2018年湖南省邵阳市隆回县中考数学三模试卷含答案
2018年湖南省邵阳市中考数学试卷(解析版)
2018年湖南省邵阳市中考数学试卷一、选择题(本大题有10个小题,每小题3分,共30分。
在每小题给出的四个选项中只有一项是符合题目要求的)1.(3分)用计算器依次按键,得到的结果最接近的是()A.1.5 B.1.6 C.1.7 D.1.82.(3分)如图所示,直线AB,CD相交于点O,已知∠AOD=160°,则∠BOC的大小为()A.20°B.60°C.70°D.160°3.(3分)将多项式x﹣x3因式分解正确的是()A.x(x2﹣1)B.x(1﹣x2)C.x(x+1)(x﹣1)D.x(1+x)(1﹣x)4.(3分)下列图形中,是轴对称图形的是()A.B.C.D.5.(3分)据《经济日报》2018年5月21日报道:目前,世界集成电路生产技术水平最高已达到7nm(1nm=10﹣9m),主流生产线的技术水平为14~28nm,中国大陆集成电路生产技术水平最高为28nm.将28nm用科学记数法可表示为()A.28×10﹣9m B.2.8×10﹣8m C.28×109m D.2.8×108m6.(3分)如图所示,四边形ABCD为⊙O的内接四边形,∠BCD=120°,则∠BOD 的大小是()A.80°B.120°C.100° D.90°7.(3分)小明参加100m短跑训练,2018年1~4月的训练成绩如下表所示:月份1234成绩(s)15.615.415.215体育老师夸奖小明是“田径天才”,请你预测小明5年(60个月)后100m短跑的成绩为()(温馨提示;目前100m短跑世界记录为9秒58)A.14.8s B.3.8sC.3s D.预测结果不可靠8.(3分)如图所示,在平面直角坐标系中,已知点A(2,4),过点A作AB⊥x 轴于点B.将△AOB以坐标原点O为位似中心缩小为原图形的,得到△COD,则CD的长度是()A.2 B.1 C.4 D.29.(3分)根据李飞与刘亮射击训练的成绩绘制了如图所示的折线统计图.根据图所提供的信息,若要推荐一位成绩较稳定的选手去参赛,应推荐()A.李飞或刘亮B.李飞C.刘亮D.无法确定10.(3分)程大位是我国明朝商人,珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人,下列求解结果正确的是()A.大和尚25人,小和尚75人B.大和尚75人,小和尚25人C.大和尚50人,小和尚50人D.大、小和尚各100人二、填空题(本大题有8个小题,每小题3分,共24分)11.(3分)点A在数轴上的位置如图所示,则点A表示的数的相反数是.12.(3分)如图所示,点E是平行四边形ABCD的边BC延长线上一点,连接AE,交CD于点F,连接BF.写出图中任意一对相似三角形:.13.(3分)已知关于x的方程x2+3x﹣m=0的一个解为﹣3,则它的另一个解是.14.(3分)如图所示,在四边形ABCD中,AD⊥AB,∠C=110°,它的一个外角∠ADE=60°,则∠B的大小是.15.(3分)某市对九年级学生进行“综合素质”评价,评价结果分为A,B,C,D,E五个等级.现随机抽取了500名学生的评价结果作为样本进行分析,绘制了如图所示的统计图.已知图中从左到右的五个长方形的高之比为2:3:3:1:1,据此估算该市80000名九年级学生中“综合素质”评价结果为“A”的学生约为人.16.(3分)如图所示,一次函数y=ax+b的图象与x轴相交于点(2,0),与y 轴相交于点(0,4),结合图象可知,关于x的方程ax+b=0的解是.17.(3分)如图所示,在等腰△ABC中,AB=AC,∠A=36°,将△ABC中的∠A 沿DE向下翻折,使点A落在点C处.若AE=,则BC的长是.18.(3分)如图所示,点A是反比例函数y=图象上一点,作AB⊥x轴,垂足为点B,若△AOB的面积为2,则k的值是.三、解答题(本大题有8个小题,第19~25题每小题8分,第26题10分,共66分。
湖南省邵阳市隆回县2018年中考数学三模试卷(含答案)
湖南省邵阳市隆回县2018年初中毕业班中考数学三模试卷温馨提示:(1)本学科试卷分试题卷和答题卡两部分,考试时量为120分钟,满分为120分;(2)请你将姓名等相关信息按要求填涂在答题卡上;(3)请你在答题卡上作答,答在本试题卷上无效.一、选择题(本大题有10个小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合题目要求的)1.﹣0.25的倒数是()A. B. 4 C. -4 D. -52.立定跳远是小刚同学体育中考的选考项目之一.某次体育课上,体育老师记录了小刚的一组立定跳远训练成绩如下表:则下列关于这组数据的说法中正确的是()A. 众数是2.45B. 平均数是2.45C. 中位数是2.5D. 方差是0.483.对于6.3×103与6300这两个近似数,下列说法中,正确的是().A. 它们的有效数字与精确位数都不相同B. 它们的有效数字与精确位数都相同C. 它们的精确位数不相同,有效数字相同D. 它们的有效数字不相同,精确位数相同4. 方程2x2﹣5x+3=0的根的情况是()A. 有两个相等的实数根;B. 有两个不相等的实数根;C. 无实数根D. 两根异号5. 下列命题中,假命题是()A. 平行四边形是中心对称图形B. 三角形三边的垂直平分线相交于一点,这点到三角形三个顶点的距离相等C. 对于简单的随机样本,可以用样本的方差去估计总体的方差D. 若x2=y2,则x=y6.设点A(﹣1,a)和点B(4,b)在直线y=﹣x+m上,则a与b的大小关系是()A. a=bB. a>bC. a<bD. 无法确定7. 如图,在正五边形中,连接,则的度数为()A. B. C. D.8.若t为实数,关于x的方程x2﹣4x+t﹣2=0的两个非负实数根为a、b,则代数式(a2﹣1)(b2﹣1)的最小值是()A. ﹣15B. ﹣16C. 15D. 169.如图,点A,B,C在⊙O上,∠ABC=29°,过点C作⊙O的切线交OA的延长线于点D,则∠D的大小为()A. 29°B. 32°C. 42°D. 58°10. 如图,在菱形中,,,是的中点.过点作,垂足为.将沿点到点的方向平移,得到.设、分别是、的中点,当点与点重合时,四边形的面积为()A. B. C. D.二、填空题(每题3分,满分21分,将答案填在答题纸上)11.已知2×4m×8m=216,m=________.12.如图,已知AB∥CD,BE平分∠ABC,∠CDE=150°,则∠C=________13.某学校要从甲、乙两支女生礼仪队中,选拔一支身高相对整齐的队伍,代表学校承接迎宾任务,对两队女生升高情况(cm)的统计分析如表所示,在其它各项指标都相同的情况下,你认为________队(填甲或乙)会被录取,理由是________.14.分解因式:x2﹣1=________ .15. 如图,在“ ”网格中,有个涂成黑色的小方格.若再从余下的个小方格中随机选取个涂成黑色,则完成的图案为轴对称图案的概率是________.16.如图,是的直径,是弦,,.若用扇形(图中阴影部分)围成一个圆锥的侧面,则这个圆锥底面圆的半径是________.17.如图,在矩形中,将绕点按逆时针方向旋转一定角度后,的对应边交边于点.连接、,若,,,则________(结果保留根号).三、解答题(本大题共10小题,共69分.解答应写出文字说明、证明过程或演算步骤.)18.计算:①+ ﹣|﹣2| ②﹣22×÷(1﹣)2.19.解不等式组把它的解集表示在数轴上,并求出不等式组的非负整数解.20.化简:,然后在不等式x≤2的非负整数解中选择一个适当的数代入求值.21.某校实行学案式教学,需印制若干份数学学案,印刷厂有甲、乙两种收费方式,除按印数收取印刷费外,甲种方式还需收取制版费而乙种不需要.两种印刷方式的费用y(元)与印刷份数x(份)之间的关系如图所示:(1)填空:甲种收费的函数关系式.乙种收费的函数关系式.(2)该校某年级每次需印制100~450(含100和450)份学案,选择哪种印刷方式较合算?22.甲、乙、丙三位歌手进入“我是歌手”冠、亚、季军决赛,他们通过抽签来决定演唱顺序,(1)求甲第一位出场的概率;(2)求甲比乙先出场的概率.23. 如图,,,点在边上,,和相交于点.(1)求证:≌;(2)若,求的度数.24. 如图,在中,,轴,垂足为.反比例函数()的图像经过点,交于点.已知,.(1)若,求的值;(2)连接,若,求的长.25.如图,在平面直角坐标系中,直线y=2x+4分别交x轴,y轴于点A,C,点D(m,2)在直线AC上,点B在x轴正半轴上,且OB=3OC.点E是y轴上任意一点记点E为(0,n).(1)求点D的坐标及直线BC的解析式;(2)连结DE,将线段DE绕点D按顺时针旋转90°得线段DG,作正方形DEFG,是否存在n的值,使正方形的顶点F落在△ABC的边上?若存在,求出所有满足条件的n的值;若不存在,说明理由.(3)作点E关于AC的对称点E’,当n为何值时,A E’分别于AC,BC,AB垂直?26.如图,已知内接于,是直径,点在上,,过点作,垂足为,连接交边于点.(1)求证:∽;(2)求证:;(3)连接,设的面积为,四边形的面积为,若,求的值.27. 如图,二次函数的图像与轴交于、两点,与轴交于点,.点在函数图像上,轴,且,直线是抛物线的对称轴,是抛物线的顶点.图①图②(1)求、的值;(2)如图①,连接,线段上的点关于直线的对称点恰好在线段上,求点的坐标;(3)如图②,动点在线段上,过点作轴的垂线分别与交于点,与抛物线交于点.试问:抛物线上是否存在点,使得与的面积相等,且线段的长度最小?如果存在,求出点的坐标;如果不存在,说明理由.参考答案一、选择题C C A BD B B A B A二、填空题11.3 12.120°.13.乙;乙队的标准差较小,身高比较整齐14.(x+1)(x﹣1)15.16.17.三、解答题18.解:①原式=﹣2+ ﹣2 = ;②原式=﹣4××=﹣319.解:解①得x≥﹣,解②得x<3,则不等式组的解集是﹣≤x<3.则非负整数解是0,1,220.解:原式= ===∵不等式x≤2的非负整数解是0,1,2∵(x+1)(x﹣1)≠0,x+2≠0,∴x≠±1,x≠﹣2,∴把x=0代入.21.解:(1)设甲种收费的函数关系式y1=kx+b,乙种收费的函数关系式是y2=k1x,由题意,得,12=100k1,解得:,k1=0.12,∴y1=0.1x+6(x≥0),y2=0.12x(x≥0);(2)由题意,得当y1>y2时,0.1x+6>0.12x,得x<300;当y1=y2时,0.1x+6=0.12x,得x=300;当y1<y2时,0.1x+6<0.12x,得x>300;∴当100≤x<300时,选择乙种方式合算;当x=300时,甲、乙两种方式一样合算;当300<x≤450时,选择甲种方式合算.答:印制100~300(含100)份学案,选择乙种印刷方式较合算,印制300份学案,甲、乙两种印刷方式都一样合算,印制300~450(含450)份学案,选择甲种印刷方式较合算.22.解:(1)∵甲、乙、丙三位歌手进入“我是歌手”冠、亚、季军决赛,∴甲第一位出场的概率为;(2)∵出场情况为:甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙甲乙,丙乙甲共6种情况,∴甲比乙先出场的情况有:甲乙丙,甲丙乙,丙甲乙,∴甲比乙先出场的概率为:=.23.(1)证明:因为∠ADE=∠1+∠C=∠2+∠BDE,∠1=∠2,所以∠C=∠BDE.在△AEC和△BED中,所以ΔΑEC≌ΔΒΕD(2)解:因为ΔΑEC≌ΔΒΕD,所以CE=DE,∠BDE=∠C=24.(1)解:过点C作CD⊥AB于E,因为AC=BC,所以AE=BE=2,在Rt△BCE中,CE=,则点C的横坐标为4-,即C(,2)。
湖南省邵阳市2018年中考数学试题(含解析).doc
2018年湖南省邵阳市中考数学试卷一、选择题(本大题有10个小题,每小题3分,共30分。
在每小题给出的四个选项中只有一项是符合题目要求的)1.(3分)用计算器依次按键,得到的结果最接近的是()A.1.5 B.1.6 C.1.7 D.1.82.(3分)如图所示,直线AB,CD相交于点O,已知∠AOD=160°,则∠BOC的大小为()A.20°B.60°C.70°D.160°3.(3分)将多项式x﹣x3因式分解正确的是()A.x(x2﹣1)B.x(1﹣x2)C.x(x+1)(x﹣1)D.x(1+x)(1﹣x)4.(3分)下列图形中,是轴对称图形的是()A.B.C.D.5.(3分)据《经济日报》2018年5月21日报道:目前,世界集成电路生产技术水平最高已达到7nm(1nm=10﹣9m),主流生产线的技术水平为14~28nm,中国大陆集成电路生产技术水平最高为28nm.将28nm用科学记数法可表示为()A.28×10﹣9m B.2.8×10﹣8m C.28×109m D.2.8×108m6.(3分)如图所示,四边形ABCD为⊙O的内接四边形,∠BCD=120°,则∠BOD的大小是()A.80°B.120°C.100° D.90°7.(3分)小明参加100m短跑训练,2018年1~4月的训练成绩如下表所示:体育老师夸奖小明是“田径天才”,请你预测小明5年(60个月)后100m短跑的成绩为()(温馨提示;目前100m短跑世界记录为9秒58)A.14.8s B.3.8sC.3s D.预测结果不可靠8.(3分)如图所示,在平面直角坐标系中,已知点A(2,4),过点A作AB⊥x轴于点B.将△AOB以坐标原点O为位似中心缩小为原图形的,得到△COD,则CD的长度是()A.2 B.1 C.4 D.29.(3分)根据李飞与刘亮射击训练的成绩绘制了如图所示的折线统计图.根据图所提供的信息,若要推荐一位成绩较稳定的选手去参赛,应推荐()A.李飞或刘亮B.李飞C.刘亮D.无法确定10.(3分)程大位是我国明朝商人,珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人,下列求解结果正确的是()A.大和尚25人,小和尚75人B.大和尚75人,小和尚25人C.大和尚50人,小和尚50人D.大、小和尚各100人二、填空题(本大题有8个小题,每小题3分,共24分)11.(3分)点A在数轴上的位置如图所示,则点A表示的数的相反数是.12.(3分)如图所示,点E是平行四边形ABCD的边BC延长线上一点,连接AE,交CD 于点F,连接BF.写出图中任意一对相似三角形:.13.(3分)已知关于x的方程x2+3x﹣m=0的一个解为﹣3,则它的另一个解是.14.(3分)如图所示,在四边形ABCD中,AD⊥AB,∠C=110°,它的一个外角∠ADE=60°,则∠B的大小是.15.(3分)某市对九年级学生进行“综合素质”评价,评价结果分为A,B,C,D,E五个等级.现随机抽取了500名学生的评价结果作为样本进行分析,绘制了如图所示的统计图.已知图中从左到右的五个长方形的高之比为2:3:3:1:1,据此估算该市80000名九年级学生中“综合素质”评价结果为“A”的学生约为人.16.(3分)如图所示,一次函数y=ax+b的图象与x轴相交于点(2,0),与y轴相交于点(0,4),结合图象可知,关于x的方程ax+b=0的解是.17.(3分)如图所示,在等腰△ABC中,AB=AC,∠A=36°,将△ABC中的∠A沿DE向下翻折,使点A落在点C处.若AE=,则BC的长是.18.(3分)如图所示,点A是反比例函数y=图象上一点,作AB⊥x轴,垂足为点B,若△AOB的面积为2,则k的值是.三、解答题(本大题有8个小题,第19~25题每小题8分,第26题10分,共66分。
精选2018届湖南省邵阳县XX中学中考数学三模试卷(有答案)
湖南省邵阳县2019届中考数学三模试卷姓名:__________ 班级:__________考号:__________考试时间100分钟满分120分1.下列说法正确的是()A. 对角线相等的四边形是平行四边形B. 对角线互相平分的四边形是平行四边形C. 对角线互相垂直的四边形是平行四边形D. 对角线互相垂直且相等的四边形是平行四边形2.如图是每个面上都有一个汉字的正方体的一种展开图,那么在正方体的表面,与“友”相对的面上的汉字是()A. 爱B. 国C. 善D. 诚3.平面直角坐标系中的点P(2﹣m,m)在第一象限,则m的取值范围在数轴上可表示为()A. B.C. D.4.如图,用直尺和圆规画∠AOB的平分线OE,其理论依据是()A. SASB. ASAC. AASD. SSS5.如图,正方形ABCD中,E为AB的中点,AF⊥DE于点O,则等于()A. B. C. D.6.以二元一次方程组的解为坐标的点(x,y)在平面直角坐标系的()A. 第一象限B. 第二象限C. 第三象限D. 第四象限7.如图,矩形ABCD中,E是AD的中点,将△ABE沿直线BE折叠后得到△GBE,延长BG交CD于点F.若AB=4,BC=6,则FD的长为()A. B. 4 C. D.8.如图,把边长为1的正方形ABCD绕顶点A逆时针旋转30°到正方形AB′C′D′,则它们的公共部分的面积等于()A. B. C. D.9.把方程x2-8x+3=0化成(x+m)2=n的形式,则m,n的值是().A. 4,13B. -4,19C. -4,13D. 4,1910. 如图,菱形ABCD的对角线AC=4cm,把它沿着对角线AC方向平移1cm得到菱形EFGH,则图中阴影部分图形的面积与四边形EMCN的面积之比为()A. 4:3B. 3:2C. 14:9D. 17:911.在平面直角坐标系xOy中,一直线经过点A(﹣3,0),点B(0,),⊙P的圆心P的坐标为(1,0),与y轴相切于点O,若将⊙P沿x轴向左平移,平移后得到⊙P′,当⊙P′与直线相交时,横坐标为整数的点P′共有()A. 1个B. 2个C. 3个D. 4个12.如图,锐角三角形ABC中,∠C=45°,N为BC上一点,NC=5,BN=2,M为边AC上的一个动点,则BM+MN的最小值是().A. B. C. D.二、填空题(共8小题;共24分)13.到线段两个端点的距离相等的点有________.14.(2017•德州)如图是利用直尺和三角板过已知直线l外一点P作直线l的平行线的方法,其理由是________.15.两个同样的直角三角板如图所示摆放,使点F,B,E,C在一条直线上,则有DF∥AC,理由是________16.如果实数x、y满足方程组,那么x2﹣y2的值为________.17.若点A(﹣2,b)在第三象限,则点B(﹣b,4)在第________象限.18.若抛物线y=x2+bx+c经过A(﹣2,0),B(4,0)两点,则这条抛物线的解析式为________.19. 有七张正面分别标有数字﹣3,﹣2,﹣1,0,1,2,3的卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为a,则使关于x的一元二次方程x2﹣2(a﹣1)x+a(a﹣3)=0有两个不相等的实数根,且以x为自变量的二次函数y=x2﹣(a2+1)x﹣a+2的图象不经过点(1,O)的概率是________.20.观察下列各式:22﹣1=1×3,32﹣1=2×4,42﹣1=3×5,52﹣1=4×6,…,根据上述规律,第n个等式应表示为________.三、解答题(共9小题;共60分)21.已知:3x=2,3y=5,求3x+y+32x+3y的值.22.先化简,再求值:÷(1﹣),其中x=0.23.一家商店将某种服装按成本价提高40%标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的成本多少元?24.如图,已知直线AB和CD相交于O点,∠COE是直角,OF平分∠AOE,∠COF=34°,求∠BOD的度数.25.某市出租车的收费标准是:行程不超过3千米起步价为10元,超过3千米后每千米增收1.8元.某乘客出租车x千米.(1)试用关于x的代数式分情况表示该乘客的付费.(2)如果该乘客坐了8千米,应付费多少元?(3)如果该乘客付费26.2元,他坐了多少千米?26. 如图,⊙O的半径为17cm,弦AB∥CD,AB=30cm,CD=16cm,圆心O位于AB,CD的上方,求AB和CD的距离.27.如图,在△ABC中,AB=AC=10,sinB= ,(1)求边BC的长;(2)将△ABC绕着点C旋转得△A′B′C,点A的对应点A′,点B的对应点B′.如果点A′在BC边上,那么点B和点B′之间的距离等于多少?28.已知函数y=ax2与直线y=2x﹣3的图象交于点A(1,b).(1)求a,b的值;(2)求两函数图象另一交点B的坐标.29.已知,如图,抛物线y=ax2+3ax+c(a>0)与y轴交于点C,与x轴交于A、B两点,点A在点B左侧,点B的坐标为(1,0)、C(0,﹣3).(1)求抛物线的解析式.(2)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值.(3)若点E在x轴上,点P在抛物线上,是否存在以A、C、E、P为顶点且以AC为一边的平行四边形?如存在,求点P的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题1.【答案】B【解析】【解答】解:A、对角线相等的四边形不一定是平行四边形,例如:等腰梯形的对角线相等,故本选项错误;B、对角线互相平分的四边形是平行四边形,故本选项正确;C、对角线互相垂直的四边形不一定是平行四边形,例如:菱形的对角线互相垂直,故本选项错误;D、对角线互相垂直平分且相等的四边形是平行四边形,故本选项错误;故选:B.【分析】根据平行四边形的判定定理对以下选项进行判断,也可以举出反例;2.【答案】C【解析】【解答】解:对于正方体的平面展开图中相对的面一定相隔一个小正方形,由图形可知,与“友”字相对的字是“善”.故选:C.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答3.【答案】B【解析】【解答】解:∵平面直角坐标系中的点P(2﹣m,m)在第一象限,∴,解得0<m<2,在数轴上表示为:.故选B.【分析】根据第一象限内点的坐标特点列出关于m的不等式组,求出m的取值范围,在数轴上表示出来即可.4.【答案】D【解析】【解答】解:连接CE、DE,在△OCE和△ODE中,,∴△OCE≌△ODE(SSS),∴∠AOE=∠BOE.因此画∠AOB的平分线OE,其理论依据是:SSS.故选:D.【分析】首先连接CE、DE,然后证明△OCE≌△ODE,根据全等三角形的性质可得∠AOE=∠BOE.5.【答案】D【解析】【分析】利用△DAO与△DEA相似,对应边成比例即可求解.【解答】∠DOA=90°,∠DAE=90°,∠ADE是公共角,∠DAO=∠DEA∴△DAO∽△DEA∴=即=∵AE=AD∴=故选D.【点评】本题的关键是利用相似三角形中的相似比,再利用中点和正方形的性质求得它们的比值.6.【答案】A【解析】【解答】解:①+②得:4y=8,解得:y=2,把y=2代入①得:x+6=7,解得:x=1,即点的坐标为(1,2),所以该点在第一象限,故选A.【分析】先解方程组,求出方程组的解,即可得出点的坐标,即可得出选项.7.【答案】C【解析】【解答】解:∵E是AD的中点,∴AE=DE,∵△ABE沿BE折叠后得到△GBE,∴AE=EG,AB=BG,∴ED=EG,∵在矩形ABCD中,∴∠A=∠D=90°,∴∠EGF=90°,∵在Rt△EDF和Rt△EGF中,,∴Rt△EDF≌Rt△EGF(HL),∴DF=FG,设DF=x,则BF=4+x,CF=4﹣x,在Rt△BCF中,62+(4﹣x)2=(4+x)2,解得x= .故选:C.【分析】根据点E是AD的中点以及翻折的性质可以求出AE=DE=EG,然后利用“HL”证明△EDF和△EGF全等,根据全等三角形对应边相等可证得DF=GF;设FD=x,表示出FC、BF,然后在Rt△BCF中,利用勾股定理列式进行计算即可得解.8.【答案】B【解析】【解答】解:如图,设B′C′与CD相交于点E,在Rt△ADE和Rt△AB′E,,∴Rt△ADE≌Rt△AB′E(HL),∴∠EAB′=∠EAD,∵旋转角为30°,∴∠BAB′=30°,∴∠EAD= (90°﹣30°)=30°,在Rt△ADE中,ED=ADtan30°=1× = ,∴这个风筝的面积=2×S△ADE=2× ×1× = ;故选:B.【分析】设B′C′与CD相交于点E,然后利用“HL”证明Rt△ADE和Rt△AB′E全等,根据全等三角形对应角相等可得∠EAB′=∠EAD,再根据旋转角求出∠BAB′=30°,再解直角三角形求出ED的长,然后利用三角形的面积公式列式进行计算即可得解.9.【答案】C【解析】【分析】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用,把左边配成完全平方式,右边化为常数.【解答】∵x2-8x+3=0∴x2-8x=-3∴x2-8x+16=-3+16∴(x-4)2=13∴m=-4,n=13故选C.【点评】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.10.【答案】C【解析】【解答】解:∵ME∥AD,∴△MEC∽△DAC,∴,∵菱形ABCD的对角线AC=4cm,把它沿着对角线AC方向平移1cm得到菱形EFGH,∴AE=1cm,EC=3cm,∴= ,∴= ,∴图中阴影部分图形的面积与四边形EMCN的面积之比为:= .故选:C.【分析】首先得出△MEC∽△DAC,则= ,进而得出= ,即可得出答案.11.【答案】C【解析】【解答】解:如图所示,∵点P的坐标为(1,0),⊙P与y轴相切于点O,∴⊙P的半径是1,若⊙P与AB相切时,设切点为D,由点A(﹣3,0),点B(0,),∴OA=3,OB=,由勾股定理得:AB=2,∠DAM=30°,设平移后圆与直线AB第一次相切时圆心为M(即对应的P′),∴MD⊥AB,MD=1,又因为∠DAM=30°,∴AM=2,M点的坐标为(﹣1,0),即对应的P′点的坐标为(﹣1,0),同理可得圆与直线第二次相切时圆心N的坐标为(﹣5,0),所以当⊙P′与直线l相交时,横坐标为整数的点P′的横坐标可以是﹣2,﹣3,﹣4共三个.故选:C.【分析】在解答本题时要先求出⊙P的半径,继而求得相切时P′点的坐标,根据A(﹣3,0),可以确定对应的横坐标为整数时对应的数值.12.【答案】C【解析】解答:如图所示,先作点N关于AC的对称点N′,由两点之间线段最短可知BN′即为BM+MN的最小值,根据对称的性质可知N′C=NC=5,∠ACB=∠ACN′=45°,即∠B CN′=90°,在Rt△BCN′中,BN′===.故答案为:C.分析:先作点N关于AC的对称点N′,由两点之间线段最短可知BN′即为BM+MN的最小值,根据对称的性质可知N′C=NC=5,∠BCN′=90°,再利用勾股定理即可求出BN′的长.二、填空题13.【答案】无数个【解析】【解答】解:到线段两个端点的距离相等的点有无数个.【分析】到线段两个端点的距离相等的点在该线段的垂直平分线上.14.【答案】同位角相等,两直线平行【解析】【解答】解:由图形得,有两个相等的同位角存在,所以依据:同位角相等,两直线平行,即可得到所得的直线与已知直线平行.故答案为:同位角相等,两直线平行.【分析】过直线外一点作已知直线的平行线,只有满足同位角相等,才能得到两直线平行.15.【答案】内错角相等两直线平行或(垂直于同一条直线的两直线平行)【解析】【解答】∵∠C=∠F=90°,DF∥AC故答案为:内错角相等两直线平行或(垂直于同一条直线的两直线平行)【分析】根据平行线的判定定理填写即可。
2018年湖南省邵阳市中考数学试卷含答案解析
2018年湖南省邵阳市中考数学试卷一、选择题(本大题有10个小题,每小题3分,共30分。
在每小题给出的四个选项中只有一项是符合题目要求的)1.(3分)用计算器依次按键,得到的结果最接近的是()A.1.5 B.1.6 C.1.7 D.1.82.(3分)如图所示,直线AB,CD相交于点O,已知∠AOD=160°,则∠BOC的大小为()A.20°B.60°C.70°D.160°3.(3分)将多项式x﹣x3因式分解正确的是()A.x(x2﹣1)B.x(1﹣x2)C.x(x+1)(x﹣1)D.x(1+x)(1﹣x)4.(3分)下列图形中,是轴对称图形的是()A.B.C.D.5.(3分)据《经济日报》2018年5月21日报道:目前,世界集成电路生产技术水平最高已达到7nm(1nm=10﹣9m),主流生产线的技术水平为14~28nm,中国大陆集成电路生产技术水平最高为28nm.将28nm用科学记数法可表示为()A.28×10﹣9m B.2.8×10﹣8m C.28×109m D.2.8×108m6.(3分)如图所示,四边形ABCD为⊙O的内接四边形,∠BCD=120°,则∠BOD的大小是()A.80°B.120°C.100°D.90°7.(3分)小明参加100m短跑训练,2018年1~4月的训练成绩如下表所示:()(温馨提示;目前100m短跑世界记录为9秒58)A.14.8s B.3.8sC.3s D.预测结果不可靠8.(3分)如图所示,在平面直角坐标系中,已知点A(2,4),过点A作AB⊥x轴于点B.将△AOB以坐标原点O为位似中心缩小为原图形的,得到△COD,则CD的长度是()A.2 B.1 C.4 D.29.(3分)根据李飞与刘亮射击训练的成绩绘制了如图所示的折线统计图.根据图所提供的信息,若要推荐一位成绩较稳定的选手去参赛,应推荐()A.李飞或刘亮 B.李飞C.刘亮D.无法确定10.(3分)程大位是我国明朝商人,珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人,下列求解结果正确的是()A.大和尚25人,小和尚75人 B.大和尚75人,小和尚25人C.大和尚50人,小和尚50人 D.大、小和尚各100人二、填空题(本大题有8个小题,每小题3分,共24分)11.(3分)点A在数轴上的位置如图所示,则点A表示的数的相反数是.12.(3分)如图所示,点E是平行四边形ABCD的边BC延长线上一点,连接AE,交CD于点F,连接BF.写出图中任意一对相似三角形:.13.(3分)已知关于x的方程x2+3x﹣m=0的一个解为﹣3,则它的另一个解是.14.(3分)如图所示,在四边形ABCD中,AD⊥AB,∠C=110°,它的一个外角∠ADE=60°,则∠B的大小是.15.(3分)某市对九年级学生进行“综合素质”评价,评价结果分为A,B,C,D,E五个等级.现随机抽取了500名学生的评价结果作为样本进行分析,绘制了如图所示的统计图.已知图中从左到右的五个长方形的高之比为2:3:3:1:1,据此估算该市80000名九年级学生中“综合素质”评价结果为“A”的学生约为人.16.(3分)如图所示,一次函数y=ax+b的图象与x轴相交于点(2,0),与y轴相交于点(0,4),结合图象可知,关于x的方程ax+b=0的解是.17.(3分)如图所示,在等腰△ABC中,AB=AC,∠A=36°,将△ABC中的∠A沿DE向下翻折,使点A落在点C处.若AE=,则BC的长是.18.(3分)如图所示,点A是反比例函数y=图象上一点,作AB⊥x轴,垂足为点B,若△AOB的面积为2,则k的值是.三、解答题(本大题有8个小题,第19~25题每小题8分,第26题10分,共66分。
2018年湖南省邵阳市中考数学试卷(含答案解析)-精编.doc
2018年湖南省邵阳市中考数学试卷一、选择题(本大题有10个小题,每小题3分,共30分。
在每小题给出的四个选项中只有一项是符合题目要求的)1.(3分)用计算器依次按键,得到的结果最接近的是()A.1.5 B.1.6 C.1.7 D.1.82.(3分)如图所示,直线AB,CD相交于点O,已知∠AOD=160°,则∠BOC的大小为()A.20°B.60°C.70°D.160°3.(3分)将多项式x﹣x3因式分解正确的是()A.x(x2﹣1)B.x(1﹣x2)C.x(x+1)(x﹣1)D.x(1+x)(1﹣x)4.(3分)下列图形中,是轴对称图形的是()A.B.C.D.5.(3分)据《经济日报》2018年5月21日报道:目前,世界集成电路生产技术水平最高已达到7nm(1nm=10﹣9m),主流生产线的技术水平为14~28nm,中国大陆集成电路生产技术水平最高为28nm.将28nm用科学记数法可表示为()A.28×10﹣9m B.2.8×10﹣8m C.28×109m D.2.8×108m6.(3分)如图所示,四边形ABCD为⊙O的内接四边形,∠BCD=120°,则∠BOD的大小是()A.80°B.120°C.100°D.90°7.(3分)小明参加100m短跑训练,2018年1~4月的训练成绩如下表所示:月份1234成绩(s)15.615.415.215体育老师夸奖小明是“田径天才”,请你预测小明5年(60个月)后100m短跑的成绩为()(温馨提示;目前100m短跑世界记录为9秒58)A.14.8s B.3.8sC.3s D.预测结果不可靠8.(3分)如图所示,在平面直角坐标系中,已知点A(2,4),过点A作AB⊥x轴于点B.将△AOB以坐标原点O为位似中心缩小为原图形的,得到△COD,则CD的长度是()A.2 B.1 C.4 D.29.(3分)根据李飞与刘亮射击训练的成绩绘制了如图所示的折线统计图.根据图所提供的信息,若要推荐一位成绩较稳定的选手去参赛,应推荐()A.李飞或刘亮 B.李飞C.刘亮D.无法确定10.(3分)程大位是我国明朝商人,珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人,下列求解结果正确的是()A.大和尚25人,小和尚75人 B.大和尚75人,小和尚25人C.大和尚50人,小和尚50人 D.大、小和尚各100人二、填空题(本大题有8个小题,每小题3分,共24分)11.(3分)点A在数轴上的位置如图所示,则点A表示的数的相反数是.12.(3分)如图所示,点E是平行四边形ABCD的边BC延长线上一点,连接AE,交CD于点F,连接BF.写出图中任意一对相似三角形:.13.(3分)已知关于x的方程x2+3x﹣m=0的一个解为﹣3,则它的另一个解是.14.(3分)如图所示,在四边形ABCD中,AD⊥AB,∠C=110°,它的一个外角∠ADE=60°,则∠B的大小是.15.(3分)某市对九年级学生进行“综合素质”评价,评价结果分为A,B,C,D,E五个等级.现随机抽取了500名学生的评价结果作为样本进行分析,绘制了如图所示的统计图.已知图中从左到右的五个长方形的高之比为2:3:3:1:1,据此估算该市80000名九年级学生中“综合素质”评价结果为“A”的学生约为人.16.(3分)如图所示,一次函数y=ax+b的图象与x轴相交于点(2,0),与y轴相交于点(0,4),结合图象可知,关于x的方程ax+b=0的解是.17.(3分)如图所示,在等腰△ABC中,AB=AC,∠A=36°,将△ABC中的∠A沿DE向下翻折,使点A落在点C处.若AE=,则BC的长是.18.(3分)如图所示,点A是反比例函数y=图象上一点,作AB⊥x轴,垂足为点B,若△AOB的面积为2,则k的值是.三、解答题(本大题有8个小题,第19~25题每小题8分,第26题10分,共66分。
2018年湖南省邵阳市中考数学试卷含答案解析
2018年湖南省邵阳市中考数学试卷一、选择题(本大题有10个小题,每小题3分,共30分。
在每小题给出的四个选项中只有一项是符合题目要求的)1.(3分)用计算器依次按键,得到的结果最接近的是()A.1.5 B.1.6 C.1.7 D.1.82.(3分)如图所示,直线AB,CD相交于点O,已知∠AOD=160°,则∠BOC的大小为()A.20°B.60°C.70°D.160°3.(3分)将多项式x﹣x3因式分解正确的是()A.x(x2﹣1)B.x(1﹣x2)C.x(x+1)(x﹣1)D.x(1+x)(1﹣x)4.(3分)下列图形中,是轴对称图形的是()A.B.C.D.5.(3分)据《经济日报》2018年5月21日报道:目前,世界集成电路生产技术水平最高已达到7nm(1nm=10﹣9m),主流生产线的技术水平为14~28nm,中国大陆集成电路生产技术水平最高为28nm.将28nm用科学记数法可表示为()A.28×10﹣9m B.2.8×10﹣8m C.28×109m D.2.8×108m6.(3分)如图所示,四边形ABCD为⊙O的内接四边形,∠BCD=120°,则∠BOD的大小是()A.80°B.120°C.100°D.90°7.(3分)小明参加100m短跑训练,2018年1~4月的训练成绩如下表所示:()(温馨提示;目前100m短跑世界记录为9秒58)A.14.8s B.3.8sC.3s D.预测结果不可靠8.(3分)如图所示,在平面直角坐标系中,已知点A(2,4),过点A作AB⊥x轴于点B.将△AOB以坐标原点O为位似中心缩小为原图形的,得到△COD,则CD的长度是()A.2 B.1 C.4 D.29.(3分)根据李飞与刘亮射击训练的成绩绘制了如图所示的折线统计图.根据图所提供的信息,若要推荐一位成绩较稳定的选手去参赛,应推荐()A.李飞或刘亮 B.李飞C.刘亮D.无法确定10.(3分)程大位是我国明朝商人,珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人,下列求解结果正确的是()A.大和尚25人,小和尚75人 B.大和尚75人,小和尚25人C.大和尚50人,小和尚50人 D.大、小和尚各100人二、填空题(本大题有8个小题,每小题3分,共24分)11.(3分)点A在数轴上的位置如图所示,则点A表示的数的相反数是.12.(3分)如图所示,点E是平行四边形ABCD的边BC延长线上一点,连接AE,交CD于点F,连接BF.写出图中任意一对相似三角形:.13.(3分)已知关于x的方程x2+3x﹣m=0的一个解为﹣3,则它的另一个解是.14.(3分)如图所示,在四边形ABCD中,AD⊥AB,∠C=110°,它的一个外角∠ADE=60°,则∠B的大小是.15.(3分)某市对九年级学生进行“综合素质”评价,评价结果分为A,B,C,D,E五个等级.现随机抽取了500名学生的评价结果作为样本进行分析,绘制了如图所示的统计图.已知图中从左到右的五个长方形的高之比为2:3:3:1:1,据此估算该市80000名九年级学生中“综合素质”评价结果为“A”的学生约为人.16.(3分)如图所示,一次函数y=ax+b的图象与x轴相交于点(2,0),与y轴相交于点(0,4),结合图象可知,关于x的方程ax+b=0的解是.17.(3分)如图所示,在等腰△ABC中,AB=AC,∠A=36°,将△ABC中的∠A沿DE向下翻折,使点A落在点C处.若AE=,则BC的长是.18.(3分)如图所示,点A是反比例函数y=图象上一点,作AB⊥x轴,垂足为点B,若△AOB的面积为2,则k的值是.三、解答题(本大题有8个小题,第19~25题每小题8分,第26题10分,共66分。
湖南省邵阳市邵阳县2018届初中毕业学业模拟考试数学试题(附答案)
2018年初中毕业学业模拟考试试题卷数 学(一)温馨提示:(1)本学科试卷分试题卷和答题卡两部分,考试时量为120分钟,满分为120分; (2)请你将姓名、准考证号等相关信息按要求填涂在答题卡上; (3)请你在答题卡...上作答,答在本试题卷上无效.一、选择题(本大题共有10个小题,每小题3分,共30分. 在每小题给出的四个选项中只有一项是符合题目要求的) 1.64的平方根是A .4±B .—8C .8±D .82. 如图(一)所示,已知∠1=∠2,下列结论正确的是 A .AB ∥DC B .AD ∥BC C .AB=CB D .AD=CD3.23-的绝对值是A . 32-B .23-C .3D .14. 某种零件模型可以看成如图(二)所示的几何体(空心圆柱),该几何体的俯视图是5. 函数x y -=1中,自变量x 的取值范围在数轴上表示正确的是6. 如图(三),AB ∥CD ,射线AE 交CD 于点F ,若∠2=110°,则∠1的度数是 A .80° B .70° C .60° D .50°7. 如图(四)所示,点A 、B 、C 在⊙O 上,若∠BAC =45°,OB =4,则图中阴影部分的 面积为A .4π-8B .2π-4C .π-2D .4π-4 8.某校为调查1000名学生对新闻、娱乐、动画、体育四类 电视节目的喜爱情况,随机抽取了部分学生进行调查,并 利用调查数据作出如图(五)所示的扇形统计图.根据图中信息,可以估算出该校喜爱体育节目的学生共有A .300名B .250名C .200名D .150名 9. 小明从家到学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校. 小明从家到学校行驶路程)(m s 与时间(min)t 的大致 图象是10.如图(六)所示,在平面直角坐标系中,点A 、B 、C 的坐标分别为(﹣1,3)、(﹣4,1)、 (﹣2,1),将△ABC 沿一确定方向平移得到 △A 1B 1C 1,点B 的对应点B 1的坐标是(1,2), 则点A 1 ,C 1的坐标分别是A. A 1(4,4),C 1(3,2)B. A 1(3,3),C 1(2,1)C. A 1(4,3),C 1(2,3) D .A 1(3,4),C 1(2,2)二. 填空题(本大题共有8个小题,每小题3分,共24分)11. 将多项式n nm 282- 因式分解的结果是 .12. 可燃冰,学名叫“天然气水合物”,是一种高效清洁、储量巨大的新能源.据报道,仅我国可燃冰预测远景资源量就超过了1200亿吨油当量.将1200亿用科学记数法表示为10n a ⨯的形式,则a 的值为 . 13. 若反比例函数xky =的图象在第二、四象限内,则k 的值可能是 .(写一 个即可)14. 我国魏晋时期的数学家赵爽在为天文学著作《周髀算经》作注解时,用4个全等的直角三角形拼成如图(七)所示的正方形,并用它证明了勾股定理,这个图被称为“弦图”. 若直角三角形的斜边长为c ,两直角边长分别为a 、b ,当3=a ,5=c 时,图中小正方形(空白部分)面积为 .15. 如图(八)所示的正五边形ABCDE ,连结BD 、AD ,则∠ADB 的大小为 . 16. 如图(九)所示,已知线段6=AB ,现按照以下步骤作图:①分别以点A ,B 为圆心,以大于AB 21的长为半径画弧,两弧相交于点C 和点D ; ②连结CD 交AB 于点P . 则线段PB 的长为 .17. 一数学兴趣小组来到某公园,测量一座塔的高度.如图(十),在 A 处测得塔顶的仰角为α=31°,在 B 处测得塔顶的仰角为β=45°,又测量出 A 、B 两点的距离为20米,则塔高为 米.(参考数值:tan 31°≈53) 18. 甲、乙、丙、丁四人做传球游戏:第一次由甲将球随机传给乙、丙、丁中的某一人,第二次由持球者将球再随机传给其他三人中的某一人.我们可以用下面的列表来分 析第二次传球所有可能出现的结果.则第二次传球后球回到甲手里的概率为 .三、解答题(本大题共有8个小题,第19—25题每小题8分,第26题10分,共66分.解答应写出必要的文字说明、演算步骤或证明过程)19. 计算:6cos30°+131-⎪⎭⎫⎝⎛-2720. 先化简,再求值:1)11(2-⋅-a aa ,其中12-=a .21. 如图(十一)所示,已知平行四边形ABCD ,对角线,AC BD 相交于点O ,DAO BAO ∠=∠.(1)求证:平行四边形ABCD 是菱形; (2)请添加一个条件使菱形ABCD 为正方形.22. 在“全民读书月”活动中,小明调查了全班所有同学本学期计划购买课外书的花费情况,并将结果绘制成如图(十二)所示的统计图。
全国市级联考湖南省邵阳市2018届初中毕业班中考数学复习三模试卷
全国市级联考湖南省邵阳市2018届初中毕业班中考数学复习三模试卷数学试题考试时间:90分钟 满分:120分一、选择题(共8小题;共24分) 1. 若|a ﹣1|=a ﹣1,则a 的取值范围是( ) A. a ≥1B. a ≤1C. a <1D. a >12. 计算a 2•a 3,结果正确的是( ) A. a 5B. a 6C. a 8D. a 93. 下列各统计量中,表示一组数据波动程度的量是( ). A. 平均数B. 众数C. 方差D. 频率4. 若△ABC ∽△A′B′C′且34AB A B ='',△ABC 的周长为15cm ,则△A′B′C′的周长为( )cm. A. 18B. 20C. 154D.8035. 如图所示几何体的俯视图是( )A. B. C. D.6. 有下列四个论断:①﹣13是有理数;② 2是分数;③2.131131113…是无理数;④π是无理数,其中正确的是( ) A. 4个B. 3个C. 2个D. 1个7. 若二次函数y=﹣x 2+4x+c 的图象经过A (1,y 1),B (﹣1,y 2),C (,y 3)三点,则y 1、y 2、y 3的大小关系是( ) A. y 1<y 2<y 3 B. y 1<y 3<y 2C. y 2<y 3<y 1D. y 2<y 1<y 38. 如图,下列图形均是完全相同的点按照一定的规律所组成的,第①个图形中一共有3个点,第②个图形中一共有8个点,第③个图形中一共有15个点,…,按此规律排列下去,第9个图形中点的个数是( )A. 80B. 89C. 99D. 109二、填空题(共7小题;共21分) 9. 当x =____时,分式13x -与无意义 10. 计算(2)(2)a a -+=_________.11. 据日本环境省估计,被地震海啸吞没然后流入太平洋的废墟垃圾共约5000000吨,其中5000000吨用科学记数法表示为________吨.12. 关于x 的一元二次方程22(21)(1)0x k x k +-+-=无实数根,则k 的取值范围为_________.13. 如图,菱形ABCD 的边长为2,∠A =60°,以点B 为圆心的圆与AD 、DC 相切,与AB 、CB 的延长线分别相交于点E 、F ,则图中阴影部分的面积为_____.14. 一次函数y 1=﹣x+2,反比例函数y 2= 8x-,当y 1<y 2时,x 的取值范围________.15. 如图,已知等边三角形OAB 与反比例函数(0,0)k y k x x=>>的图像交于A 、B 两点,将OAB ∆沿直线OB 翻折,得到OCB ∆,点A 的对应点为点C ,线段CB 交x轴于点D ,则BD DC 的值为_________.(已知sin15︒=)三、解答题(共11小题;共75分)16. 计算:101()2(1)2π-+---.17. 化简 211a a a a-⋅-. 18. 解不等式组 31432(1)6x x x -+<⎧⎨--≤⎩.19. 某校为了了解九年级学生(共450人)的身体素质情况,体育老师对九(1)班的50位学生进行一分钟跳绳次数测试,以测试数据为样本,绘制了如下部分频数分布表和部分频数分布直方图.请结合图表解答下列问题:(1)表中的m=________;(2)请把频数分布直方图补完整;(3)这个样本数据的中位数落在第________组;(4)若九年级学生一分钟跳绳次数(x)合格要求是x≥120,则估计九年级学生中一分钟跳绳成绩不合格的人数.20. 一个不透明的布袋里装有2个白球,1个黑球和若干个红球,它们除颜.色外其余都相同,从中任意摸出1个球,是白球的概率为12(1)布袋里红球有多少个?(2)先从布袋中摸出1个球后不放回,再摸出1个球,请用列表或画树状图等方法求出两次摸到的球都是白球的概率.21. 如图,已知△ABC,△C=90°,AC<BC,D为BC上一点,且到A,B两点的距离相等.(1)用直尺和圆规,作出点D的位置(不写作法,保留作图痕迹);(2)连接AD,若△B=37°,求△CAD的度数.22. 如图,在平面直角坐标系xOy中,过点(2,0)A-的直线交y轴正半轴于点B,将直线AB绕着点O顺时针旋转90°后,分别与x轴y轴交于点D、C.OB=,求直线AB的函数关系式;(1)若4△的面积是5,求点B的运动路径长.(2)连接BD,若ABD23. 直线y=﹣x+6与x轴交于A,与y轴交于B,直线CD与y轴交于C(0,2)与直线AB交于D,过D作DE△x轴于E(3,0).(1)求直线CD的函数解析式;(2)P是线段OA上一动点,点P从原点O开始,每秒一个单位长度的速度向A 运动(P与O,A不重合),过P作x轴的垂线,分别与直线AB,CD交于M,N,设MN的长为S,P点运动的时间为t,求出S与t之间的函数关系式(写出自变量的取值范围)(3)在(2)的条件下,当t为何值时,以M,N,E,D为顶点的四边形是平行四边形.(直接写出结果)24. 为了维护海洋权益,新组建的国家海洋局加大了在南海的巡逻力度.一天,我两艘海监船刚好在我某岛东西海岸线上的A、B两处巡逻,同时发现一艘不明国籍的船只停在C处海域.如图所示,AB=60海里,在B处测得C 在北偏东45º的方向上,A处测得C在北偏西30º的方向上,在海岸线AB上有一灯塔D,测得AD=120海里.(1)分别求出A 与C 及B 与C 的距离AC ,BC (结果保留根号)(2)已知在灯塔D 周围100海里范围内有暗礁群,我在A 处海监船沿AC 前往C 处盘查,途中有无触礁的危险?=1.41 1.73=2.45)25. 如图,矩形ABCD 中,AB =4,AD =3,M 是边CD 上一点,将△ADM 沿直线AM 对折,得到△ANM .(1)当AN 平分∠MAB 时,求DM 的长; (2)连接BN ,当DM =1时,求△ABN 的面积; (3)当射线BN 交线段CD 于点F 时,求DF 的最大值.26. (2017江苏省宿迁市,第25题,10分)如图,在平面直角坐标系xOy 中,抛物线2=23y x x --交x 轴于A △B 两点(点A 在点B 的左侧),将该抛物线位于x 轴上方曲线记作M ,将该抛物线位于x 轴下方部分沿x 轴翻折,翻折后所得曲线记作N ,曲线N 交y 轴于点C ,连接AC △BC △ △1)求曲线N 所在抛物线相应的函数表达式; △2)求△ABC 外接圆的半径;△3)点P 为曲线M 或曲线N 上的一动点,点Q 为x 轴上的一个动点,若以点B △C △P △Q 为顶点的四边形是平行四边形,求点Q 的坐标.。
湖南省邵阳县XX中学2018年中考数学三模试卷(带解析)
湖南省邵阳县2018年中考数学三模试卷姓名:__________ 班级:__________考号:__________考试时间100分钟满分120分题号一二总分评分一、选择题(每小题只有一个正确答案,共12小题,满分36分)1.下列说法正确的是()A. 对角线相等的四边形是平行四边形B. 对角线互相平分的四边形是平行四边形C. 对角线互相垂直的四边形是平行四边形D. 对角线互相垂直且相等的四边形是平行四边形2.如图是每个面上都有一个汉字的正方体的一种展开图,那么在正方体的表面,与“友”相对的面上的汉字是()A. 爱B. 国C. 善D. 诚3.平面直角坐标系中的点P(2﹣m,m)在第一象限,则m的取值范围在数轴上可表示为()A. B.C. D.4.如图,用直尺和圆规画∠AOB的平分线OE,其理论依据是()A. SASB. ASAC. AASD. SSS5.如图,正方形ABCD中,E为AB的中点,AF⊥DE于点O,则等于()A. B. C. D.6.以二元一次方程组的解为坐标的点(x,y)在平面直角坐标系的()A. 第一象限B. 第二象限C. 第三象限D. 第四象限7.如图,矩形ABCD中,E是AD的中点,将△ABE沿直线BE折叠后得到△GBE,延长BG交CD于点F.若AB=4,BC=6,则FD的长为()A. B. 4 C. D.8.如图,把边长为1的正方形ABCD绕顶点A逆时针旋转30°到正方形AB′C′D′,则它们的公共部分的面积等于()A. B. C. D.9.把方程x2-8x+3=0化成(x+m)2=n的形式,则m,n的值是().A. 4,13B. -4,19C. -4,13D. 4,1910. 如图,菱形ABCD的对角线AC=4cm,把它沿着对角线AC方向平移1cm得到菱形EFGH,则图中阴影部分图形的面积与四边形EMCN的面积之比为()A. 4:3B. 3:2C. 14:9D. 17:911.在平面直角坐标系xOy中,一直线经过点A(﹣3,0),点B(0,),⊙P的圆心P的坐标为(1,0),与y轴相切于点O,若将⊙P沿x轴向左平移,平移后得到⊙P′,当⊙P′与直线相交时,横坐标为整数的点P′共有()A. 1个B. 2个C. 3个D. 4个12.如图,锐角三角形ABC中,∠C=45°,N为BC上一点,NC=5,BN=2,M为边AC上的一个动点,则BM+MN的最小值是().A. B. C. D.二、填空题(共8小题;共24分)13.到线段两个端点的距离相等的点有________.14.(2017•德州)如图是利用直尺和三角板过已知直线l外一点P作直线l的平行线的方法,其理由是________.15.两个同样的直角三角板如图所示摆放,使点F,B,E,C在一条直线上,则有DF∥AC,理由是________16.如果实数x、y满足方程组,那么x2﹣y2的值为________.17.若点A(﹣2,b)在第三象限,则点B(﹣b,4)在第________象限.18.若抛物线y=x2+bx+c经过A(﹣2,0),B(4,0)两点,则这条抛物线的解析式为________.19. 有七张正面分别标有数字﹣3,﹣2,﹣1,0,1,2,3的卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为a,则使关于x的一元二次方程x2﹣2(a﹣1)x+a(a﹣3)=0有两个不相等的实数根,且以x为自变量的二次函数y=x2﹣(a2+1)x﹣a+2的图象不经过点(1,O)的概率是________.20.观察下列各式:22﹣1=1×3,32﹣1=2×4,42﹣1=3×5,52﹣1=4×6,…,根据上述规律,第n个等式应表示为________.三、解答题(共9小题;共60分)21.已知:3x=2,3y=5,求3x+y+32x+3y的值.22.先化简,再求值:÷(1﹣),其中x=0.23.一家商店将某种服装按成本价提高40%标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的成本多少元?24.如图,已知直线AB和CD相交于O点,∠COE是直角,OF平分∠AOE,∠COF=34°,求∠BOD 的度数.25.某市出租车的收费标准是:行程不超过3千米起步价为10元,超过3千米后每千米增收1.8元.某乘客出租车x千米.(1)试用关于x的代数式分情况表示该乘客的付费.(2)如果该乘客坐了8千米,应付费多少元?(3)如果该乘客付费26.2元,他坐了多少千米?26. 如图,⊙O的半径为17cm,弦AB∥CD,AB=30cm,CD=16cm,圆心O位于AB,CD的上方,求AB和CD的距离.27.如图,在△ABC中,AB=AC=10,sinB= ,(1)求边BC的长;(2)将△ABC绕着点C旋转得△A′B′C,点A的对应点A′,点B的对应点B′.如果点A′在BC边上,那么点B和点B′之间的距离等于多少?28.已知函数y=ax2与直线y=2x﹣3的图象交于点A(1,b).(1)求a,b的值;(2)求两函数图象另一交点B的坐标.29.已知,如图,抛物线y=ax2+3ax+c(a>0)与y轴交于点C,与x轴交于A、B两点,点A在点B 左侧,点B的坐标为(1,0)、C(0,﹣3).(1)求抛物线的解析式.(2)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值.(3)若点E在x轴上,点P在抛物线上,是否存在以A、C、E、P为顶点且以AC为一边的平行四边形?如存在,求点P的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题1.【答案】B【解析】【解答】解:A、对角线相等的四边形不一定是平行四边形,例如:等腰梯形的对角线相等,故本选项错误;B、对角线互相平分的四边形是平行四边形,故本选项正确;C、对角线互相垂直的四边形不一定是平行四边形,例如:菱形的对角线互相垂直,故本选项错误;D、对角线互相垂直平分且相等的四边形是平行四边形,故本选项错误;故选:B.【分析】根据平行四边形的判定定理对以下选项进行判断,也可以举出反例;2.【答案】C【解析】【解答】解:对于正方体的平面展开图中相对的面一定相隔一个小正方形,由图形可知,与“友”字相对的字是“善”.故选:C.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答3.【答案】B【解析】【解答】解:∵平面直角坐标系中的点P(2﹣m,m)在第一象限,∴,解得0<m<2,在数轴上表示为:.故选B.【分析】根据第一象限内点的坐标特点列出关于m的不等式组,求出m的取值范围,在数轴上表示出来即可.4.【答案】D【解析】【解答】解:连接CE、DE,在△OCE和△ODE中,,∴△OCE≌△ODE(SSS),∴∠AOE=∠BOE.因此画∠AOB的平分线OE,其理论依据是:SSS.故选:D.【分析】首先连接CE、DE,然后证明△OCE≌△ODE,根据全等三角形的性质可得∠AOE=∠BOE.5.【答案】D【解析】【分析】利用△DAO与△DEA相似,对应边成比例即可求解.【解答】∠DOA=90°,∠DAE=90°,∠ADE是公共角,∠DAO=∠DEA∴△DAO∽△DEA∴=即=∵AE=AD∴=故选D.【点评】本题的关键是利用相似三角形中的相似比,再利用中点和正方形的性质求得它们的比值.6.【答案】A【解析】【解答】解:①+②得:4y=8,解得:y=2,把y=2代入①得:x+6=7,解得:x=1,即点的坐标为(1,2),所以该点在第一象限,故选A.【分析】先解方程组,求出方程组的解,即可得出点的坐标,即可得出选项.7.【答案】C【解析】【解答】解:∵E是AD的中点,∴AE=DE,∵△ABE沿BE折叠后得到△GBE,∴AE=EG,AB=BG,∴ED=EG,∵在矩形ABCD中,∴∠A=∠D=90°,∴∠EGF=90°,∵在Rt△EDF和Rt△EGF中,,∴Rt△EDF≌Rt△EGF(HL),∴DF=FG,设DF=x,则BF=4+x,CF=4﹣x,在Rt△BCF中,62+(4﹣x)2=(4+x)2,解得x= .故选:C.【分析】根据点E是AD的中点以及翻折的性质可以求出AE=DE=EG,然后利用“HL”证明△EDF和△EGF全等,根据全等三角形对应边相等可证得DF=GF;设FD=x,表示出FC、BF,然后在Rt△BCF 中,利用勾股定理列式进行计算即可得解.8.【答案】B【解析】【解答】解:如图,设B′C′与CD相交于点E,在Rt△ADE和Rt△AB′E,,∴Rt△ADE≌Rt△AB′E(HL),∴∠EAB′=∠EAD,∵旋转角为30°,∴∠BAB′=30°,∴∠EAD= (90°﹣30°)=30°,在Rt△ADE中,ED=ADtan30°=1× = ,∴这个风筝的面积=2×S△ADE=2× ×1× = ;故选:B.【分析】设B′C′与CD相交于点E,然后利用“HL”证明Rt△ADE和Rt△AB′E全等,根据全等三角形对应角相等可得∠EAB′=∠EAD,再根据旋转角求出∠BAB′=30°,再解直角三角形求出ED的长,然后利用三角形的面积公式列式进行计算即可得解.9.【答案】C【解析】【分析】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用,把左边配成完全平方式,右边化为常数.【解答】∵x2-8x+3=0∴x2-8x=-3∴x2-8x+16=-3+16∴(x-4)2=13∴m=-4,n=13故选C.【点评】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.10.【答案】C【解析】【解答】解:∵ME∥AD,∴△MEC∽△DAC,∴,∵菱形ABCD的对角线AC=4cm,把它沿着对角线AC方向平移1cm得到菱形EFGH,∴AE=1cm,EC=3cm,∴= ,∴= ,∴图中阴影部分图形的面积与四边形EMCN的面积之比为:= .故选:C.【分析】首先得出△MEC∽△DAC,则= ,进而得出= ,即可得出答案.11.【答案】C【解析】【解答】解:如图所示,∵点P的坐标为(1,0),⊙P与y轴相切于点O,∴⊙P的半径是1,若⊙P与AB相切时,设切点为D,由点A(﹣3,0),点B(0,),∴OA=3,OB=,由勾股定理得:AB=2,∠DAM=30°,设平移后圆与直线AB第一次相切时圆心为M(即对应的P′),∴MD⊥AB,MD=1,又因为∠DAM=30°,∴AM=2,M点的坐标为(﹣1,0),即对应的P′点的坐标为(﹣1,0),同理可得圆与直线第二次相切时圆心N的坐标为(﹣5,0),所以当⊙P′与直线l相交时,横坐标为整数的点P′的横坐标可以是﹣2,﹣3,﹣4共三个.故选:C.【分析】在解答本题时要先求出⊙P的半径,继而求得相切时P′点的坐标,根据A(﹣3,0),可以确定对应的横坐标为整数时对应的数值.12.【答案】C【解析】解答:如图所示,先作点N关于AC的对称点N′,由两点之间线段最短可知BN′即为BM+MN的最小值,根据对称的性质可知N′C=NC=5,∠ACB=∠ACN′=45°,即∠B CN′=90°,在Rt△BCN′中,BN′===.故答案为:C.分析:先作点N关于AC的对称点N′,由两点之间线段最短可知BN′即为BM+MN的最小值,根据对称的性质可知N′C=NC=5,∠BCN′=90°,再利用勾股定理即可求出BN′的长.二、填空题13.【答案】无数个【解析】【解答】解:到线段两个端点的距离相等的点有无数个.【分析】到线段两个端点的距离相等的点在该线段的垂直平分线上.14.【答案】同位角相等,两直线平行【解析】【解答】解:由图形得,有两个相等的同位角存在,所以依据:同位角相等,两直线平行,即可得到所得的直线与已知直线平行.故答案为:同位角相等,两直线平行.【分析】过直线外一点作已知直线的平行线,只有满足同位角相等,才能得到两直线平行.15.【答案】内错角相等两直线平行或(垂直于同一条直线的两直线平行)【解析】【解答】∵∠C=∠F=90°,DF∥AC故答案为:内错角相等两直线平行或(垂直于同一条直线的两直线平行)【分析】根据平行线的判定定理填写即可。
湖南省邵阳市初中数学毕业学业考试模拟试题(三)(扫描(2021年整理)
湖南省邵阳市2018年初中数学毕业学业考试模拟试题(三)(扫描版)编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(湖南省邵阳市2018年初中数学毕业学业考试模拟试题(三)(扫描版))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为湖南省邵阳市2018年初中数学毕业学业考试模拟试题(三)(扫描版)的全部内容。
湖南省邵阳市2018年初中数学毕业学业考试模拟试题(三)
参考答案。
湖南省邵阳市2018年中考数学试题(含答案)【精品】.doc
邵阳市2018年初中毕业学业考试试题卷数学温馨提示:(1)本学科试卷分试题卷和答题卡两部分,考试时量为120分钟,满分为120分;(2)请你将姓名、准考证号等相关信息按要求填涂在答题卡上;(3)请你在答题卡上作答,答在本试题卷上无效.一、选择题(本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中只有一项是符合题目要求的)1.用计算器依次按键,得到的结果最接近的是A.1.5 B.1.6 C.1.7 D.1.82.如图(一)所示,直线AB,CD相交于点O,已知∠AOD=160°,则∠BOC的大小为A.20°B.60°C.70°D.160°3.将多项式x-x3因式分解正确的是A.x(x2-1)B.x(1-x2)C.x(x+1)(x-1) D.x(1+x)(1-x) 4.下列图形中,是轴对称图形的是5.据《经济日报》2018年5月21日报道:目前,世界集成电路生产技术水平最高已达到7nm(1nm=10-9m),主流生产线的技术水平为14~28nm,中国大陆集成电路生产技术水平最高为28nm.将28nm用科学记数法可表示为A.28×10-9 m B.2.8×10-8 mC.28×109 m D.2.8×108 m6.如图(二)所示,四边形ABCD为⊙O的内接四边形,∠BCD=120°,则∠BOD的大小是A.80°B.120°C.100°D.90°7.小明参加100m短跑训练,2018年1~4月的训练成绩如下一百馒头一百僧,大僧三个更无争, 小僧三人分一个,大小和尚得几丁.表所示:体育老师夸奖小明是“田径天才”.请你预测小明5年(60个月)后100m 短跑的成绩为 (温馨提示:目前100m 短跑世界记录为9秒58)A .14.8sB .3.8sC .3sD .预测结果不可靠8.如图(三)所示,在平面直角坐标系中,已知点A (2,4),过 点A 作AB ⊥x 轴于点B .将△AOB 以坐标原点O 为位似中心缩小为原图形的12,得到△COD ,则CD 的长度是A .2B .1C .4D .2 59.根据李飞与刘亮射击训练的成绩绘制了如图(四)所示的折线统计图.根据图(四)所提供的信息,若要推荐一位成绩较稳定...的选手去参赛,应推荐 A .李飞或刘亮 B .李飞 C .刘亮 D .无法确定10.程大位是我国明朝商人,珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.书中有如下问题:意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人.下列求解结果正确的是A.大和尚25人,小和尚75人 B .大和尚75人,小和尚25人 C .大和尚50人,小和尚50人 D .大、小和尚各100人二、填空题(本大题有8个小题,每小题3分,共24分)11.点A 在数轴上的位置如图(五)所示,则点A 表示的数的相反数是 .12.如图(六)所示,点E 是平行四边形ABCD 的边BC 延长线上一点,连接AE ,交CD 于点F ,连接BF .写出图中任意一对相似三角形: . 13.已知关于x 的方程x 2 +3x -m =0的一个解为-3, 则它的另一个解是 .14.如图(七)所示,在四边形ABCD 中,AD ⊥AB , ∠C =110°,它的一个外角∠ADE =60°, 则∠B 的大小是 .15.某市对九年级学生进行“综合素质”评价,评价结果分为A ,B ,C ,D ,E 五个等级.现随机抽取了500名学生的评价结果作为样本进行分析,绘制了如图(八)所示的统计图.已知图中从左到右的五个长方形的高之比为2∶3∶3∶1∶1,据此估算该市80000名九年级学生中“综合素质”评价结果为“A ”的学生约为 人.16.如图(九)所示,一次函数y =ax +b 的图象 与x 轴相交于点(2,0),与y 轴相交于点(0,4).结合图象可知,关于x 的方程ax +b =0的解是 .17.如图(十)所示,在等腰△ABC 中,AB =AC ,∠A =36°.将△ABC 中的∠A 沿DE 向下翻折,使点A 落在点C 处.若A E =3,则BC 的长是_________.18.如图(十一)所示,点A 是反比例函数y =kx图象上一点,作AB ⊥x 轴,垂足为点B .若△AOB 的面积为2,则k 的值是 .三、解答题(本大题有8个小题,第19~25题每小题8分,第26题10分,共66分.解答应写出必要的文字说明、演算步骤或证明过程) 19.计算:(-1)2+( π -3.14)0-|2-2|.20.先化简,再求值:( a -2b )( a +2b )-(a -2b )2+8b 2,其中a =-2,b =12.21.如图(十二)所示,AB 是⊙O 的直径,点C 为⊙O 上一点,过点B 作BD ⊥CD , 垂足为点D ,连结BC .BC 平分∠ABD . 求证:CD 为⊙O 的切线.22.某校为选拔一名选手参加“美丽邵阳,我为家乡做代言”主题演讲比赛,经研究,按图(十三)所示的项目和权数对选拔赛参赛选手进行考评(因排版原因统计图不完整).下表是李明、张华在选拔赛中的得分情况:(1)求服装项目的权数及普通话项目对应扇形的圆心角大小; (2)求李明在选拔赛中四个项目所得分数的众数和中位数;(3)根据你所学的知识,帮助学校在李明、张华两人中选择一人参加“美丽邵阳,我为家乡做代言”主题演讲比赛,并说明理由.项目23.某公司计划购买A,B两种型号的机器人搬运材料.已知A型机器人比B型机器人每小时多搬运30kg材料,且A型机器人搬运1000 kg材料所用的时间与B型机器人搬运800 kg材料所用的时间相同.(1)求A,B两种型号的机器人每小时分别搬运多少材料;(2)该公司计划采购A,B两种型号的机器人共20台,要求每小时搬运材料不得少于2800 kg,则至少购进A型机器人多少台?24.某商场为方便消费者购物,准备将原来的阶梯式自动扶梯改造成斜坡式自动扶梯.如图(十四)所示,已知原阶梯式自动扶梯AB长为10m,坡角∠ABD为30°;改造后的斜坡式自动扶梯的坡角∠ACB为15°,请你计算改造后的斜坡式自动扶梯AC的长度.(结果精确到0.1m.温馨提示:sin15°≈0.26,cos15°≈0.97,tan15°≈0.27)25.如图(十五)所示,在四边形ABCD中,点O,E,F,G分别是AB,BC,CD,AD的中点,连接OE,EF,FG,GO,GE.(1)证明:四边形OEFG是平行四边形;(2)将△OGE绕点O顺时针旋转得到△OMN,如图(十六)所示,连接GM,EN.①若OE=3,OG=1,求ENGM的值;②试在四边形ABCD中添加一个条件,使GM,EN的长在旋转过程中始终相等.(不要求证明)26.如图(十七)所示,将二次函数y =x 2+2x +1的图象沿x 轴翻折,然后向右平移1个单位,再向上平移4个单位,得到二次函数y =ax 2+bx +c 的图象.函数y =x 2+2x +1的图象的顶点为点A .函数y =ax 2+bx +c 的图象的顶点为点B ,和x 轴的交点为点C ,D (点D 位于点C 的左侧). (1)求函数y =ax 2+bx +c 的解析式;(2)从点A ,C ,D 三个点中任取两个点和点B 构造三角形,求构造的三角形是等腰三角形的概率;(3)若点M 是线段BC 上的动点,点N 是△ABC 三边上的动点,是否存在以AM 为斜边的Rt △AMN ,使△AMN 的面积为△ABC 面积的13,若存在,求tan ∠MAN 的值;若不存在,请说明理由.邵阳市2018年初中毕业学业考试参考答案及评分标准数 学一、选择题(本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中只有一项是符合题目要求的)(本大题有8个小题,每小题3分,共24分)11.-212.答案不唯一.例如△EFC ∽△AFD ,△EAB ∽△AFD ,△EFC ∽△EAB . 13.x =0 14.40° 15.16000 16.x =2 17. 3 18.4三、解答题(本大题有8个小题,第19~25题每小题8分,第26题10分,共66分.解答应写出必要的文字说明、演算步骤或证明过程)19.(8分)解:(-1 )2+(π-3.14 )0-|2-2|=1+1-(2-2)………………………………………………………………………5分 =2-2+ 2 ……………………………………………………………………7分 =2. …………………………………………………………………………8分 20.(8分)解:( a -2b )( a +2b )-(a -2b )2+8b 2=a 2-(2b )2-(a 2-4ab +4b 2)+8b 2 =a 2-4b 2-a 2+4ab -4b 2+8b 2=4ab . ……………………………………………………………………………6分将a =-2,b =12 代入得:原式=4×(-2)×12=-4. ……………………………………………………………………………8分 21.(8分)证明:∵BC 平分∠ABD ,∴∠OBC =∠DBC .……………………………………………2分∵OB =OC ,∴∠OBC =∠OCB .……………………………………………………4分 ∴∠DBC =∠OCB .∴OC ∥BD .……………………………………………………6分∵BD ⊥CD ,∴OC ⊥CD . 又∵点C 为⊙O 上一点,∴CD 为⊙O 的切线.…………………………………………………………………8分 22.(8分) 解:(1)服装项目的权数为10%,普通话项目对应扇形的圆心角为72°;……………2分 (2)众数为85,中位数为82.5;………………………………………………………4分 (3)李明的得分为80.5,张华的得分为78.5,应推荐李明参加比赛.……………8分 23.(8分)解:(1)设A 型机器人每小时搬运x kg 材料,则B 型机器人每小时搬运(x -30)kg 材料,依题意得:1000x =800x -30.………………………………………………………2分 解得x =150,经检验,x =150是原方程的解.所以A 型机器人每小时搬运150kg 材料,B 型机器人每小时搬运120kg 材料. 答:略.…………………………………………………………………………………4分 (2)设公司购进A 型机器人y 台,则购进B 型机器人(20-y )台,依题意得:150y +120(20-y )≥2800.………………………………………6分 解得y ≥1313.因为y 为整数,所以公司至少购进A 型机器人14台.答:略.…………………………………………………………………………………8分 24.(8分)解:在Rt △ABD 中,∠ABD =30°,所以AD =12AB =5.………………………………………………………………………2分在Rt △ACD 中,sin ∠ACD =AD AC, 所以AC =AD sin ∠ACD =5sin15°≈19.2(m).答:略.……………………………………………………………………………………8分25.(8分) 解:(1)连接AC ,∵点O ,E ,F ,G 分别是AB ,BC ,CD ,AD 的中点,∴OE ∥AC ,OE =12AC ,GF ∥AC ,GF =12AC .∴OE ∥GF ,OE =GF .∴四边形OEFG 是平行四边形.……………………………………………………3分 (2)①∵△OGE 绕点O 顺时针旋转得到△OMN , ∴OG =OM ,OE =ON ,∠GOM =∠EON .∴OG OE =OMON .∴△OGM ∽△OEN .∴EN GM =OE OG =31=3.………………………………………………………6分 ②答案不唯一,满足AC =BD 即可.……………………………………………8分26.(10分) 解:(1)将抛物线y =x 2+2x +1沿x 轴翻折得到:y =-x 2-2x -1,将抛物线y =-x 2-2x -1,向右平移1个单位得到:y =-x 2, 将抛物线y =-x 2向上平移4个单位得到:y =-x 2+4.所求函数y =ax 2+bx +c 的解析式为y =-x 2+4.………………………………2分 (2)从A ,C ,D 三个点中任选两个点和点B 构造的三角形有:△BAC ,△BAD ,△BCD .A ,B ,C ,D 的坐标分别为(-1,0),(0,4),(2,0),(-2,0),可求得AB =17,AC =3,BC =25,AD =1,BD =25,CD =4,只有△BCD 为等腰三角形,所以构造的三角形是等腰三角形的概率P =13.…4分(3)S △ABC =12 AC ·BO =12×3×4=6.①当点N 在边AC 上时,点M 在边BC 上,在Rt △AMN 中,MN ⊥AC . 设点N 的坐标为(m ,0),则AN =m +1,点M 的横坐标为m .由B (0,4),C (2,0)易得线段BC 的解析式为y =-2x +4,其中0≤x ≤2, 所以点M 的纵坐标为-2m +4,则MN =-2m +4.S △AMN =12AN ·MN =12(m +1)(-2m +4)=13S △ABC =2. 解得m 1=1,m 2=0.当m =1时,N 点的坐标为(1,0),M 点的坐标为(1,2),AN =2,MN =2.tan ∠MAN =MN AN =22=1.……………5分当m =0时,N 点的坐标为(0,0),M 点与点B 重合,坐标为(0,4),AN =1,MN =4.tan ∠MAN =MN AN =41=4.………………………………………………………6分②当点N 在BC 上时,点M 在BC 上,Rt △AMN 中,MN ⊥AN ,因为S △AMN =13S △ABC ,所以12AN ·MN =13×12BC ·AN ,所以MN =13BC =253.因为S △ABC =12BC ·AN =12×25·AN =6,所以AN =65. 所以tan ∠MAN =MN AN =25365=59.…………8分③当点N 在AB 上时,点M 在BC 上,Rt △AMN 中,MN ⊥AN . 设AN =t ,则BN =17–t ,过点A 作AG ⊥BC 于点G ,由②得AG =65. 在Rt △ABG 中,BG =AB 2-AG 2=75. 易证△BNM ∽△BGA ,所以BN BG =MNAG ,即17-t 75=MN 65,求得MN =617-6t7,所以S △AMN =12AN ·MN =12t ·617-6t7=2,化简得3t 2-317t +14=0,△=(317)2-4×3×14=-15<0,此方程无解, 所以此情况不存在.综上所述,当点N 在AC 上,点M 与点B 重合时,tan ∠MAN =4;当点N 在AC 上,点M 不与点B 重合时,tan ∠MAN =1;当点N 在BC 上时,tan ∠MAN =59.…………………………10分注:解答题用其它方法解答参照给分.11。
2018年湖南省邵阳市中考数学试卷(含答案与解析)
绝密★启用前湖南省邵阳市2018年初中学业水平考试数学(本试卷满分120分,考试时间120分钟)第Ⅰ卷(选择题共30分)一、选择题(本大题有10个小题,每小题3分,共30分。
在每小题给出的四个选项中只有一项是符合题目要求的)1.用计算器依次按键,得到的结果最接近的是( )A.1.5B.1.6C.1.7D.1.82.如图所示,直线AB,CD相交于点O,已知160AOD∠=︒,则BOC∠的大小为( )A.20︒B.60︒C.70︒D.160︒3.将多项式3x x-因式分解正确的是( )A.21x x-()B.21x x-()C.()()11x x x+-D.()()11x x x+-4.下列图形中,是轴对称图形的是( )A B C D5.据《经济日报》2018年5月21日报道:目前,世界集成电路生产技术水平最高已达到97 nm 1 nm10m=﹣(),主流生产线的技术水平为1428 nm~,中国大陆集成电路生产技术水平最高为28 nm.将28 nm用科学记数法可表示为( )A.92810m⨯﹣B.82.810m⨯﹣C.92810m⨯D.82.810m⨯6.如图所示,四边形ABCD为O的内接四边形,120BCD∠=︒,则BOD∠的大小是( )A.80︒B.120︒C.100︒D.90︒7.体育老师夸奖小明是“田径天才”,请你预测小明5年(60个月)后100 m短跑的成绩为(温馨提示;目前100 m短跑世界记录为9秒58)( )A.14.8 sB.3.8 s C.3 s D.预测结果不可靠8.如图所示,在平面直角坐标系中,已知点()2,4A,过点A作AB x⊥轴于点B.将AOB△以坐标原点O为位似中心缩小为原图形的12,得到COD△,则CD的长度是( )A.2B.1C.4 D.9.根据李飞与刘亮射击训练的成绩绘制了如图所示的折线统计图.根据图所提供的信息,若要推荐一位成绩较稳定的选手去参赛,应推荐( )A.李飞或刘亮B.李飞C.刘亮D.无法确定10.程大位是我国明朝商人,珠算发明家他60岁时完成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人,下列求解结果正确的是( )A.大和尚25人,小和尚75人毕业学校_____________姓名________________考生号_____________________________________________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷第1页(共16页)数学试卷第2页(共16页)数学试卷 第3页(共16页) 数学试卷 第4页(共16页)B .大和尚75人,小和尚25人C .大和尚50人,小和尚50人D .大、小和尚各100人第Ⅱ卷(非选择题 共90分)二、填空题(本大题有8个小题,每小题3分,共24分) 11.点A 在数轴上的位置如图所示,则点A 表示的数的相反数是__________.12.如图所示,点E 是平行四边形ABCD 的边BC 延长线上一点,连接AE ,交CD 于点F ,连接BF .写出图中任意一对相似三角形:__________.13.已知关于x 的方程230x x m +-=的一个解为3-,则它的另一个解是__________.. 14.如图所示,在四边形ABCD 中,AD AB ⊥,110C ∠=︒,它的一个外角60ADE ∠=︒,则B ∠的大小是__________.15.某市对九年级学生进行“综合素质”评价,评价结果分为A ,B ,C ,D ,E 五个等级.现随机抽取了500名学生的评价结果作为样本进行分析,绘制了如图所示的统计图.已知图中从左到右的五个长方形的高之比为2:3:3:1:1,据此估算该市80 000名九年级学生中“综合素质”评价结果为“A ”的学生约为__________人. 16.如图所示,一次函数y ax b =+的图象与x 轴相交于点()2,0,与y 轴相交于点()0,4,结合图象可知,关于x 的方程0ax b +=的解是__________.17.如图所示,在等腰ABC △中,AB AC =,36A ∠=︒,将ABC △中的A ∠沿DE 向下翻折,使点A 落在点C 处.若AE ,则BC 的长是__________.18.如图所示,点A 是反比例函数ky x=图象上一点,作AB x ⊥轴,垂足为点B ,若AOB △的面积为2,则k 的值是__________..三、解答题(本大题有8个小题,第19~25题每小题8分,第26题10分,共66分。
2018年湖南省邵阳市中考数学试卷含答案解析
2018年·湖南省邵阳市中考数学试卷参考答案与试题解析一、选择题(本大题有10个小题,每小题3分,共30分。
在每小题给出的四个选项中只有一项是符合题目要求的)1.(3分)用计算器依次按键,得到的结果最接近的是()A.1.5 B.1.6 C.1.7 D.1.8【分析】利用计算器得到的近似值即可作出判断.【解答】解:∵≈1.732,∴与最接近的是1.7,故选:C.【点评】本题主要考查计算器﹣基础知识,解题的关键是掌握计算器上常用按键的功能和使用顺序.2.(3分)如图所示,直线AB,CD相交于点O,已知∠AOD=160°,则∠BOC的大小为()A.20°B.60°C.70°D.160°【分析】根据对顶角相等解答即可.【解答】解:∵∠AOD=160°,∴∠BOC=∠AOD=160°,故选:D.【点评】此题考查对顶角、邻补角,关键是根据对顶角相等解答.3.(3分)将多项式x﹣x3因式分解正确的是()A.x(x2﹣1)B.x(1﹣x2)C.x(x+1)(x﹣1)D.x(1+x)(1﹣x)【分析】直接提取公因式x,再利用平方差公式分解因式得出答案.【解答】解:x﹣x3=x(1﹣x2)=x(1﹣x)(1+x).故选:D.【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式法是解题关键.4.(3分)下列图形中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念进行判断即可.【解答】解:A、不是轴对称图形,故此选项错误;B、是轴对称图形,故此选项正确;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误;故选:B.【点评】本题考查的是轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.5.(3分)据《经济日报》2018年5月21日报道:目前,世界集成电路生产技术水平最高已达到7nm(1nm=10﹣9m),主流生产线的技术水平为14~28nm,中国大陆集成电路生产技术水平最高为28nm.将28nm用科学记数法可表示为()A.28×10﹣9m B.2.8×10﹣8m C.28×109m D.2.8×108m【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:28nm=28×10﹣9m=2.8×10﹣8m.故选:B.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.6.(3分)如图所示,四边形ABCD为⊙O的内接四边形,∠BCD=120°,则∠BOD 的大小是()A.80°B.120°C.100° D.90°【分析】根据圆内接四边形的性质求出∠A,再根据圆周角定理解答.【解答】解:∵四边形ABCD为⊙O的内接四边形,∴∠A=180°﹣∠BCD=60°,由圆周角定理得,∠BOD=2∠A=120°,故选:B.【点评】本题考查的是圆内接四边形的性质、圆周角定理,掌握圆内接四边形的对角互补是解题的关键.7.(3分)小明参加100m短跑训练,2018年1~4月的训练成绩如下表所示:体育老师夸奖小明是“田径天才”,请你预测小明5年(60个月)后100m短跑的成绩为()(温馨提示;目前100m短跑世界记录为9秒58)A.14.8s B.3.8sC.3s D.预测结果不可靠【分析】由表格中的数据可知,每加1个月,成绩提高0.2秒,所以y与x之间是一次函数的关系,可设y=kx+b,利用已知点的坐标,即可求解.【解答】解:(1)设y=kx+b依题意得(1分),解答,∴y=﹣0.2x+15.8.当x=5时,y=﹣0.2×5+15.8=14.8.故选:A.【点评】本题考查一次函数的应用、待定系数法等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.8.(3分)如图所示,在平面直角坐标系中,已知点A(2,4),过点A作AB⊥x 轴于点B.将△AOB以坐标原点O为位似中心缩小为原图形的,得到△COD,则CD的长度是()A.2 B.1 C.4 D.2【分析】直接利用位似图形的性质以及结合A点坐标直接得出点C的坐标,即可得出答案.【解答】解:∵点A(2,4),过点A作AB⊥x轴于点B.将△AOB以坐标原点O 为位似中心缩小为原图形的,得到△COD,∴C(1,2),则CD的长度是:2.故选:A.【点评】此题主要考查了位似变换以及坐标与图形的性质,正确把握位似图形的性质是解题关键.9.(3分)根据李飞与刘亮射击训练的成绩绘制了如图所示的折线统计图.根据图所提供的信息,若要推荐一位成绩较稳定的选手去参赛,应推荐()A.李飞或刘亮B.李飞C.刘亮D.无法确定【分析】根据折线统计图得出两人射击成绩,再计算出两人成绩的方差,据此即可作出判断.【解答】解:李飞的成绩为5、8、9、7、8、9、10、8、9、7,则李飞成绩的平均数为=8,所以李飞成绩的方差为×[(5﹣8)2+2×(7﹣8)2+3×(8﹣8)2+3×(9﹣8)2+(10﹣8)2]=1.8;刘亮的成绩为7、8、8、9、7、8、8、9、7、9,则刘亮成绩的平均数为=8,∴刘亮成绩的方差为×[3×(7﹣8)2+4×(8﹣8)2+3×(9﹣8)2]=0.6,∵0.6<1.8,∴应推荐刘亮,故选:C.【点评】本题主要考查折线统计图与方差,解题的关键是根据折线统计图得出解题所需数据及方差的计算公式.10.(3分)程大位是我国明朝商人,珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人,下列求解结果正确的是()A.大和尚25人,小和尚75人B.大和尚75人,小和尚25人C.大和尚50人,小和尚50人D.大、小和尚各100人【分析】根据100个和尚分100个馒头,正好分完.大和尚一人分3个,小和尚3人分一个得到等量关系为:大和尚的人数+小和尚的人数=100,大和尚分得的馒头数+小和尚分得的馒头数=100,依此列出方程即可.【解答】解:设大和尚有x人,则小和尚有(100﹣x)人,根据题意得:3x+=100,解得x=25则100﹣x=100﹣25=75(人)所以,大和尚25人,小和尚75人.故选:A.【点评】本题考查了一元一次方程的应用,关键以和尚数和馒头数作为等量关系列出方程.二、填空题(本大题有8个小题,每小题3分,共24分)11.(3分)点A在数轴上的位置如图所示,则点A表示的数的相反数是﹣2.【分析】点A在数轴上表示的数是2,根据相反数的含义和求法,判断出点A表示的数的相反数是多少即可.【解答】解:∵点A在数轴上表示的数是2,∴点A表示的数的相反数是﹣2.故答案为:﹣2.【点评】此题主要考查了在数轴上表示数的方法,以及相反数的含义和求法,要熟练掌握.12.(3分)如图所示,点E是平行四边形ABCD的边BC延长线上一点,连接AE,交CD于点F,连接BF.写出图中任意一对相似三角形:△ADF∽△ECF.【分析】利用平行四边形的性质得到AD∥CE,则根据相似三角形的判定方法可判断△ADF∽△ECF.【解答】解:∵四边形ABCD为平行四边形,∴AD∥CE,∴△ADF∽△ECF.故答案为△ADF∽△ECF.【点评】本题考查了相似三角形的判定:平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似;有两组角对应相等的两个三角形相似.也考查了平行四边形的性质.13.(3分)已知关于x的方程x2+3x﹣m=0的一个解为﹣3,则它的另一个解是0.【分析】设方程的另一个解是n,根据根与系数的关系可得出关于n的一元一次方程,解之即可得出方程的另一个解.【解答】解:设方程的另一个解是n,根据题意得:﹣3+n=﹣3,解得:n=0.故答案为:0.【点评】本题考查了根与系数的关系以及一元二次方程的解,牢记两根之和等于﹣、两根之积等于是解题的关键.14.(3分)如图所示,在四边形ABCD中,AD⊥AB,∠C=110°,它的一个外角∠ADE=60°,则∠B的大小是40°.【分析】根据外角的概念求出∠ADC,根据垂直的定义、四边形的内角和等于360°计算即可.【解答】解:∵∠ADE=60°,∴∠ADC=120°,∵AD⊥AB,∴∠DAB=90°,∴∠B=360°﹣∠C﹣∠ADC﹣∠A=40°,故答案为:40°.【点评】本题考查的是多边形的内角和外角,掌握四边形的内角和等于360°、外角的概念是解题的关键.15.(3分)某市对九年级学生进行“综合素质”评价,评价结果分为A,B,C,D,E五个等级.现随机抽取了500名学生的评价结果作为样本进行分析,绘制了如图所示的统计图.已知图中从左到右的五个长方形的高之比为2:3:3:1:1,据此估算该市80000名九年级学生中“综合素质”评价结果为“A”的学生约为16000人.【分析】用毕业生总人数乘以“综合素质”等级为A的学生所占百分比即可求得结果.【解答】解:该市80000名九年级学生中“综合素质”评价结果为“A”的学生约为,故答案为:16000【点评】本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.16.(3分)如图所示,一次函数y=ax+b的图象与x轴相交于点(2,0),与y 轴相交于点(0,4),结合图象可知,关于x的方程ax+b=0的解是x=2.【分析】一次函数y=ax+b的图象与x轴交点横坐标的值即为方程ax+b=0的解.【解答】解:∵一次函数y=ax+b的图象与x轴相交于点(2,0),∴关于x的方程ax+b=0的解是x=2.故答案为x=2.【点评】本题主要考查了一次函数与一元一次方程的关系.任何一元一次方程都可以转化为ax+b=0 (a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.17.(3分)如图所示,在等腰△ABC中,AB=AC,∠A=36°,将△ABC中的∠A沿DE向下翻折,使点A落在点C处.若AE=,则BC的长是.【分析】由折叠的性质可知AE=CE,再证明△BCE是等腰三角形即可得到BC=CE,问题得解.【解答】解:∵AB=AC,∠A=36°,∴∠B=∠ACB==72°,∵将△ABC中的∠A沿DE向下翻折,使点A落在点C处,∴AE=CE,∠A=∠ECA=36°,∴∠CEB=72°,∴BC=CE=AE=,故答案为:.【点评】本题考查了等腰三角形的判断和性质、折叠的性质以及三角形内角和定理的运用,证明△BCE是等腰三角形是解题的关键.18.(3分)如图所示,点A是反比例函数y=图象上一点,作AB⊥x轴,垂足为点B,若△AOB的面积为2,则k的值是4.【分析】过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,即S=|k|.【解答】解:∵点A是反比例函数y=图象上一点,作AB⊥x轴,垂足为点B,=|k|=2;∴S△AOB又∵函数图象位于一、三象限,∴k=4,故答案为4.【点评】本题考查了反比例函数系数的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得三角形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.三、解答题(本大题有8个小题,第19~25题每小题8分,第26题10分,共66分。
2018年湖南省邵阳市隆回县中考一模数学试卷(解析版)
2018年湖南省邵阳市隆回县中考数学一模试卷一、选择题(本大题有8个小题,每小题3分,共24分.在每小题给出的四个选项中只有一项是符合题目要求的)1.(3分)下列计算正确的是()A.a2+b3=2a5B.a4÷a=a4C.a2•a3=a6D.(﹣a2)3=﹣a6 2.(3分)如图,a、b两个数在数轴上的位置如图所示,则下列各式正确的是()A.a+b<0B.ab<0C.b﹣a<0D.3.(3分)一元二次方程x2﹣2x=0根的判别式的值为()A.4B.2C.0D.﹣44.(3分)空气是由多种气体混合而成的,为了简明扼要的介绍空气的组成情况,较好的描述数据,最适合使用的统计图是()A.扇形图B.条形图C.折线图D.直方图5.(3分)用平面去截一个几何体,如果截面的形状是长方形,则原来的几何体不可能是()A.正方体B.棱柱C.圆柱D.圆锥6.(3分)已知三角形两边的长分别是4和10,则此三角形第三边的长可能是()A.5B.6C.12D.167.(3分)一组按规律排列的式子:a2,,,,…,则第2017个式子是()A.B.C.D.8.(3分)二次函数y=ax2+bx+c的图象如图所示,若M=4a+2b+c,N=a﹣b+c,P=4a+2b,则()A.M>0,N>0,P>0B.M>0,N<0,P>0C.M<0,N>0,P>0D.M<0,N>0,P<0二、填空题(共9小题;每小题3分,共27分)9.(3分)若a≠b,且a、b互为相反数,则=.10.(3分)因式分解:4m2﹣16=.11.(3分)平行四边形ABCD中,∠A+∠C=100°,则∠B=度.12.(3分)一组数据1,4,2,5,3的中位数是.13.(3分)分式方程﹣=0的解为.14.(3分)等腰△ABC的周长为10厘米,底边BC长为y厘米,腰AB长为x 厘米,则y与x的关系式为:.当x=2厘米时,y=厘米;当y=4厘米时,x=厘米.15.(3分)如图,在⊙O中,弦AB、CD相交于点E,∠BDC=45°,∠BED =95°,则∠C的度数为度.16.(3分)如图,在直角梯形ABCD中,AB∥CD,∠ABC=90°,AD=8.若△ACD是等边三角形,并将它沿着EF折叠,使点D与点B重合,则CE的长是.17.(3分)如图,已知点A是反比例函数y=﹣的图象上的一个动点,连接OA,若将线段OA绕点O顺时针旋转90°得到线段OB,则点B所在的反比例函数表达式为.三、解答题(共9小题;共69分)18.(1)计算:2cos30°+|﹣3|﹣(2010﹣π)0+(﹣1)2011.(2)解不等式组:,并写出该不等式组的最小整数解.19.为了解某校落实新课改精神的情况,现以该校九年级二班的同学参加课外活动的情况为样本,对其参加“球类”、“绘画类”、“舞蹈类”、“音乐类”、“棋类”活动的情况进行调查统计,并绘制了如图所示的统计图.(1)参加音乐类活动的学生人数为人,参加球类活动的人数的百分比为;(2)请把图2(条形统计图)补充完整;(3)该校学生共600人,则参加棋类活动的人数约为;(4)该班参加舞蹈类活动的4位同学中,有1位男生(用E表示)和3位女生(分别用F,G,H表示),先准备从中选取两名同学组成舞伴,请用列表或画树状图的方法求恰好选中一男一女的概率.20.创建文明城市,人人参与,人人共建.我市各校积极参与创建活动,自发组织学生走上街头,开展文明劝导活动.某中学九(一)班为此次活动制作了大小、形状、质地等都相同的“文明劝导员”胸章和“文明监督岗”胸章若干,放入不透明的盒中,此时从盒中随机取出“文明劝导员”胸章的概率为;若班长从盒中取出“文明劝导员”胸章3只、“文明监督岗”胸章7只送给九(二)班后,这时随机取出“文明劝导员”胸章的概率为.(1)请你用所学知识计算:九(一)班制作的“文明劝导员”胸章和“文明监督岗”胸章各有多少只?(2)若小明一次从盒内剩余胸章中任取2只,问恰有“文明劝导员”胸章、“文明监督岗”胸章各1只的概率是多少?(用列表法或树状图计算)21.我市某校为了创建书香校园,去年购进一批图书.经了解,科普书的单价比文学书的单价多4元,用12000元购进的科普书与用8000元购进的文学书本数相等.(1)文学书和科普书的单价各多少钱?(2)今年文学书和科普书的单价和去年相比保持不变,该校打算用10000元再购进一批文学书和科普书,问购进文学书550本后至多还能购进多少本科普书?22.如图,将△ABC沿着射线BC方向平移至△A'B'C',使点A'落在∠ACB的外角平分线CD上,连结AA'.(1)判断四边形ACC'A'的形状,并说明理由;(2)在△ABC中,∠B=90°,AB=24,cos∠BAC=,求CB'的长.23.如图,已知平行四边形OABC的三个顶点A、B、C在以O为圆心的半圆上,过点C作CD⊥AB,分别交AB、AO的延长线于点D、E,AE交半圆O于点F,连接CF.(1)判断直线DE与半圆O的位置关系,并说明理由;(2)①求证:CF=OC;②若半圆O的半径为12,求阴影部分的周长.24.如图,四边形ABCD为菱形,对角线AC,BD相交于点E,F是边BA延长线上一点,连接EF,以EF为直径作⊙O,交DC于D,G两点,AD分别于EF,GF交于I,H两点.(1)求∠FDE的度数;(2)试判断四边形F ACD的形状,并证明你的结论;(3)当G为线段DC的中点时,①求证:FD=FI;②设AC=2m,BD=2n,求⊙O的面积与菱形ABCD的面积之比.25.如图,已知抛物线y=ax2﹣5ax+2(a≠0)与y轴交于点C,与x轴交于点A (1,0)和点B.(1)求抛物线的解析式;(2)求直线BC的解析式;26.问题提出平面内不在同一条直线上的三点确定一个圆,那么平面内的四点(任意三点均不在同一直线上),能否在同一个圆上呢?初步思考设不在同一条直线上的三点A、B、C确定的圆为⊙O.(1)当C、D在线段AB的同侧时.如图①,若点D在⊙O上,此时有∠ACB=∠ADB,理由是.如图②,若点D在⊙O内,此时有∠ACB∠ADB;如图③,若点D在⊙O外,此时有∠ACB∠ADB(填“=”、“>”、“<”)由上面的探究,请直接写出A、B、C、D四点在同一个圆上的条件:.类比学习(2)仿照上面的探究思路,请探究:当C、D在线段AB的异侧时的情形.由上面的探究,请用文字语言直接写出A、B、C、D四点在同一个圆上的条件:.拓展延伸(3)如何过圆上一点,仅用没有刻度的直尺,作出已知直径的垂线?已知:如图,AB是⊙O的直径,点C在⊙O上,求作:CN⊥AB作法:①连接CA、CB②在CB上任取异于B、C的一点D,连接DA,DB;③DA与CB相交于E点,延长AC、BD,交于F点;④连接F、E并延长,交直径AB与M;⑤连接D、M并延长,交⊙O于N,连接CN,则CN⊥AB.请安上述作法在图④中作图,并说明CN⊥AB的理由.(提示:可以利用(2)中的结论)2018年湖南省邵阳市隆回县中考数学一模试卷参考答案与试题解析一、选择题(本大题有8个小题,每小题3分,共24分.在每小题给出的四个选项中只有一项是符合题目要求的)1.(3分)下列计算正确的是()A.a2+b3=2a5B.a4÷a=a4C.a2•a3=a6D.(﹣a2)3=﹣a6【解答】解:A、a2与b3不是同类项,不能合并,故本选项错误;B、应为a4÷a=a3,故本选项错误;C、应为a3•a2=a5,故本选项错误;D、(﹣a2)3=﹣a6,正确.故选:D.2.(3分)如图,a、b两个数在数轴上的位置如图所示,则下列各式正确的是()A.a+b<0B.ab<0C.b﹣a<0D.【解答】解:∵a在原点的左侧,b再原点的右侧,∴a<0,b>0,∴ab<0,∴B正确;∵a到原点的距离小于b到原点的距离,∴|a|<|b|,∴a+b>0,b﹣a>0,∴A、C错误;∵a、b异号,∴<0,∴D错误.故选:B.3.(3分)一元二次方程x2﹣2x=0根的判别式的值为()A.4B.2C.0D.﹣4【解答】解:△=(﹣2)2﹣4×1×0=4.故选:A.4.(3分)空气是由多种气体混合而成的,为了简明扼要的介绍空气的组成情况,较好的描述数据,最适合使用的统计图是()A.扇形图B.条形图C.折线图D.直方图【解答】解:根据题意,得要求直观反映空气的组成情况,即各部分在总体中所占的百分比,结合统计图各自的特点,应选择扇形统计图.故选:A.5.(3分)用平面去截一个几何体,如果截面的形状是长方形,则原来的几何体不可能是()A.正方体B.棱柱C.圆柱D.圆锥【解答】解;A、正方体的截面可以是长方形,不符合题意;B、棱柱的截面可以是长方形,不符合题意;C、用垂直于地面的一个平面截圆柱截面为矩形,不符合题意;D、圆锥由一个平面和一个曲面,截面最多有三条边,截面不可能是长方形,符合题意.故选:D.6.(3分)已知三角形两边的长分别是4和10,则此三角形第三边的长可能是()A.5B.6C.12D.16【解答】解:设第三边的长为x,∵三角形两边的长分别是4和10,∴10﹣4<x<10+4,即6<x<14.故选:C.7.(3分)一组按规律排列的式子:a2,,,,…,则第2017个式子是()A.B.C.D.【解答】解:由题意,得分子是a的2n次方,分母是2n﹣1,第2017个式子是,故选:C.8.(3分)二次函数y=ax2+bx+c的图象如图所示,若M=4a+2b+c,N=a﹣b+c,P=4a+2b,则()A.M>0,N>0,P>0B.M>0,N<0,P>0C.M<0,N>0,P>0D.M<0,N>0,P<0【解答】解:∵当x=2时,y=4a+2b+c<0,∴M<0,∵当x=﹣1时,y=a﹣b+c>0,∴N>0,∵抛物线的开口向上,∴a>0,而对称轴为x=>1,得2a+b<0,∴P=4a+2b<0.故选:D.二、填空题(共9小题;每小题3分,共27分)9.(3分)若a≠b,且a、b互为相反数,则=﹣1.【解答】解:∵a、b互为相反数,∴a=﹣b.∴.故答案为:﹣1.10.(3分)因式分解:4m2﹣16=4(m+2)(m﹣2).【解答】解:4m2﹣16,=4(m2﹣4),=4(m+2)(m﹣2).11.(3分)平行四边形ABCD中,∠A+∠C=100°,则∠B=130度.【解答】解:∵四边形ABCD为平行四边形,∴∠A=∠C,又∠A+∠C=100°,∴∠A=∠C=50°,又∵AD∥BC,∴∠B=180°﹣∠A=180°﹣50°=130°.12.(3分)一组数据1,4,2,5,3的中位数是3.【解答】解:将数据从小到大排列,可得1,2,3,4,5;第3个数为3,故这5个数的中位数是3.故填3.13.(3分)分式方程﹣=0的解为x=﹣.【解答】解:去分母,得4x+8﹣x=0,移项、合并同类项,得3x=﹣8,方程两边同时除以3,得x=﹣.经检验,x=﹣是原方程的解.故答案为:x=﹣.14.(3分)等腰△ABC的周长为10厘米,底边BC长为y厘米,腰AB长为x 厘米,则y与x的关系式为:y=10﹣2x(2.5x<5).当x=2厘米时,y =6厘米;当y=4厘米时,x=3厘米.【解答】解:由题意得10=y+2x,即y=10﹣2x(2.5<x<5);当x=2时y=10﹣4=6;当y=4时,4=10﹣2x,x=3.15.(3分)如图,在⊙O中,弦AB、CD相交于点E,∠BDC=45°,∠BED=95°,则∠C的度数为40度.【解答】解:在△BED中,∠B=180°﹣∠BED﹣∠D=40°,∴∠C=∠B=40°(圆周角定理).16.(3分)如图,在直角梯形ABCD中,AB∥CD,∠ABC=90°,AD=8.若△ACD是等边三角形,并将它沿着EF折叠,使点D与点B重合,则CE的长是1.【解答】解:过A作AH⊥DC,∵梯形ABCD是直角梯形,∴∠BCD=90°,∵AH⊥CD,∴∠AHD=90°,∴四边形AHCB是矩形,∴AH=BC,∵△ACD是等边三角形,AD=8,∴AH=AD•sin60°=4,∴BC=4,根据折叠可得DE=EB,设EC=x,则DE=EB=8﹣x,在Rt△BEC中:x2+(4)2=(8﹣x)2,解得:x=1,故答案为:1.17.(3分)如图,已知点A是反比例函数y=﹣的图象上的一个动点,连接OA,若将线段OA绕点O顺时针旋转90°得到线段OB,则点B所在的反比例函数表达式为y=.【解答】解:∵点A是反比例函数y=﹣的图象上的一个动点,设A(m,n),过A作AC⊥x轴于C,过B作BD⊥x轴于D,∴AC=n,OC=﹣m,∴∠ACO=∠BDO=90°,∵∠AOB=90°,∴∠CAO+∠AOC=∠AOC+∠BOD=90°,∴∠CAO=∠BOD,在△ACO与△ODB中,∴△ACO≌△ODB,∴AC=OD=n,CO=BD=﹣m,∴B(n,﹣m),∵mn=﹣2,∴n(﹣m)=2,∴点B所在图象的函数表达式为y=,故答案为:y=.三、解答题(共9小题;共69分)18.(1)计算:2cos30°+|﹣3|﹣(2010﹣π)0+(﹣1)2011.(2)解不等式组:,并写出该不等式组的最小整数解.【解答】(1)解:原式=2×+3﹣×1﹣1=2(2)解:由①得到x≥﹣2,由②得到x<1,∴不等式组解集为﹣2≤x<1,其中整数解为﹣2,﹣1,0,故最小整数解是﹣2.19.为了解某校落实新课改精神的情况,现以该校九年级二班的同学参加课外活动的情况为样本,对其参加“球类”、“绘画类”、“舞蹈类”、“音乐类”、“棋类”活动的情况进行调查统计,并绘制了如图所示的统计图.(1)参加音乐类活动的学生人数为7人,参加球类活动的人数的百分比为30%;(2)请把图2(条形统计图)补充完整;(3)该校学生共600人,则参加棋类活动的人数约为105;(4)该班参加舞蹈类活动的4位同学中,有1位男生(用E表示)和3位女生(分别用F,G,H表示),先准备从中选取两名同学组成舞伴,请用列表或画树状图的方法求恰好选中一男一女的概率.【解答】解:(1)本次调查的总人数为10÷25%=40(人),∴参加音乐类活动的学生人数为40×17.5%=7人,参加球类活动的人数的百分比为×100%=30%,故答案为:7、30%;(2)补全条形图如下:(3)该校学生共600人,则参加棋类活动的人数约为600×=105,故答案为:105;(4)画树状图如下:共有12种情况,选中一男一女的有6种,==.则P(选中一男一女)20.创建文明城市,人人参与,人人共建.我市各校积极参与创建活动,自发组织学生走上街头,开展文明劝导活动.某中学九(一)班为此次活动制作了大小、形状、质地等都相同的“文明劝导员”胸章和“文明监督岗”胸章若干,放入不透明的盒中,此时从盒中随机取出“文明劝导员”胸章的概率为;若班长从盒中取出“文明劝导员”胸章3只、“文明监督岗”胸章7只送给九(二)班后,这时随机取出“文明劝导员”胸章的概率为.(1)请你用所学知识计算:九(一)班制作的“文明劝导员”胸章和“文明监督岗”胸章各有多少只?(2)若小明一次从盒内剩余胸章中任取2只,问恰有“文明劝导员”胸章、“文明监督岗”胸章各1只的概率是多少?(用列表法或树状图计算)【解答】解:(1)设九(一)班制作的“文明劝导员”胸章和“文明监督岗”胸章分别为x只、y只,根据题意得:解得:经检验符合题意,所以九(一)班制作了“文明劝导员”胸章5只、“文明监督岗”胸章10只;(2)由题可知,盒中剩余的“文明劝导员”胸章和“文明监督岗”胸章分别为2只、3只,我们不妨把两只“文明劝导员”胸章记为a1、a2;3只“文明监督岗”胸章记为b1、b2、b3,则可列出表格如下:∴问恰有“文明劝导员”胸章、“文明监督岗”胸章各1只的概率==.21.我市某校为了创建书香校园,去年购进一批图书.经了解,科普书的单价比文学书的单价多4元,用12000元购进的科普书与用8000元购进的文学书本数相等.(1)文学书和科普书的单价各多少钱?(2)今年文学书和科普书的单价和去年相比保持不变,该校打算用10000元再购进一批文学书和科普书,问购进文学书550本后至多还能购进多少本科普书?【解答】解:(1)设文学书的单价为每本x元,则科普书的单价为每本(x+4)元,依题意得:,解得:x=8,经检验x=8是方程的解,并且符合题意.∴x+4=12.∴购进的文学书和科普书的单价分别是8元和12元.②设购进文学书550本后还能购进y本科普书.依题意得550×8+12y≤10000,解得,∵y为整数,∴y的最大值为466∴至多还能购进466本科普书.22.如图,将△ABC沿着射线BC方向平移至△A'B'C',使点A'落在∠ACB的外角平分线CD上,连结AA'.(1)判断四边形ACC'A'的形状,并说明理由;(2)在△ABC中,∠B=90°,AB=24,cos∠BAC=,求CB'的长.【解答】解:(1)四边形ACC'A'是菱形.理由如下:由平移的性质得到:AC∥A′C′,且AC=A′C′,则四边形ACC'A'是平行四边形.∴∠ACC′=∠AA′C′,又∵CD平分∠ACB的外角,即CD平分∠ACC′,∴CD也平分∠AA′C′,∴四边形ACC'A'是菱形.(2)∵在△ABC中,∠B=90°,AB=24,cos∠BAC=,∴cos∠BAC==,即=,∴AC=26.∴由勾股定理知:BC===10.又由(1)知,四边形ACC'A'是菱形,∴AC=AA′=26.由平移的性质得到:AB∥A′B′,AB=A′B′,则四边形ABB′A′是平行四边形,∴AA′=BB′=26,∴CB′=BB′﹣BC=26﹣10=16.23.如图,已知平行四边形OABC的三个顶点A、B、C在以O为圆心的半圆上,过点C作CD⊥AB,分别交AB、AO的延长线于点D、E,AE交半圆O于点F,连接CF.(1)判断直线DE与半圆O的位置关系,并说明理由;(2)①求证:CF=OC;②若半圆O的半径为12,求阴影部分的周长.【解答】解:(1)结论:DE是⊙O的切线.理由:∵CD⊥AD,∴∠D=90°,∵四边形OABC是平行四边形,∴AD平行OC,∴∠D=∠OCE=90°,∴CO⊥DE,∴DE是⊙O的切线.(2)①连接BF.∵四边形OABC是平行四边形,∴BC∥AF,AB=OC,∴∠AFB=∠CBF,∴=,∴AB=CF,∴CF=OC.②∵CF=OC=OF,∴△COF是等边三角形,∴∠COF=60°,在Rt△OCE中,∵OC=12,∠COE=60°,∠OCE=90°,∴OE=2OC=24,EC=12,∵OF=12,∴EF=12,∴的长==4π,∴阴影部分的周长为4π+12+12.24.如图,四边形ABCD为菱形,对角线AC,BD相交于点E,F是边BA延长线上一点,连接EF,以EF为直径作⊙O,交DC于D,G两点,AD分别于EF,GF交于I,H两点.(1)求∠FDE的度数;(2)试判断四边形F ACD的形状,并证明你的结论;(3)当G为线段DC的中点时,①求证:FD=FI;②设AC=2m,BD=2n,求⊙O的面积与菱形ABCD的面积之比.【解答】解:(1)∵EF是⊙O的直径,∴∠FDE=90°;(2)四边形F ACD是平行四边形.理由如下:∵四边形ABCD是菱形,∴AB∥CD,AC⊥BD,∴∠AEB=90°.又∵∠FDE=90°,∴∠AEB=∠FDE,∴AC∥DF,∴四边形F ACD是平行四边形;(3)①连接GE,如图.∵四边形ABCD是菱形,∴点E为AC中点.∵G为线段DC的中点,∴GE∥DA,∴∠FHI=∠FGE.∵EF是⊙O的直径,∴∠FGE=90°,∴∠FHI=90°.∵∠DEC=∠AEB=90°,G为线段DC的中点,∴DG=GE,∴=,∴∠1=∠2.∵∠1+∠3=90°,∠2+∠4=90°,∴∠3=∠4,∴FD=FI;②∵AC∥DF,∴∠3=∠6.∵∠4=∠5,∠3=∠4,∴∠5=∠6,∴EI=EA.∵四边形ABCD是菱形,四边形F ACD是平行四边形,∴DE=BD=n,AE=AC=m,FD=AC=2m,∴EF=FI+IE=FD+AE=3m.在Rt△EDF中,根据勾股定理可得:n2+(2m)2=(3m)2,即n=m,=•2m•2n=2mn=2m2,∴S⊙O=π()2=πm2,S菱形ABCD=.∴S⊙O:S菱形ABCD25.如图,已知抛物线y=ax2﹣5ax+2(a≠0)与y轴交于点C,与x轴交于点A (1,0)和点B.(1)求抛物线的解析式;(2)求直线BC的解析式;【解答】(1)解:∵点A(1,0)在抛物线y=ax2﹣5ax+2(a≠0)上,∴a﹣5a+2=0,∴a=,∴抛物线的解析式为y=x2﹣x+2;(2)解:抛物线的对称轴为直线x=,∴点B(4,0),C(0,2),设直线BC的解析式为y=kx+b,∴把B、C两点坐标代入线BC的解析式为y=kx+b,得,解得k=﹣,b=2,∴直线BC的解析式y=﹣x+2;26.问题提出平面内不在同一条直线上的三点确定一个圆,那么平面内的四点(任意三点均不在同一直线上),能否在同一个圆上呢?初步思考设不在同一条直线上的三点A、B、C确定的圆为⊙O.(1)当C、D在线段AB的同侧时.如图①,若点D在⊙O上,此时有∠ACB=∠ADB,理由是同弧所对的圆周角相等.如图②,若点D在⊙O内,此时有∠ACB<∠ADB;如图③,若点D在⊙O外,此时有∠ACB>∠ADB(填“=”、“>”、“<”)由上面的探究,请直接写出A、B、C、D四点在同一个圆上的条件:当C、D 在线段AB的同侧且∠ACB=∠ADB时,A、B、C、D四点在同一个圆上.类比学习(2)仿照上面的探究思路,请探究:当C、D在线段AB的异侧时的情形.由上面的探究,请用文字语言直接写出A、B、C、D四点在同一个圆上的条件:当C、D在线段AB的异侧且∠ACB+∠ADB=180°时,A、B、C、D四点在同一个圆上.拓展延伸(3)如何过圆上一点,仅用没有刻度的直尺,作出已知直径的垂线?已知:如图,AB是⊙O的直径,点C在⊙O上,求作:CN⊥AB作法:①连接CA、CB②在CB上任取异于B、C的一点D,连接DA,DB;③DA与CB相交于E点,延长AC、BD,交于F点;④连接F、E并延长,交直径AB与M;⑤连接D、M并延长,交⊙O于N,连接CN,则CN⊥AB.请安上述作法在图④中作图,并说明CN⊥AB的理由.(提示:可以利用(2)中的结论)【解答】解:(1)①如图①,根据“同弧所对的圆周角相等”得∠ACB=∠ADB.②如图②,延长BD交⊙O于点E,∵∠AEB=∠ACB,∠AEB<∠ADB∴∠ACB<∠ADB.③如图③,连接AF,∵∠AFB=∠ACB,∠AFB>∠ADB∴∠ACB>∠ADB.故答案为:同弧所对的圆周角相等、<、>、当C、D在线段AB的同侧且∠ACB=∠ADB时,A、B、C、D四点在同一个圆上.(2)①如图④,∵与的度数之和等于360°,且∠ADB的度数等于度数的一半,∠ACB的度数等于度数的一半,∴∠ACB+∠ADB=180°.②如图⑤,延长AD交⊙O于点E,连接BE,∵∠ACB+∠AEB=180°,∠AEB<∠ADB,∴∠ACB+∠ADB>180°.③如图⑥,连接BF,∵∠ACB+∠AFB=180°,∠AFB>∠ADB,∴∠ACB+∠ADB<180°.故答案为:∠ACB+∠ADB=180°、∠ACB+∠ADB>180°、∠ACB+∠ADB<180°.当C、D在线段AB的异侧且∠ACB+∠ADB=180°时,A、B、C、D四点在同一个圆上.(3)图⑦即为所求作.∵AB是⊙0的直径,∴∠ACB=∠ADB=90°,即BC⊥AF,AD⊥BF,∴根据三角形的三条高交于同一点可得:FM⊥AB.∴∠EMB=90°.∴∠EMB+∠EDB=180°.∴由(2)中的结论可得:点E、D、B、M在同一个圆上,如图⑦所示.∴∠EMD=∠EBD.∵∠CND=∠CBD,∴∠CND=∠EMD.∴CN∥EM.∴∠CHB=∠EMB.∵∠EMB=90°,∴∠CHB=90°,即CN⊥AB.。
(高清版)2018年湖南省邵阳市中考数学试卷
------------- -------------------- -------------------- -------------------- -------------------- -------------------- -------------------- -----------------------------------
有一项是符合题目要求的)
1.用计算器依次按键
,得到的结果最接近的是
A.1.5
B.1.6
C.1.7
上
2.如图所示,直线 AB , CD 相交于点 O ,已知 AOD 160 ,
则 BOC 的大小为
()
A. 20
B. 60
C. 70
D.160
答
3.将多项式 x x3 因式分解正确的是
A. (x x2 1)
19.(本小题满分 8 分)
计算: -12 (π 3.14)0 | 2 2 | .
20.(本小题满分 8 分)
先化简,再求值: a 2b a 2b - a 2b2 8b2 ,其中 a 2 , b 1 .
2
21.(本小题满分 8 分) 如图所示, AB 是 O 的直径,点 C 为 O 上一点,过点 B 作 BD CD ,垂足为点 D , 连结 BC . BC 平分 ABD . 求证: CD 为 O 的切线.
26.(本小题满分 10 分) 如图所示,将二次函数 y x2 2x 1 的图象沿 x 轴翻折,然后向右平移 1 个单位,再 向上平移 4 个单位,得到二次函数 y ax2 bx c 的图象.函数 y x2 2x 1 的图象 的 顶 点 为 点 A . 函 数 y ax2 bx c 的 图 象 的 顶 点 为 点 B , 和 x 轴 的 交 点 为 点 C , D (点 D 位于点 C 的左侧). (1)求函数 y ax2 bx c 的解析式; (2)从点 A , C , D 三个点中任取两个点和点 B 构造三角形,求构造的三角形是等腰三 角形的概率; (3)若点 M 是线段 BC 上的动点,点 N 是 △ABC 三边上的动点,是否存在以 AM 为斜 边的 Rt△AMN ,使 △AMN 的面积为 △ABC 面积的 1 ?若存在,求 tanMAN 的值; 3 若不存在,请说明理由.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湖南省邵阳市隆回县2018年初中毕业班中考数学三模试卷温馨提示:(1)本学科试卷分试题卷和答题卡两部分,考试时量为120分钟,满分为120分;(2)请你将姓名等相关信息按要求填涂在答题卡上;(3)请你在答题卡上作答,答在本试题卷上无效.一、选择题(本大题有10个小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合题目要求的)1.﹣0.25的倒数是()A. B. 4 C. -4 D. -52.立定跳远是小刚同学体育中考的选考项目之一.某次体育课上,体育老师记录了小刚的一组立定跳远训练成绩如下表:则下列关于这组数据的说法中正确的是()A. 众数是2.45B. 平均数是2.45C. 中位数是2.5D. 方差是0.483.对于6.3×103与6300这两个近似数,下列说法中,正确的是().A. 它们的有效数字与精确位数都不相同B. 它们的有效数字与精确位数都相同C. 它们的精确位数不相同,有效数字相同D. 它们的有效数字不相同,精确位数相同4. 方程2x2﹣5x+3=0的根的情况是()A. 有两个相等的实数根B. 有两个不相等的实数根C. 无实数根D. 两根异号5. 下列命题中,假命题是()A. 平行四边形是中心对称图形B. 三角形三边的垂直平分线相交于一点,这点到三角形三个顶点的距离相等C. 对于简单的随机样本,可以用样本的方差去估计总体的方差D. 若x2=y2,则x=y6.设点A(﹣1,a)和点B(4,b)在直线y=﹣x+m上,则a与b的大小关系是()A. a=bB. a>bC. a<bD. 无法确定7. 如图,在正五边形中,连接,则的度数为()A. B. C. D.8.若t为实数,关于x的方程x2﹣4x+t﹣2=0的两个非负实数根为a、b,则代数式(a2﹣1)(b2﹣1)的最小值是()A. ﹣15B. ﹣16C. 15D. 169.如图,点A,B,C在⊙O上,∠ABC=29°,过点C作⊙O的切线交OA的延长线于点D,则∠D的大小为()A. 29°B. 32°C. 42°D. 58°10. 如图,在菱形中,,,是的中点.过点作,垂足为.将沿点到点的方向平移,得到.设、分别是、的中点,当点与点重合时,四边形的面积为()A. B. C. D.二、填空题(每题3分,满分21分,将答案填在答题纸上)11.已知2×4m×8m=216,m=________.12.如图,已知AB∥CD,BE平分∠ABC,∠CDE=150°,则∠C=________13.某学校要从甲、乙两支女生礼仪队中,选拔一支身高相对整齐的队伍,代表学校承接迎宾任务,对两队女生升高情况(cm)的统计分析如表所示,在其它各项指标都相同的情况下,你认为________队(填甲或乙)会被录取,理由是________.14.分解因式:x2﹣1=________ .15. 如图,在“”网格中,有个涂成黑色的小方格.若再从余下的个小方格中随机选取个涂成黑色,则完成的图案为轴对称图案的概率是________.16. 如图,是的直径,是弦,,.若用扇形(图中阴影部分)围成一个圆锥的侧面,则这个圆锥底面圆的半径是________.16题图17题图17. 如图,在矩形中,将绕点按逆时针方向旋转一定角度后,的对应边交边于点.连接、,若,,,则________(结果保留根号).三、解答题(本大题共10小题,共69分.解答应写出文字说明、证明过程或演算步骤.)18.计算:①+ ﹣|﹣2|②﹣22× ÷(1﹣)2.19.解不等式组把它的解集表示在数轴上,并求出不等式组的非负整数解.20.化简:,然后在不等式x≤2的非负整数解中选择一个适当的数代入求值.21.某校实行学案式教学,需印制若干份数学学案,印刷厂有甲、乙两种收费方式,除按印数收取印刷费外,甲种方式还需收取制版费而乙种不需要.两种印刷方式的费用y(元)与印刷份数x(份)之间的关系如图所示:(1)填空:甲种收费的函数关系式.乙种收费的函数关系式.(2)该校某年级每次需印制100~450(含100和450)份学案,选择哪种印刷方式较合算?22.甲、乙、丙三位歌手进入“我是歌手”冠、亚、季军决赛,他们通过抽签来决定演唱顺序,(1)求甲第一位出场的概率;(2)求甲比乙先出场的概率.23. 如图,,,点在边上,,和相交于点.(1)求证:≌;(2)若,求的度数.24. 如图,在中,,轴,垂足为.反比例函数()的图像经过点,交于点.已知,.(1)若,求的值;(2)连接,若,求的长.25.如图,在平面直角坐标系中,直线y=2x+4分别交x轴,y轴于点A,C,点D(m,2)在直线AC上,点B在x轴正半轴上,且OB=3OC.点E是y轴上任意一点记点E为(0,n).(1)求点D的坐标及直线BC的解析式;(2)连结DE,将线段DE绕点D按顺时针旋转90°得线段DG,作正方形DEFG,是否存在n的值,使正方形的顶点F落在△ABC的边上?若存在,求出所有满足条件的n的值;若不存在,说明理由.(3)作点E关于AC的对称点E’,当n为何值时,A E’分别于AC,BC,AB垂直?26. 如图,已知内接于,是直径,点在上,,过点作,垂足为,连接交边于点.(1)求证:∽;(2)求证:;(3)连接,设的面积为,四边形的面积为,若,求的值.27. 如图,二次函数的图像与轴交于、两点,与轴交于点,.点在函数图像上,轴,且,直线是抛物线的对称轴,是抛物线的顶点.图①图②(1)求、的值;(2)如图①,连接,线段上的点关于直线的对称点恰好在线段上,求点的坐标;(3)如图②,动点在线段上,过点作轴的垂线分别与交于点,与抛物线交于点.试问:抛物线上是否存在点,使得与的面积相等,且线段的长度最小?如果存在,求出点的坐标;如果不存在,说明理由.参考答案一、选择题C C A BD B B A B A二、填空题11.3 12.120°.13.乙;乙队的标准差较小,身高比较整齐14.(x+1)(x﹣1)15.16.17.三、解答题18.解:①原式=﹣2+ ﹣2 = ;②原式=﹣4× ×=﹣319.解:解①得x≥﹣,解②得x<3,则不等式组的解集是﹣≤x<3.则非负整数解是0,1,220.解:原式= ===∵不等式x≤2的非负整数解是0,1,2∵(x+1)(x﹣1)≠0,x+2≠0,∴x≠±1,x≠﹣2,∴把x=0代入.21.解:(1)设甲种收费的函数关系式y1=kx+b,乙种收费的函数关系式是y2=k1x,由题意,得,12=100k1,解得:,k1=0.12,∴y1=0.1x+6(x≥0),y2=0.12x(x≥0);(2)由题意,得当y1>y2时,0.1x+6>0.12x,得x<300;当y1=y2时,0.1x+6=0.12x,得x=300;当y1<y2时,0.1x+6<0.12x,得x>300;∴当100≤x<300时,选择乙种方式合算;当x=300时,甲、乙两种方式一样合算;当300<x≤450时,选择甲种方式合算.答:印制100~300(含100)份学案,选择乙种印刷方式较合算,印制300份学案,甲、乙两种印刷方式都一样合算,印制300~450(含450)份学案,选择甲种印刷方式较合算.22.解:(1)∵甲、乙、丙三位歌手进入“我是歌手”冠、亚、季军决赛,∴甲第一位出场的概率为;(2)∵出场情况为:甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙甲乙,丙乙甲共6种情况,∴甲比乙先出场的情况有:甲乙丙,甲丙乙,丙甲乙,∴甲比乙先出场的概率为:=.23.(1)证明:因为∠ADE=∠1+∠C=∠2+∠BDE,∠1=∠2,所以∠C=∠BDE.在△AEC和△BED 中,所以ΔΑEC≌ΔΒΕD(2)解:因为ΔΑEC≌ΔΒΕD,所以CE=DE,∠BDE=∠C=24.(1)解:过点C作CD⊥AB于E,因为AC=BC,所以AE=BE=2,在Rt△BCE中,CE=,则点C的横坐标为4-,即C(,2)。
将点C(,2)代入y=,得[MISSING IMAGE: , ]所以AD=则D,C两点的坐标分别为(m,),(m-,2) .因为点D,C都在y=的图象上,所以,所以m=6所以点C的坐标为(,2)作CF⊥x轴,垂足为F.在Rt△OCF中,OC=.25.(1)解:由直线y=2x+4,当x=0时,y=4,则C(0,4);当y=0时,x=-2,则A(-2,0);∵D(m,2)在直线y=2x+4上,则2x+4=2,即D(-1,2);∵C(0,4),OB=3OC.∴OB=3×4=12,则B(12,0).设BC的解析式为y=kx+b,则解得则直线BC的解析式为y=x+4.(2)解:过点D作y轴的垂线DM交y轴于点M,过点F作y轴的垂线FN交y轴于点N,则∠DME=∠FNE=90°,∠DEM+∠EDM=90°,在正方形DEFG中,则DE=EF,∠DEF=90°,∴∠DEM+∠FEN=90°,∴∠EDM=∠FEN,∴△DME≌△ENF,∴FN=EM=|n-2|,EN=DM=1,则ON=OE-EN=|n-1|,则F(|n-2|,|n-1|)当点F在BC上时,F(n-2,n-1),将它代入直线BC的解析式y=x+4,得(n-2)+4=n-1,解得n=;当点F在AB上时,即n-1=0,则n=1;综上n=或1.(3)解:①当AE’⊥AC时,A,E,E'三点共线,如图2,则AE⊥AC,易证得△ACE~△OCA,则由AC===2.则CE==5,即n=4-5=-1.②当AE’⊥AB时,设EE'与AC的交点为P,如图3,可得△AE'P≌△CEP,则AE=AE'=CE=4-n,在Rt△AEO中,则AE2=AO2+OE2,即(4-n)2=22+n2,解得n=③如图3,当AE'与BC垂直时,直线AE’与BC的延长线交于点M,与y轴交于点Q,则tan∠OAQ=tan∠MCQ=tan∠BCO==3,所以OQ=3OA=6,则Q(0,6),由A(-2,0)和Q(0,6)得直线AQ的解析式为y=3x+6.因为直线AC的解析式为y=2x+4,AC与EE'垂直,所以可设EE'的解析式为y=-x+c,将E(0,n)代入可解得y=-x+n.联立解得即E'(,),则EE'的中点P的坐标为(,),因为点P在直线AC上,代入y=2x+4可得+4=,解得n=.综上n=-1,或.26.(1)证明:∵AB是圆O的直径,∴∠ACB=90°,∵DE⊥AB,∴∠DEO=90°,∴∠DEO=∠ACB,∵OD//BC,∴∠DOE=∠ABC,∴△DOE~△ABC,(2)证明:∵△DOE~△ABC,∴∠ODE=∠A,∵∠A和∠BDC是弧BC所对的圆周角,∴∠A=∠BDC,∴∠ODE=∠BDC,∴∠ODF=∠BDE。