则在数的前0是最小的自然数,但0不是最小的一位数,最小的一位数是1。

易错点:误认为75.075读作七十五点七十五。

要注意读小数部分时一定要从高位起,依次读出每个数位上的数字,即使是连续的几个0,也要一一读出来。

小数的计数单位是0.1,0.01,0.001…是十进制分数的另一种表现形式。

正、负数表示两种具有相反意义的量。

小数部分的整数部分,余数就是带分数的分数部分的分子,原分母不变。

③整数化成假分数的方法:把整数化成假分数,用指定的分母作分母,用分母和整数的乘积作分子。

④带分数化成假分数的方法:把带分数化成假分数,用原来的分母作分母,用分母和整数的乘积再加上原来的分子作分子。

(2)判断一个分数能否化成有限小数的方法。

a.要看这个分数是不是最简分数。

b.如果是最简分数,就要看其分母中含有哪些质因数。

如果分母中只含有质因数2和5,这个分数就能化成有限小数;如果分母中含有2和5以外的其他质因数,这个分数就不能化成有限小数。

(3)分数、小数与百分数之间的互化。

四、常见的量1. 常见的计量单位及其进率。

(1)质量单位及其进率。

①常见的质量单位有吨、千克、克。

............... ②1吨=1000千克 1千克=1000克 (2)时间单位及其进率。

①时间单位有世纪、年、月、日、时、分、秒...................,.季度、星....期等。

...②日、时、分、秒等时间单位的关系。

③1世纪=100年 1日=24时 1时=60分 1分=60秒 1星期=7日④平年、闰年的判断方法。

根据公历年份判断........,.一般情况下.....,.整百、整千的年份是.........400...的倍数...,.其他年份是.....4.的倍数的都是闰年........,.反之则是平年。

苏教版六下数学本册知识清单

苏教版六下数学本册知识清单

”后面是几就读作几。

0是最小的自然数,但0不是最小的一位数,最小的一位数是1。

易错点:误认为75.075读作七十五点七十五。

要注意读小数部分时一定要从高位起,依次读出每个数位上的数字,即使是连续的几个0,也要一一读出来。

小数的计数单位是0.1,0.01,0.001…是十进制分数的另一种表现形式。

正、负数表示两种具有相反意义的量。

小数部分·的整数部分,余数就是带分数的分数部分的分子,原分母不变。

③整数化成假分数的方法:把整数化成假分数,用指定的分母作分母,用分母和整数的乘积作分子。

④带分数化成假分数的方法:把带分数化成假分数,用原来的分母作分母,用分母和整数的乘积再加上原来的分子作分子。

(2)判断一个分数能否化成有限小数的方法。

a.要看这个分数是不是最简分数。

b.如果是最简分数,就要看其分母中含有哪些质因数。

如果分母中只含有质因数2和5,这个分数就能化成有限小数;如果分母中含有2和5以外的其他质因数,这个分数就不能化成有限小数。

(3)分数、小数与百分数之间的互化。

四、常见的量1. 常见的计量单位及其进率。

(1)质量单位及其进率。

①常见的质量单位有吨.........、.千克..、.克.。

. ②1吨=1000千克 1千克=1000克 (2)时间单位及其进率。

①时间单位有世纪.......、.年.、.月.、.日.、.时.、.分.、.秒.,.季度..、.星.期等。

...②日、时、分、秒等时间单位的关系。

③1世纪=100年 1日=24时 1时=60分 1分=60秒 1星期=7日④平年、闰年的判断方法。

根据公历年份判断........,.一般情况下.....,.整百、整千的年份是.........400...的倍数...,.其他年份是.....4.的倍数的都是闰年........,.反之则是平年。

.......(3)人民币的单位及其进率。

①人民币的单位有元........、.角.、.分.。

苏教版小学六年级数学下册知识点整理

苏教版小学六年级数学下册知识点整理

苏教版小学六年级数学下册知识点整理一、知识点:1、数据的收集和整理2、表的意义:把收集到的数据整理以后制成表格,用来反映情况,分析具体问题,这样的表格叫做统计表。

3、常见统计表的分类:(1)、单式统计表:只含有一个统计项目的统计表。

(2)、复式统计表:含有2个或2个以上统计项目的统计表。

(3)、百分数统计表:不仅表明各统计项目的具体数量,而且表明数量间的百分比的统计表。

4、统计表的制作步骤和方法。

(1)收集数据、整理数据。

(2)根据资料和制作表要求确定统计表的格式和项目。

(3)根据整理好的数据填表。

(4)填写好总计和合计。

(5)写出制表的名称和制表的时间,必要时注明制表人。

5、条形统计图的意义:用一个单位长度表示一定的数量,根据数量画出长短不一的直条,然后把直条按照一定的顺序排列起来。

6、折线统计图的意义:用一个单位长度表示一定的数量,根据数量的多少描出各点,然后把各点用线段顺次连起来。

7、扇形统计图:用一个圆表示总量,用圆中大小不同的扇形表示各部分数量所占的百分比。

8、统计量:包括平均数、众数、中位数。

9、统计平均数的意义:平均数能较好地反映一组数据的整体水平。

10、众数:在一组数据中,出现次数最多的那个数据叫众数。

11、中位数:把收集到的某一对象的有关数据,按大小顺序排列,处于中间位置的那个数据(或中间两个数据的平均数)叫中位数。

12、确定现象与不确定现象的认识a、不确定现象:生活中,有些事的发生是不确定的,一般用“可能发生”来描述。

13、确定现象:生活中,有些事情的发生是确定的。

一般用“一定发生”或“不可能发生”来描述。

14、可能性大小的表示:用数字表示“一定能”“不可能”。

“一定能”这种可能性用1来表示,“不可能”用0来表示。

1.圆锥的特征:由2个面围成,一个是底面,一个是曲面(展开后是一个扇形)只有一条高。

2.圆柱的体积:公式的推导:利用转化的策略。

把圆柱的底面平均分成16、32、64……无限分割,切开后拼成的物体越来越接近长方体。

最新苏教版小学六年级(下册)数学毕业总复习知识点概括归纳

最新苏教版小学六年级(下册)数学毕业总复习知识点概括归纳

【目录】第一部分常用的数量关系第二部分小学数学图形计算公式第三部分常用单位换算第四部分基本概念第一章数和数的运算第二章代数初步知识第三章空间与图形第四章简单的统计班级________________姓名________________二零一七年三月一、【常用的数量关系】1、速度×时间=路程;路程÷速度=时间;路程÷时间=速度2、单价×数量=总价;总价÷单价=数量;总价÷数量=单价3、工作效率×工作时间=工作总量;工作总量÷工作效率=工作时间;工作总量÷工作时间=工作效率;工作总量÷工作效率和=合作时间4、加数+加数=和和 - 一个加数 = 另一个加数5、被减数-减数=差被减数-差=减数;差+减数=被减数6、因数×因数=积;积÷一个因数=另一个因数7、被除数÷除数=商被除数÷商=除数商×除数=被除数二、【小学数学图形计算公式】(一)几种简单的平面图形的周长、面积的计算公式表。

名称字母意义周长公式面积公式长方形c—周长 s—面积a—长 b—宽c =(a+b)×2 s =ab正方形c—周长 s—面积a—边长C =4a s =a2平行四边形s—面积 a—底h—高——S=ah三角形s—面积 a—底h—高——S =梯形s—面积 a—上底b—下底 h—高——S =圆s—面积 c—周长r—半径 d—直径C = πdC =2πrS =πr2(二)、立体圆形的底面积、侧面积、表面积和体积的计算公式名称字母意义底面积侧面积表面积体积长方体A—长 b—宽h—高S=ab S侧=(ah+bh)×2S表=(ab+ah+bh)×2V=abh正方体a—棱长S=a2S侧=4a2S表=6a2V=a3圆柱体r—底面半径h—高,c—底面圆周长S底=πr2S侧=chS表=S底+S底×2 V=s底h圆锥体r—底面半径h—高S底=πr2————V= s底h三、【常用单位换算】换算方法:(1)高级单位→低级单位的方法:高级单位的数×进率(2)低级单位→高级单位的方法:低级单位的数÷进率(一)长度单位换算1千米=1000米; 1米=10分米; 1分米=10厘米;1米=100厘米;1厘米=10毫米(二)面积单位换算: 1平方千米=100公顷; 1公顷=10000平方米;1平方米=100平方分米; 1平方分米=100平方厘米; 1平方厘米=100平方毫米(三)体积(容积)单位换算:1立方米=1000立方分米; 1立方分米=1000立方厘米;1立方分米=1升; 1立方厘米=1毫升; 1立方米=1000升(四)重量单位换算: 1吨=1000千克; 1千克=1000克; 1千克=1公斤(五)人民币单位换算: 1元=10角; 1角=10分; 1元=100分(六)时间单位换算: 1世纪=100年; 1年=4个季度; 1年=12月;【大月(31天)有:1、3、5、7、8、10、12月】;【小月(30天)有:4、6、9、11月】【平年:2月有28天;全年有365天】;【闰年:2月有29天;全年有366天】1日=24小时; 1时=60分=3600秒; 1分=60秒;自然数四、【基 本 概 念】第一章 数和数的运算一、概念(一)整 数1.自然数、负数和整数(1)、自然数 :我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。

完整版苏教版六年级数学下册知识点

完整版苏教版六年级数学下册知识点

1 / 10苏教版六年级数学下册知识点第一单元扇形统计图一、扇形统计图的意义:用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间的关系。

也就是各部分数量占总数的百分比(因此也叫百分比图)。

二、常用统计图的优点:1、条形统计图:可以清楚的看出各种数量的多少。

2、折线统计图:不仅可以看出各种数量的多少,还可以清晰看出数量的增减变化情况。

3、扇形统计图:能够清楚的反映出各部分数量同总数之间的关系。

三、扇形面积的大小表示的意义:在同一个圆中,扇形的大小与这个扇形的圆心角的大小有关,圆心角越大,扇形越大。

(因此扇形面积占圆面积的百分比,同时也是该扇形圆心角度数占圆周角度数的百分比。

)第二单元圆柱和圆锥知识点一:圆柱、圆锥的认识相关概念:①圆柱由一个上底面、一个下底面和一个侧面组成。

上下底面是两个完全相同的圆形;侧面是一个曲面。

②圆柱的高:上下底面之间的距离。

圆柱有无数条高,每条高相等。

③圆锥由一个底面和一个侧面组成。

底面是一个圆形;侧面是一个曲面。

④圆锥的高:圆锥的定点到底面圆心的距离。

圆锥只有一条高。

2 / 10知识点二:圆柱侧面积的计算方法理解掌握:圆柱的侧面展开图:有可能是长方形,也有可能是正方形。

①假如是长方形,那么长方形的长a,就是圆柱底面的周长C,宽b就是圆柱的高h。

长方形的面积S=a×b=C×h=2πr×h=2πrh,就是圆柱的侧面积。

②假如是正方形,那么正方形的边长a既等于圆柱底面的周长C,也等于圆柱的高h,也就是说底面周长和高相等。

正方形的面积S=a×a=C×h=2πr×h=2πrh,就是圆柱的侧面积。

所以圆柱的侧面积公式=Ch或者=2πrh或者=πdh知识点三:圆柱表面积的计算方法理解掌握:圆柱的表面积由一个侧面加上两个底面组成,计算方法是S表=S 侧+2S底,因为S侧=Ch,S底=πr2,所以S表=Ch+2πr2=2πrh+2πr2用乘法分配率得圆柱的表面积公式=2πr(h+r)例1:一个圆柱形的罐头盒,高是12.56厘米,它的侧面展开图是一个正方形,做一个这样的罐头盒需要多少铁皮?解析:本题中罐头盒的侧面展开图是正方形,说明圆柱的底面周长和高相等,都等于12.56厘米,可以根据圆的周长公式C=2πr,把r先求出,最后再用圆柱的表面积公式。

苏教版小学六年级数学下册知识点归纳

苏教版小学六年级数学下册知识点归纳

苏教版小学六年级数学下册知识点归纳苏教版小学六年级数学下册知识点归纳六年级数学下册知识点归纳一、负数: 1、在熟悉的生活情境中初步认识负数,能正确的读、写正数和负数,知道0既不是正数也不是负数。

2、初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的密切联系。

3、能借助数轴初步学会比较正数、0和负数之间的大小。

二、圆柱和圆锥1、认识圆柱和圆锥,掌握它们的基本特征。

认识圆柱的底面、侧面和高。

认识圆锥的底面和高。

2、探索并掌握圆柱的侧面积、表面积的计算方法,以及圆柱、圆锥体积的计算公式,会运用公式计算体积,解决有关的简单实际问题。

3、通过观察、设计和制作圆柱、圆锥模型等活动,了解平面图形与立体图形之间的联系,发展学生的空间观念。

三、比例1、理解比例的意义和基本性质,会解比例。

2、苏教版小学六年级数学下册知识点归纳:理解正比例和反比例的意义,能找出生活中成正比例和成反比例量的实例,能运用比例知识解决简单的实际问题。

3、认识正比例关系的图像,能根据给出的有正比例关系的数据在有坐标系的方格纸上画出图像,会根据其中一个量在图像中找出或估计出另一个量的值。

4、了解比例尺,会求平面图的比例尺以及根据比例尺求图上距离或实际距离。

5、认识放大与缩小现象,能利用方格纸等形式按一定的比例将简单图形放大或缩小,体会图形的相似。

6、渗透函数思想,使学生受到辩证唯物主义观点的启蒙教育四、统计1、会综合应用学过的统计知识,能从统计图中准确提取统计信息,能够正确解释统计结果。

2、能根据统计图提供的信息,做出正确的判断或简单预测。

五、数学广角1、经历抽屉原理的探究过程,初步了解抽屉原理,会用抽屉原理解决简单的实际问题。

2、通过抽屉原理的灵活应用感受数学的魅力。

六、整理和复习1、比较系统地掌握有关整数、小数、分数和百分数、负数、比和比例、方程的基础知识。

能比较熟练地进行整数、小数、分数的四则运算,能进行整数、小数加、减、乘、除的估算,会使用学过的简便算法,合理、灵活地进行计算;会解学过的方程;养成检查和验算的习惯。

苏教版六年级数学下册知识点总结(学生版)

苏教版六年级数学下册知识点总结(学生版)

例 2:东山村去年实际造林 20 公顷,比原计划多 25%,原计划造林多少公顷?知识点四、应纳税额的计算方法分解题目:求应纳税额实际上就是求一个数的百分之几是多少,用乘法计算。

解题方法:应纳税额 =收入额X 税率例 1:星光书店去年十二月份的营业额是 60 万元。

如果按营业额的 5%缴纳营业税, 这个书店去年十二月份应 缴纳营业税多少万元?知识点五:利息的计算方法名词解释:①本金:存入银行的钱。

② 利息(应得利息):取款时银行除还给本金外,另外付给的钱。

③ 利率:利息占本金的百分率。

按年计算的叫做年利率;按月计算的叫做月利率。

④ 利息税:利息所征收的个人所得税,一般是利息税率的 5%⑤ 纯利息 / 实得利息:扣除利息税后的利息。

解题方法:①利息二本金X 利率X 时间②纯利息=利息^( 1-5%)二本金X 利率X 时间X 95%或者=利息-利息税第一单元 百分数的应用知识点一 分解题目: 、“求数A 比数B 多(少)百分之几? ”的实际问题 已知条件:数 A 、数B; 求:两数差的百分数 解题方法: (大数一小数)十单位“ 1” 例 1:东山村去年原计划造林 16 公顷,实际造林 20 公顷。

实际造林比原计划多百分之几? 例 2:东山村去年原计划造林 16 公顷,实际造林 20 公顷。

原计划造林比实际少百分之几? 知识点二、“数 A 比数 B 多(少)百分之几,求数分解题目:已知条件:数 B 、 两数和(差)的百分数 A 是多少?”的实际问题 求:数A (非单位“ 1 ”) 解题方法:数 B X ( 1+百分数)——两数和的方法数B X ( 1-百分数)一一两数差的方法 例 1 :东山村去年原计划造林 16 公顷,实际造林比原计划多 25%,实际造林多少公顷? 例 2:东山村去年实际造林 20 公顷,原计划造林比实际少 20%,原计划造林多少公顷? 知识点三、“数 A 比数 B 多(少)百分之几,求数 分解题目:已知条件:数 A 、两数和(差)的百分数 解题方法:数 A -( 1+百分数)——两数和的方法B 是多少?” 求:数B (单位“ 1 ” 数 2( 1-百分数)一一两数差的方法例 1 :东山村去年原计划造林16 公顷,比实际造林少 20%,实际造林多少公顷?例1:2007 年8 月20 日,一年定期存款的年利率是3.87%。

六年级数学苏教版下册知识点

六年级数学苏教版下册知识点

六年级数学苏教版下册知识点数学是考试的重点考察科目,数学知识的积累和解题方法的掌握,需要科学有效的复习方法,同时需要持之以恒的坚持。

下面是小编给大家整理的一些六年级数学的知识点,希望对大家有所帮助。

六年级数学下册知识点:比例1.理解比例的意义和基本性质,会解比例。

2.理解正比例和反比例的意义,能找出生活中成正比例和成反比例量的实例,能运用比例知识解决简单的实际问题。

3.认识正比例关系的图像,能根据给出的有正比例关系的数据在有坐标系的方格纸上画出图像,会根据其中一个量在图像中找出或估计出另一个量的值。

4.了解比例尺,会求平面图的比例尺以及根据比例尺求图上距离或实际距离。

5.认识放大与缩小现象,能利用方格纸等形式按一定的比例将简单图形放大或缩小,体会图形的相似。

6.渗透函数思想,使学生受到辩证唯物主义观点的启蒙教育。

7.比例的意义:表示两个比相等的式子叫做比例。

如:2:1=6:8.组成比例的四个数,叫做比例的项。

两端的两项叫做外项,中间的两项叫做内项。

9.比例的性质:在比例里,两个外项的积等于两个两个内向的积。

这叫做比例的基本性质。

例如:由3:2=6:4可知3×4=2×6;或者由x×1。

5=y×1。

2可知x:y=1.2:1.5。

10.解比例:根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个数比例中的另外一个未知项。

求比例中的未知项,叫做解比例。

例如:3:x=4:8,内项乘内项,外项乘外项,则:4x=3×8,解得x=6。

11.正比例和反比例:(1)成正比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。

用字母表示y/x=k(一定)例如:①速度一定,路程和时间成正比例;因为:路程÷时间=速度(一定)。

②圆的周长和直径成正比例,因为:圆的周长÷直径=圆周率(一定)。

六年级下册数学知识点苏教版

六年级下册数学知识点苏教版

六年级下册数学知识点苏教版数学,作为一门科学,是我们日常生活中无处不在的。

六年级下册数学知识点是苏教版的教材所涵盖的内容。

本文将以整洁美观的排版,通顺流畅的语句,为您详细介绍六年级下册数学知识点。

第一章:四则运算四则运算是数学基本运算之一,也是我们日常生活中经常应用的。

四则运算包括加法、减法、乘法和除法。

在六年级下册数学学习中,我们将进一步学习这些运算,并应用于解决实际问题。

第二章:分数与小数分数与小数是六年级下册数学的重要内容之一。

在这一章节中,我们将学习如何将一个整数表示为分数或小数,并学习分数与小数之间的相互转换。

我们还将学习如何进行分数的加减乘除运算,并将这些知识应用到实际问题中。

第三章:平方与平方根平方与平方根也是六年级下册数学的重点内容。

在这一章节中,我们将学习如何求一个数字的平方,以及如何求一个数字的平方根。

我们将通过多种练习和实际问题的应用,加深对平方与平方根的理解。

第四章:图形的认识在六年级下册数学学习中,我们将进一步认识各种图形,如三角形、四边形、圆等。

我们将学习如何根据给定的条件来判断图形的性质,并学习如何计算图形的周长和面积。

通过学习这些知识,我们将能够更好地理解和应用图形。

第五章:单位换算单位换算是六年级下册数学中的一个重要环节。

在这一章节中,我们将学习如何在不同的度量单位之间进行换算,例如长度单位、质量单位以及时间单位等。

我们将通过实际生活中的例子来帮助理解和应用这些知识,提高我们的换算能力。

第六章:数据统计数据统计是六年级下册数学中的一项基本技能。

在这一章节中,我们将学习如何收集、整理和分析数据,并通过各种图表和图形来展示和描述数据。

我们将通过实际的统计案例来提高我们的数据统计能力,并学会运用统计结果解决实际问题。

通过以上六个章节的学习,我们将能够全面地掌握六年级下册数学知识点。

在学习过程中,我们将通过不同的练习和实例应用来提高我们的数学能力。

数学无处不在,掌握好数学知识将使我们更加自信和独立地应对生活中的各种问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一单元百分数的应用知识点一、“求数A比数B多(少)百分之几?”的实际问题分解题目:已知条件:数A、数B;求:两数差的百分数解题方法:(大数-小数)÷单位“1”例1:东山村去年原计划造林16公顷,实际造林20公顷。

实际造林比原计划多百分之几?例2:东山村去年原计划造林16公顷,实际造林20公顷。

原计划造林比实际少百分之几?知识点二、“数A比数B多(少)百分之几,求数A是多少?”的实际问题分解题目:已知条件:数B、两数和(差)的百分数求:数A(非单位“1”)解题方法:数B×(1+百分数)——两数和的方法数B×(1-百分数)——两数差的方法例1:东山村去年原计划造林16公顷,实际造林比原计划多25%,实际造林多少公顷?例2:东山村去年实际造林20公顷,原计划造林比实际少20%,原计划造林多少公顷?知识点三、“数A比数B多(少)百分之几,求数B是多少?”分解题目:已知条件:数A、两数和(差)的百分数求:数B(单位“1”)解题方法:数A÷(1+百分数)——两数和的方法数A÷(1-百分数)——两数差的方法例1:东山村去年原计划造林16公顷,比实际造林少20%,实际造林多少公顷?例2:东山村去年实际造林20公顷,比原计划多25%,原计划造林多少公顷?知识点四、应纳税额的计算方法分解题目:求应纳税额实际上就是求一个数的百分之几是多少,用乘法计算。

解题方法:应纳税额=收入额×税率例1:星光书店去年十二月份的营业额是60万元。

如果按营业额的5%缴纳营业税,这个书店去年十二月份应缴纳营业税多少万元?知识点五:利息的计算方法名词解释:①本金:存入银行的钱。

②利息(应得利息):取款时银行除还给本金外,另外付给的钱。

③利率:利息占本金的百分率。

按年计算的叫做年利率;按月计算的叫做月利率。

④利息税:利息所征收的个人所得税,一般是利息税率的5%。

⑤纯利息/实得利息:扣除利息税后的利息。

解题方法:①利息=本金×利率×时间②纯利息=利息×(1-5%)=本金×利率×时间×95% 或者=利息-利息税例1:2007年8月20日,一年定期存款的年利率是3.87%。

李爷爷把50000元存入银行,一年以后按5%缴纳利息税,应缴纳利息税多少元?知识点六:折扣(成数)计算方法名词解释:①折扣:商店经常把商品减价,按原价的百分之几出售,通常称为打折出售,简称为折扣。

②折扣与百分数的关系:打几折就是按原价的百分之几出售或说降价了(1-百分之几)出售。

③标价:商品摆放柜台出售的价格,包括成本和利润两部分。

④售价:商品的成交价格。

售价经常等于或小于标价。

⑤成数:表示一个数是另一个数十分之几的数。

通常用在工农生产中表示生产的增长状况。

几成就是十分之几。

“二成”就是十分之二,就是百分之二十。

⑥利润率:利润占成本的百分率。

解题方法:①售价(现价)=标价(原价)×折扣折扣=售价(现价)÷标价(原价)标价(原价)=售价(现价)÷折扣②利润率=利润÷成本例1:一本书原价是30元,现在明明少花9元买到这本书,现在这本书打几折销售?知识点七:列方程解决稍复杂的百分数实际问题的解题方法步骤:①审题:1,读懂题;2,列出等量关系式②设未知数,列方程③解方程,检验并写答。

解题方法:本单元的应用题一般设单位“1”为未知数。

例1:一个机械加工厂,十月份生产零件2000个,比原计划多生产25%,多生产多少个零件?第二单元圆柱和圆锥知识点一:圆柱、圆锥的认识相关概念:①圆柱由一个上底面、一个下底面和一个侧面组成。

上下底面是两个完全相同的圆形;侧面是一个曲面。

②圆柱的高:上下底面之间的距离。

圆柱有无数条高,每条高相等。

③圆锥由一个底面和一个侧面组成。

底面是一个圆形;侧面是一个曲面。

④圆柱的高:圆锥的定点到底面圆心的距离。

圆锥只有一条高。

知识点二:圆柱侧面积的计算方法理解掌握:圆柱的侧面展开图:有可能是长方形,也有可能是正方形。

①假如是长方形,那么长方形的长a,就是圆柱底面的周长C,宽b就是圆柱的高h。

长方形的面积S=a×b=C×h=2πr×h=2πrh,就是圆柱的侧面积。

②假如是正方形,那么正方形的边长a既等于圆柱底面的周长C,也等于圆柱的高h,也就是说底面周长和高相等。

正方形的面积S=a×a=C×h=2πr×h=2πrh,就是圆柱的侧面积。

所以圆柱的侧面积公式=Ch或者=2πrh或者=πdh知识点三:圆柱表面积的计算方法理解掌握:圆柱的表面积由一个侧面加上两个底面组成,计算方法是S表=S侧+2S底,因为S侧=Ch,S底=πr2,所以S表=Ch+2πr2=2πrh+2πr2用乘法分配率得圆柱的表面积公式 =2π(rh+r2)例1:一个圆柱形的罐头盒,高是12.56厘米,它的侧面展开图是一个正方形,做一个这样的罐头盒需要多少铁皮?知识点四:圆柱体积的计算方法理解掌握:利用我们以前学过的长方体的体积公式V长方体=S底×h,可以得到圆柱的体积公式V圆柱= S底×h,长方体的底面积是长方形或正方形,而圆柱的底面积是圆。

相关公式:①已知半径和高,V圆柱=πr2h②已知直径和高,V圆柱=π(d÷2)2h③已知周长和高,V圆柱=π(C÷2π)2h难点解析:把圆柱的底面平均分成n份,切开后平成一个近似的长方体。

得到的结论:圆柱的底面周长等于长方体的两条长的和;圆柱的半径等于长方体的宽;圆柱的高等于长方体的高;圆柱的体积等于长方体的体积;★圆柱的侧面=长方体的前、后两个面积的和(长×高);圆柱的上、下底面和等于长方体的上、下底面和(长×宽),所以圆柱的表面积比长方体的表面积少左右两个侧面(宽×高)。

知识点五:圆锥体积的计算方法理解掌握:根据书本上的实验可以得到结论:等底等高的圆柱和圆锥,圆柱的体积是圆锥的3倍,或者说圆锥的体积是圆柱的三分之一。

用字母表示为V圆柱=3V圆锥或者V圆锥=1/3V圆柱。

相关公式:只需要在圆柱的相关公式前面乘以三分之一。

①已知半径和高,V圆锥=1/3πr2h②已知直径和高,V圆锥=1/3π(d÷2)2h③已知周长和高,V圆锥=1/3π(C÷2π)2h重点解析:在一个圆柱里面挖一个最大的圆锥,圆锥的体积和剩余部分的体积比是1:2。

例1:工地上的沙堆成近似的圆锥形,底面周长是12.56米,高是1.5米,每立方米沙子约重1.7吨,这堆沙子共重多少吨?知识点七:圆柱和圆锥的横截面理解掌握:★圆柱横截面的分割方法:①按底面的直径分割,这样分割的横截面是长方形或者是正方形,如果横截面是正方形说明圆柱的底面直径和高相等。

②按平行于底面分割,这样分割的横截面是圆。

圆锥横截面的分割方法:①按圆锥的高分割,这样分割的横截面是等腰三角形。

②按平行于底面分割,这样分割的横截面是圆。

第三单元比例知识点一:图像的放大和缩小理解掌握:把图形按1:n的比缩小,就是把图形的每条边都放大到原来的1/n;把图形按n:1的比放大,就是把图形的每条边都缩小到原来的n倍。

知识点二:比例的意义理解掌握:1、比例:表示两个比相等的式子。

任何一个比例都是由两个内项和两个外项组成。

2、比和比例的区别:(1)比是表示两个数相除的关系。

比例是表示两个比相等的关系。

(2)比由两项组成(前项、后项)。

比例由四项组成(两个内项、两个外项)。

知识点三:应用比的含义组成比例理解掌握:判断两个比能否组成比例,关键要看它们的比值是否相等。

若比值相等,则能组成比例;若比值不想等,则不能组成比例。

知识点四:比例的基本性质理解掌握:比例的基本性质:在比例里,两个外项的积等于两个内项的积。

若a:b=c:d,那么ad=bc。

若用分数表示比a/b=c/d,那么ad=bc。

------十字交叉法知识点五:解比例理解掌握:解比例的依据是比例的基本性质,已知比例中的任意三项,就可以求出另外一项。

例1: 5:8=x:16 1/9 : 1/4 =x:18知识点六:用比例解应用题解题方法:审题列出比例等量关系式------设未知数列出比例方程------解比例并检验写答例1:A、B两种商品的价格比是5:3,如果它们的价格分别上涨了420元后,价格比是6:5。

那么A商品原来多少元?知识点七:比例尺的意义理解掌握:比例尺就是图上距离与实际距离的比。

图上距离是比的前项,实际距离是比的后项,比例尺是一个最简单的整数比。

相关公式:(1)比例尺=图上距离÷实际距离(2)图上距离=比例尺×实际距离(3)实际距离=图上距离÷比例尺知识点八:比例尺的应用理解掌握:(1)注意比例尺的前后单位是否统一。

一般比例尺的单位是厘米,而题目往往会给出以千米做单位的比例尺。

如1:40千米=1:4000000厘米(2)因为图上距离是比例的前项,实际距离是比例的后项,所以当比例尺的图上距离大于实际距离时,表示设计图纸大于实际物体,如比例尺是10:1(经常在精密仪器、化学领域中出现);当比例尺的图上距离小于实际距离时,表示设计图纸小于实际物体,如比例尺1:100(比如设计一栋教学楼)。

第四单元确定位置知识点一、根据方向和距离确定物体的位置理解掌握:(1)用字母表示方向。

S表示“南”,W表示“西”,E表示“东”,N表示“北”。

(2)理解“X偏X若干度”,如南偏西15°,表示由南面向西面旋转15°的方向;西偏南15°,表示有西面向南面旋转15°的方向。

这两个方向一样吗?请同学们仔细考虑一下?如果不一样,那么应该这么说呢?南偏西15°= 偏°;西偏南15°= 偏°。

(3)如何来用方向和距离确定位置呢?答:一找观察地点和实际地点,二看实际地点在观察地点的什么方向上,三量出观察地点和实际地点的距离,四标注要清楚。

知识点二、根据平面图用方向和距离描述简单的行走路线解题方法:描述行走路线的方法:按行走路线,确定观测点及行走方向和路程,用“先……然后……再”等词语,按顺序叙述。

第五单元正比例和反比例知识点一、正比例的意义及应用理解掌握:(1)正比例的定义:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量相对应的两个数的比值(在除法中是叫做商)一定,那么这两个量叫做成正比例的量,它们的关系叫做成正比例关系。

(2)如果用字母x和y分别表示两种相关的量,用k表示它们的比值(一定),正比例关系式可用x/y=k。

(3)判断两种量是否成正比例的应用方法:1、判断两个是否相关联;2、判断这两个量的比值是否一定,比值一定就成正比例关系;反之不成正比例关系。

相关文档
最新文档