勾股定理教学设计案例 zr

合集下载

勾股定理优秀教案

勾股定理优秀教案

勾股定理优秀教案【篇一:探索勾股定理优秀教案】—1——2——3—1.1探索勾股定理1.小明用火柴棒摆直角三角形,已知他摆两条直角边分别用了6根和8根火柴棒,他摆完这个直角三角形共用火柴棒()根a.20 b. 14 c. 24 d. 30 2.在rt△abc中,斜边ab=1,则ab2+bc2+ac2=()a.2 b. 4 c. 6d. 8 3.如图,阴影部分是一个正方形,则此正方形的面积为()a.8 b. 64 c. 16 d. 324.直角三角形的两条直角边的比为3:4,斜边长25cm,则斜边上的高为()a.10cm b. 12cm c. 15cmd. 20cm15 第3题—4—【篇二:勾股定理教学设计与反思】教学设计【篇三:《勾股定理》教学设计】《勾股定理》教学设计创新整合点本节课采用探究发现式教学,由浅入深,由特殊到一般地提出问题,鼓励学生采用观察分析、自主探索、合作交流的学习方法,让学生经历数学知识的形成与应用过程。

教材分析这节课是苏科版《义务教育课程标准实验教科书》八年级(下)教材《勾股定理》第一节的内容。

勾股定理的内容是全章内容的重点、难点,它的地位作用体现在以下三个方面:1、勾股定理是学习锐角三角函数与解直角三角形的基础,学生只有正确掌握了勾股定理的内容,才能熟练地运用它去解决生活中的测量问题。

2、本章“勾股定理”的内容在本册书中占有十分重要的地位,它是学习斜三角形、三角函数的基础,在知识结构上它起到了承上启下的作用,为学生的终生学习奠定良好的基础。

3、解直角三角形内容在航空、航海、工程建筑、机械制造、工农业生产等各个方面都有着广泛的应用,并与生活息息相关。

学情分析学生对几何图形的观察,几何图形的分析能力已初步形成。

部分学生解题思维能力比较高,能够正确归纳所学知识,通过学习小组讨论交流,能够形成解决问题的思路。

现在的学生已经厌倦教师单独的说教方式,希望教师设计便于他们进行观察的几何环境,给他们自己探索、发表自己见解和展示自己才华的机会;更希望教师满足他们的创造愿望。

人教版八年级数学下册17.1勾股定理优秀教学案例

人教版八年级数学下册17.1勾股定理优秀教学案例
1.导入:以生动有趣的故事引入勾股定理,激发学生的学习兴趣。
2.自主探究:让学生通过观察、实验、推理等方法,发现并证明勾股定理。
3.合作交流:组织学生进行小组讨论,分享学习心得,培养合作精神。
4.巩固练习:设计有针对性的练习题,让学生在实践中掌握勾股定理。
5.课堂讨论:组织学生分享自己的解题心得,丰富数学思维。
3.引导学生认识数学在生活中的应用,提高他们运用数学解决实际问题的能力。
4.培养学生团队协作、沟通交流的能力,增强他们的社会责任感。
三、教学重点与难点
1.教学重点:勾股定理的定义及其证明方法,勾股定理在实际问题中的应用。
2.教学难点:勾股定理的推导过程,运用勾股定理解决复杂直角三角形问题。
四、教学过程
2.生活实例:展示一些生活中常见的直角三角形现象,如建筑物、家具等,让学生感受数学与生活的紧密联系,提高他们运用数学解决实际问题的意识。
3.提问引导:教师提问:“你们知道什么是勾股定理吗?”“勾股定理在我国古代是如何被发现的?”引发学生的思考和讨论。
(二)讲授新知
1.勾股定理的定义:引导学生通过观察、实验、推理等方法,发现并证明勾股定理。例如,可以让学生分组讨论,每组设计一个实验来验证勾股定理。
2.自主探究,培养能力:在讲授新知环节,我引导学生通过观察、实验、推理等方法,自主发现并证明勾股定理。这种自主探究的学习方式,培养了学生的数学思维能力,提高了他们的问题解决能力。
3.小组合作,增强合作精神:在学生小组讨论环节,我将学生分成若干小组,让他们选择一个证明方法进行讨论。这种小组合作的方式,既能够提高学生的团队合作能力,又能够促进学生之间的沟通交流。
1.激发学生兴趣:通过故事、图片等素材,引发学生对勾股定理的好奇心,激发他们学习数学的兴趣。

3.1勾股定理优秀教学案例

3.1勾股定理优秀教学案例
4.反思与评价:在课堂教学的最后,我组织学生进行反思与评价。学生通过反思自己的学习过程,总结自己的优点和不足,提高自我认知。同时,学生通过对他人的评价,学会欣赏他人的优点,培养良好的团队合作精神。
5.教学策略的灵活运用:在教学过程中,我根据学生的实际情况,灵活运用了情景创设、问题导向、小组合作等教学策略。这些教学策略的运用使得课堂更加生动有趣,提高了学生的学习兴趣和参与度。
在教学过程中,我组织学生进行小组合作,让学生在合作中发现问题、解决问题,培养学生的团队合作能力和沟通能力。每个小组选择一个代表进行讲解,其他小组成员进行补充,充分发挥了每个学生的积极性和主动性。小组合作教学策略使得学生在合作中发现问题、解决问题,提高了学习效果。
(四)反思与评价
在课堂教学的最后,我组织学生进行反思与评价。首先,让学生反思自己在课堂上的学习过程,总结自己的优点和不足,提高自我认知。然后,让学生对他人进行评价,学会欣赏他人的优点,培养良好的团队合作精神。此外,我还让学生对自己的学习成果进行评价,激发学生的自信心,提高学习兴趣。
在教学过程中,我注重启发学生思考,培养学生的创新意识和解决问题的能力。针对学生的不同观点,我给予及时的反馈和评价,鼓励学生敢于发表自己的见解。同时,我还注重引导学生运用数学语言进行表达,提高学生的数学素养。
本节课结束后,我对学生的学习情况进行总结,发现绝大多数学生能够掌握勾股定理的内容,并在实际问题中运用。此外,学生对我国古代数学家的贡献有了更深入的了解,增强了爱国情怀。实践证明,本节课的教学设计符合学生的认知规律,达到了预期的教学效果。
(五)作业小结
在课堂的最后,我给出了几个与勾股定理相关的作业题目,让学生课后进行练习。我强调了解题时要注意的细节和常见错误,并鼓励学生在完成作业后进行自我检查和反思。同时,我也提醒学生在遇到困难时可以寻求同学和老师的帮助。通过作业小结,学生能够巩的导入通过有趣的故事和实际应用实例,激发了学生的学习兴趣和好奇心,使学生主动参与到课堂学习中。情境的创设使得学生能够更好地理解和感受到勾股定理的重要性。

勾股定理的教学设计(热门14篇)

勾股定理的教学设计(热门14篇)

勾股定理的教学设计(热门14篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如计划总结、合同协议、管理制度、演讲致辞、心得体会、条据书信、好词好句、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as plan summaries, contract agreements, management systems, speeches, insights, evidence letters, good words and sentences, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!勾股定理的教学设计(热门14篇)勾股定理的教学设计(1)1、知识目标:(1)掌握勾股定理;(2)学会利用勾股定理进行计算、证明与作图;(3)了解有关勾股定理的历史。

勾股定理教学案例设计

勾股定理教学案例设计

教学案例设计:勾股定理
一.教学目标
(1)使学生了解勾股定理的证明,掌握勾股定理的内容,初步学会应用勾股定理进行有关的计算和证明。

(2)通过勾股定理的教学及应用,培养学生分析问题及逻辑推理的能力。

(3)通过教学让学生喜欢数学。

二.教学重点:勾股定理应用
三.教学难点:勾股定理的证明
四.教学方法:讲授,讨论,演示,整体教学相结合。

五.教学手段:教具,投影仪。

六.教学过程
1.引入:《周髀算经》中对勾股定理的记载,约公元前1千多年,西周开国时期有个叫商高的人发现了勾股定理。

中国古代把直角三角形中较短的直角边叫做勾,较长的直角边叫做股,斜边叫做弦。

西方的毕达哥拉斯于公元前584--493发现了勾股定理。

2.新课
勾股定理:三角形的两直角边a,b的平方和等于斜边c的平方。

即a2+b2=c2(1)定理的证明
法一(图二):c2=(b-a)2+4×ab/2即c2=a2+b2
法二:(a+b)2=c2+4×ab/2即a2+b2=c2
(4)勾股定理的应用
例:已知∠ACB=90°,CD⊥AB,AC=3,BC=4.求CD的长.
例:已知三角形ABC的边长为6cm,求AD的长和ABC的面积。

3.小结:勾股定理的内容及证明方法。

4.作业。

人教版数学八下17.1《勾股定理》教案3篇

人教版数学八下17.1《勾股定理》教案3篇

初中数学教学案例18.1勾股定理(第一课时)教学目标知识技能数学思考解决问题情感态度教学重点教学难点教具教学过程教学流程教师活动学生活动设计意图情景引人[活动1]讲述资料故事提出问题1:数学家大会为什么用该图做会徽呢?它有什么特殊的含义吗?教师作补充说明:这个图案是我国汉代数学家赵爽在证明勾股定理时用到的,被称为“赵爽弦图”.问题2:你听说过“勾股定理”吗?教师关注:学生对“赵爽弦图”及勾股定理的历史是否感兴趣.引人课题18.1《勾股定理》(板书课题)[活动2]学生观察图片发表见解.生1.会徽是很具有代表性的东西,比如2008年体育奥运会的会徽是五环旗.生2.我在其他的资料里见过这个图案.生3.课本面上也有这样的图案.(同学们积极踊跃的发言,学习积极性很高)学生当听到是“赵爽弦图”时,好奇之心更加强烈,学习热情很高.对“勾股定理”表示不从现实生活中提出“赵爽弦图”,为学生能够积极主动地投入到探索活动创设情境,激发学生学习热情,同时为探索勾股定理提供背景材料.探究新知A BC你知道他是通过什么途径找到怎样的三边关系的吗?问题1.你能发现S A、S B 、S C之间的关系吗?问题2.等腰直角三角形的三边a、b、c之间有什么关系?出示幻灯片3169254913否也有这样的性质呢?在本次活动中,教师重点关注:(1)教师参与小组活动,指导、倾听学生交流.针对不同认识水平的学生,引导其用不同的方法得出大正方形C的面积.理解观察图片后结合课本上的内容,学生很快就发现这一关系式SA+ SB=SCa2 + b2 = c2纷纷举手回答,并总结:等腰直角三角形的两条的平方问题是思维的起点,通过问题激发学生好奇心和主动学习的欲望.为学生提供参与数学活动的时间和组内交流(2)幻灯片展示答案(3)引导学生将三个正方形面积的关系转化为直角三角形三条边之间的关系,并用自己的语言叙述出来:[活动3] 实践验证早在公元3世纪,我国数学家赵爽就用赵爽弦图验证了“勾股定理”幻灯片展示赵爽弦图教师详细介绍赵爽弦图的拼割过程.问题:.你能利用手中的材料通过其他的拼法验证勾股定理吗?试试看,你能拼几种在独立探究的基础上,学生分组(前后位四人一组)合作交流.用不同的方法得出大正方形C的面积生1:把C“补” 成边长为7的正方形面积的一半.生2:将正方形C分“割”成若干个直角边为整数的三角形当答案不同、意见有分歧时,所有同学都在积极思考,大胆发言,各抒己见,直到探求出正确结果.学生总结命题:直角三角形的两条直角边的平方和等于斜边的平方空间,让学生积极动手,发挥学生的主体作用,使学生在相互欣赏、争辩、互助中得到提高.,得出猜想实践验证在本次活动中,教师重点关注:(1)学生能否进行合理的拼图.对不同层次的学生有针对性地给予分析、帮助;(2)学生能否用语言准确的表达自己的观点.勾股定理(毕达哥拉斯定理)(板书)直角三角形两直角边的平方和等于斜边的平方。

八年级数学《勾股定理》教案优秀10篇

八年级数学《勾股定理》教案优秀10篇

八年级数学《勾股定理》教案优秀10篇年级数学《勾股定理》教案1[教学分析]勾股定理是揭示三角形三条边数量关系的一条非常重要的性质,也是几何中最重要的定理之一。

它是解直角三角形的主要依据之一,同时在实际生活中具有广泛的用途,“数学源于生活,又用于生活〞正是这章书所表达的主要思想。

教材在编写时注意培养学生的动手操作能力和分析问题的能力,通过实际操作,使学生获得较为直观的印象;通过联系比拟、探索、归纳,帮助学生理解勾股定理,以利于进行正确的应用。

本节教科书从毕达哥拉斯观察地面发现勾股定理的传说谈起,让学生通过观察计算一些以直角三角形两条直角边为边长的小正方形的面积与以斜边为边长的正方形的面积的关系,发现两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积,从而发现勾股定理,这时教科书以命题的形式呈现了勾股定理。

关于勾股定理的证明方法有很多,教科书正文中介绍了我国古人赵爽的证法。

之后,通过三个探究栏目,研究了勾股定理在解决实际问题和解决数学问题中的应用,使学生对勾股定理的作用有一定的认识。

[教学目标]一、知识与技能1、探索直角三角形三边关系,掌握勾股定理,开展几何思维。

2、应用勾股定理解决简单的实际问题3学会简单的合情推理与数学说理二、过程与方法引入两段中西关于勾股定理的史料,激发同学们的兴趣,引发同学们的思考。

通过动手操作探索与发现直角三角形三边关系,经历小组协作与讨论,进一步开展合作交流能力和数学表达能力,并感受勾股定理的应用知识。

三、情感与态度目标通过对勾股定理历史的了解,感受数学文化,激发学习兴趣;在探究活动中,学生亲自动手对勾股定理进行探索与验证,培养学生的合作交流意识和探索精神,以及自主学习的能力。

四、重点与难点1、探索和证明勾股定理2熟练运用勾股定理[教学过程]一、创设情景,揭示课题1、教师展示图片并介绍第一情景以中国最早的一部数学著作——《周髀算经》的开头为引,介绍周公向商高请教数学知识时的对话,为勾股定理的出现埋下伏笔。

《勾股定理》教学案例及反思

《勾股定理》教学案例及反思

《勾股定理》教学案例及反思《《勾股定理》教学案例及反思》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!【教学目标】一、知识目标1.了解勾股定理的历史背景,体会勾股定理的探索过程.2.掌握直角三角形中的三边关系和三角之间的关系。

二、数学思考在勾股定理的探索过程中,发现合理推理能力.体会数形结合的思想.三、解决问题1.通过探究勾股定理(正方形方格中)的过程,体验数学思维的严谨性。

2.在探究活动中,学会与人合作并能与他人交流思维的过程和探究的结果。

四、情感态度目标1.学生通过适当训练,养成数学说理的习惯,培养学生参与的积极性,逐步体验数学说理的重要性。

2.在探究活动中,体验解决问题方法的多样性,培养学生的合作交流意识和探究精神。

【重点难点】重点:探索和证明勾股定理。

难点:应用勾股定理时斜边的平方等于两直角边的平方和。

疑点:灵活运用勾股定理。

【设计思路】本课时教学强调让学生经历数学知识的形成与应用过程,鼓励学生自主探索与合作交流,以学生自主探索为主,并强调同桌之间的合作与交流,强化应用意识,培养学生多方面的能力。

让学生通过动手、动脑、动口自主探索,感受到“无出不在的数学”与数学的美,以提高学习兴趣,进一步体会数学的地位与作用。

【教学流程安排】活动一:了解历史,探索勾股定理活动二:拼图验证并证明勾股定理活动三:例题讲解,:巩固练习,活动四:反思小结,布置作业活动内容及目的:通过多勾股定理的发现,(国外、国内)了解历史,激发学生对勾股定理的探索兴趣。

观察、分析方格图,得到指教三角形的性质——勾股定理,发展学生分析问题的能力。

通过拼图验证勾股定理,体会数学的严谨性,培养学生的数形结合思想,激发探究精神,回顾、反思、交流。

布置作业,巩固、发展提高。

【教学过程设计】【活动一】(一)问题与情景1、你听说过“勾股定理”吗?(1)勾股定理古希腊数学家毕达哥拉斯发现的,西方国家称勾股定理为“毕达哥拉斯”定理(2)我国著名的《算经十书》最早的一部《周髀算经》。

勾股定理教案(共五则范文)

勾股定理教案(共五则范文)

勾股定理教案(共五则范文)第一篇:勾股定理教案勾股定理(课时一)教学目标知识与技能:通过观察猜想得出勾股定理的结论。

过程与方法:通过观察、归纳、猜想、探索的过程,发展学生的合情推理能力,体会数形结合的思想。

情感态度与价值观:通过对勾股定理历史的了解,感受数学文化,激发学生的爱国热情。

教学重、难点重点:探索三角形两条直角边的平方和等于斜边的平方的结论,从而发现勾股定理。

难点:勾股定理的证明。

教学过程1、创设问题情境、引入新课问题1:我国古代,人们将直角三角形中的短的直角边叫做钩、长的直角边叫做股、斜边叫做弦。

根据我国古算书《周髀算经》记载,约在公元前1100年人们已经知道钩是三、股是四,那么弦就是五,你知道是为什么吗?(设计意图:问题设置具有一定的挑战性,为的是激发学生探究的欲望。

在学生感到困惑时教师指出:通过本章的学习可以解开困惑。

)2、探索交流、开展新科活动1 问题2:毕得格拉斯是古希腊著名的哲学家、数学家、天文学家,相传2500年前,一次他去朋友家做客,发现朋友家的用砖铺成的地面反映了直角三角形三边的某种关系。

我们来观察一下图中的地面,看看能发现些什么?问题3:你能发现下图中等腰直角三角形A、B、C有什么性质吗?问题4:等腰三角形都有上述性质吗?观察下图,回答问题。

(1)观察图1 正方形A中含有个小方格,即A的面积是个单位面积。

正方形B中含有个小方格,即B的面积是个单位面积。

正方形C中含有个小方格,即C的面积是个单位面积。

(2)在图2、图3中,正方形A、B、C中个含有多少个小方格?它们的面积各是多少?你如何得到上述结果的?与同伴交流。

(2)请将上述结果填入下表,你能发现正方形A、B、C的面积关系吗?(设计意图:通过学生观察计算,发现对于等腰直角三角形而言,满足两直角边的平方和等于斜边的平方。

通过探究、发现,体会数形结合思想。

)命题一如果直角三角形的两直角边长分别为a、b,斜边长为c,那么a2+b2=c2活动2 问题5:等腰三角形有上述性质,其他的三角形也有这个性质吗?如下图,每个小方格的面积均为1,请分别计算出下图中A、B、C、A‘、B‘、C’的面积,看看能得出什么结论?(问题6:给出一个边长为0.5、1.2、1.3,这种含小数的直角三角形,也满足上述结论吗?(设计意图:进一步让学生体会观察、猜想、归纳这一数学结论的发现过程,提高学生的分析问题、解决问题的能力。

《勾股定理》教学案例

《勾股定理》教学案例

《勾股定理》教学案例《勾股定理》数学教学过程中的重要组成部分,其主要研究三角形三边之间的数量关系对于学生形成完善的数学思维与缜密的逻辑结构来讲,有着重要的作用,一直以来都是数学教师在教学期间研究的重点与难点,并且其与现实生活也有着紧密的联系,许多事例都和勾股定理有关。

教师在教学的过程当中,应当基于学生对直角三角形原有的认知和课程教学的标准对教学环节和教学内容进行科学合理的选择。

【案例分析】《勾股定理》能够让学生的数学思维变得更加严谨,并且他们的形象思维能够得到充分发展,在学习的过程当中,学生能够了解勾股定理产生的背景以及其中的内容,通过体验探索与验证勾股定理的过程,可以对直角三角形的构造有更加全面的了解,能够在教师的带领之下,体会到数学知识学习的快乐并突破本课的知识重点与难点。

教师需要对教学环节进行丰富并创新教学的途径,培养学生自主探索、观察分析与合作交流的能力,留给学生更多的时间进行深入学习。

【案例描述】一、准备环节教师准备:教学课件、教科书学生准备:数学教材、碳素笔、笔记本二、正式教学环节1.创设良好情境,灵活导入新课数学教师在教学的过程当中可以运用现代化的教学技术,为学生学习创设良好的环境,通过其中的诸多教学资源,为学生带来更加良好的课堂体验,进一步让学生感受到数学知识学习的重要性与魅力,增强其对于数学知识的学习与探索欲望。

除此之外,要对新课导入的环节进行相应的调整,把握好对学生开展教育的时机,同时要注意让学生在学习的过程当中对自身的学习行为与学习状态进行反思与改正,能够以更加饱满的热情投入到之后的数学知识学习过程中,充分展现出自己的能力。

师:同学们,大家请看大屏幕,你们知道这张图片是什么吗?能否说出与勾股定理相关的小故事与人物呢?生:老师,我知道这是第二十四届国际数学家大会的会彰—赵爽弦图,毕达哥斯拉这一古希腊的数学家在朋友家做客时发现了直角三角形三边之间的数量关系,并对其进行深入探究,所以,毕达哥斯拉定理也是数学勾股定理的一种别称。

人教版八年级下册17.1勾股定理优秀教学案例

人教版八年级下册17.1勾股定理优秀教学案例
3.学生通过运用勾股定理解决实际问题,培养解决问题的策略和方法,提高解决问题的效率。
(三)情感态度与价值观
1.学生了解勾股定理在我国古代的发现和应用,感受数学文化的魅力,培养民族自豪感和对数学的热爱。
2.学生通过学习勾股定理,培养对数学的兴趣和好奇心,激发学习数学的内在动力。
3.学生通过解决实际问题,体验数学的价值和意义,认识到数学在生活中的重要性,培养应用数学的意识和能力。
2.学生能够通过观察、分析、推理等数学思维活动,探索并发现勾股定理的规律,提高空间想象能力和逻辑思维能力。
3.学生能够运用勾股定理解决一些简单的几何问题,提高运用数学知识解决实际问题的能力。
(二)过程与方法
1.学生通过观察生活实例,培养从实际问题中抽象出数学模型的能力,提高解决问题的能力。
2.学生在小组合作、讨论交流的过程中,培养团队协作能力和表达能力,提高自主学习能力和合作学习能力。
3.动态演示辅助:运用几何画板等教学工具,动态展示直角三角形中两直角边的变动,让学生直观地观察到斜边的变化规律,帮助学生理解和掌握勾股定理。
(二)问题导向
1.设计问题链:围绕勾股定理的定义、证明和应用,设计一系列递进式问题,引导学生思考和探索,激发学生的好奇心,培养学生的问题解决能力。
2.自主探究引导:引导学生提出问题,鼓励学生自主探究,引导学生通过观察、分析、推理等数学思维活动,探索并发现勾股定理的规律。
3.动态演示辅助:运用几何画板等教学工具,动态展示直角三角形中两直角边的变动,让学生直观地观察到斜边的变化规律,帮助学生理解和掌握勾股定理。
(二)讲授新知
1.勾股定理的定义:通过几何画板工具,展示直角三角形中两直角边的变动,引导学生观察和分析斜边的变化规律,引股定理的证明:引导学生通过小组合作、讨论交流的方式,探索并发现勾股定理的证明方法,引导学生运用几何画板工具,动态展示直角三角形的证明过程,帮助学生理解和掌握勾股定理的证明方法。

人教版八年级下册第十七章17.1勾股定理优秀教学案例

人教版八年级下册第十七章17.1勾股定理优秀教学案例
本节课的教学目标是使学生理解勾股定理的含义,掌握勾股定理的应用,培养学生的空间想象能力、逻辑推理能力和团队合作能力。通过本节课的学习,学生能够熟练运用勾股定理解决实际问题,为后续学习打下坚实的基础。
二、教学目标(一)知识与来自能1.让学生掌握勾股定理的定义和表述,能够正确运用勾股定理计算直角三角形的长度。
3.培养学生运用数学知识解决实际问题的能力,使其能够将所学知识运用到生活实践中,提升学生的数学应用意识。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣和好奇心,激发学生学习数学的内在动力,使其能够主动参与数学学习。
2.培养学生勇于探究、积极思考的科学精神,使其能够面对数学问题,勇于挑战,不断提高解决问题的能力。
(三)小组合作
1.将学生分成小组,鼓励学生相互讨论、交流,共同解决问题。教师给予适当的引导和帮助,促进学生之间的合作与交流。
2.设计小组活动,让学生通过实际操作,探究勾股定理的应用。例如,让学生用硬纸板制作直角三角形,测量其边长,并验证勾股定理。
3.教师巡回指导,关注每个小组的学习情况,及时给予反馈和鼓励,提高学生的合作能力和团队意识。
在教学案例中,我以生动的生活情境导入,激发学生的学习兴趣,引导学生从实际问题中抽象出数学问题。在探究过程中,我鼓励学生运用合作、交流、归纳等学习方法,培养他们的团队协作能力和表达能力。同时,我注重引导学生运用数学知识解决实际问题,提高他们的数学应用能力。
在教学过程中,我遵循由浅入深、循序渐进的原则,让学生在掌握基础知识的同时,提高他们的思维品质。针对学生的个体差异,我采取差异化的教学策略,关注每一个学生的成长,使他们在课堂上充分展示自己,提高自信心。
五、案例亮点
1.生活情境导入:通过展示实际生活中的直角三角形实例,激发学生的学习兴趣,使其能够主动参与到课堂学习中。这种教学方式体现了“从生活走向数学”的新课程理念,有助于提高学生的学习积极性。

人教版八年级下册17.1.2勾股定理优秀教学案例

人教版八年级下册17.1.2勾股定理优秀教学案例
3.培养学生运用数学知识解决实际问题的能力,提高学生的创新实践能力。
(三)情感态度与价值观
1.激发学生对数学学科的兴趣,树立学生自信心,培养积极的学习情感。
2.感受数学与生活的紧密联系,提高学生对数学知识的应用意识。
3.培养学生尊重事实、严谨治学的科学态度,弘扬我国古代数学家的伟大成就。
4.注重培养学生的人际关系和团队协作精神,使学生在合作交流中共同成长。
(三)学生小组讨论
1.组织学生分组讨论,鼓励学生发表自己的观点和想法。
2.引导学生相互倾听、尊重他人的意见,培养团队合作精神。
3.设计合作活动,如共同探究、解决问题,提高学生的协作能力。
4.关注小组内的每个成员,关注学生的个体发展,使学生在合作中成长。的学习内容,明确勾股定理的定义、表达式和证明方法。
3.设计具有思考性的练习题,让学生在解决问题中加深对勾股定理的理解。
4.鼓励学生反思自己的学习过程,总结勾股定理的证明方法和应用技巧。
(三)小组合作
1.组织学生分组讨论,鼓励学生发表自己的观点和想法。
2.引导学生相互倾听、尊重他人的意见,培养团队合作精神。
3.设计合作活动,如共同探究、解决问题,提高学生的协作能力。
二、教学目标
(一)知识与技能
1.理解勾股定理的内容,掌握勾股定理的表达式及其应用。
2.了解勾股定理的发现和证明过程,了解我国古代对勾股定理的研究成果。
3.学会运用勾股定理解决实际问题,提高问题解决能力。
(二)过程与方法
1.通过观察、猜想、证明等环节,培养学生主动探究、积极思考的科学精神。
2.运用合作交流、讨论分享等学习方式,提高学生的团队协作能力和沟通能力。
5.培养学生具有良好的心理素质和抗压能力,面对挑战,敢于尝试,勇于创新。

八年级数学下学期17.1勾股定理优秀教学案例

八年级数学下学期17.1勾股定理优秀教学案例
1.教师布置课后作业,要求学生运用勾股定理解决实际问题,巩固所学知识。
2.教师鼓励学生在课后进行深入研究,如探究勾股定理在其他领域的应用。
3.教师提醒学生在下次课堂上分享自己的作业成果,增强合作交流能力。
五、案例亮点
1.情景创设:本节课通过展示古代建筑图片,巧妙地引导学生发现三角形稳定性的重要性,激发了学生对勾股定理的好奇心。这种情景创设不仅使学生产生了浓厚的学习兴趣,还让学生体会到了数学在实际生活中的应用价值。
3.学生能够运用现代教育技术,如多媒体课件、网络资源等,获取丰富的学习素材,增强学习的趣味性和互动性。
(三)情感态度与价值观
1.学生能够在学习过程中,体验到数学的趣味性和实用性,提高对数学的兴趣,树立学习数学的信心。
2.学生能够在探究活动中,培养合作精神,提高团队协作能力,增强集体荣誉感。
3.学生能够通过学习勾股定理,感受到数学在古代文明中的重要作用,提高对数学历史的认识,培养民族自豪感。
2.教师提供一些实际问题,如“一个直角三角形两个直角边的长度分别为3cm和4cm,求斜边的长度。”
3.学生分组讨论,交流解题思路,共同解决问题。
(四)总结归纳
1.教师引导学生总结勾股定理的定义、表达式和应用,巩固所学知识。
2.教师强调勾股定理在数学和实际生活中的重要性,激发学生学习兴趣。
(五)作业小结
(三)小组合作
1.教师将学生分成若干小组,每组学生共同探讨、交流勾股定理的证明方法,培养学生的合作精神和团队意识。
2.教师设计小组活动,如一起制作直角三角形模型,让学生动手操作,增强对勾股定理的理解。
3.教师鼓励小组成员之间相互评价、相互学习,提高学生的自我认知和表达能力。
(四)反思与评价
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人类把勾股定理的发现作为科学史上的十大发明之一,科学领域的许多问题在解决时需要利用勾股定理,世界数学史上通常把一般的勾股定理称为“毕达哥拉斯定理”,我国在《周髀算经》(1世纪前后)记载,公元前大禹治水时就应用到“勾股定理”了。

17.1 勾股定理教学简案
黑龙江省安达市第四中学周仁
情况一情况二情况三情况四
(四)问题解决
这一环节设计习题进行当堂巩固练习,设计时注意题目的梯度,由浅入深,第一题为书上练习题,学生容易解决,第二道题虽然计算难度不大,但考查学生的实际应用能力,第三道题是应用勾股定理建立方程求解,有一定难度。

相关文档
最新文档