《平方差公式》教案(2)
《平方差公式》教案(精选15篇)
《平方差公式》教案(精选15篇)《平方差公式》教案1教学目的进一步使学生理解把握平方差公式,并通过小结使学生理解公式数学表达式与文字表达式在应用上的差异。
教学重点和难点:公式的应用及推广。
教学过程:一、复习提问1.(1)用较简洁的代数式表示下图纸片的面积.(2)沿直线裁一刀,将不规章的右图重新拼接成一个矩形,并用代数式表示出你新拼图形的面积.讲评要点:沿HD、GD裁开均可,但肯定要让学生在裁开之前知道HD=BC=GD=FE=a-b,这样裁开后才能重新拼成一个矩形.期望推出公式:a2-b2=(a+b)(a-b)2.(1)叙述平方差公式的数学表达式及文字表达式;(2)试比较公式的两种表达式在应用上的差异.说明:平方差公式的数学表达式在使用上有三个优点。
(1)公式详细,易于理解;(2)公式的特征也表现得突出,易于初学的人“套用”;(3)形式简洁。
但数学表达式中的a与b有概括性及抽象性,这样也就造成对详细问题存在一个判定a、b的问题,否则简单对公式产生各种主观上的误会。
依照公式的文字表达式可写出下面两个正确的式子:经对比,可以让人们体会到公式的文字表达式抽象、准确、概括.因而也就“欠”明确(如结果不知是谁与谁的平方差).故在使用平方差公式时,要全面理解公式的实质,敏捷运用公式的'两种表达式,比如用文字公式推断一个题目能否使用平方差公式,用数学公式确定公式中的a与b,这样才能使自己的计算即准确又敏捷.3.推断正误:(1)(4x+3b)(4x-3b)=4x2-3b2;(×)(2)(4x+3b)(4x-3b)=16x2-9;(×)(3)(4x+3b)(4x-3b)=4x2+9b2;(×)(4)(4x+3b)(4x-3b)=4x2-9b2;(×)二、新课例1运用平方差公式计算:(1)102×98;(2)(y+2)(y-2)(y2+4).解:(1)102×98(2)(y+2)(y-2)(y2+4)=(100+2)(100-2)=(y2-4)(y2+4)=1002-22=10000-4=(y2)2-42=y4-16.=9996;2.运用平方差公式计算:(1)103×97;(2)(x+3)(x-3)(x2+9);(3)59.8×60.2;(4)(x-)(x2+)(x+).3.请每位同学自编两道能运用平方差公式计算的题目.例2填空:(1)a2-4=(a+2)();(2)25-x2=(5-x)();(3)m2-n2=()();思考题:什么样的二项式才能逆用平方差公式写成两数和与这两数的差的积?(某两数平方差的二项式可逆用平方差公式写成两数和与这两数的差的积)练习填空:1.x2-25=()();2.4m2-49=(2m-7)();3.a4-m4=(a2+m2)()=(a2+m2)()();例3计算:(1)(a+b-3)(a+b+3);(2)(m2+n-7)(m2-n-7).解:(1)(a+b-3)(a+b+3)(2)(m2+n-7)(m2-n-7)=[(a+b)-3][(a+b)+3]=[(m2-7)+n][(m2-7)-n]=(a+b)2-9=a2+2ab+b2-9.=(m2-7)2-n2=m4-14m2+49-n2.三、小结1.什么是平方差公式?一般两个二项式相乘的积应是几项式?2.平方差公式中字母a、b可以是那些形式?3.怎样推断一个多项式的乘法问题是否可以用平方差公式?四、布置作业1.运用平方差公式计算:(1)(a2+b)(a2-b);(2)(-4m2+5n)(4m2+5n);(3)(x2-y2)(x2+y2);(4)(9a2+7b2)(7b2-9a2).2.运用平方差公式计算:(1)69×71;(2)53×47;(3)503×497;(4)40×39.《平方差公式》教案2平方差公式一、学习目标:1.经历探究平方差公式的过程.2.会推导平方差公式,并能运用公式进行简洁的运算.二、重点难点重点:平方差公式的推导和应用难点:理解平方差公式的结构特征,敏捷应用平方差公式.三、合作学习你能用简便方法计算下列各题吗?12001×19992998×1002导入新课:计算下列多项式的积.1x+1x-12m+2m-232x+12x-14x+5yx-5y结论:两个数的和与这两个数的差的`积,等于这两个数的平方差.即:a+ba-b=a2-b2四、精讲精练例1:运用平方差公式计算:13x+23x-22b+2a2a-b3-x+2y-x-2y例2:计算:1102×982y+2y-2-y-1y+5随堂练习计算:1a+b-b+a2-a-ba-b33a+2b3a-2b4a5-b2a5+b25a+2b+2ca+2b-2c6a-ba+ba2+b2五、小结:a+ba-b=a2-b2《平方差公式》教案3学习目标:1、经历探究完全平方公式的过程,发展学生观察、交流、归纳、猜想、验证等能力。
平方差公式(二)教学设计
第一章整式的运算7.平方差公式(二)一、学生起点分析学生的知识技能基础:通过前面的学习,学生已经会运用平方差公式进行简单的运算,并且掌握了字母表示数的广泛意义,学会了一些探索规律的方法。
学生活动经验基础:本节课从组织学生运用平方差公式进行判断正误入手,通过拼图游戏引入新课。
学生在探索这个问题的过程中,将自然体会到数形结合的思想,同时体会符号运算对证明猜想的作用,并灵活运用平方差公式进行计算。
二、教学任务分析本节课从组织学生运用平方差公式进行判断正误入手,通过拼图游戏引入新课。
学生在探索这个问题的过程中,将自然体会到数形结合的思想,同时体会符号运算对证明猜想的作用,并灵活运用平方差公式进行计算。
本节课的教学要培养学生的推理能力,使学生通过大胆而又合情合理的推理,有条理地表达自己的思考过程。
由此,根据课标要求,我确定本节课的目的如下:1.知识与技能:(1)发展学生的符号感和推理能力;(2)了解平方差公式的几何背景。
2.数学思考、解决问题:(1)进一步体会平方差公式的意义,发展推理和有条理的表达能力。
(2)通过拼图游戏,与同伴交流平方差公式的几何背景。
3.情感与态度:在发展推理能力和有条理的表达能力的同时,通过小组讨论学习,培养学生的团结协作精神。
三、教学设计分析本节课的设计理念是:遵循“教学、学习、研究”同步协调的原则,让学生在探究合作交流的过程中,展示思维过程,让学生的思维全过程得到充分暴露,学生在再发现、再发明的过程中,思维火花发生强烈碰撞,数学结论的发现、生成为自然的事情.本节课可以按如下教学方式展开:放手做一做—引导想一想—鼓励说一说—特例验一验—设法证一证(多项式展开、几何图形解释)—规律用一用。
四、教学过程:第一环节复习回顾活动内容:1.提问平方差公式的内容2.判断正误:(1)(a+5)(a-5)=52-a(2)(3x+2)(3x-2)=2223-x(3)(a-2b)(-a-2b)=224ba-(4)(100+2)(100-2)=222100-=9996(5)(2a+b)(2a-b)=22a-4b提问:⑴两个二项式相乘,因式要具备什么特征时,积才会是二项式?(当因式是两个数的和与这两个数....的差相乘时,积是二项式。
《平方差公式》的教案范文(精选11篇)
《平方差公式》的教案《平方差公式》的教案范文(精选11篇)作为一位无私奉献的人民教师,很有必要精心设计一份教案,教案有助于顺利而有效地开展教学活动。
那么写教案需要注意哪些问题呢?以下是小编帮大家整理的《平方差公式》的教案范文(精选11篇),希望能够帮助到大家。
《平方差公式》的教案篇1教学目标①经历探索平方差公式的过程,进一步发展学生的符号感和推理能力、归纳能力.②会推导平方差公式并掌握公式的结构特征,能运用公式进行简单的计算.③了解平方差公式的几何背景,体会数形结合的思想方法.教学重点与难点重点:平方差公式的推导及应用.难点:用公式的结构特征判断题目能否使用公式.教学准备卡片及多媒体课件教学设计引入同学们,前面我们刚刚学习了整式的乘法,知道了一般情形下两个多项式相乘的法则.今天我们要继续学习某些特殊情形下的多项式相乘.下面请同学们应用你所学的知识,自己来探究下面的问题:探究:计算下列多项式的积,你能发现它们的运算形式与结果有什么规律吗?(1)(x+1)(x-1)=(2)(m+2)(m-2)=(3)(2x+1)(2x-1)=引导学生用自己的语言叙述所发现的规律,允许学生之间互相补充,教师不急于概括.注:平方差公式是多项式乘法运算中一个重要的公式,它的得出可以直接利用多项式与多项式相乘的运算法则,利用多项式乘法推导乘法公式是从一般到特殊的过程,对今后学习其他乘法公式的推导有一定的指导意义,同时也可培养学生观察、归纳、概括等能力,因此在教学中,首先应让学生思考:你能发现什么?让学生经历观察(每个算式和结果的特点)、比较(不同算式之间的异同)、归纳(可能具有的规律)、提出猜想的过程,学生在发现规律后,还应通过符号运算对规律进行证明.举例再举几个这样的运算例子.注:让学生独立思考,每人在组内举一个例子(可口述或书写),然后由其中一个小组的代表来汇报.验证我们再来计算(a+b)(a-b)=公式的推导既是对上述特例的概括,更是从特殊到一般的归纳证明,在此应注意向学生渗透数学的思想方法:特例归纳猜想验证用数学符号表示.注:这里是对前边进行的运算的讨论,目的是让学生通过观察、归纳,鼓励他们发现这个公式的一些特点,如公式左右边的结构特征,为下一步运用公式进行简单计算打下基础.概括平方差公式及其形式特征教师可以在前面的基础上继续鼓励学生发现这个公式的一些特点:如公式左、右边的结构,并尝试说明这些特点的原因.应用教科书第152页例1运用平方差公式计算:(1)(3x+2)(3x-2)(2)(b+2a)(2a-b)(3)(-x+2y)(-x-2y)(a+b)(a-b) a b a2b2 最后结果(3x+2)(3x-2) 2 (3x)2-22(b+2a)(2a-b)(-x+2y)(-x-2y)对本例的前面两个小题可以采用学生独立完成,然后抢答的形式完成;第三小题可采用小组讨论的形式,要求学生在给出表格所提示的解法之后,思考别的解法:提取后一个因式里的负号,将2y看作“a”,将x看作“b”,然后运用平方差公式计算.注:(1)正确理解公式中字母的广泛含义,是正确运用这一公式的关键.设计本环节,旨在通过将算式中的各项与公式里的a、b进行对照,进一步体会字母a、b的含义,加深对字母含义广泛性的理解:即它们既可以是数,也可以是含字母的整式.(2)在具体计算时,当有一个二项式两项都负时,往往不易判明a、b,如第三小题,此时可以通过小组合作交流,放手让学生去思考、讨论,有助于学生思维互补、有条理地思考和表达,更有助于学生合作精神的培养.(3)例1第(3)小题引导学生多角度思考问题,可以加深对公式的理解.教科书第152页例2计算:(1)10298(2)(y+2)(y-2)-(y-1)(y+5)此处仍先让学生独立思考,然后自主发言,口述解题思路,允许他们算法的多样化,然后通过比较,优化算法,达到简便计算的目的.注:(1)运用平方差公式进行数的简便运算的关键是根据数的形式特征,把相乘的两数化成两数和与两数差的乘积形式,教学时可让学生自己寻找相乘两数的形式特征.(2)第二小题要引导学生注意到一般形式的整式乘法与特殊形式的整式乘法的区别与联系,强调:只有符合公式要求的乘法,才能运用公式简化运算,其余的运算仍按整式乘法法则进行.教科书第153页练习1、2练习1口答完成;练习2采用大组竞赛的形式进行,其中(1)(4)由两个大组完成,(2)(3)由另两个大组完成.注:让学生通过巩固练习,达成本节课的基本学习目标,并通过丰富的活动形式,激发学习兴趣,培养竞争意识和集体荣誉感.解释你能根据下面的两个图形解释平方差公式吗?多媒体动画演示图形的变换过程,体会过程中不变的量,并能用代数恒等式表示.注:(1)重视公式的几何背景,可以帮助学生运用几何直观理解、解决有关代数问题.(2)此处将教科书的图15.3-1分解为两个图形,是考虑到学生数与形结合的思想方法掌握的不够熟练;利用两个图形可以清楚变化的过程,便于联想代数的形式.小结谈一谈:你这一节课有什么收获?注:这儿采取的是先由每个学生自己小结,然后由小组代表作答,把教师做小结变成了课堂上人人做小结,有助于学生概括能力、抽象能力、表达能力的提高.同时,由于人人都要做小结,促使学生注意力集中,学习主动性加强.作业1.必做题:教科书第156页习题15.2第1题2.选做题:计算:(1)x2+(y-x)(y+x)(2)20082-20092007(3)(-0.25x-2y)(-0.25x+2y)(4)(a+ b)(a- b)-(3a-2b)(3a+2b)《平方差公式》的教案篇2教学内容:P108—110 平方差公式例1 例2 例3教学目的:1、使学生会推导平方差公式,并掌握公式特征。
平方差公式教案
平方差公式教案教案标题:平方差公式教案一、教学目标:1. 理解平方差公式的概念及其应用;2. 能够使用平方差公式解决实际问题;3. 培养学生的逻辑思维和推理能力。
二、教学准备:1. 教材:具有平方差公式相关内容的数学教科书;2. 教具:小黑板、彩色粉笔、平方差公式示例题卡片;3. 学具:各种大小的正方形纸板。
三、教学步骤:步骤一:导入(5分钟)1. 引入平方差公式的概念:将一个数的平方减去另一个数的平方,得到的差叫做平方差。
2. 提出问题:举例说明平方差公式的应用,如:若一边长为x的正方形的面积减去另一边长为y的正方形的面积等于16,求x和y之间的关系。
步骤二:讲解平方差公式(10分钟)1. 通过几个示例题引导学生理解平方差公式的推导过程。
2. 示范解答提出的问题,解释平方差公式的应用。
步骤三:练习与巩固(15分钟)1. 学生个别练习:发放平方差公式示例题卡片,让学生独立完成。
2. 小组合作练习:将学生分成小组,彼此交流并互相讨论不同类型的平方差公式题目,提高解题能力。
步骤四:拓展与应用(15分钟)1. 提供一些实际问题,要求学生运用平方差公式解决,如:某正方形花坛围墙的面积减去花坛的面积等于25,求围墙的边长。
2. 鼓励学生思考其他应用平方差公式的实例,并与同伴分享。
步骤五:总结与延伸(5分钟)1. 小结平方差公式的应用及解题技巧。
2. 布置相关的课后作业,巩固所学知识。
四、教学辅助与评估:1. 教学辅助:使用小黑板、彩色粉笔进行教学演示;2. 教学评估:观察学生在练习与巩固环节的表现,检查其运用平方差公式解决实际问题的能力。
五、教学延伸:1. 将平方差公式与图形面积的思想联系起来,引导学生在解决相关问题时运用平方差公式。
2. 引导学生自主发现平方差公式的应用场景,拓展他们的解题思路。
六、教学反思:针对学生的实际学情,设计具有启发性的教学活动,提高学习兴趣和学习效果。
及时反馈学生的问题和困惑,积极激发学生的思考和探索能力。
《平方差公式》教学设计
《平方差公式》教学设计
一、现代教育技术在教学中的应用
1、多媒体技术:使用多媒体技术进行前期准备,向学生展示“平方
差公式”的概念及其知识结构,结合实例,解释准确的方法和步骤,让学
生更好的理解“平方差公式”,以便应用到实际中。
2、多媒体练习:以多媒体形式进行“平方差公式”的练习,让学生
重复运用、掌握和熟练掌握“平方差公式”。
通过教学平台和学习软件,
让学生自主学习、引导学生自主思考、探索解决问题,以增强学生的解决
问题能力。
二、教学内容
1、讲授“平方差公式”的概念:“平方差”是一个概念,指的是一
组数据的分布情况,可以用来描述实际值的不确定程度。
“平方差公式”
是一种表示方法,可以用它来快速计算出组数据的“平方差”值。
2、归纳“平方差公式”:“平方差公式”:s^2=1/(n-1)Σ(X-X)^2,其中s^2是方差,Σ是求和符号,(X-X)^2表示每个实验值减去理论值的
平方,n表示实验的次数。
平方差公式教案(共5篇)
平方差公式教案(共5篇)第一篇:平方差公式教案学习周报专业辅导学生学习第七节平方差公式(一)学习目的:1、通过经历探索平方差公式的过程,进一步发展符号感和推理能力。
2、会推导平方差公式、理解平方差公式的特点,并能运用公式进行简单的计算。
3、通过对平方差公式结构的认识,体会数学中的结构美、简约美。
学习重点:理解平方差公式的特点,会运用平方差公式计算学习难点:会推导平方差公式,并能灵活运用公式进行计算学习过程:一、复习探究1、请写出多项式与多项式相乘的法则:2、计算下列各题(1)(x+2)(x-2);(2)(1+3a)(1-3a)(3)(x+5y)(x-5y);(4)(y+3z)(y-3z)解:3、通过以上计算,你发现了什么规律?能不能猜想出一个一般性的结论?规律:结论:二、学习新课1、推导公式:现在要对大家提出的猜想进行证明,请试着写出证明过程:证明:我们经历了由发现——猜测——证明的过程,最后得出一个公式性的结论,根据它的特点,我们给它取个容易记的名字,就叫做平方差公式学习周报专业辅导学生学习即:(a+b)(a-b)=a-b两个数的和与这两个数的差相乘,它们的积就等于这两个数的平方差.你知道公式中的a、b表示什么?请同学们分析公式的结构并记忆。
2、应用公式例1、用平方差公式计算:(1)(5+6x)(5-6x);(2)(x-2y)(x+2y)分析:要利用平方差公式解题,必须找到相同的项和互为相反数的项,结果为相同项的平方减互为相反数的项的平方.解:(1)(5+6x)(5-6x)=5-(6x)=25-36x(2)(x-2y)(x+2y)=x-(2y)=x-4y 例2、利用平方差公式计算(1)(-m+n)(-m-n);(2)(-2x-5y)(5y-2x);222222222(3)(ab+8)(-ab+8)分析:注意找准相同项与互为相反数的项.解:(1)(-m+n)(-m-n)=(-m)-n=m-n(2)(-2x-5y)(5y-2x)=(-2x)2-(5y)2=4x2-25y2(3)(ab+8)(-ab+8)=82-(ab)2=64-a2b2 现在让我们来试试吧!练习1:下列各题能否用平方差公式来进行计算?若能,请写出结果。
初中数学《平方差公式》教案
初中数学《平方差公式》教案
一、教学目标
1.掌握平方差公式。
2.掌握常见的平方差的应用。
二、教学重点
掌握平方差的定义和公式,并熟悉它的常见应用。
三、教学难点
理解平方差的计算方法,应用正确的公式在给定的数据上求平方差。
四、教学准备
教学用书、白板、粉笔等。
五、教学过程
(一)热身环节
1.播放歌曲,介绍今天要学习的内容。
2.提问学生,让他们交流自己对平方差的理解。
(二)复习环节
1.复习统计中的分散程度的概念。
2.介绍统计中的几个概念,如:均值、样本方差、样本标准差等。
(三)新课内容环节
1.告诉学生,平方差是一种衡量样本的分散程度的一种数学量,用来衡量一组数据的分布趋势。
2.介绍平方差的定义,用公式来表示,以及其一般的计算方法,并演示计算过程。
3.平方差与样本方差的区别。
4.平方差的重要性,以及它的应用。
(四)操作环节
1.让学生利用上课所学的知识,计算给定的一组数据的平方差。
2.引导学生分析给定的一组数据的分布趋势,根据平方差的大小,做出判断。
(五)归纳环节
1.总结本节课所学的内容,归纳、整理课堂知识。
2.用小结的形式,总结平方差的定义、计算方法以及常见的应用。
六、教学反思。
平方差公式教案
平方差公式教案教案标题:平方差公式教案一、教学目标:1. 理解平方差公式的定义和意义。
2. 能够灵活运用平方差公式求解简单的数学问题。
3. 培养学生的逻辑思维和推理能力。
二、教学重难点:1. 平方差公式的理解和运用。
2. 针对不同难度的问题选择合适的解题方法。
三、教学准备:1. 教师准备:教案、黑板、白板笔。
2. 学生准备:纸和铅笔。
四、教学过程:步骤一:引入教师通过简单的例子引入平方差公式的概念,如:计算(7+3)²和(7-3)²的值,并帮助学生发现其中的规律。
步骤二:介绍平方差公式1. 教师向学生介绍平方差公式的定义和意义:“平方差公式是指一个二次式乘积的展开式,其中含有两个数的平方和两倍乘积的差。
”2. 教师在黑板上展示平方差公式的一般形式:(a + b)² = a² + 2ab + b² 和 (a - b)² = a² - 2ab + b²。
3. 通过实际例子帮助学生理解平方差公式的应用,如:计算(5 +2)²和(5 - 2)²的值。
步骤三:解题方法与例题1. 教师向学生介绍两种常用的解题方法:a. 直接利用平方差公式展开计算。
b. 先计算平方和,在减去两倍乘积。
2. 通过具体的例题,引导学生贯通两种解题方法的思路,并帮助学生掌握正确的运算步骤。
例题1:计算(9 + 4)²的值。
解法1:直接利用平方差公式展开计算。
(9 + 4)² = 9² + 2 * 9 * 4 + 4² = 81 + 72 + 16 = 169。
解法2:先计算平方和,再减去两倍乘积。
(9 + 4)² = (9² + 4²) - 2 * 9 * 4 = 81 + 16 - 72 = 169。
例题2:计算(7 - 2)²的值。
解法1:直接利用平方差公式展开计算。
《平方差公式》教学教案
《平方差公式》教学教案第一章:导入1.1 教学目标让学生理解平方差公式的概念及意义。
培养学生对平方差公式的兴趣和好奇心。
1.2 教学内容平方差公式的定义和表达式。
平方差公式的推导过程。
1.3 教学步骤1. 引入平方差公式的概念,让学生回顾已学的平方和乘法运算。
2. 通过示例,引导学生观察和总结平方差公式的规律。
3. 让学生尝试推导平方差公式,并提供必要的提示和指导。
1.4 教学评价观察学生在推导过程中的理解和应用能力。
评估学生对平方差公式的掌握程度。
第二章:平方差公式的应用2.1 教学目标培养学生应用平方差公式解决问题的能力。
培养学生运用平方差公式进行简便计算的能力。
2.2 教学内容平方差公式的应用场景和问题类型。
平方差公式在实际问题中的应用方法。
1. 引入平方差公式的应用场景,让学生理解平方差公式的实际意义。
2. 通过示例,展示平方差公式在实际问题中的应用方法。
3. 让学生尝试解决一些实际问题,应用平方差公式进行计算和解答。
2.4 教学评价观察学生在解决实际问题时的应用能力和计算准确性。
评估学生对平方差公式应用的理解和掌握程度。
第三章:平方差公式的拓展3.1 教学目标让学生理解平方差公式的拓展概念和性质。
培养学生运用平方差公式解决更复杂问题的能力。
3.2 教学内容平方差公式的拓展概念和性质。
平方差公式在其他数学领域的应用。
3.3 教学步骤1. 引导学生思考平方差公式的拓展概念和性质,让学生进行自主探索。
2. 通过示例,介绍平方差公式在其他数学领域的应用,如二次方程的解法等。
3. 让学生尝试解决一些更复杂的题目,运用平方差公式进行计算和解答。
3.4 教学评价观察学生在探索平方差公式拓展概念和性质时的理解和思考能力。
评估学生对平方差公式在解决更复杂问题中的运用能力和创造力。
第四章:巩固练习巩固学生对平方差公式的理解和掌握。
提高学生运用平方差公式解决问题的能力。
4.2 教学内容设计一些练习题目,让学生运用平方差公式进行计算和解答。
平方差公式教学设计【精选8篇】
平方差公式教学设计【精选8篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、应急预案、演讲致辞、合同协议、规章制度、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, emergency plans, speeches, contract agreements, rules and regulations, documents, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!平方差公式教学设计【精选8篇】《平方差公式》是在学习了有理数运算、列简单的代数式、一次方程及不等式、整式的加减及整式乘法等知识的基础上,在学生已经掌握了多项式乘法之后,自然过渡到具有特殊形式的多项式的乘法,是从一般到特殊的认知规律的典型范例。
数学人教八年级上册《平方差公式》教案2
《平方差公式》教案教学目标1.能说出平方差公式的特点,并会用式子表示出来.2.能正确地利用平方差公式进行多项式的乘法运算.3.通过平方差公式得出的过程,体会数形结合的思想.教学重难点掌握平方差公式的推导和应用,灵活应用平方差公式.教学过程一、联系生活,激发兴趣教师:小明到小卖部去买饼干,售货员告诉他:共4.2千克,每千克3.8元.正当售货员还在用计算器计算时,王林马上说出了共15.96元,售货员很惊奇地问:“你怎么比计算器算的还快呢?”王林很得意的告诉她:这是一个秘密.同学们,你能帮售货员揭开小林快速口算出4.2×3.8的秘密吗?二、观察概括,探索验证经过本节课的学习,我们就能揭开这一秘密了.请同学们计算下面三道题:(1)()()11x x +-;(2)()()22m m +-;(3)()()2121x x +-.请你观察思考:以上几个多项式与多项式相乘的式子有什么特点?积有什么特点?你能用字母表示吗?观察发现:两数和乘以这两数的差的积,等于这两个数的平方差.用一个数学等式表示为:()()2222a b a b a ab ab b a b +-=-+-=-,这个公式叫做(乘法的)平方差公式.这个公式正确吗?如何验证其正确性呢?(1)利用多项式乘以多项式计算.(2)同学们可以利用下面图形验证平方差公式吗?试一试.三、例题例1.运用平方差公式计算:(1)()()33x x +2-2;(2)()()x y x y -+2--2.例2.计算:(1)()()()()1y y y y +2-2--+5;(2)102×98. 同学们要注意:只有符合公式条件的乘法,才能运用公式简化运算,其余的运算仍按乘法法则进行.四、实践应用计算:(1)()()66x x +-;(2)()()23m n m n n +-+;(3)()()()22224a b a b a b -++. 五、随堂练习课本第108页的练习第1、2题.六、课堂小结这节课你学到了什么?你还有什么疑惑?七、课后作业课本习题14.2的第1题.。
平方差公式教案 (2)
平方差公式一、教学目的和要求1. 使学生能运用多项式乘法法则导出平方差公式,培养学生分析问题的能力和罗辑思维的能力。
2. 要求学生牢固地掌握平方差公式,并能熟练地掌握和应用公式进行计算。
二、教学重点和难点重点:平方差公式的应用。
难点:运用公式过程中出现的系数的差错和符号的变换。
三、教学过程(一)复习、引入提问:1. 多项式乘法法则是什么?2. 分别用代数式表示a与b的和、差、平方差。
(a+b,a-b,)3. 计算(1)(3+a)(3-a) (2)(2x+y)(2x-y)(3)(2a-1)(2a+1) (4)(3a+2b)(3a-2b)(二)新课观察以上各式左边的特点与计算结果有什么关系?可以得到乘法公式:,由于公式右边是两个数的平方差的形式,我们称它为平方差公式。
因语言叙述出来,即:两个数的和与这两个数的差的积,等于这两个数的平方差。
启发学生进一步仔细分析这个公式的结构特征:1. 公式的左边是两个二项式的乘积,在这两个二项式中,有一项完全相同,另一项仅相差一个符号,右边是这两个数的平方差。
2. 对平方差公式的认识与应用。
(1)公式中的a,b可以表示数(正数或负数)也可以表示单项式或多项式,只要符合公式的结构特征,就可用此公式进行计算。
(2)公式中的是不可颠倒的,注意是相同项的平方减去相反项的平方,还要注意字母的系数和指数。
例1 计算(1)(2x+3y)(2x-3y)(2)(-x+a)(-x-a)(3)(4)(-4a-1)(4a-1) 解:(1)(2)(3)(4)或例2 运用平方差公式计算(1) 102×98(2)解:(1)(2)(三)巩固练习1. 判断对错,如果有错,如何改正?2. 运用平方差公式计算(1) (x+a)(x-a) (2) (a+3b)(a-3b)(3) (3+2a)(-3+2a) (4)(5) (4x-5y)(4x+5y) (6)(7) 103×97 (8)巩固练习答案:1. (1)错,应是(2)错,应是(3)错,应是(4)错,应是(5)错,应是(6)对(7)错,应是(8)对2.(1) (2)(3) (4)(5) (6)(7) 9991 (8)(四)小结1. 记住平方差公式的左边和右边。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a
b 张家坡中心学校13-14学年第二学期
初一年级数学教案
课题 6.6-2平方差公式
备课时间 03.14
主备人 周世维 审核人
课型 新授课
上课时间
授课人
序 号 20
教学目标 进一步使学生掌握平方差公式,理解公式数学表达式与文字表达式在应用上的差异。
教学重点
公式的应用及推广。
教学难点 公式的应用及推广。
教学过程 教学内容 师生活动 教法学法
二次备课
教学过程
一、知识要点回顾
提问:1、说出平方差公式。
(两数的和乘以这两数的差等于这两个数的平方差。
)
2、如何确定平方差公式中哪个是多项式中的和哪个是多项式的差? 计算:(1)(-4a -0.1)(4a +0.1); (2)(2x +y )(2x -y);
(3)(a 2+2)(a 2
-2); (4)(-a+b )(a+b ). 二、探索,概括
1、做一做:如图,边长为a 的大正方形中有一个边长
为b 的小正方形。
(1)请表示图(1)中阴影部分的面积:S = (2)小颖将阴影部分拼成了一个长方形(图2),这个长
方形的长和宽分别是多少? (图1) 你能表示出它的面积吗?
长= 宽= S = (3)比较1,2的结果,你能验证平方差公式吗?
∴ =
(图2) 2、想一想
(1)计算下列各组算式,并观察它们的共同特点.
A 7 x 9 =
B 11 x 13 =
C 79 x 81 =
8 x 8 = 12 x 12 = 80 x 80 =
(2)从以上的过程中,你发现了什么规律?
(3)请你用字母表示这一规律,你能说明它的正确性吗?
(n-1)(n+1)=n 2-1或 (n-1)(n+1)+1=n 2 三、举例及应用
例3.用平方差公式进行计算:
(1) 103 X 97; (2)118 X 122. 解:(1) 103 X 97 (2)118 X 122
a
b
=(100+3)(100-3) =(120-2)(120+2) =1002-32 =1202-22 =9991 =14396 公式应用练习1.
课本第47页随堂练习第1题. 例4.计算:
(1)a 2(a+b)(a-b)+a 2b 2; (2)(2x-5)(2x+5)-2x(2x-3). 解:(1)a 2(a+b)(a-b)+a 2b 2 (2)(2x-5)(2x+5)-2x(2x-3) = a 2
(a 2-b 2)+ a 2b 2 =(2x)2-25-(4x 2-6x)
=a 4 -a 2b 2 +a 2b 2 = 4x 2-25-4x 2+6x
= a 4
; = 6x-25
公式应用练习2.
课本第47页随堂练习第2题. 巩固练习: 1、(1)1998 X 2002; (2)59.8 X 60.2; (3)197 X 203.
2、(1)2(3)(3)(9)x x x +-+;(2)⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝
⎛
-2141212x x x
四、课堂总结,发展潜能 本节课你学到了什么?
(1).什么是平方差公式?一般两个二项式相乘的积应是几项式?
(2).平方差公式中字母a 、b 可以是那些形式?
(3).怎样判断一个多项式的乘法问题是否可以用平方差公式? 五、布置作业,练习提高
1、教科书P47习题6.13中1、2题;
2、同步训练与配套练习册。
板书设计
例3.用平方差公式进行计算:(1)103 X 97; (2)118 X 122. 解:(1) 103 X 97 (2)118 X 122 =(100+3)(100-3) =(120-2)(120+2)
=1002-32 =1202-22
=9991 =14396
例4.计算:(1)a 2(a+b)(a-b)+a 2b 2
; (2)(2x-5)(2x+5)-2x(2x-3).
解:(1)a 2(a+b)(a-b)+a 2b 2 (2)(2x-5)(2x+5)-2x(2x-3)
= a 2(a 2-b 2)+ a 2b 2 =(2x)2-25-(4x 2-6x)
=a 4 -a 2b 2 +a 2b 2 = 4x 2-25-4x 2+6x
= a 4 ; = 6x-25
教后小记。