不等式恒成立问题的基本类型及常用解法

合集下载

不等式恒成立问题的基本类型及常用解法 - 副本

不等式恒成立问题的基本类型及常用解法 - 副本

不等式恒成立问题基本类型及常用解法类型1:设f(x)=ax+bf(x) >0在x ∈[]n m ,上恒成立⇔ ⎩⎨⎧0)(0)( n f m ff(x) <0在x ∈[]n m ,上恒成立⇔⎩⎨⎧0)(0)( n f m f . 例1. 设y=(log 2x)2+(t-2)log 2x-t+1,若t 在[-2,2]上变化,y 恒取正值,求实数x 的取值范围。

例2. 对于 -1≤a ≤1,求使不等式(21)ax x +2<(21)12-+a x 恒成立的x 的取值范围。

类型2:设f(x)=ax 2+bx+c (a ≠0)f(x) >0在x ∈R 上恒成立⇔a >0 且△<0;f(x) <0在x ∈R 上恒成立⇔a <0 且△<0.说明:①.只适用于一元二次不等式②.若未指明二次项系数不等于0,注意分类讨论.例3.不等式3642222++++x x m mx x <1对一切实数x 恒成立,求实数m 的取值范围。

类型3:设f(x)=ax 2+bx+c (a ≠0)(1) 当a >0时① f(x) >0在x ∈[]n m ,上恒成立 ⇔⎪⎩⎪⎨⎧≤-0)(2 m f m a b 或⎪⎩⎪⎨⎧∆-o n a b m 2或⎪⎩⎪⎨⎧≥-0)(2 n f n a b ⇔⎪⎩⎪⎨⎧≤-0)(2 m f m a b 或△<0或⎪⎩⎪⎨⎧≥-0)(2 n f n a b . ② f(x) <0在x ∈[]n m ,上恒成立⇔⎩⎨⎧0)(0)( n f m f . (2) 当a <0时① f(x) >0在x ∈[]n m ,上恒成立⇔ ⎩⎨⎧0)(0)( n f m f ② f(x) <0在x ∈[]n m ,上恒成立 ⇔⎪⎩⎪⎨⎧≤-0)(2 m f m a b 或⎪⎩⎪⎨⎧∆-o n a b m 2或⎪⎩⎪⎨⎧≥-0)(2 n f n a b ⇔⎪⎩⎪⎨⎧≤-0)(2 m f m a b 或△<0或⎪⎩⎪⎨⎧≥-0)(2 n f n a b . 说明:只适用于一元二次不等式.类型4:a >f(x) 恒成立对x ∈D 恒成立⇔a >f(x)m ax ,a <f(x)对x ∈D 恒成立⇔ a <f(x)m in .说明:①. f(x) 可以是任意函数②.这种思路是:首先是---分离变量,其次用---极端值原理。

不等式恒成立问题的十种解法

不等式恒成立问题的十种解法

一、判别式法若能把所给不等式转化为某个一元二次不等式,并且该一元二次不等式是对于一切实数x都恒成立,则可优先考虑判别式法.例l 设不等式,对于一切实数x都恒成立,求实数m的取值范围.解:因为所以原不等式可变为:因为该不等式对一切实数x都成立,必有整理得说明:若所给的区间并非一切实数时,切记不能使用判别式法.二、三角换元法通过适当的三角换元,把所给问题转化为含有的形式,再利用正弦函数的有界性来求出它的最值,从而使问题得到解决.例2 已知实数x、y满足时恒成立,则实数d的取值范围是( ))],则y的最大值为,要使x+y+d≥O恒成立,必须有d大于等于y的最大值,即d≥,故选择答案(A).三、分离参数对于含有参数的不等式,若能把所求的参数分离出来,应优先考虑实行参数分离,然后再在不等式的另一边进行其它变换,如使用均值不等式,或通过函数的单调性来求出它的最值,最后再通过参数与这个最值的关系来使问题得到解决.例3 对于任意恒成立,求实数m的取值范围.四、图象法如果所给不等式能够化为一边是我们熟悉的函数,那么我们可以通过它的图象,结合函数的单调性来求出它在所给区间上的最值,从而使问题得到解决.例4 若关于x的不等式对任意x∈[0,1]恒成立,则m的取值范围是( )(A)m≤一3 (B)m≥一3 (C)一3≤m≤0 (D)m≥一4解:考察函数的图象,当x∈[0,1]时,其函数的值域为y∈[一3,0],若使不等式对任意x∈[0,1]恒成立,则m必须小于等于它的最小值3,即m≤一3,故选择答案(A).五、变更主元法主元的选择要因题而异,在有些问题中一旦克服心理定势,标新立异地另选主元,那么问题的解决就会有峰回路转、柳暗花明的效果.例5 对于任意a∈[一l,1],函数的函数值恒为正数,则实数x的取值范围是( ) (A) (B) (C)分析:由a的取值范围恒成立,可采用分类讨论去寻找 x 的的取值范围,但是这是比较麻烦的,再看a 的取值范围已经知道了,变a为主元,x为参数,反其道而行之.六、几何法含有绝对值的不等式,可利用绝对值的几何意义这一直观使问题加以解决.例6 若不等式恒成立,求实数d的取值范围.解:设由绝对值的几何意义可知,d表示数轴上的点到实数l、4所对应两点距离的和,所以d≥3,要使恒成立,必须有a于等于d的最小值,即a≤3.七、均值不等式法运用均值不等式求出所给代数式的最值,然后再用所给的值与这个最值进行比较.例7 (第l1届希望杯试题)设a>b>c,恒成立,则自然数n的最大值为( ) (A)2 (B)3 (C)4 (D)5八、数学归纳法当不等式中含有自然数凡时,应优先考虑用数学归纳法来探求.由上可得:存在最大的自然数m=13.使不意大于等于2的自然数n都恒成立.九、放缩法把所给不等式进行适当的放缩,从而使问题得到解决.对所有的正整数恒成立.十、二项式定理展开法当不等式中含有所给数的凡次方时,可试着考虑使用二项式定理,通过二项式定理的展开式有选择地选取几项进行放缩,从而使问题得到解决.例l0 求证.对于任意大于等于2的自然数不等式恒成立.。

基本不等式的恒成立问题

基本不等式的恒成立问题

基本不等式的恒成立问题一、基本不等式1. 基本不等式的形式- 对于正实数a,b,有a + b≥2√(ab),当且仅当a = b时等号成立。

- 变形形式:ab≤((a + b)/(2))^2。

2. 基本不等式成立的条件- a>0,b>0。

二、基本不等式恒成立问题的常见类型及解法1. 类型一:求参数的取值范围使得不等式恒成立- 例1:已知x>0,y>0,若x + y+ (1)/(x)+(1)/(y)≥ m恒成立,求m的取值范围。

- 解析:- 因为x>0,y>0,根据基本不等式x+(1)/(x)≥2√(x×frac{1){x}} = 2,当且仅当x=(1)/(x)即x = 1时等号成立;同理y+(1)/(y)≥2,当且仅当y = 1时等号成立。

- 所以x + y+(1)/(x)+(1)/(y)=(x+(1)/(x))+(y+(1)/(y))≥2 + 2=4。

- 因为x + y+(1)/(x)+(1)/(y)≥ m恒成立,所以m≤4。

2. 类型二:已知不等式恒成立,求代数式的最值- 例2:若对于任意x>0,(x)/(x^2)+3x + 1≤ a恒成立,求a的最小值。

- 解析:- 因为x>0,则(x)/(x^2)+3x + 1=(1)/(x+frac{1){x}+3}。

- 根据基本不等式x+(1)/(x)≥2√(x×frac{1){x}} = 2,当且仅当x=(1)/(x)即x = 1时等号成立。

- 所以x+(1)/(x)+3≥2 + 3=5,则0<(1)/(x+frac{1){x}+3}≤(1)/(5),即0<(x)/(x^2)+3x + 1≤(1)/(5)。

- 因为(x)/(x^2)+3x + 1≤ a恒成立,所以a≥(1)/(5),a的最小值为(1)/(5)。

3. 类型三:含有多个变量的基本不等式恒成立问题- 例3:已知x,y∈ R^+,若2x + y = 1,且(1)/(x)+(a)/(y)≥8恒成立,求正实数a 的值。

微专题不等式恒成立问题常见类型及解法

微专题不等式恒成立问题常见类型及解法

恒成立问题常见类型及解法恒成立问题在解题过程中大致可分为以下几种类型:(1)一次函数型;(2)二次函数型;(3)变量分离型;(4)利用函数的性质求解;(5)直接根据函数的图象求解;(6)反证法求解。

一、一次函数型给定一次函数()==+y f x kx b (k ≠0),若()=y f x 在[m,n]内恒有()f x >0,则根据函数的图象(线段)可得①0()0>⎧⎨>⎩k f m 或②0()0<⎧⎨>⎩k f n ,也可合并成f (m)0f (n)0>⎧⎨>⎩,同理,若在[,]m n 内恒有()0<f x ,则有f (m)0f (n)0<⎧⎨<⎩.典例1.若不等式2x -1>()21-m x 对一切[]2,2∈-m 都成立,求实数x 的取值范围。

【解析】令f (m)=(21-x )m -2x +1,则上述问题即可转化为关于m 的一次函数=y ()f m 在区间[-2,2]内函数值小于0恒成立的问题。

考察区间端点,只要(2)(2)-⎧⎨⎩<0,<0f x f 即x的取值范围是(12,12). 二、二次函数型若二次函数2(0,)=++≠∈y ax bx ca x R 的函数值大于(或小于)0恒成立,则有a 00>⎧⎨∆<⎩(或00a ì<ïïíïD <ïî),若是二次函数在指定区间上的恒成立问题,还可以利用韦达定理以及二次函数的图象求解。

典例2关于x 的方程9x +(4+a )3x +4=0恒有解,求a 的取值范围。

【解析】方法1(利用韦达定理)设3x=t,则t>0.那么原方程有解即方程t 2+(4+a )t+4=0有正根。

1212Δ0(4)040≥⎧⎪∴+=-+>⎨⎪=>⎩g x x a x x ,即2(4a)160a 4⎧+-≥⎨<-⎩,a 0a 8a 4≥≤-⎧∴⎨<-⎩或,解得a ≤-8.方法2(利用根与系数的分布知识)即要求t 2+(4+a )t+4=0有正根。

不等式恒成立问题的三类常见解法

不等式恒成立问题的三类常见解法

不等式恒成立问题的三类常见解法作者:仲一鸣来源:《中学教学参考·理科版》2012年第01期不等式恒成立问题主要可分成两类:第一类为不含参数的不等式恒成立问题;第二类为含有1个(或多个)参数的不等式恒成立问题.对于第一类问题,实际上就是证明这个不等式,本文不再赘述;对于第二类,其基本解题思想是将问题转化为函数的最值问题,常见的基本解法有以下三种.一、参数分离,间接求最值【例1】(2008,江苏)设函数f(x)=ax3-3x+1(x∈R),若对于任意x∈[-1,1],均有f(x)≥0成立,则实数a的值为 .解:(1)若x=0,则a∈R.(2)若x∈(0,1],a≥1x2-1x3,令g(x)=1x2-1x3,则g′(x)=3(1-2x)x4,即g(x)在x∈(0,12]上单调递增,在x∈[12,1]上单调递减,所以g(x)max=g(12)=4,所以a≥4.(3)若x∈[-1,0),a≤1x2-1x3,由(2)得g(x)在[-1,0)上单调递增,所以g(x)min=g(-1)=4,所以a≤4.综上,a=4.二、参数不分离,直接求最值【例2】 (2007,辽宁) 已知f(x)=x3-9x2+24x(x∈R),若对于任意m∈[-26,6],恒有f(x)≥x3-mx-11成立,试求实数x的取值范围.解:由题,f(x)-(x3-mx-11)≥0对任意的m∈[-26,6]恒成立,即xm+(-9x2+24x+11)≥0对m∈[-26,6]恒成立,不妨令g(m)=xm+(-9x2+24x+11), 则任意m∈[-26,6],g(m)≥0g(m)min≥0g(6)≥0,g(-26)≥0x∈[-13,1].本题注意点有两处:(1)对自变量和参数的辨别.笔者认为在实际操作中,一般对“哪个字母”恒成立,“哪个字母”即为自变量;求“哪个字母”的范围,“哪个字母”即为参数.(2)对于参数,在本题中存在高次方,故不易参数分离,因此采用移项直接求关于m的一次函数(或常值函数)的最小值.【例3】(2008,天津)已知函数f(x)=x+ax+b(a,b∈R),若对于任意的a∈[12,2],不等式f(x)≤10在[14,1]上恒成立,求b的取值范围.解:由函数f(x)图像易得f(x)max=max{f(14),f(1)},故本题等价于对任意的a∈[12,2],都有f(14)≤10,f(1)≤10恒成立,即b≤394-4a,b≤9-a对任意的a∈[12,2]成立b≤74,b≤7b≤74.在此题中,恒成立针对不同的自变量进行了多次嵌套,解决的手法是由内而外逐层分析:在内层,视“x”为自变量,采用直接求最值法;在外层,视“a”为自变量,采用参数分离间接求最值法.【例4】已知二次函数f(x)=x2+ax+1-a,若x∈[-2,2],则f(x)≥0恒成立,求a的取值范围.解:由f(x)=x2+ax+1-a≥0对任意x∈[-2,2]恒成立,故f(0)=1-a≥0,即a≤1.又f(x)=(x+a2)2-a24-a+1,对称轴x=-a2∈[-12,+∞),故(1)对称轴x=-a2∈[-12,2],即a∈[-4,1],y min=f(-a2)≥0a∈[-2-22,-2+22],即a∈[-4,-2+22];(2)对称轴x=-a2∈(2,+∞)即,即a∈(-∞,-4),y min=f(2)≥0a∈[-5,+∞),即a∈[-5,-4).综上所述,a∈[-5,-2+22].无论是参数分离还是参数不分离,都不可避免地需要分类讨论,那么就尽可能减少分类讨论的步骤.这里借助赋值法得到f(0)=1-a≥0,即a≤1,从而缩小了参数a的范围,减少了直接求最值所需讨论的次数.三、数形结合【例5】(2009,上海)已知0≤x≤1时,不等式sinπx2≥kx恒成立,则实数k 的取值范围是 .图1解:由sinπ2≥kx对0≤x≤1恒成立,即函数f(x)=sinπx2的图像在x∈[0,1]这一部分始终在函数g(x)=kx的上方(如图1所示),故k≤1.【例6】(2008,浙江)若a>0,b>0,且当x≥0,y≥0,x+y≤1时,恒有ax+b y≤1,则以a、b为坐标的点P(a,b)所形成的平面区域的面积为 .图2解:令S1为x≥0,y≥0,x+y≤1所表示的区域;令S2为ax+by≤1所表示的区域,由题,当x≥0,y≥0,x+y≤1.时,恒有ax+by≤1,故易得1a≥1,1b≥10<a≤1,0<b≤1,故P(a,b)所形成的平面区域的面积为1.上述两例均是从几何角度来处理不等式恒成立问题.一般而言,f(x)≥g(x)对x∈[a,b]恒成立可以从图形的角度理解为y=f(x)的图像在x∈[a,b]部分始终在y=g(x)的上方.含有参数的不等式恒成立问题是与函数最值相关的重要问题,解题中要注意方法的灵活运用,对于无须分类讨论便可实现参数分离的,应首选“参数分离”,除此之外,直接求最值以及数形结合也是不错的选择.参考文献[1]谢广喜. 与参变元、主变元有关的几个问题的讨论[J].中学数学教学参考(上旬),2009(1-2) .[2]张勇赴.“构造函数法”求解不等式恒成立问题[J].中学数学教学参考(上旬),2009( 6) .(责任编辑金铃)。

高一不等式恒成立问题3种基本方法

高一不等式恒成立问题3种基本方法

高一不等式恒成立问题3种基本方法文章标题:探讨高一不等式恒成立问题的三种基本方法在高中数学学习中,不等式恒成立问题是一个很常见的题型。

学生们通常需要掌握多种方法来解决这类问题,而这些方法通常可以分为三种基本类型。

本文将会详细介绍这三种基本方法,帮助读者全面理解这一数学概念。

1. 方法一:代数法我们来介绍代数法。

这种方法是在不等式两边进行代数变换,使得不等式变成一个容易解决的形式。

代数法通常包括加减变形、乘除变形以及平方去根等技巧。

以不等式ax+b>0为例,我们可以通过移项得到ax>-b,然后再除以a的正负来确定不等式的方向,从而得到不等式的解集。

代数法在解决不等式恒成立问题中应用广泛,能够快速简便地找到解的范围和规律。

2. 方法二:图像法我们介绍图像法。

图像法是通过绘制不等式所代表函数的图像,来直观地找出不等式恒成立的区间。

对于一元一次不等式ax+b>0,我们可以画出函数y=ax+b的图像,从而通过观察图像的上升或下降趋势来确定不等式的解集。

图像法能够帮助我们更直观地理解不等式的性质和范围,提高我们的思维逻辑和空间想象能力。

3. 方法三:参数法我们介绍参数法。

参数法是通过引入一个或多个参数,将不等式转化为一个有参数的等式问题,进而进行求解。

参数法的典型应用包括辅助角法、二次函数法等。

以不等式ax²+bx+c>0为例,我们可以引入Δ=b²-4ac,然后根据Δ的正负来确定不等式的解集。

参数法在解决不等式问题中能够简化问题的复杂度,将不等式的求解转化为参数的求解,从而提高解题的效率和准确度。

总结回顾通过对以上三种基本方法的介绍,我们可以发现它们各有特点,应用范围和解题思路有所不同。

代数法能够利用代数变形快速求解不等式问题,图像法能够帮助我们直观地理解不等式的性质,而参数法则能够将问题转化为参数的求解,提高解题的效率。

个人观点和理解在实际解题中,我们应该根据具体情况灵活选用这三种方法,结合题目的特点和自身的掌握程度来选择合适的解题方法。

不等式恒成立问题的大全

不等式恒成立问题的大全

不等式恒成立问题“含参不等式恒成立问题”把不等式、函数、三角、几何等容有机地结合起来,其以覆盖知识点多,综合性强,解法灵活等特点而倍受高考、竞赛命题者的青睐。

另一方面,在解决这类问题的过程中涉及的“函数与方程”、“化归与转化”、“数形结合”、“分类讨论”等数学思想对锻炼学生的综合解题能力,培养其思维的灵活性、创造性都有着独到的作用。

本文就结合实例谈谈这类问题的一般求解策略。

一、判别式法若所求问题可转化为二次不等式,则可考虑应用判别式法解题。

一般地,对于二次函数),0()(2R x a c bx ax x f ∈≠++=,有1)0)(>x f 对R x ∈恒成立⎩⎨⎧<∆>⇔00a ;2)0)(<x f 对R x ∈恒成立.00⎩⎨⎧<∆<⇔a例1.已知函数])1(lg[22a x a x y +-+=的定义域为R ,数a 的取值围。

解:由题设可将问题转化为不等式0)1(22>+-+a x a x 对R x ∈恒成立,即有04)1(22<--=∆a a 解得311>-<a a 或。

所以实数a 的取值围为),31()1,(+∞--∞ 。

若二次不等式中x 的取值围有限制,则可利用根的分布解决问题。

例2.设22)(2+-=mx x x f ,当),1[+∞-∈x 时,m x f ≥)(恒成立,数m 的取值围。

解:设m mx x x F -+-=22)(2,则当),1[+∞-∈x 时,0)(≥x F 恒成立 当120)2)(1(4<<-<+-=∆m m m 即时,0)(>x F 显然成立;当0≥∆时,如图,0)(≥x F 恒成立的充要条件为:⎪⎪⎩⎪⎪⎨⎧-≤--≥-≥∆1220)1(0m F 解得23-≤≤-m 。

综上可得实数m 的取值围为)1,3[-。

二、最值法将不等式恒成立问题转化为求函数最值问题的一种处理方法,其一般类型有:1)a x f >)(恒成立min )(x f a <⇔ 2)a x f <)(恒成立max )(x f a >⇔1.已知两个函数2()816f x x x k =+-,32()254g x x x x =++,其中k 为实数.(1)若对任意的[]33,-∈x ,都有)()(x g x f ≤成立,求k 的取值围; (2)若对任意的[]3321,、-∈x x ,都有)()(21x g x f ≤,求k 的取值围. (3)若对于任意1x []3,3∈-,总存在[]03,3x ∈-使得)()(10x f x g =成立,求k 的取值围.【分析及解】 (1) 令k x x x x f x g x F +--=-=1232)()()(23, 问题转化为0)(≥x F 在 []3,3-∈x 上恒成立,即0)(min ≥x F 即可 ∵)2(61266)(22'--=--=x x x x x F , 由0)('=x F , 得2=x 或 1-=x .∵(3)45(3)9(1)7(2)20F k F k F k F k -=-=--=+=-,,,, ∴45)(min -=k x F , 由045≥-k , 解得 45≥k .(2)由题意可知当[]33,-∈x 时,都有min max )()(x g x f ≤. 由01616)('=+=x x f 得1-=x .∵k f k f --=--=-8)1(24)3(,, k f -=120)3(, ∴120)(max +-=k x f . 由04106)(2'=++=x x x g 得321-=-=x x 或, ∵21)3(-=-g , 111)3(=g , 1)1(-=-g , 2728)32(-=-g ,∴21)(min -=x g .则21120-≤-k , 解得141≥k .(3) 若对于任意1x []3,3∈-,总存在[]03,3x ∈-使得)()(10x f x g =成立,等价于()f x 的值域是()g x 的值域的子集,由(2)可知, 2()816f x x x k =+-在[]3,3-的值域为[]8,120k k ---+,32()254g x x x x =++在[]3,3-的值域为[]21,111-,于是,[][]8,12021,111k k ---+⊆-,即满足 821,120111.k k --≥-⎧⎨-+≤⎩解得913k ≤≤2.已知x x x x g a x x x f 4042)(,287)(232-+=--=,当]3,3[-∈x 时,)()(x g x f ≤恒成立,数a 的取值围。

(完整版)恒成立能成立问题总结(详细)

(完整版)恒成立能成立问题总结(详细)

恒成立问题的类型和能成立问题及方法处理函数与不等式的恒成立、能成立、恰成立问题是高中数学中的一个重点、难点问题。

这类问题在各类考试以及高考中都屡见不鲜。

感觉题型变化无常,没有一个固定的思想方法去处理,一直困扰着学生,感到不知如何下手。

在此为了更好的准确地把握快速解决这类问题,本文通过举例说明这类问题的一些常规处理。

一、函数法(一)构造一次函数 利用一次函数的图象或单调性来解决 对于一次函数],[),0()(n m x k b kx x f ∈≠+=有:⎩⎨⎧<<⇔<⎩⎨⎧>>⇔⎩⎨⎧><⎩⎨⎧>>⇔>0)(0)(0)(;0)(0)(0)(00)(00)(n f m f x f n f m f n f k m f k x f 恒成立或恒成立例1 若不等式m mx x ->-212对满足22≤≤-m 的所有m 都成立,求x 的范 围。

解析:将不等式化为:0)12()1(2<---x x m ,构造一次型函数:)12()1()(2---=x m x m g原命题等价于对满足22≤≤-m 的m ,使0)(<m g 恒成立。

由函数图象是一条线段,知应⎪⎩⎪⎨⎧<---<----⇔⎩⎨⎧<<-0)12()1(20)12()1(20)2(0)2(22x x x x g g 解得231271+<<+-x ,所以x 的范围是)231,271(++-∈x 。

小结:解题的关键是将看来是解关于x 的不等式问题转化为以m 为变量,x 为参数的一次函数恒成立问题,再利用一次函数的图象或单调性解题。

练习:(1)若不等式01<-ax 对[]2,1∈x 恒成立,求实数a 的取值范围。

(2)对于40≤≤p 的一切实数,不等式342-+>+p x px x 恒成立,求x 的取值范围。

(答案:或)(二)构造二次函数 利用二次函数的图像与性质及二次方程根的分布来解决。

不等式的恒成立问题基本解法9种解法

不等式的恒成立问题基本解法9种解法

不等式的恒成立问题基本解法9种解法不等式的恒成立问题基本解法:9种解法导语:在数学中,我们经常会遇到不等式的问题,而不等式的恒成立问题则更加耐人寻味。

不等式的恒成立问题是指对于某个特定的不等式,是否存在一组解使得不等式始终成立。

解决这种问题需要灵活运用数学知识和技巧。

本文将介绍不等式的恒成立问题的基本解法,共包括9种方法。

一、置换法。

这是最简单的一种方法,即将不等式中的变量互相置换,然后观察不等式是否成立。

如果成立,则不等式恒成立。

对于x^2 +y^2 ≥ 0这个不等式,我们可以将x和y置换一下,得到y^2 + x^2 ≥ 0。

由于平方数是非负数,所以不等式始终成立。

二、加法法则。

这种方法是通过在不等式的两边同时加上相同的数来改变不等式的符号。

对于不等式2x + 3 ≥ x + 4,我们可以在两边同时加上-3,得到2x + 3 - 3 ≥ x + 4 - 3,即2x ≥ x + 1。

由于x的取值范围不限制,所以不等式恒成立。

三、减法法则。

与加法法则相似,减法法则是通过在不等式的两边同时减去相同的数来改变不等式的符号。

对于不等式2x + 3 ≥ x + 4,我们可以在两边同时减去x,得到x + 3 ≥ 4。

由于x的取值范围不限制,所以不等式恒成立。

四、乘法法则。

这种方法是通过在不等式的两边同时乘以相同的正数来改变不等式的符号。

对于不等式2x + 3 ≥ x + 4,我们可以在两边同时乘以2,得到4x + 6 ≥ 2x + 8。

由于x的取值范围不限制,所以不等式恒成立。

五、除法法则。

与乘法法则相似,除法法则是通过在不等式的两边同时除以相同的正数来改变不等式的符号。

对于不等式2x + 3 ≥ x + 4,我们可以在两边同时除以2,得到x + 3/2 ≥ 1 + x/2。

由于x的取值范围不限制,所以不等式恒成立。

六、平方法则。

这种方法是通过平方运算来改变不等式的符号。

对于不等式x^2 ≥ 0,我们可以将x^2展开为(x + 0)^2,得到x^2 + 0 ≥ 0。

不等式的恒成立、能成立、恰成立问题

不等式的恒成立、能成立、恰成立问题

不等式的恒成立、能成立、恰成立问题1.恒成立问题:恒成立问题的基本类型类型1:对于一次函数],[,)(n m x b kx x f ∈+=有:⎩⎨⎧<<⇔<⎩⎨⎧>>⇔>0)(0)(0)(,0)(0)(0)(n f m f x f n f m f x f 恒成立恒成立 例1:若不等式)1(122->-x m x 对满足22≤≤-m 的所有m 都成立,求x 的范围。

解析:我们可以用改变主元的办法,将m 视为主变元,即将元不等式化为:0)12()1(2<---x x m , 令)12()1()(2---=x x m m f ,则22≤≤-m 时,0)(<m f 恒成立,所以只需⎩⎨⎧<<-0)2(0)2(f f 即⎪⎩⎪⎨⎧<---<----0)12()1(20)12()1(222x x x x ,所以x 的范围是)231,271(++-∈x 。

类型2:设)0()(2≠++=a c bx ax x f ],[βα∈x(1)当0>a 时,],[0)(βα∈>x x f 在上恒成立⎪⎩⎪⎨⎧>>-⎪⎩⎪⎨⎧<∆≤-≤⎪⎩⎪⎨⎧><-⇔0)(2020)(2βββαααf a b a b f a b 或或 ],[0)(βα∈<x x f 在上恒成立⎩⎨⎧<<⇔0)(0)(βαf f (2)当0<a 时,],[0)(βα∈>x x f 在上恒成立⎩⎨⎧>>⇔0)(0)(βαf f ],[0)(βα∈<x x f 在上恒成立⎪⎩⎪⎨⎧<>-⎪⎩⎪⎨⎧<∆≤-≤⎪⎩⎪⎨⎧><-⇔0)(2020)(2βββαααf a b a b f a b 或或 例2:若不等式22210x mx m -++>对01x ≤≤的所有实数x 都成立,求m 的取值范围. 12m >- 类型3:设)0()(2≠++=a c bx ax x f ,R x ∈(1)R x x f ∈>在0)(上恒成立00<∆>⇔且a ;(2)R x x f ∈<在0)(上恒成立00<∆<⇔且a 。

不等式 恒成立问题

不等式 恒成立问题
变式:已知函数 ,若在区间 上, 的图象位于函数f(x)的上方,求k的取值范围
由题意得,对于 恒成立 对于 恒成立,令 ,设 ,则 ,
, , k的取值范围是k> .
解:令 , 所以原不等式可化为: ,
要使上式在 上恒成立,只须求出 在 上的最小值即可。
注:分离参数后,方向明确,思路清晰能使问题顺利得到解决。
四、变换主元法
处理含参不等式恒成立的某些问题时,若能适时的把主元变量和参数变量实行“换位”思考,往往会使问题降次、简化。
例4.对任意 ,不等式 恒成立,求 的取值范围。
1) 函数 图象恒在函数 图象上方;
2) 函数 图象恒在函数 图象下上方。
例5:已知 ,求实数a的取值范围。
解析:由 ,在同一直角坐标系中做出两个函数的图象,如果两个函数分别在x=-1和x=1处相交,则由 得到a分别等于2和0.5,并作出函数 的图象,所以,要想使函数 在区间 中恒成立,只须 在区间 对应的图象在 在区间 对应图象的上面即可。当 才能保证,而 才能够,所以 。
3.设 ,当 时, 恒成立,求实数 的取值范围。
解:设 ,则当 时, 恒成立
当 时, 显然成立;
当 时,如图, 恒成立的充要条件为:
解得 。
综上可得实数 的取值范围为 。
4:在 ABC中,已知 恒成立,求实数m的范围。
解析:由
, , 恒成立, ,即 恒成立,
5、若不等式 对满足 的所有 都成立,求 的取值范围。
解:设 ,对满足 的 , 恒成立,
解得:
6、若不等式 在 内恒成立,求实数 的取值范围。
解:由题意知: 在 内恒成立,
在同一坐标系内,分别作出函数 和
观察两函数图象,当 时,若 函数 的图象显然在函数 图象的下方,所以不成立;

不等式恒成立问题3种基本方法

不等式恒成立问题3种基本方法

不等式恒成立问题3种基本方法不等式恒成立问题是指在数学中有特定条件下,当不等式满足某些条件时,就能证明不等式恒成立。

一般来说,要证明不等式恒成立,都是采用一定的技巧和方法,其中,最常用的三种方法包括把不等式化简为等式、归纳法或组合法以及图解法。

1.不等式化简为等式最常用的一种方法是将不等式化简为等式,这种方法最为直观,也是最容易的方法,也就是利用数学语言,利用数学公式将不等式化为等式,然后利用数学推论让等式恒成立。

例1:y+2除以3大于9,则y大于17令y+2=3x得3x除以3大于9化简得 x大于9代入y+2=3x,y大于17所以y+2除以3大于9时,y大于17。

2.纳法或组合法归纳法或组合法是比较常用的一种方法,也称为反演法。

特别是在分析比较复杂的不等式时,往往可以借助这种方法。

归纳法或组合法的步骤是:1首先分析不等式的全部特性,然后根据不等式的特性进行分析,把这些特性分为若干步,每步解决一个特殊问题;2)然后利用反演法,逐步推出最后的结论。

例 2:y>8,则9-y<1第一步: y>8明 y>8成立的第二步:y>8带入y-8>0,即可推出y-8的值大于0第三步:y-8>0带入9-y<1,即可推出9-y的值小于1第四步:以上四步推出,若y>8,则9-y<13.解法图解法是把问题的定义,公式,结果等用图示表示出来,从而把问题用图形化的方式来分析。

例 3:|x-2|≤3,则-1≤x≤5由于|x-2|≤3,即x-2≤3 x-2≥-3,因此可以把上述问题用图形化的方式来分析,即x-2=3时表示x-2≤3,x-2=-3时表示x-2≥-3,两条线在x=5和x=-1的位置相交,由此可以推出-1≤x≤5。

通过以上三种方法可以解决许多不等式恒成立的问题,它们各有优缺点,需要在实际操作中根据不等式本身的特点来选择最合适的方法,以达到最好的解决效果。

但是,无论如何,从本质上来讲,学习和掌握数学,尤其是求解不等式恒成立问题,关键在于不断积累知识,勤加练习,加强技巧。

谈不等式恒成立问题的基本类型和常见解法

谈不等式恒成立问题的基本类型和常见解法

2013.NO19 2学,都很有兴趣地、积极地、独立地、较好地去完成;通过对作业的完成,他们都能清楚地把握当前身边的——些个体商贩盈利或亏损的原因,并且在讲评课上,他们都能有理有据地说出自己设计的经营方案盈利的可能性。

这—方面利于学生掌握数学知识,同时对他们对生活认识的加深、数学学习兴趣的增强、自信心的养成等等的作用都是不言而喻的。

三、改变数学课外作业的评价方式,发展学生的情感态度和个性品质学生是发展的人,是教育活动的主体,其身心发展具有巨大的发展潜能。

如何去开发学生数学学习的潜能,培养学生积极的态度和情感是一项复杂的工程。

前面所述的各种形式的数学课外作业都能有效地培养学生的态度和情感,但老师对数学课外作业的评价对学生态度、情感的培养,乃至个性品质的形成更为重要。

因为,评价是学生认识自我,建立自信心的最主要的因素。

斯金纳的教学理论就指出“要充分运用积极有效的强化手段,要及时总结,及时讲评,使学生及时知道自己的学习效果,强化正确的学习行为。

传统的数学课外作业的评价方式是采用分数或等级来甄别学生学习的优劣,这种简单的方式不能达到有效强化的目的,容易使那些原来充满学习热情的学生开始怀疑起自己的能力,变得越来越不自信。

长此以往,容易造成部分学生原有的学习热情和愿望一点点消失。

因此,必须改变评价方式。

在对学生数学课外作业的评价时,我不仅仅关注某次学生作业的结果或作品的优劣,更关注他们在整个学习过程中表现出来的情感和态度,努力去发现他们的“好”的方面,通过变化多样的教师个性评语;教师评价与学生自评、互评相结合;书面材料与对学生口头报告、活动、展示的评价相结合;定性评价与定量评价相结合;以定性评价为主等形式加以鼓励、表扬和肯定,让学生看到自己的长处和进步,帮助学生认识自我,建立自信,使学生认识到数学有趣,使他们在数学学习的过程中逐步对数学产生积极的情感和态度,并从中悟出一些对做人和生活有帮助的道理,进而形成良好的个性品质。

求解不等式恒成立问题的三种途径

求解不等式恒成立问题的三种途径

考点透视不等式恒成立问题的常见命题形式有:(1)证明某个不等式恒成立;(2)根据恒成立的不等式求参数的取值范围.求解不等式恒成立问题的常用思路有:构造函数、分离参数、数形结合等.对于不同的不等式,往往需采用不同的途径进行求解.下面结合实例来进行探究.一、构造函数在求解不等式恒成立问题时,我们可先将不等式左右两边的式子移项、变形;然后将不等式构造成函数式,将问题转化为函数最值问题,通过研究函数的单调性,求得函数的最值,来证明不等式恒成立.在求函数的最值时,可根据函数单调性的定义,或导函数与函数单调性之间的关系来判断函数的单调性;也可以利用简单基本函数的单调性来求得函数的最大、最小值,建立使不等式恒成立的式子,即可解题.例1.求证:当x >-1时,1-1x +1≤ln ()x +1≤x 恒成立.证明:设f ()x =ln ()x +1-x ,求导可得f ′()x =1x +1-1=-x x +1,因为当-1<x <0时,f ′()x >0,当x >0时,f ′()x <0,所以函数f ()x 在()-1,0上单调递增,在()0,+∞上单调递减,即f ()x ≤f ()0=0,故f ()x =ln ()x +1-x ≤0,即ln ()x +1≤x .令g ()x =ln ()x +1+1x +1-1,则g ′()x =1x +1-1()x +12=x ()x +12,因为当-1<x <0时,g ′()x <0,当x >0时,g ′()x >0,所以函数g ()x 在()-1,0上单调递减,在()0,+∞上单调递增,可知g ()x ≥g ()0=0,故ln ()x +1+1x +1-1≥0,ln ()x +1≥1-1x +1,综上可知,当x >-1时,不等式1-1x +1≤ln ()x +1≤x 恒成立.要证明目标不等式恒成立,需分两步进行,先证明ln ()x +1≤x ,再证明ln ()x +1≥1-1x +1.在证明这两个不等式时,都需要先将不等式左右两边的式子作差、移项,构造出新函数f ()x =ln ()x +1-x 、g ()x =ln ()x +1+1x +1-1;然后对函数求导,分析导函数与0之间的大小关系,判断出函数的单调性,进而求得函数的极值,从而得出f ()x min =0、g ()x max =0,即可证明f ()x ≤0、g ()x ≥0.例2.设函数f ()x =e x ln x +2e x -1x,曲线y =f ()x 在点()1,f ()1处的切线方程为y =e ()x -1+2,证明:不等式f ()x >1恒成立.证明:由f ()x >1可得x ln x >xe -x -2e,令g ()x =x ln x ,可得g ′()x =ln x +1,∵当x ∈æèöø0,1e 时,g ′()x <0;当x ∈æèöø1e ,+∞时,g ′()x >0,∴函数g ()x 在æèöø0,1e 上单调递减,在æèöø1e ,+∞上单调递增,∴g ()x ≥g æèöø1e =-1e ,令h ()x =xe -x -2e,则h ′()x =e -x ()1-x ,∵当x ∈()0,1时,h ′()x >0;当x ∈()1,+∞时,h ′()x <0,∴函数h ()x 在()0,1上单调递增,在()1,+∞上单调递减,∴h ()x ≤h ()1=-1e,∴当x >0时,g ()x >h ()x ,即不等式f ()x >1成立.由于不等式x ln x >xe -x -2e左右两侧的式子分别含有对数式、指数式,于是分别令g ()x =x ln x 、h ()x =xe -x -2e,那么只要证明g ()x min >h ()x max ,即可证明不等式恒成立.利用导数法求出函数g ()x 、h ()x 在定义域内的最值,即可证明不等式成立.在构造函数时,要注意观察不等式的结构特点,将其进行合理的变形,以便构造出合适的函数模型,从而顺利证明不等式.二、分离参数对于含参不等式恒成立问题,我们通常要采用分离参数法,将不等式中的参数、变量分离,即使不等式一侧的式子中含有参数、另一侧的式子中含有变量,得到形如a ≥f ()x 、a ≤f ()x 的不等式.探讨函数f ()x 在定义域内的最值与参数a 的大小关系,即可求得问赵瑛琦37考点透视题的答案.例3.已知函数f ()x =ln 2()1+x -x 21+x.(1)求函数f ()x 的单调区间;(2)若对于任意n ∈N ∗,不等式æèöø1+1n n +a≤e 恒成立,求参数a 的最大值.解:(1)函数f ()x 的单调递增区间为()-1,0,单调递减区间为()0,+∞;(过程略)(2)不等式æèöø1+1n n +a≤e 等价于()n +a ln æèöø1+1n ≤1,因为1+1n ≥1,所以a ≤1ln æèöø1+1n -n,设g ()x =1ln ()1+x -1x ,x ∈(]0,1,则g ′()x =-1()1+x ln 2()1+x +1x 2=()1+x ln 2()1+x -x 2x 2()1+x ln 2()1+x ,由(1)可得ln 2()1+x -x 21+x≤0,即()1+x ln 2()1+x -x 2≤0,故当x ∈(]0,1时,g ′()x ≤0,函数g ()x 单调递减,即g ()x 在(]0,1上的最小值为g ()1=1ln 2-1,故a 的最大值为1ln 2-1.由于参数a 为指数,所以考虑对不等式左右两边的式子取对数,以将参数分离,得到a ≤1ln æèöø1+1n -n .只要求得1ln æèöø1+1n -n的最小值,即可求得a 的最大值.于是构造函数g ()x =1ln ()1+x -1x ,利用导数法求得函数的最小值,即可解题.在分离参数时,可通过移项、取对数、取倒数等方式,使参数与变量分离.例4.已知函数f ()x =-x ln x +a ()x +1,若f ()x ≤2a 在[)2,+∞上恒成立,求实数a 的取值范围.解:当x ≥2时,由f ()x ≤2a 可得a ≤x ln xx -1,令g ()x =x ln x x -1,x ≥2,∴g ′()x =ln x -x +1()x -12,令h ()x =ln x -x +1,x ≥2,∴h ′()x =1x-1,∵当x ≥2时,h ′()x <0,函数h ()x 单调递减,∴h ()x ≤h ()2=ln 2+1>0,∴g ′()x >0,函数g ()x 在[)2,+∞上单调递增,∴g ()x ≥g ()2=2ln 2,∴a ≤g ()x min =g ()2=2ln 2,∴实数a 的取值范围为(]-∞,2ln 2.先将不等式变形,使参数a 单独在不等式的左边,得到不等式a ≤x ln xx -1;然后在定义域[)2,+∞内求不含参函数式的最小值,即可求得参数a 的取值范围.三、数形结合有时不等式中的代数式可用几何图形表示出来,如y =kx 表示的是一条直线;y =a x 、y =x a 表示的是两条曲线;x 2+y 2=1表示的是一个圆,此时就可以采用数形结合法,根据代数式的几何意义画出图形,通过分析图形中曲线、直线之间的位置关系,研究图形的性质,来证明不等式成立.例5.若不等式e x ≥kx 对任意x 恒成立,则实数k 的取值范围为_____.解:设过原点的直线与y =e x相切于点()x 0,ex 0,∵y ′=e x,∴由几何导数的意义可知切线的斜率为k =e x,∴切线的方程为y -e x 0=e x 0()x -x 0,∵切线经过点()0,0,可得x 0=1,∴切线的斜率k =e .由图可知,要使等式e x ≥kx 恒成立,需使y =e x的图象始终在直线y =kx 的上方,∴0≤k ≤e .根据不等式两侧式子的几何意义画出图形,即可将不等式问题看作函数y =e x 和直线y =kx 的位置关系问题.结合图形讨论函数y =e x 和直线y =kx 的位置关系,并根据导函数的几何意义求得切线的方程,即可得到关于参数的新不等式.运用数形结合法解题,需密切关注直线、曲线之间的临界情形,如相切、相交的情形,从而确定参数的临界值.可见,解答不等式恒成立问题,需注意以下几点:(1)仔细观察不等式的结构特点,并将其进行合理的变形,如作差、移项、分离参数;(2)合理构造函数模型,将问题转化为函数最值问题,以便利用导数法、函数的单调性求得最值;(3)灵活运用数形结合思想,以直观、便捷的方式来解题.(作者单位:江苏省泗洪姜堰高级中学)38。

专题12 利用导数研究不等式恒成立问题(解析版)

专题12 利用导数研究不等式恒成立问题(解析版)

专题12利用导数研究不等式恒成立问题不等式恒成立问题的基本类型类型1:任意x ,使得f (x )>0,只需f (x )min >0.类型2:任意x ,使得f (x )<0,只需f (x )max <0.类型3:任意x ,使得f (x )>k ,只需f (x )min >k .类型4:任意x ,使得f (x )<k ,只需f (x )max <k .类型5:任意x ,使得f (x )>g (x ),只需h (x )min =[f (x )-g (x )]min >0.类型6:任意x ,使得f (x )<g (x ),只需h (x )max =[f (x )-g (x )]max <0.(1)构造函数分类讨论:遇到f (x )≥g (x )型的不等式恒成立问题时,一般采用作差法,构造“左减右”的函数h (x )=f (x )-g (x )或“右减左”的函数u (x )=g (x )-f (x ),进而只需满足h (x )min ≥0或u (x )max ≤0,将比较法的思想融入函数中,转化为求解函数最值的问题,适用范围较广,但是往往需要对参数进行分类讨论.(2)分离函数法:分离参数法的主要思想是将不等式变形成一个一端是参数a ,另一端是变量表达式v (x )的不等式后,应用数形结合思想把不等式恒成立问题转化为水平直线y =a 与函数y =v (x )图象的交点个数问题来解决.可化为不等式恒成立问题的基本类型类型1:函数f (x )在区间D 上单调递增,只需f ′(x )≥0.类型2:函数f (x )在区间D 上单调递减,只需f ′(x )≤0.类型3:∀x 1,x 2∈D ,f (x 1)>g (x 2),只需f (x )min >g (x )max .类型4:∀x 1∈D 1,∃x 2∈D 2,f (x 1)>g (x 2),只需f (x )min >g (x )min .类型5:∀x 1∈D 1,∃x 2∈D 2,f (x 1)<g (x 2),只需f (x )max <g (x )max .(1)∀x 1∈D 1,∃x 2∈D 2,f (x 1)>g (x 2),等价于函数f (x )在D 1上的最小值大于g (x )在D 2上的最小值即f (x )min >g (x )min (这里假设f (x )min ,g (x )min 存在).其等价转化的基本思想是:函数y =f (x )的任意一个函数值大于函数y =g (x )的某一个函数值,但并不要求大于函数y =g (x )的所有函数值.(2)∀x 1∈D 1,∃x 2∈D 2,f (x 1)<g (x 2),等价于函数f (x )在D 1上的最大值小于函数g (x )在D 2上的最大值(这里假设f (x )max ,g (x )max 存在).其等价转化的基本思想是:函数y =f (x )的任意一个函数值小于函数y =g (x )的某一个函数值,但并不要求小于函数y =g (x )的所有函数值.典例1.已知函数f (x )=ax +ln x +1,若对任意的x >0,f (x )≤x e 2x 恒成立,求实数a 的取值范围.【解析】法一:构造函数法设g (x )=x e 2x -ax -ln x -1(x >0),对任意的x >0,f (x )≤x e 2x 恒成立,等价于g (x )≥0在(0,+∞)上恒成立,则只需g (x )min ≥0即可.因为g ′(x )=(2x +1)e 2x -a -1x ,令h (x )=(2x +1)e 2x -a -1x (x >0),则h ′(x )=4(x +1)e 2x +1x2>0,所以h (x )=g ′(x )在(0,+∞)上单调递增,因为当x ―→0时,h (x )―→-∞,当x ―→+∞时,h (x )―→+∞,所以h (x )=g ′(x )在(0,+∞)上存在唯一的零点x 0,满足(2x 0+1)e2x 0-a -1x 0=0,所以a =(2x 0+1)e2x 0-1x 0,且g (x )在(0,x 0)上单调递减,在(x 0,+∞)上单调递增,所以g (x )min =g (x 0)=x 0e2x 0-ax 0-ln x 0-1=-2x 20e2x 0-ln x 0,则由g (x )min ≥0,得2x 20e2x 0+ln x 0≤0,此时0<x 0<1,e2x 0≤-ln x 02x 20,所以2x 0+ln(2x 0)≤ln(-ln x 0)+(-ln x 0),设S (x )=x +ln x (x >0),则S ′(x )=1+1x>0,所以函数S (x )在(0,+∞)上单调递增,因为S (2x 0)≤S (-ln x 0),所以2x 0≤-ln x 0即e2x 0≤1x 0,所以a =(2x 0+1)e2x 0-1x 0≤(2x 0+1)·1x 0-1x 0=2,所以实数a 的取值范围为(-∞,2].法二:分离参数法因为f (x )=ax +ln x +1,所以对任意的x >0,f (x )≤x e 2x 恒成立,等价于a ≤e 2x -ln x +1x在(0,+∞)上恒成立.令m (x )=e 2x-ln x +1x (x >0),则只需a ≤m (x )min 即可,则m ′(x )=2x 2e 2x +ln x x 2,再令g (x )=2x 2e 2x +ln x (x >0),则′(x )=4(x 2+x )e 2x +1x>0,所以g (x )在(0,+∞)上单调递增,因为=e 8-2ln 2<0,g (1)=2e 2>0,所以g (x )有唯一的零点x 0,且14<x 0<1,所以当0<x <x 0时,m ′(x )<0,当x >x 0时,m ′(x )>0,所以m (x )在(0,x 0)上单调递减,在(x 0,+∞)上单调递增,因为2x 20e2x 0+ln x 0=0,所以ln 2+2ln x 0+2x 0=ln(-ln x 0),即ln(2x 0)+2x 0=ln(-ln x 0)+(-ln x 0),设s (x )=ln x +x (x >0),则s ′(x )=1x+1>0,所以函数s (x )在(0,+∞)上单调递增,因为s (2x 0)=s (-ln x 0),所以2x 0=-ln x 0,即e2x 0=1x 0,所以m (x )≥m (x 0)=e2x 0-ln x 0+1x 0=1x 0-ln x 0x 0-1x 0=2,则有a ≤2,所以实数a 的取值范围为(-∞,2].典例2.设函数f (x )=ln x +k x ,k ∈R.(1)若曲线y =f (x )在点(e ,f (e))处的切线与直线x -2=0垂直,求f (x )的单调性和极小值(其中e 为自然对数的底数);(2)若对任意的x 1>x 2>0,f (x 1)-f (x 2)<x 1-x 2恒成立,求k 的取值范围.【解析】(1)由条件得f ′(x )=1x -k x2(x >0),∵曲线y =f (x )在点(e ,f (e))处的切线与直线x -2=0垂直,∴f ′(e)=0,即1e -k e 2=0,得k =e ,∴f ′(x )=1x -e x 2=x -e x2(x >0),由f ′(x )<0得0<x <e ,由f ′(x )>0得x >e ,∴f (x )在(0,e)上单调递减,在(e ,+∞)上单调递增.当x =e 时,f (x )取得极小值,且f (e)=ln e +e e=2.∴f (x )的极小值为2.(2)由题意知,对任意的x 1>x 2>0,f (x 1)-x 1<f (x 2)-x 2恒成立,设h (x )=f (x )-x =ln x +k x-x (x >0),则h (x )在(0,+∞)上单调递减,∴h ′(x )=1x -k x2-1≤0在(0,+∞)上恒成立,即当x >0时,k ≥-x 2+x +14恒成立,∴k ≥14.故k 的取值范围是14,+典例3.已知函数f (x )=13x 3+x 2+ax .(1)若函数f (x )在区间[1,+∞)上单调递增,求实数a 的最小值;(2)若函数g (x )=x ex ,对∀x 1∈12,2,∃x 2∈12,2,使f ′(x 1)≤g (x 2)成立,求实数a 的取值范围.【解析】(1)由题设知f ′(x )=x 2+x a ≥0在[1,+∞)上恒成立,即a ≥-(x +1)2+1在[1,+∞)上恒成立,而函数y =-(x +1)2+1在[1,+∞)单调递减,则y max =-3,∴a ≥-3,∴a 的最小值为-3.(2)“对∀x 1∈12,2,∃x 2∈12,2,使f ′(x 1)≤g (x 2)成立”等价于“当x ∈12,2时,f ′(x )max ≤g (x )max ”.∵f ′(x )=x 2+2x +a =(x +1)2+a -1在12,2上单调递增,∴f ′(x )max =f ′(2)=8+a .而g ′(x )=1-x e x,由g ′(x )>0,得x <1,由g ′(x )<0,得x >1,∴g (x )在(-∞,1)上单调递增,在(1,+∞)上单调递减.∴当x ∈12,2时,g (x )max =g (1)=1e .由8+a ≤1e ,得a ≤1e-8,∴实数a ∞,1e -8.典例4.已知函数f (x )=3x -3x +1,g (x )=-x 3+32(a +1)x 2-3ax -1,其中a 为常数.(1)当a =1时,求曲线g (x )在x =0处的切线方程;(2)若a <0,对于任意的x 1∈[1,2],总存在x 2∈[1,2],使得f (x 1)=g (x 2),求实数a 的取值范围.【解析】(1)当a =1时,g (x )=-x 3+3x 2-3x -1,所以g ′(x )=-3x 2+6x -3,g ′(0)=-3,又因为g (0)=-1,所以曲线g (x )在x =0处的切线方程为y +1=-3x ,即3x +y +1=0.(2)f (x )=3x -3x +1=3(x +1)-6x +1=3-6x +1,当x ∈[1,2]时,1x +1∈13,12,所以-6x +1∈[-3,-2],所以3-6x +1∈[0,1],故f (x )在[1,2]上的值域为[0,1].由g (x )=-x 3+32(a +1)x 2-3ax -1,可得g ′(x )=-3x 2+3(a +1)x -3a =-3(x -1)(x -a ).因为a <0,所以当x ∈[1,2]时,g ′(x )<0,所以g (x )在[1,2]上单调递减,故当x ∈[1,2]时,g (x )max =g (1)=-1+32(a +1)-3a -1=-32a -12,g (x )min =g (2)=-8+6(a +1)-6a -1=-3,即g (x )在[1,2]上的值域为-3,-32a -12.因为对于任意的x 1∈[1,2],总存在x 2∈[1,2],使得f (x 1)=g (x 2),所以[0,1]⊆-3,-32a -12,所以-32a -12≥1,解得a ≤-1,故a 的取值范围为(-∞,-1].专项突破练一、单选题1.若不等式4342x x a ->-对任意实数x 都成立,则实数a 的取值范围是()A .27a <-B .25a >-C .29a ≥D .29a >【解析】43322()4,()4124(3)f x x x f x x x x x '=-=-=-,当3x <时,()0f x '<,当3x >时,()0f x '>,()f x 的递减区间是(,3)-∞,递增区间是(3,)+∞,所以3,()x f x =取得极小值,也是最小值,min ()(3)27f x f ==-,不等式4342x x a ->-对任意实数x 都成立,所以272,29a a ->->.故选:D.2.已知函数()22f x ax x a =-+,对[]1,2x ∀∈都有()0f x ≤成立,则实数a 的取值范围是()A .(],0-∞B .4,5⎛⎤-∞ ⎥⎝⎦C .(],1-∞D .[]1,0-【解析】函数()22f x ax x a =-+,对[]1,2x ∀∈都有()0≤f x ,当[]1,2x ∈时,()0≤f x 即220ax x a -+≤,即为()221a x x +≤,可化为()212x a x ≤+令()22()1x g x x +=,则()()22'22221)22((12(212))x x x x g x x x -++-++==当[]1,2x ∈时,'()0g x <,单调递减.因此()min 2224()(2)152g x g ⨯==+=,所以min 4()5a g x ≤=故实数a 的取值范围是4,5⎛⎤-∞ ⎥⎝⎦,故选B 3.已知函数()32183833f x x x x =-+-,()lng x x x =-,若()120,3x x ∀∈,,()()12g x k f x +≥恒成立,则实数k 的取值范围是()A .[)2ln 2,++∞B .[)3,∞-+C .5,3⎡⎫+∞⎪⎢⎣⎭D .[)3,+∞【解析】()()()26824f x x x x x '=-+=--,当()0,2x ∈时,()0f x '>,()f x 单调递增,当()2,3x ∈时,()0f x '<,()f x 单调递减,所以()f x 在()0,3上的最大值是()24f =.()111x g x x x-'=-=,当()0,1x ∈时,()0g x '<,()g x 单调递减,当()1,3x ∈时,()0g x '>,()g x 单调递增,所以()g x 在()0,3上的最小值是()11g =,若1x ∀,()20,3x ∈,()()12g x k f x +≥恒成立,则()()max min g x k f x +≥⎡⎤⎣⎦,即14k +≥,所以3k ≥,所以实数k 的取值范围是[)3,+∞.故选:D .4.已知不等式()()23ln 1231x x a -+≤+对任意[]0,1x ∈恒成立,则实数a 的最小值为()A .1ln 22-B .113ln 622--C .13-D .113ln 622+【解析】设()()()23ln 11=-+>-f x x x x ,则()321211-'=-=++x f x x x ,当102x <<时,()0f x '<,()f x 单调递减,当112x <<时,()0f x '>,()f x 单调递增,()003ln10=-=f ,()123ln 20=-<f ,不等式()()23ln 1231x x a -+≤+对任意[]0,1x ∈恒成立可转化为对任意[]0,1x ∈时()()max 231+≥a f x ,所以()2310+≥a ,解得13a ≥-.故选:C.5.若关于x 的不等式sin x x ax -≥,对[]0,x π∈恒成立,则实数a 的取值范围是()A .(],1-∞-B .(],1-∞C .4,π⎛⎫-∞- ⎪⎝⎭D .4,∞π⎛⎤- ⎥⎝⎦【解析】因为不等式sin x x ax -≥,对[]0,x π∈恒成立,当0x =时,显然成立,当(0,]x π∈,sin 1xa x ≤-恒成立,令()sin 1x f x x =-,则()2cos sin x x xf x x -'=,令()cos sin g x x x x =-,则()sin 0g x x x '=-≤在(0,]π上成立,所以()g x 在(0,]π上递减,则()()00g x g <=,所以()0f x '<在(0,]π上成立,所以()f x 在(0,]π上递减,所以()()min 1f x f π==-,所以1a ≤-,故选:A 6.若关于x 的不等式()()22e 222ln 1x a x a a x -+-+>+-在()2,+∞上恒成立,则实数a 的取值范围为()A .1,e ⎡-+∞⎫⎪⎢⎣⎭B .()1,-+∞C .[)1,-+∞D .[)2,-+∞【解析】依题意,()()()22e 221ln 1x a x x a x -+->-+-,则()()222e ln e 21ln 1x x a x a x --+>-+-(*).令()2ln g t t a t =+(1)t >,则(*)式即为()()2e 1x g g x ->-.又2e 11x x ->->在()2,+∞上恒成立,故只需()g t 在()1,+∞上单调递增,则()20ag t t '=+≥在()1,+∞上恒成立,即2a t ≥-在()1,+∞上恒成立,解得2a ≥-.故选:D.7.已知函数()2sin f x x x =+,若ln (1)0a f x f x ⎛⎫++-≥ ⎪⎝⎭对(]0,2x ∈恒成立,则实数a 的取值范围为()A .[)1,+∞B .[)2,+∞C .[]1,2D .()1,+∞【解析】由题意,函数()2sin f x x x =+的定义域为R ,其满足()()f x f x -=-,所以函数()f x 为奇函数,且()2cos 0f x x =+>',所以函数()f x 为R 上的增函数,若ln (1)0a f x f x ⎛⎫++-≥ ⎪⎝⎭对(]0,2x ∈恒成立,则ln (1)a f x f x ⎛⎫+≥ ⎪⎝⎭对(]0,2x ∈恒成立,即ln 1a x x+≥对(]0,2x ∈恒成立,即ln a x x x ≥-对(]0,2x ∈恒成立,设()(]ln 0,2,h x x x x x ∈=-,可得()ln h x x '=-,当01x <<时,()0h x '>;当12x <≤时,()0h x '<,所以()h x 在(0,1)上单调递增,在(1,2]单调递减,所以()max (1)1h x h ==,所以1a ≥,即实数a 的取值范围为[1,)+∞.故选:A.8.已知不等式22ln 0ax x +-≥恒成立,则a 的取值范围为()A .21,e ⎡⎫+∞⎪⎢⎣⎭B .22,e ⎡⎫+∞⎪⎢⎣⎭C .210,e ⎛⎤ ⎥⎝⎦D .220,e ⎛⎤ ⎥⎝⎦【解析】由题设,可知:,()0x ∈+∞,问题转化为2(ln 1)x a x -≥在,()0x ∈+∞上恒成立,令ln 1()x f x x -=,则22ln ()x f x x-'=,当20e x <<时()0f x '>,即()f x 递增;当2e x >时()0f x '<,即()f x 递减;所以2max 21()(e )e f x f ==,故22e a ≥.故选:B 9.若函数()ln f x x =,g (x )=313x 对任意的120x x >>,不等式112212()()()()x f x x f x m g x g x ->-恒成立,则整数m 的最小值为()A .2B .1C .0D .-1【解析】因为31()3g x x =单调递增,120x x >>,所以12()()0g x g x >>,即12()()0g x g x ->,原不等式恒成立可化为122211())((())x m f x x f g x mg x x -->恒成立,即120x x >>时,111222()()()()mg x x f x mg x x f x ->-恒成立,即函数3())ln ((3)m xf x x x x h x mg x ==--在(0,)+∞上为增函数,所以2ln 10()mx h x x '--≥=在(0,)+∞上恒成立,即2ln 1x m x +≥,令2ln )1(k x x x +=,则32l (n )1x k x x '+=-,当120e x -<<时,()0k x '>,()k x 单调递增,当12e x ->时,()0k x '<,()k x 单调递减,故当12e x -=时,函数2ln )1(k x x x +=的最大值为e2,即e2m ≥恒成立,由m ∈Z 知,整数m 的最小值为2.故选:A二、多选题10.已知函数22,0(),0x x x f x e x ⎧+<=⎨≥⎩,满足对任意的x ∈R ,()f x ax ≥恒成立,则实数a 的取值可以是()A .-B .CD .【解析】因为函数22,0(),0x x x f x e x ⎧+<=⎨≥⎩,满足对任意的x ∈R ,()f x ax ≥恒成立,当0x <时,22x ax +≥恒成立,即2a x x ≥+恒成立,因为2x x +≤-2x x =,即x =时取等号,所以a ≥-.当0x =时,00e ≥恒成立.当0x >时,x e ax ≥恒成立,即xe a x ≤恒成立,设()x e g x x =,()()221xx x e x xe e g x x x --'==,()0,1x ∈,()0g x '<,()g x 为减函数,()1,x ∈+∞,()0g x '>,()g x 为增函数,所以()()min 1g x g e ==,所以a e ≤,综上所述:a e -≤≤.故选:ABC 11.设函数()()e 1x f x ax a +=-+∈N ,若()0f x >恒成立,则实数a 的可能取值是()A .1B .2C .3D .4【解析】()x f x e a '=-,令()0f x '=,得ln x a =,当ln x a <时,()0f x '<,当ln x a >时,()0f x '>,所以函数()f x 在(),ln a -∞上单调递减,在()ln ,a +∞上单调递增.所以ln x a =时,函数取得最小值ln 1a a a -+,因为()0f x >恒成立,所以ln 10a a a -+>恒成立,且a +∈N ,可得实数a 的所有可能取值1,2,3,故选:ABC.12.已知函数()312x f x x +=+,()()42e x g x x =-,若[)120,x x ∀∈+∞,,不等式()()()()2221e e t g x t f x +≤+恒成立,则正数t 的取值可以是()A .6eB .(2eC .(2e +D .2e【解析】因为()()3253153222x x f x x x x +-+===-+++,所以()f x 在[)0,∞+上单调递增,所以对[0,)x ∀∈+∞,()()102f x f ≥=;()()42e x g x x =-,所以()()()'2e 42e 21e x x x g x x x =-+-=-,当1x >时,()'0g x <;当01x <<时,()'0g x >,函数()g x 在()0,1上单调递增,在()1,+∞上单调递减,∴()max ()12e g x g ==;因为0t >,任意[)12,0,x x ∈+∞,不等式()()()()2221e e t g x t f x +≤+恒成立,即()()221e 2e e 2t t +⋅≤+,整理得224e 3e 0t t --≥,解得(2e t ≤或(2e t ≥,所以正数t 的取值范围为()2e,⎡+∞⎣;6e 与(2e 均在区间()2⎡+∞⎣内,(2e +与2e 均不在区间()2e,⎡+∞⎣内;故选:AB .13.已知()2121()1e 2x f x a x -=--,若不等式11ln 1f f x x ⎛⎫⎛⎫> ⎪ ⎪-⎝⎭⎝⎭在(1,)+∞上恒成立,则a 的值可以为()A .B .1-C .1D【解析】设1ln (1)y x x x =-->,则110y x '=->,所以1ln y x x =--在(1,)+∞上单调递增,所以1ln 0x x -->,所以ln 1,(1,)x x x <-∈+∞,∴0ln 1x x <<-,∴110ln 1x x >>-.又11ln 1f f x x ⎛⎫⎛⎫> ⎪ ⎪-⎝⎭⎝⎭在(1,)+∞上恒成立,所以()f x 在(1,)+∞上单调递增,所以()21()1e 0x f x a x -=--≥'对(1,)x ∀∈+∞恒成立,即211e x xa --≥恒成立.令111(),()e e x x x xg x g x ---='=,当1x >时,()0g x '<,故()(1)1g x g <=,∴211a -≥,解得a ≥或a ≤a 的值可以为AD.三、填空题14.已知函数2()2ln f x x x a =--,若()0f x ≥恒成立,则a 的取值范围是________.【解析】由2()2ln f x x x a =--,得()21(1)2()2x x f x x x x-+'=-=,又函数()f x 的定义域为(0,)+∞,令()01f x x =⇒=',当01x <<时,()0f x '<,函数()f x 单调递减;当1x >时,()0f x '>,函数()f x 单调递增;故1x =是函数()f x 的极小值点,也是最小值点,且(1)1f a =-,要使()0f x ≥恒成立,需10a -≥,则1a ≤.15.当(]0,1x ∈时,不等式32430ax x x -++≥恒成立,则实数a 的取值范围是______.【解析】根据题意,当(]0,1x ∈时,分离参数a ,得23143a x x x ≥--恒成立.令1t x=,∴1t ≥时,2343t t a t --≥恒成立.令()2343t t g t t =--,则()()()2189911t t t t g t '=--=-++,当1t ≥时,()0g t '<,∴函数()g t 在[)1,+∞上是减函数.则()()16g t g ≤=-,∴6a ≥-.∴实数a 的取值范围是[)6-+∞,.16.已知函数()2f x x a =+,(ln 2g x x x =-,如果对任意的1x ,2122x ⎡⎤∈⎢⎥⎣⎦,,都有()()12f x g x ≤成立,则实数a 的取值范围是_________.【解析】由()ln 2g x x x =-,可得()112'2x g x x x-=-=,当122x ⎡⎤∈⎢⎥⎣⎦,()'0g x ≤,所以()g x 在122⎡⎤⎢⎥⎣⎦,单调递减,()min ()2ln24g x g ∴==-,()2f x x a =+ ,()f x ∴在122⎡⎤⎢⎥⎣⎦上单调递增,()max ()24f x f a ∴==+, 对任意的12122x x ⎡⎤∈⎢⎥⎣⎦,,都有()()12f x g x ≤成立,4ln24a ∴+≤-,ln28a ∴≤-17.已知不等式[]1ln(1)x e x m x x -->-+对一切正数x 都成立.则实数m 的取值范围是___________.【解析】设()()ln 1f x x x =-+,则()11x x f e e x -=--,故()()1x f e mf x ->对一切正数x 都成立,()()110011x f x x x x '=-=>>++,故()f x 在()0,∞+上单调递增,()()0ln 010f x -+=>,()()1x f e m f x -∴<恒成立,由()1x h x e x =--,()1xh x e '=-在()0,∞+上恒大于零,所以()h x 在()0,∞+上单调递增,所以()()00h x h >=,1x e x ∴->在()0,∞+上恒成立,()()1xf e f x ∴->,()()11x f e f x -∴>,1m ∴≤.四、解答题18.设()()32114243f x x a x ax a =-+++,其中a R ∈.(1)若()f x 有极值,求a 的取值范围;(2)若当0x ≥,()0f x >恒成立,求a 的取值范围.【解析】(1)由题意可知:()()´2214f x x a x a =-++,且()f x 有极值,则()´0f x =有两个不同的实数根,故()()224116410a a a ∆=+-=->,解得:1a ≠,即()(),11,a ∈-∞⋃(2)由于0x ≥,()0f x >恒成立,则()0240f a =>,即0a >,由于()()()()´221422f x x a x a x x a =-++=--,则①当01a <<时,()f x 在2x a =处取得极大值、在2x =处取得极小值,当02x a £<时,()f x 为增函数,因为()00f >,所以()f x 恒大于0,当2x a ≥时,()()422803min f x f a ==->,解得:121a >;②当1a =时,()0f x ¢³,即()f x 在[)0,+∞上单调递增,且()0240f =>,则()()00f x f ³>恒成立;③当1a >时,()f x 在2x =处取得极大值、在2x a =处取得极小值,当02x ≤<时,()f x 为增函数,因为()00f >,所以()f x 恒大于0,当2x ≥时,()()3243min 24240f x f a a a a ==-++>,解得36a -<<,综上所述,a 的取值范围是1216a <<.19.已知函数()ln 32af x ax x =--,其中0a ≠.(1)求函数()f x 的单调区间;(2)若()310xf x x +-≥对任意[)1,x ∞∈+恒成立,求实数a 的取值范围.【解析】(1)函数()f x 的定义域为()0,∞+,()()2122a x a f x a x x-'=-=①当0a >时,令()0f x '>,可得12x >,此时函数()f x 的增区间为1,2⎛⎫+∞ ⎪⎝⎭,减区间为10,2⎛⎫⎪⎝⎭②当0a <时,令()0f x '>,可得102x <<,此时函数()f x 的增区间为10,2⎛⎫⎪⎝⎭,减区间为1,2⎛⎫+∞ ⎪⎝⎭综上所述:当0a >时,函数()f x 的增区间为1,2⎛⎫+∞ ⎪⎝⎭,减区间为10,2⎛⎫⎪⎝⎭;当0a <时,函数()f x 的增区间为10,2⎛⎫⎪⎝⎭,减区间为1,2⎛⎫+∞ ⎪⎝⎭(2)()310xf x x +-≥在[)1,x ∞∈+恒成立,则2ln 12aax x x -≥在[)1,x ∞∈+恒成立,即21ln 12a x x x ⎛⎫-≥ ⎪⎝⎭在[)1,x ∞∈+恒成立。

不等式的恒成立问题基本解法9种解法

不等式的恒成立问题基本解法9种解法

不等式的恒成立问题基本解法9种解法在解决不等式的恒成立问题时,有多种基本解法可以选择,每种解法都有其独特的特点和适用场景。

在本文中,我们将深入探讨不等式的恒成立问题,并从不同的角度提出9种基本解法,帮助读者更全面、深入地理解这一主题。

1. 直接法直接法是解决不等式的恒成立问题最直接的方法。

通过对不等式的特定性质和条件进行分析,直接得出不等式恒成立的结论。

这种方法通常适用于简单的不等式,能够快速得到结果。

2. 间接法间接法是一种通过反证法或对立法解决不等式的恒成立问题的方法。

当直接法无法直接得出结论时,可以尝试使用间接法来推导不等式的恒成立条件。

这种方法通常适用于较为复杂的不等式,可以通过推翻假设得到结论。

3. 分类讨论法分类讨论法是一种将不等式的条件分为多种情况进行分析的方法。

通过将不同情况进行分类讨论,找出每种情况下不等式的恒成立条件,从而得出综合结论。

这种方法适用于不等式条件较为复杂的情况,能够全面考虑不同情况下的特殊性。

4. 代入法代入法是一种通过代入特定的数值进行验证的方法。

通过选择合适的数值代入不等式中,可以验证不等式在特定条件下是否恒成立。

这种方法通常适用于验证不等式的特定性质或条件。

5. 齐次化法齐次化法是一种将不等式中的不定因子统一化的方法。

通过将不等式中的不定因子进行统一化,可以简化不等式的表达形式,从而更容易得出不等式的恒成立条件。

这种方法通常适用于不等式较为复杂的情况,能够简化问题的复杂度。

6. 几何法几何法是一种通过几何形象进行分析的方法。

通过将不等式转化为几何图形,可以直观地理解不等式的恒成立条件。

这种方法通常适用于具有几何意义的不等式问题,能够通过几何图形进行直观分析。

7. 递推法递推法是一种通过递归关系进行推导的方法。

通过建立递推关系,可以得出不等式的递推解,从而得出恒成立条件。

这种方法通常适用于递推关系较为明显的不等式问题,能够通过递推求解不等式问题。

8. 极限法极限法是一种通过极限的性质进行分析的方法。

八种解法解决不等式恒成立问题

八种解法解决不等式恒成立问题

八种解法解决不等式恒成立问题1最值法例1.已知函数)0(ln )(44>-+=x c bx x ax x f 在1=x 处取得极值c --3,其中c b a ,,为常数.(I )试确定b a ,的值;(II )讨论函数)(x f 的单调区间;(III )若对于任意0>x ,不等式22)(c x f -≥恒成立,求c 的取值范围.分析:不等式22)(c x f -≥恒成立,可以转化为2min 2)(c x f -≥解:(I )(过程略)3,12-==b a .(II )(过程略)函数)(x f 的单调减区间为)1,0(,函数)(x f 的单调增区间为),1(+∞. (III )由(II )可知,函数)(x f 在1=x 处取得极小值c f --=3)1(,此极小值也是最小值.要使22)(c x f -≥(0>x )恒成立,只需223c c -≥--,解得23≥c 或1-≤c . 所以c 的取值范围为),23[]1,(+∞⋃--∞.评注:最值法是我们这里最常用的方法.a x f ≥)(恒成立a x f ≥⇔)(min ;a x f ≤)(恒成立a x f ≤⇔)(max .2分离参数法例2.已知函数x x x x f +-+=1)1(ln )(22(I )求函数)(x f 的单调区间;(II )若不等式e n a n ≤++)11(对于任意*∈N n 都成立(其中e 是自然对数的底数),求a 的最大值.分析:对于(II )不等式e na n ≤++)11(中只有指数含有a ,故可以将函数进行分离考虑. 解:(I )(过程略)函数)(x f 的单调增区间为)0,1(-,)(x f 的单调减区间为),0(+∞(II )不等式e n a n ≤++)11(等价于不等式1)11ln()(≤++n a n ,由于111>+n ,知1)11ln()(≤++na n n n a -+≤⇔)11ln(1;设x x x g 1)1ln(1)(-+= ]1,0(∈x ,则221)1(ln )1(1)(x x x x g +++-=')1(ln )1()1(ln )1(2222x x x x x x ++-++=. 由(I )知,01)1(ln 22≤+-+x x x ,即0)1(ln )1(22≤-++x x x ;于是,0)(<'x g ]1,0(∈x ,即)(x g 在区间]1,0(上为减函数.故)(x g 在]1,0(上的最小值为12ln 1)1(-=g . 所以a 的最大值为12ln 1-. 评注:不等式恒成立问题中,常常先将所求参数从不等式中分离出来,即:使参数和主元分别位于不等式的左右两边,然后再巧妙构造函数,最后化归为最值法求解.3 数形结合法例3.已知当]2,1(∈x 时,不等式x x a log )1(2≤-恒成立,则实数a 的取值范围是___.直角坐标系内作出函数2)1()(-=x x f x x g a log )(=在]2,1(∈x 观、简捷求解.解:在同一平面直角坐标系内作出函数2)1()(-=x x f 与函数x x g a log )(=在(∈x 图象(如右),从图象中容易知道:当0<a )(x g 上方,不合题意;当1>a 且]2,1(∈x 或部分点重合,就必须满足12log ≥a ,即21≤<a .故所求的a 的取值范围为]2,1(.评注:对不等式两边巧妙构造函数,数形结合,直观形象,是解决不等式恒成立问题的一种快捷方法. 4 变更主元法例4.对于满足不等式11≤≤-a 的一切实数a ,函数)24()4(2a x a x y -+-+=的值恒大于0,则实数x 的取值范围是___.分析:若审题不清,按习惯以x 为主元,则求解将非常烦琐.应该注意到:函数值大于0对一定取值范围的谁恒成立,则谁就是主元.解:设)44()2()(2+-+-=x x a x a f ,]1,1[+-∈a ,则原问题转化为0)(>a f 恒成立的问题. 故应该有⎩⎨⎧>>-0)1(0)1(f f ,解得1<x 或3>x . 所以实数x 的取值范围是),3()1,(+∞⋃-∞.评注:在某些特定的条件下,若能变更主元,转换思考问题的角度,不仅可以避免分类讨论,而且可以轻松解决恒成立问题.5 特殊化法例5.设0a 是常数,且1123---=n n n a a (*∈N n ).(I )证明:对于任意1≥n ,012)1(]2)1(3[51a a n n n n n n ⋅-+⋅-+=-. (II )假设对于任意1≥n 有1->n n a a ,求0a 的取值范围.分析:常规思路:由已知的递推关系式求出通项公式,再根据对于任意1≥n 有1->n n a a 求出0a 的取值范围,思路很自然,但计算量大.可以用特殊值探路,确定目标,再作相应的证明.解:(I )递推式可以化归为31)3(32311+-=--n n nn a a ,]51)3[(3251311--=---n n n n a a ,所以数列}513{-n n a 是等比数列,可以求得对于任意1≥n ,012)1(]2)1(3[51a a n n n n n n ⋅-+⋅-+=-. (II )假设对于任意1≥n 有1->n n a a ,取2,1=n 就有⎩⎨⎧>=->-=-0603101201a a a a a a 解得3100<<a ; 下面只要证明当3100<<a 时,就有对任意*∈N n 有01>--n n a a 由通项公式得011111215)1(2)1(332)(5a a a n n n n n n n ⋅⋅⋅-+⋅-⋅+⋅=------当12-=k n (*∈N k )时,02523322152332)(511101111=⋅-⋅+⋅>⋅⋅-⋅+⋅=--------n n n n n n n n a a a当k n 2=(*∈N k )时,023*********)(51101111=⋅-⋅>⋅⋅+⋅-⋅=-------n n n n n n n a a a ,可见总有1->n n a a . 故0a 的取值范围是)31,0(评注:特殊化思想不仅可以有效解答选择题,而且是解决恒成立问题的一种重要方法. 6分段讨论法例6.已知2)(--=a x x x f ,若当[]0,1x ∈时,恒有()f x <0,求实数a 的取值范围. 解:(i )当0x =时,显然()f x <0成立,此时,a R ∈(ii )当(]0,1x ∈时,由()f x <0,可得2x x -<a <2+x x , 令 (](]22(),(0,1);()(0,1)g x x x h x x x x x=-∈=+∈ 则221)(xx g +='>0,∴()g x 是单调递增,可知[]max ()(1)1g x g ==- 221)(xx h -='<0,∴()h x 是单调递减,可知[]min ()(1)3h x h == 此时a 的范围是(—1,3)综合i 、ii 得:a 的范围是(—1,3) .例7.若不等式032>+-ax x 对于]21,21[-∈x 恒成立,求a 的取值范围. 解:(只考虑与本案有关的一种方法)解:对x 进行分段讨论,当0=x 时,不等式恒成立,所以,此时R a ∈; 当]21,0(∈x 时,不等式就化为x x a 3+<,此时x x 3+的最小值为213,所以213<a ; 当)0,21[-∈x 时,不等式就化为x x a 3+>,此时x x 3+的最大值为213-,所以213->a ; 由于对上面x 的三个范围要求同时满足,则所求的a 的范围应该是上三个a 的范围的交集即区间)213,213(- 说明:这里对变量x 进行分段来处理,那么所求的a 对三段的x 要同时成立,所以,用求交集的结果就是所求的结果.评注:当不等式中左右两边的函数具有某些不确定的因素时,应该用分类或分段讨论方法来处理,分类(分段)讨论可使原问题中的不确定因素变化成为确定因素,为问题解决提供新的条件;但是最后综合时要注意搞清楚各段的结果应该是并集还是别的关系.7单调性法例8.若定义在),0(+∞的函数)(x f 满足)()()(xy f y f x f =+,且1>x 时不等式0)(<x f 成立,若不等式)()()(22a f xy f y x f +≤+对于任意),0(,+∞∈y x 恒成立,则实数a 的取值范围是___.解:设210x x <<,则112>x x ,有0)(12<x x f .这样,0)()()()()()()()(121112111212<=-+=-⋅=-x x f x f x f x x f x f x x x f x f x f ,则)()(12x f x f <,函数)(x f 在),0(+∞为减函数. 因此)()()(22a f xy f y x f +≤+⇔)()(22xy a f y x f ≤+⇔xy a y x ≥+22xy y x a 22+≤⇔;而2222=≥+xy xyxy y x (当且仅当y x =时取等号),又0>a ,所以a 的取值范围是]2,0(.评注:当不等式两边为同一函数在相同区间内的两个函数值时,可以巧妙利用此函数的单调性,把函数值大小关系化归为自变量的大小关系,则问题可以迎刃而解.8判别式法例9.若不等式012>++ax ax 对于任意R x ∈恒成立.则实数a 的取值范围是___. 分析:此不等式是否为一元二次不等式,应该先进行分类讨论;一元二次不等式任意R x ∈恒成立,可以选择判别式法.解:当0=a 时,不等式化为01>,显然对一切实数恒成立; 当0≠a 时,要使不等式012>++ax ax 一切实数恒成立,须有⎩⎨⎧<-=∆>0402a a a ,解得40<<a .综上可知,所求的实数a 的取值范围是)4,0[.不等式恒成立问题求解策略一般做法就是上面几种,这些做法是通法,对于具体问题要具体分析,要因题而异,如下例.例10.关于x 的不等式ax xx x ≥-++232525在]12,1[∈x 上恒成立,求 实数a 的取值范围.通法解:用变量与参数分离的方法,然后对变量进行分段处理;∵]12,1[∈x ,∴不等式可以化为a x x x x ≥-++5252;下面只要求x x xx x f 525)(2-++=在]12,1[∈x 时的最小值即可,分段处理如下.当]5,1[∈x 时,x x x x f 256)(2++-=,223225622562)(x x x x x x f -+-=-+-=',再令2562)(231-+-=x x x f ,0126)(21=+-='x x x f ,它的根为2,0;所以在区间)2,1[上有0)(1>'x f ,)(x f 递增,在区间]5,2(上有0)(1<'x f ,)(x f 递减,则就有2562)(231-+-=x x x f 在]5,1[∈x 的最大值是017)2(1<-=f ,这样就有0)(<'x f ,即)(x f 在区间]5,1[是递减.同理可以证明)(x f 在区间]12,5[是递增;所以,x x xx x f 525)(2-++=在]12,1[∈x 时的最小值为10)5(=f ,即10≤a . 技巧解:由于]12,1[∈x ,所以,25225≥+xx ,052≥-x x 两个等号成立都是在5=x 时;从而有10525)(2≥-++=x x x x x f (5=x 时取等号),即10≤a . 评注:技巧解远比通法解来得简单、省力、省时但需要扎实的数学基本功.。

“恒成立”的几种常用的解法

“恒成立”的几种常用的解法

“恒成立”的几种常用的解法已知不等式恒成立,求参数范围的问题,涉及函数、方程、不等式,综合性强,在高考中常常涉及,许多学生对此类问题不知从何着手,本文结合实例,谈谈这类问题常见的几种方法。

一.判别式法此方法适用于二次函数的情况,利用)0(02>>++a c bx ax的解集是R 0<∆⇔;)0(02<<++a c bx ax的解集是R 0<∆⇔,这类问题的特点是二次函数在R 上恒成立。

例1.已知函数3)(2++=ax x x f ,当时,a x f ≥)(恒成立,求a 的取值范围。

解:要使03x)(2≥-++≥a ax a x f 恒成立,即恒成立,必须且只需26,0124a 0)3(4a 22≤≤-∴≤-+≤--∆a a a 即=二.图象法此方法主要用于二次函数,指数对数函数,三角函数等,由其函数图象确定值域,进而解之。

类型1:作一个函数的图像:例2.已知函数3)(2++=ax x x f ,若]2,2[-∈x 时,a x f ≥)(恒成立,求a 的取值范围。

解:43)2(3)(222aa x ax x x f -++=++=(1) 当7,-2a f(-2)f(x)4a ,22min+==>-<-时,即a由Φ∈∴≤≥+a ,37a a 72a 得-(2) 当,4a-3f(x )4a 4,2222min=≤-≤≤-≤-时,即a由24,2a 6a 4a-32≤≤-∴≤-≤≥a 得(3) 当7,2a f(2)f(x)4a ,22min+==-<>-时,即a由47,7a a 72a -<≤-∴-≥≥+a 得 综上得]2,7[-∈a类型2:作两个函数的图像: 1.当时10≤≤x ,不等式kx x≥2sin π恒成立,则实数k 的取值范围是_______________.【答案】k ≤1【解析】作出2sin 1xy π=与kx y =2的图象,要使不等式kx x≥2sinπ成立,由图可知须k≤1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

不等式恒成立问题基本类型及常用解法类型1:设f(x)=ax+bf(x) >0在x ∈[]n m ,上恒成立⇔ ⎩⎨⎧0)(0)( n f m ff(x) <0在x ∈[]n m ,上恒成立⇔⎩⎨⎧0)(0)( n f m f .例1. 设y=(log 2x)2+(t-2)log 2x-t+1,若t 在[-2,2]上变化,y 恒取正值,求实数x 的取值范围。

解:设f(t)=y=(log 2x-1)t+(log 2x)2-2log 2x+1, t ∈[-2,2] 问题转化为:f(t)>0对t ∈[-2,2]恒成立 ⇔⎩⎨⎧-0)2(0)2( f f⇔⎪⎩⎪⎨⎧-=-01)(log 03log 4)(log 22222 x x x ⇒0<x <21或x >8。

故实数x 的取值范围是(0,21)∪(8,+∞)。

例2. 对于 -1≤a ≤1,求使不等式(21)ax x +2<(21)12-+a x 恒成立的x 的取值范围。

解:原不等式等价于x 2+ax<2x+a-1在a ∈[-1,1]上恒成立.设f(a)=(x-1)a+x 2-2x+1,则f(a)是a 的一次函数或常数函数, 要使f(a)>0在a ∈[-1,1]上恒成立,则须满足⎩⎨⎧-0)1(0)1( f f ⇔⎪⎩⎪⎨⎧+--023022 x x x x ⇒x>2或x<0 故实数的取值范围是(-∞,0)∪(2,+∞). 类型2:设f(x)=ax 2+bx+c (a ≠0)f(x) >0在x ∈R 上恒成立⇔a >0 且△<0;f(x) <0在x ∈R 上恒成立⇔a <0 且△<0. 说明:①.只适用于一元二次不等式②.若未指明二次项系数不等于0,注意分类讨论.例3.不等式3642222++++x x mmx x <1对一切实数x 恒成立,求实数m 的取值范围。

解:由4x 2+6x+3=(2x+23)2+43>0,对一切实数x 恒成立,从而,原不等式等价于 2x 2+2mx+m <4x 2+6x+3, (x ∈R)即:2x 2+(6-2m)x+(3-m)>0对一切实数x 恒成立。

则 △=(6-2m )2-8(3-m)<0 解得:1<m <3故实数m 的取值范围是(1,3)。

类型3:设f(x)=ax 2+bx+c (a ≠0) (1) 当a >0时① f(x) >0在x ∈[]n m ,上恒成立⇔⎪⎩⎪⎨⎧≤-0)(2 m f m a b 或⎪⎩⎪⎨⎧∆-o n ab m 2或⎪⎩⎪⎨⎧≥-0)(2 n f n a b⇔⎪⎩⎪⎨⎧≤-0)(2 m f m ab 或△<0或⎪⎩⎪⎨⎧≥-)(2 n f n a b . ② f(x) <0在x ∈[]n m ,上恒成立⇔⎩⎨⎧0)(0)( n f m f .(2) 当a <0时① f(x) >0在x ∈[]n m ,上恒成立⇔ ⎩⎨⎧0)(0)( n f m f ② f(x) <0在x ∈[]n m ,上恒成立⇔⎪⎩⎪⎨⎧≤-0)(2 m f m a b 或⎪⎩⎪⎨⎧∆-o n ab m 2或⎪⎩⎪⎨⎧≥-0)(2 n f n a b⇔⎪⎩⎪⎨⎧≤-0)(2 m f m ab 或△<0或⎪⎩⎪⎨⎧≥-)(2 n f n a b . 说明:只适用于一元二次不等式.类型4:a >f(x) 恒成立对x ∈D 恒成立⇔a >f(x)max ,a <f(x)对x ∈D 恒成立⇔ a <f(x)min .说明:①. f(x) 可以是任意函数②.这种思路是:首先是---分离变量,其次用---极端值原理。

把问题转化为求函数的最值,若f(x)不存在最值,可求出f(x)的范围,问题同样可以解出。

例4.(2000.上海)已知f(x)=xax x ++22 >0在x ∈[)+∞,1上恒成立,求实数a 的取值范围。

分析1:当x ∈[)+∞,1时,f(x) >0恒成立,等价于x 2+2x+a >0恒成立,只需求出g(x)= x 2+2x+a 在[)+∞,1上的最小值,使最小值大于0即可求出实数a 的取值范围。

解法1:∵ f(x)=xax x ++22 >0对 x ∈[)+∞,1恒成立⇔ x 2+2x+a >0对 x ∈[)+∞,1恒成立。

设g(x)= x 2+2x+a x ∈[)+∞,1问题转化为:g(x)min >0g(x)= x 2+2x+a=(x+1)2+a-1, x ∈[)+∞,1∴g(x)在[)+∞,1上是增函数。

∴g(x)min =g(1)=3+a∴ 3+a >0 ⇔ a >-3即所求实数a 的取值范围为a >-3。

分析2 :分离变量,转化为a >f(x)或a <f(x)恒成立问题, 然后利用极端值原理:a >f(x) 恒成立⇔a >f(x)maxa <f(x) 恒成立⇔ a <f(x)min .解法2:∵ f(x)=xax x ++22 >0对 x ∈[)+∞,1恒成立⇔ x 2+2x+a >0 对x ∈[)+∞,1恒成立。

⇔ a >-(x 2+2x )对x ∈[)+∞,1恒成立。

设ϕ(x)= -(x 2+2x ) x ∈[)+∞,1问题转化为:a >ϕ(x)maxϕ(x)= -(x 2+2x )=-(x+1)2+1 x ∈[)+∞,1∴ϕ(x)在[)+∞,1上是减函数。

∴ ϕ(x)max = ϕ(1)=-3∴ a >-3即所求实数a 的取值范围为a >-3。

例5.已知x ∈(]1,∞-时,不等式1+2x+(a-a 2).4x>0恒成立,求实数a 的取值范围。

分析:要求a 的取值范围,如何构造关于a 的不等式是关键,利用分离变量的方法可达到目的。

解:设2x =t, ∵x ∈(]1,∞-,∴t ∈(]2,0 原不等式可化为:a-a 2>21tt --. 要使上式对t ∈(]2,0恒成立,只需: a-a 2>(21t t --)max . t ∈(]2,0 21tt --=-(211+t )2+41由⎪⎭⎫⎢⎣⎡+∞∈,211t ∴(21t t --)m a x=-43∴a-a 2>-43即:4a 2-4a-3<0 从而 -21<a <23 类型5:①.f(x)>g(x) 对任意x ∈D 恒成立②. f (x 1)>g(x 2) 对任意x 1、x 2∈D 恒成立例6 已知f(x)=-x 3+ax,其中a ∈R ,g(x)=-21x 23,且f(x)<g(x)在x ∈(]1,0上恒成立,求实数a 的取值范围。

分析:有的同学把“f(x)<g(x)在x ∈(]1,0上恒成立”转化为:“当x ∈(]1,0时,f(x)max <g (x )min ,”然后求出a 的取值范围。

这种方法对吗?我们先来看一个例子,如图,当 x ∈[0,1] 时,f(x)max =0, g (x )min = - 21,并不满足 f(x)max < g (x )min显然这种转化方式是不对的。

错在哪里呢?原因在于用分离变量方法得到的不等式一边是参数,另一边是x 的函数关系式。

而此题解法中的不等式,两边都是关于x 的函数关系式,所以上面这种转化方式是错的。

正确的方法是先分离变量,再利用极端值原理。

解:f(x)<g(x)在x ∈(]1,0上恒成立⇔ -x 3+ax+21x 23<0 对x ∈(]1,0恒成立⇔ a <x 2-21x 21对x ∈(]1,0恒成立设h(x)= x 2-21x 21x ∈(]1,0问题转化为:a <h(x)minh /(x)=2x-x41=()()xx x x 4124.12++-由h /(x)=0,得x=41当x ∈ ⎪⎭⎫ ⎝⎛41,0时 h ’(x) <0,h(x)在⎪⎭⎫ ⎝⎛41,0递减。

当x ∈⎥⎦⎤ ⎝⎛1,41 时 h ’(x) >0,h(x)在⎥⎦⎤ ⎝⎛1,41 递减。

∴ h(x) 在x= 41时取最小值,h(x) min =163-∴a <163-例7.已知两个函数f(x)=8x 2+16x-k,g(x)=2x 3+5x 2+4x,其中k ∈R(1) 若对任意的x ∈[-3,3],都有f(x)≤g(x)成立,求k 的取值范围; (2) 若对任意的x 21,x ∈[-3,3],都有f(x 1)≤g(x 2),求k 的取值范围。

方法:①.“f(x)>g(x) 对任意x ∈D 恒成立”可通过分离变量,极端值原理可求得。

②.“ f (x 1)>g(x 2) 对任意x 1、x 2∈D 恒成立” ⇔ f(x)min >max )(x g。

相关文档
最新文档