2019届高考数学人教A版理科第一轮复习课件:第七章 不等式、推理与证明 7.3

合集下载

人教A版高考总复习一轮理科数学精品课件 第7章 不等式、推理与证明 第2节 基本不等式及其应用

人教A版高考总复习一轮理科数学精品课件 第7章 不等式、推理与证明 第2节 基本不等式及其应用
4
a=3,b=3时,等号成立,因此,1-
+
4
(a+b)-5=

+

的最小值是
1-
≥2
4.
4
· =4,

突破技巧通过常数代换法利用基本不等式求解最值的基本步骤
(1)根据已知条件或其变形确定定值(常数);
(2)把确定的定值(常数)变形为1;
(3)把“1”的表达式与所求最值的表达式相乘或相除,进而构造和或积为定
4
x+
+
+
1
的最小值为
-
)
A.3 2
B.2 3
C.4
3 10
D. 2
(2)已知正实数 x,y 满足
1
A.2 + 2
2
1
C.2 + 3
1
B.3 +
1
D.2 +
1
4x+3y=2,则2+1
2
3
2
2
+
1
的最小值为(
3+2
)
答案:(1)A (2)C
解析:(1)∵x>y>0,∴x-y>0,
4
∴x+
瓶定价最多为50元.
(2)设月总利润为 f(x),
则 f(x)=(x-10) 8 − ( −
0.45
15)
(−15)2
33
1 0.45
- (x-16)=- x4
突破技巧通过配凑法利用基本不等式求最值的实质及关键点
配凑法就是将相关代数式进行适当的变形,通过添项、拆项等方法凑成和
为定值或积为定值的形式,然后利用基本不等式求解最值的方法.配凑法的

2019高考数学一轮复习第七章不等式推理与证明7.2基本不等式及其应用课件理新人教A版

2019高考数学一轮复习第七章不等式推理与证明7.2基本不等式及其应用课件理新人教A版

-12-
考点1 考点2 考点3
对点训练 1 已知 a>0,b>0,a+b=1,求证:
1
+
1 ������
1
+
1 ������
≥9.
证明:
(方法一)∵a>0,b>0,a+b=1,∴1+���1���
=1+������
+������ ������
=2+������������
.
同理,1+���1��� =2+������������ .
������ ������ ������
≥2(a+b+c),
即������������
������
+
������������ ������
+
������������ ������
≥a+b+c,当且仅当
a=b=c
时等号成立.
考点1 考点2 考点3
-10-
(2)∵a+b=1,
∴1
������
+
1 ������
A.2
B.
2 2
C. 3
D. 2
关闭
∵0<x<2,∴2-x>0,∴y=
������(4-2������) =
2 · ������(2-������) ≤
2 ·������+2-������ =
2
2,
当且仅当 x=2-x,即 x=1 时取等号.
关闭
D
解析 答案
-8-
知识梳理 考点自测
12345
5.(2017江苏,10)某公司一年购买某种货物600吨,每次购买x吨,运

高三数学一轮复习 第七章 不等式、推理与证明 7.5 数学归纳法

高三数学一轮复习 第七章 不等式、推理与证明 7.5 数学归纳法

关闭
C
答案
-8-
知识梳理 双基自测
12345
3.已知
n
为正偶数,用数学归纳法证明
1-12
+
1 3

14+…-���1���=2
1 ������+2
+
������+1 4+…+21������
时,若已假设 n=k(k≥2,且 k 为偶数)时
命题为真,则还需要用归纳假设再证 ( )
A.n=k+1时等式成立 B.n=k+2时等式成立 C.n=2k+2时等式成立 D.n=2(k+2)时等式成立
关闭
B
答案
-9-
知识梳理 双基自测
12345
4.在用数学归纳法证明“平面内有n条(n≥2)直线,任何两条不平 行,任何三条不过同一个点的交点个数为 ������(���2���-1)” 时,第一步验证n0等 于( )
A.1 B.2 C.3 D.4
因为平面内不平行的两条相交直线就有交点,所以验证n0=2. B
解析
关闭 关闭
答案
-10-
知识梳理 双基自测
12345
5.用数学归纳法证明1+2+3+…+n2=
������4
+ 2
������2
,当n=k+1时,左端应
在n=k的基础上增添的代数式是
.
关闭
∵当n=k时,左侧=1+2+3+…+k2,当n=k+1时,左侧
=1+2+3+…+k2+(k2+1)+(k2+2)+…+(k+1)2,

高考数学一轮复习 第七章 不等式、推理与证明 7.1 不等关系与不等式课件 理 新人教A版.pptx

高考数学一轮复习 第七章 不等式、推理与证明 7.1 不等关系与不等式课件 理 新人教A版.pptx

A.若a>b,c≠0,则ac>bc
B.若a>b,则ac2>bc2
√C.若 ac2>bc2,则 a>b
D.若 a>b,则1a<b1
解析 对于选项A,当c<0时,不正确; 对于选项B,当c=0时,不正确; 对于选项C,∵ac2>bc2,∴c≠0,∴c2>0,∴一定有a>b.故选项C正确; 对于选项D,当a>0,b<0时,不正确.
当c=0时,ac2=bc2,所以D不成立.故选D.
(2)(2019·潮州模拟)已知-1≤x+y≤1,1≤x-y≤3,则 8x·12y 的取值范围是
A.[2,28]
B.12,28
√C.[2,27]
D.12,27
解析 8x·12y=23x·12y=23x-y,
令3x-y=s(x+y)+t(x-y)=(s+t)x+(s-t)y,
解析 因为M-N=(2p+1)(p-3)-[(p-6)(p+3)+10]=p2-2p+5=(p-
1)2+4>0,
所以M>N.
(2)若a>0,且a≠7,则
A.77aa<7aa7
√C.77aa>7aa7
B.77aa=7aa7 D.77aa与7aa7的大小不确定
解析 777aaaa7=77-aaa-7=7a7-a, 则当 a>7 时,0<a7<1,7-a<0,则7a7-a>1,∴77aa>7aa7; 当 0<a<7 时,7a>1,7-a>0,则7a7-a>1,∴77aa>7aa7.
基础自测
题组一 思考辨析
1.判断下列结论是否正确(请在括号中打“√”或“×”)

高中数学一轮复习课件:第七章 不等式、推理与证明(必修5、选修1-2)7-4

高中数学一轮复习课件:第七章 不等式、推理与证明(必修5、选修1-2)7-4

2.数列 2,5,11,20,x,47,…中的 x 等于( ) A.28 B.32 C.33 D.27
[解析] 从第 2 项起每一项与前一项的差构成公差为 3 的等 差数列,所以 x=20+12=32.故选 B.
[答案] B
3.(选修 1-2P30 练习 T1 改编)已知数列{an}中,a1=1,n≥2 时,an=an-1+2n-1,依次计算 a2,a3,a4 后,猜想 an 的表达式 是( )
[对点训练] 1.(2019·山东日照模拟)对于实数 x,[x]表示不超过 x 的最大 整数,观察下列等式: [ 1 ]+[ 2 ]+[ 3 ]=3; [ 4 ]+[ 5 ]+[ 6 ]+[ 7 ]+[ 8 ]=10; [ 9 ]+[ 10 ]+[ 11 ]+[ 12 ]+[ 13 ]+[ 14 ]+[ 15 ] =21; … 按照此规律第 n 个等式的等号右边的结果为________.
主干知识梳理 Z
主干梳理 精要归纳
1.合情推理
[知识梳理]
2.演绎推理 (1)定义:从一般性的原理出发,推出某个特殊情况下的结论, 我们把这种推理称为演绎推理.简言之,演绎推理是由一般到 特殊 的推理. (2)“三段论”是演绎推理的一般模式,包括: ①大前提——已知的一般原理; ②小前提——所研究的特殊情况; ③结论——根据一般原理,对特殊情况作出的判断.
[解析] 根据题图(1)所示的分形规律,可知 1 个白圈分形为 2
个白圈 1 个黑圈,1 个黑圈分形为 1 个白圈 2 个黑圈,把题图(2)
中的树形图的第 1 行记为(1,0),第 2 行记为(2,1),第 3 行记为(5,4),
第 4 行的白圈数为 2×5+4=14,黑圈数为 5+2×4=13,所以第

高考数学(理)一轮总复习课件:第七章 不等式及推理与证明 7-4

高考数学(理)一轮总复习课件:第七章 不等式及推理与证明 7-4
5 【解析】 x∈(0, )时,t∈(-5,0). 4 1 1 y=t+ +3,y′=1- 2. t t 令y′=0,得t=-1.t∈(-5,-1)时,y′>0. t∈(-1,0)时,y′<0.∴t=-1时,ymax=1. 【答案】 1
微专题3:常数代换法求最值 8 1 (1)已知正数x,y满足 + =1,则 x y ①xy的最小值为________; ②x+2y的最小值为________.
(3)a2+b2≥2|ab|.
1 (4)x+ ≥2. x
利用基本不等式求最大、最小值问题 (1)如果 x,y∈(0,+∞),且 xy=p(定值),
x=y 时,x+ y 有最小值_____. 那么当______
(2)如果 x,y∈(0,+∞),且 x+y=S(定值),
x=y 时,xy 有最大值_____. 那么当______
答案 解析 D ∵x+4y=40,且 x>0, y>0,
) B.10 D.2
∴x+4y≥2 x· 4y=4 xy.(当且仅当 x=4y 时取“= ”), ∴4 xy ≤40.∴xy≤100. ∴lgx+lgy=lgxy≤lg100=2.
4.若 x+2y=4,则 2x+4 y 的最小值是( A.4 C.2 2
1.判断下面结论是否正确(打“√”或“×”). 1 (1)函数 y=x+ x的最小值是 2. 4 π (2)函数 f(x)=cosx+ cosx,x∈(0,2)的最小值等于 4. x y (3)“x>0 且 y>0”是“ y+x≥2”的充要条件.
1 (4)若 a>0,则 a +a2的最小值为 2 a.
1 当且仅当 5-4x= ,即 x=1 时,上式等号成立. 5-4x 故当 x=1 时, ymax=1. ③当 x≥2 时, y=4x-2+ 1 为增函数, 4x-5

2019版高考数学(理)一轮总复习课件:第七章 不等式及推理与证明 7-3

2019版高考数学(理)一轮总复习课件:第七章 不等式及推理与证明 7-3
第3课时 简单的线性规划
…2018 考纲下载… 1.会从实际情境中抽象出二元一次不等式组. 2.了解二元一次不等式的几何意义,能用平面区域表示二 元一次不等式组. 3.会从实际情境中抽象出一些简单的二元线性规划问题, 并能加以解决.
请注意 从考纲和考题中看,该部分内容难度不大,重点考查目标函 数在线性约束条件下的最大值和最小值问题——线性规划问题, 命题形式以选择、填空为主,但也有解答题以应用题的形式出现.
(5)z=x2+y2,则 z为点(x,y)与原点(0,0)的距离,结合不
等式的区域,易知 A 点到原点距离最小为 334,最大值为|OB|, |OC|,原点 O 到直线 3x+5y=30 距离三者之一,计算得,最大
值为|OC|=
754 5.
∴x2+y2 的取值范围为[394,72554].
【答案】 (1)7,-157
)
A.矩形
B.三角形
C.直角梯形
D.等腰梯形
答案 D 解 析 由 (x - y + 3)(x + y)≥0 , 得 xx-+yy+≥30≥0,或xx-+yy+≤30≤,0,且 0≤x≤4,表 示的区域如图阴影部分所示,故所求平面区域 为等腰梯形,故选 D.
2x+3y-3≤0, 4.(2017·课标全国Ⅱ)设 x,y 满足约束条件2x-3y+3≥0,
y+3≥0,
则 z=2x+y 的最小值是( )
A.-15
B.-9
C.1
D.9
答案 A 解析 作出可行域如图所示, 作出直线 l0:y=-2x, 平移 l0 经过点 A 时,z 有最小值, 此时,由y2+x-3=3y0+,3=0,得xy==--63,. 即 A(-6,-3), ∴zmin=2×(-6)-3=-15.

2019版高三新课标版_数学(理)总复习课件:第七章不等式及推理与证明7-1

2019版高三新课标版_数学(理)总复习课件:第七章不等式及推理与证明7-1

第1课时不等式与不等关系•••2017考钢下载…1.了解现实世界和日常生活中的不等关系.2.了解不等式(组)的实际背景.请注意以考查不等式的性质为重点,同时考查不等关系,常与函数、数列、几何、实际问题等相结合进行综合命题.课前自助餐归教材I密两个实数的大小比较(1 )a>bOa—b>0・(2)a=boa—b = 0 ・(3)a<b<»a—b<0 ・②不等式的性质(1)对称性:QbObva.(2)传递性:a>b, b>c=>a>c・(3)可加性:a>bo“+c > b+c;a>b, c>d=>a+c>b + d・(4)可乘性:a>b, c>O=>ac^b<a>b, c<0=>ac < be ;a>b>0,c>d>O=>ac > bd.(5)可方性:a>b>0, neN!=>a n^b n; a>b>0、 n G N* => 茁 > 茁.(6)倒数性质:a>b, ab>0=>~ < pa D1 1ab>O=>a^b.II 夯实双基II1.判断下面结论是否正确(打 7 或“ X ”). (1 )a>b, c>d=>a —d>b — c.(3)a>b<=>ac 2>bc 2.(6)若昌<0,则lal>lbl. (7) 若a>b 且abvO,则(2)a>b=>a 3>b 3. (4)a>b, c>d=>ac>bd.答案(1)V (2)7 ⑶X ⑷X⑸X ⑹X (7)X2・(课本习题改编)已知aVbVO, c〉O,在下列空白处填上恰当的不等号:①若ad>bd,则d _________ 0;②(a—2)c _______ (b — 2)c ;________ V ibi;—c c®a ------------ b-答案①V;②V;③〉;④〉a>b=>ac>bc a b3・下面的推理过程‘一^ u J=>aobd=>^>-,其中四个c>d=>bc>bdj d c “=>”中错误之处的个数是()C・2 D・3A. 0 B・ 1 C・2 D・3答案D解析①a>b^ ac>bc,②c>d» bc>bd, ③ac>bd 曽>g.4.若a, b, ceR, a>b,则下列不等式成立的是()A ・ a2>b2B・ alcl>blcl1 1C ~<rD・ 2 i i> 2 i 1 c +1 c + 1a b a b答案D解析方法一:(特殊值法)令°=1, b=—2, c=0,代入A, B, C, D中,可知A, B, C均错,故选D.方法二:(直接法)a b•/a>b, c2+l>0, •: 2丄i> 2丄i,故选D・c ~r 1 c 十15・下列各组代数式的关系正确的是①X2+5X +6<2X2+5X+9;②(X —3)2<(X —2)(X—4);③当X>1 时,X3>X2—x+1;®x2 + y2+ l>2(x+y— 1).答案①③④解析对于①变形为X2+3>0,故①正确;对于②变形为9v8,故②错误;对于③变形为(X—l)(x2+l)>0,故③正确;对于④变形为(x-l)2+(y-l)2+l>0,故④正确.6. (2016-北京,理)已知x, yWR,且x>y>0,贝U( )B ・ sinx 一siny>0D ・ lnx+lny>0答案c解析方法一:(特殊值法)因为x>y>0,选项A,取x= 1, y ―| ,则y =1—2= —1<0,排除A;选项B,取x = TT , y= 贝Ijsinx —siny=sinTT —sin》=一lvO,排除B;选项D,取x =2, y=|,则lnx+lny — ln(xy) = In 1 = 0,排除D.方法二:(直接法)逐项验证,知选C.授人以渔题型一不等式的性质1⑴若a,b£R,下列命题中①若lal>b,则a2>b2;②若a2>b2,则lal>b;③若a>lbl,则a2>b2;④若a2>b2,贝lja>lbl.其中正确的是【解析】条件lal>b,不能保证b是正数, 条件a>lbl可保证a是正数,故①不正确,③正确.a2>b2=>lal>lbl^b,故②正确,④不正确.【答案】②③(2)已知四个条件:①b>O>a;②0>a>b ;③a>O>b ;④a>b>0,能推出成立的是 __________ .【解析】运用倒数法则,a>b, ab>0 ②,④正确.又正数大于负数,【答案】所以①正确.①②④⑶设a>b,则下列不等式恒成立的为()A・(a+c)4>(b + c)4B・ac2>bc2] ]_ C・lglb + cklgla+cl D・(a+c)3>(b+c)3【解析】应用不等式的性质可以判断每个不等式成立与否,但要注意每个选项上来看都是对的,因此需要我们利用性质认真判别.当a>b, a+c与b + c为负数时,由0>a+c>b + c, 得Ov—(a+c)v—(b+c)・所以0v[ — (a+c)]4<[ — (b + c)]4,即(a+c)4<(b + c)4.所以A不成立;当c = 0时,ac2 = be2, •'•B不成立;当a>b,得a+c>b+c,但若a+c, b + c均为负数时, la+clvlb+cl,即lgla+clvlglb+cl・故C不恒成立.故选D.【答案】D★状元笔记不等式性质的理解本例(1)的目的在于说明由a>b=> / a2>b2,只有当a>b20时,才有/>b2的结论.本例(2)的目的在于讲清由a>b=> * v *成立的条件是ab>0(即a, b同号时,若a>b,则+<*;a, b异号时,若a>b,则#>£)•本例(3)的目的在于对不等式的某些性质加以补充说明,即a>b, a2n+1>b2n+1, (neN)是成立的,对于解答选择题或填空题可直接应用.亍"思考题1 ⑴如果a>b>0,则下列不等式:®|<p ②a3>b3; ®lg(a2 + l)>lg(b2 +1);④25>21 其中成立的是() A.①②③④ B.①②③C.①②D.②③④(2)已知a, b为非零实数,且a<b,则下列命题成立的是( )A. a2<b2B. ab2<a2b-1 1 J aC越硏D a<b【解析】(1) T a>b>0,即①正确,排除D.因A、B、C中均含②,故不用论证②,选④进行论证,若④正确,则选A.*.• a>b>0,利用y=2*指数函数性质知21215成立.•°・④正确.(2)方法一:a, b为非零实数,・・・a2b2>0. 于是avb两边同除以茁得右v扫.方法二:排除法:若2, b=l,排除A;若a>0, b>0,排除B;h ]若a=_2, b=l,贝lJ-=—2^ B=—厶排除D・【答案】(1)A (2)C⑶适当增加不等式条件使得下列命题成立:①若a>b,则acWbc;②若ac2>bc2,贝Ij a2>b2;③若Qb,则lg(a+ l)>lg(b+1).【解析】①原命题改为:若Qb且cWO,则acWbc,即增加条件“cWO” .②由ac2>bc2,可得Qb,当b$0时,有a2>b2.即增加条件“b20” .③由a>b,可得a+l>b+l,但作为真数,应有b+l>0,故应增加条件“b>—1” .【答案】①cWO②b^O③b>—1题型二比较大小(微专题)微专题1:作差(商)法2 ⑴设x<y<0,试比较(x2 + y2)(x —y)与(x?y2)(x + y)的大小.【解析】*.*(X2 + y2)(x—y) —(X2—y2)(x+y)= (x—y)[x2 + y2—(x+y)2]= (x —y)( —2xy)>0,(x2+y2)(x—y)>(x2—y2) (x+y).【答案】(X2+y2)(x—y)>(x2—y2)(x+y)a+m a 、⑵比较苻二与其中实数b>a>0,实数m>0)的大小.b (a+m) —a (b+m) _m (b —a)b (b + m) =b (b+m)'方法二:(作商比较):b>a>0, m>0,/. bm>am=>ab + bm>ab + am>0.【解析】方法一:(作差比较): a+m b+m T b>a>0, m>0, .m (b —a)W>b (b+m) >0,.a+m a •b + m>bab+bm ab + am>b “a+m b a+m a 即话・P=帀〉B【答案】a+m a b + m>b★状元笔记比较法的运用类型(1)作差比较法有两种情形:①将差式进行因式分解转化为几个因式相乘;②将差式通过配方转化为几个非负实数之和,然后判断正负.(2)作商比较法通常适用于两代数式同号的情形.思考题(1)已知a, b, x,2x>y,的大小关系是—y均为正实数,且+ > £ ,【答案】 【解析】方法一(作差法): x y _ bx —ay ° x + a y+b (x + a) (y+b)' 又£且a, b£(0, +°°),b>a>0.又 x>y>0, •: bx>ay.方法二(作商法):略• bx —ay …(x + a) (y+b) >0,。

2019届高考数学人教A版理科第一轮复习课件第七章不等式、推理与证明7.4

2019届高考数学人教A版理科第一轮复习课件第七章不等式、推理与证明7.4

-18-
考点1
考点2
考点3
(2)证明 ①在△PAB中,因为E,F分别为PA,AB的中点,所以EF∥PB. 又因为EF⊄平面PBC,PB⊂平面PBC, 所以直线EF∥平面PBC. ②如图,连接BD. 因为AB=AD,∠BAD=60°, 所以△ABD为正三角形. 因为F是AB的中点,所以DF⊥AB. 因为平面PAB⊥平面ABCD,DF⊂平面ABCD,平面PAB∩平面 ABCD=AB, 所以DF⊥平面PAB. 又因为DF⊂平面DEF, 所以平面DEF⊥平面PAB.
1 2
2.间接证明 间接证明是不同于直接证明的又一类证明方法 ,反证法是一种常用 的间接证明方法. 不成立 (即在原命题的条件下, (1)反证法的定义:假设原命题 矛盾,因此说明假设错 结论不成立),经过正确的推理,最后得出 误,从而证明 原命题成立 的证明方法. (2)用反证法证明的一般步骤:①反设——假设命题的结论不成立; ②归谬——根据假设进行推理,直到推出矛盾为止;③结论——断 言假设不成立,从而肯定原命题的结论成立.
-2-
知识梳理
双基自测
1 2
续 内容 综合法 证明 由因导果 思路 分析法 执果索因

证明 P⇒Q1 → Q1⇒Q2 →…→ Qn⇒Q 个明显 流程 成立的条件 文字 因为……所以…… 表达 或由……得……
Q⇐P1 → P1⇐P2 →…→ 得到一
要证……只需证…… 即证……
-3-
知识梳理
双基自测
关闭
因为“方程x3+ax+b=0至少有一个实根”等价于“方程x3+ax+b=0的实
根的个数大于或等于1”,所以要做的假设是“方程x3+ax+b=0没有实 A

2019届高考数学一轮复习 第七章 不等式 推理与证明 7-4 基本不等式及其应用讲义 文

2019届高考数学一轮复习 第七章 不等式 推理与证明 7-4 基本不等式及其应用讲义 文

4.已知 a≥0,b≥0,且 a+b=2,则( )
A.ab≤12
B.ab≥12
C.a2+b2≥2 D.a2+b2≤3
[解析] 由 a+b=2 得,ab≤a+2 b2=1,排除 A. 当 a=0,b=2,ab=0 排除 B. 又a2+2 b2≥a+2 b2,可得 a2+b2≥2. 再由特殊值,排除 D.
(2)在求所列函数的最值时,若用基本不等式时,等号取不到, 可利用函数单调性求解.
[跟踪演练] (2017·安徽安庆三模)随着社会的发展,汽车逐步成为人们的 代步工具,家庭轿车的持有量逐年上升,交通堵塞现象时有发生, 据调查某段公路在某时段内的车流量 y(千辆/时)与汽车的平均速 度 v(千米/时)之间有函数关系:y=v2+89v0+0v1600(v>0). (1)在该时段内,当汽车的平均速度 v 为多少时车流量 y 最 大?最大车流量约为多少?(结果保留两位小数) (2)为保证在该时段内车流量至少为 10 千辆/时,则汽车的平 均速度应控制在什么范围内?
利用均值 不等式证明
[证明] 由 a+b=1,得1a+1b+a1b=21a+1b, ∵a+b=1,a>0,b>0, ∴1a+1b=a+a b+a+b b=2+ab+ba≥2+2=4, ∴1a+1b+a1b≥8当且仅当a=b=12时等号成立.
利用基本不等式证明不等式的技巧 利用基本不等式证明不等式时,首先要观察题中要证明的不 等式的形式,若不能直接使用基本不等式,则考虑利用拆项、配 凑等方法对不等式进行变形,使之达到能使用基本不等式的条 件;若题目中还有已知条件,则首先观察已知条件和所证不等式 之间的联系,当已知条件中含有 1 时,要注意 1 的代换.另外, 解题中要时刻注意等号能否取到.
此时 m=12x+34+5x0≥2 2x·5x0+34=443, 当且仅当12x=5x0,即 x=10 时,取“=”. 故销售量至少应达到443万件时,才能使技术革新后的销售收 入等于原销售收入与总投入之和.

高中数学一轮复习课件:第七章 不等式、推理与证明(必修5、选修1-2)7-1

高中数学一轮复习课件:第七章 不等式、推理与证明(必修5、选修1-2)7-1
令(4x+a)(3x-a)=0,解得 x1=-a4,x2=a3.
①当 a>0 时,-a4<a3,不等式的解集为 x|x<-a4,或x>a3; ②当 a=0 时,-a4=a3=0,不等式的解集为{x|x∈R,且 x≠0}; ③当 a<0 时,-a4>a3,不等式的解集为 x|x<a3,或x>-a4. 综上所述:当 a>0 时,不等式的解集为 x|x<-a4,或x>a3;
5.简单分式不等式的解法
x-a x-b>0
等价于(x-a)(x-b)>0;
x-a x-b<0
等价于(x-a)(x-b)<0;
xx--ab≥0 等价于xx--ba≠0x-;b≥0, xx--ab≤0 等价于xx--ba≠0x-. b≤0,
[辨识巧记] 1.倒数性质的几个必备结论 (1)a>b,ab>0⇒1a<1b. (2)a<0<b⇒1a<1b. (3)a>b>0,0<c<d⇒ac>bd. (4)0<a<x<b 或 a<x<b<0⇒1b<1x<1a.
[知识梳理]
1.两个实数比较大小的方法
a-b>0⇔a>b, (1)作差法a-b=0⇔a=ba,b∈R,
a-b<0⇔a<b.
ab>1⇔a>ba∈R,b>0, (2)作商法ab=1⇔a=ba∈R,b>0,
ab<1⇔a<ba∈R,b>0.
2.不等式的基本性质
m+n=3, n-m=-1,
解得mn==12.,
因为-π2<α-β<π2,0<α+β<π,

高考数学(理)一轮总复习课件:第七章 不等式及推理与证明 7-5

高考数学(理)一轮总复习课件:第七章 不等式及推理与证明 7-5

【解析】 由题意知,每个等式中正偶数的个数组成等差 n[3+(2n+1)] 数列3,5,7,…,2n+1,其前 n项和Sn= =n(n 2 +2),所以S31=1 023,则第31个等式中最后一个偶数是1
032×2=2 046,且第31个等式中含有2×31+1=63个偶数,故2 018在第31个等式中. 【答案】 C
【解析】
建立从平面图形到空间图形的类比,在由平面
几何的性质类比推理空间立体几何的性质时,注意平面几何中 点的性质可类比推理空间几何体中线的性质,平面几何中线的 性质可类比推理空间几何中面的性质,平面几何中面的性质可 类比推理空间几何中体的性质.所以三角形类比空间中的三棱 锥,线段的长度类比图形的面积,于是作出猜想:S2=S12+S22 +S32. 【答案】 S2=S12+S22+S32
答案 A 解析 该五角星对角上的两盏花灯依次按逆时针方向亮一盏, 故下一个呈现出来的图形是A.
4.(2017· 北京,文)某学习小组由学生和教师组成,人员构 成同时满足以下三个条件: (1)男学生人数多于女学生人数; (2)女学生人数多于教师人数; (3)教师人数的两倍多于男学生人数. ①若教师人数为4,则女学生人数的最大值为________. ②该小组人数的最小值为________.
*
1 +…+n2<________.
【解析】 根据已知的三个不等式,推理得出1+ 1 2n-1 +n2< n . 2n-1 【答案】 n
1 1 + +… 22 32
微专题3:图形的归纳 (3)如图所示,是某小朋友在用火柴拼图时呈现的图形,其 中第1个图形用了3根火柴,第2个图形用了9根火柴,第3个图形 用了18根火柴,……,则第2 016个图形用的火柴根数为( )

高考数学一轮复习 第七章 不等式、推理与证明7

高考数学一轮复习 第七章 不等式、推理与证明7

高考数学一轮复习 第七章 不等式、推理与证明7.1 等式性质与不等式性质 考试要求 1.掌握等式性质.2.会比较两个数的大小.3.理解不等式的性质,并能简单应用. 知识梳理1.两个实数比较大小的方法作差法⎩⎪⎨⎪⎧ a -b >0⇔a >b ,a -b =0⇔a =b ,a -b <0⇔a <b . (a ,b ∈R )2.等式的性质性质1 对称性:如果a =b ,那么b =a ;性质2 传递性:如果a =b ,b =c ,那么a =c ;性质3 可加(减)性:如果a =b ,那么a ±c =b ±c ;性质4 可乘性:如果a =b ,那么ac =bc ;性质5 可除性:如果a =b ,c ≠0,那么a c =b c. 3.不等式的性质性质1 对称性:a >b ⇔b <a ;性质2 传递性:a >b ,b >c ⇒a >c ;性质3 可加性:a >b ⇔a +c >b +c ;性质4 可乘性:a >b ,c >0⇒ac >bc ;a >b ,c <0⇒ac <bc ;性质5 同向可加性:a >b ,c >d ⇒a +c >b +d ;性质6 同向同正可乘性:a >b >0,c >d >0⇒ac >bd ;性质7 同正可乘方性:a >b >0⇒a n >b n (n ∈N ,n ≥2).常用结论1.若ab >0,且a >b ⇔1a <1b . 2.若a >b >0,m >0⇒b a <b +ma +m ; 若b >a >0,m >0⇒b a >b +ma +m .思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)两个实数a ,b 之间,有且只有a >b ,a =b ,a <b 三种关系中的一种.(√ )(2)若ba >1,则b >a .( × )(3)若x >y ,则x 2>y 2.( × )(4)若1a >1b ,则b <a .( × )教材改编题1.设b >a >0,c ∈R ,则下列不等式不正确的是( )A .12a <12b B.1a >1bC.a +2b +2>ab D .ac 3<bc 3答案 D解析 因为y =12x 在(0,+∞)上单调递增,所以12a <12b ,A 正确;因为y =1x 在(0,+∞)上单调递减,所以1a >1b ,B 正确;因为a +2b +2-a b =2b -ab +2b >0,所以a +2b +2>ab ,C 正确;当c =0时,ac 3=bc 3,所以D 不正确.2.已知M =x 2-3x ,N =-3x 2+x -3,则M ,N 的大小关系是________.答案 M >N解析 M -N =(x 2-3x )-(-3x 2+x -3)=4x 2-4x +3=(2x -1)2+2>0,∴M >N .3.已知-1<a <2,-3<b <5,则a +2b 的取值范围是______.答案 (-7,12)解析 ∵-3<b <5,∴-6<2b <10,又-1<a <2,∴-7<a +2b <12.题型一 比较两个数(式)的大小例1 (1)若a <0,b <0,则p =b 2a +a 2b与q =a +b 的大小关系为( ) A .p <q B .p ≤q C .p >q D .p ≥q答案 B解析 p -q =b 2a +a 2b-a -b =b 2-a 2a +a 2-b 2b=(b 2-a 2)·⎝⎛⎭⎫1a -1b =b 2-a 2b -a ab =b -a 2b +aab ,因为a <0,b <0,所以a +b <0,ab >0.若a =b ,则p -q =0,故p =q ;若a ≠b ,则p -q <0,故p <q .综上,p ≤q .(2)若a =ln 33,b =ln 44,c =ln 55,则( ) A .a <b <cB .c <b <aC .c <a <bD .b <a <c 答案 B解析 令函数f (x )=ln x x ,则f ′(x )=1-ln x x 2, 易知当x >e 时,f ′(x )<0,函数f (x )单调递减,因为e<3<4<5,所以f (3)>f (4)>f (5),即c <b <a .教师备选已知M =e 2 021+1e 2 022+1,N =e 2 022+1e 2 023+1,则M ,N 的大小关系为________. 答案 M >N解析 方法一 M -N =e 2 021+1e 2 022+1-e 2 022+1e 2 023+1=e 2 021+1e 2 023+1-e 2 022+12e 2 022+1e 2 023+1=e 2 021+e 2 023-2e 2 022e 2 022+1e 2 023+1=e 2 021e -12e 2 022+1e 2 023+1>0. ∴M >N .方法二 令f (x )=e x +1e x +1+1=1e e x +1+1+1-1e e x +1+1=1e +1-1e e x +1+1, 显然f (x )是R 上的减函数,∴f (2 021)>f (2 022),即M >N .思维升华 比较大小的常用方法(1)作差法:①作差;②变形;③定号;④得出结论.(2)作商法:①作商;②变形;③判断商与1的大小关系;④得出结论.(3)构造函数,利用函数的单调性比较大小.跟踪训练1 (1)已知0<a <1b ,且M =11+a +11+b,N =a 1+a +b 1+b ,则M ,N 的大小关系是( ) A .M >N B .M <NC .M =ND .不能确定答案 A解析 ∵0<a <1b ,∴1+a >0,1+b >0,1-ab >0. ∴M -N =1-a 1+a +1-b 1+b =21-ab1+a 1+b >0,∴M >N .(2)e π·πe 与e e ·ππ的大小关系为________.答案 e π·πe <e e ·ππ解析 e π·πe e e ·ππ=e π-eππ-e =⎝⎛⎭⎫eππ-e ,又0<eπ<1,0<π-e<1,∴⎝⎛⎭⎫eππ-e <1,即e π·πee e ·ππ<1,即e π·πe <e e ·ππ.题型二 不等式的性质例2 (1)(2022·滨州模拟)下列命题为真命题的是() A .若a >b ,则ac 2>bc 2B .若a <b <0,则a 2<ab <b 2C .若c >a >b >0,则a c -a <bc -bD .若a >b >c >0,则a b >a +c b +c 答案 D 解析 对于A 选项,当c =0时,显然不成立,故A 选项为假命题; 对于B 选项,当a =-3,b =-2时,满足a <b <0,但不满足a 2<ab <b 2,故B 选项为假命题;对于C 选项,当c =3,a =2,b =1时,a c -a =23-2>b c -b =12,故C 选项为假命题; 对于D 选项,由于a >b >c >0,所以a b -a +c b +c=a b +c -b a +c b b +c =ac -bc b b +c=a -b c b b +c>0,即a b >a +c b +c ,故D 选项为真命题. (2)若1a <1b<0,则下列不等式正确的是________.(填序号) ①1a +b <1ab ; ②|a |+b >0; ③a -1a >b -1b; ④ln a 2>ln b 2.答案 ①③解析 由1a <1b <0,可知b <a <0. ①中,因为a +b <0,ab >0,所以1a +b <0,1ab >0.故有1a +b <1ab,即①正确; ②中,因为b <a <0,所以-b >-a >0.故-b >|a |,即|a |+b <0,故②错误;③中,因为b <a <0,又1a <1b<0, 则-1a >-1b >0,所以a -1a >b -1b,故③正确; ④中,因为b <a <0,根据y =x 2在(-∞,0)上单调递减,可得b 2>a 2>0,而y =ln x 在定义域 (0,+∞)上单调递增,所以ln b 2>ln a 2,故④错误.教师备选若a ,b ,c ∈R ,a >b ,则下列不等式恒成立的是( )A.1a <1b B .a 2>b 2C .a |c |>b |c | D.a c 2+1>bc 2+1答案 D解析 对于A ,若a >0>b ,则1a >1b ,故A 错误;对于B ,取a =1,b =-2,则a 2<b 2,故B 错误;对于C ,若c =0,a |c |=b |c |,故C 错误;对于D ,因为c 2+1≥1,所以1c 2+1>0,又a >b ,所以a c 2+1>bc 2+1,故D 正确.思维升华 判断不等式的常用方法(1)利用不等式的性质逐个验证.(2)利用特殊值法排除错误选项.(3)作差法.(4)构造函数,利用函数的单调性.跟踪训练2 (1)(2022·珠海模拟)已知a ,b ∈R ,满足ab <0,a +b >0,a >b ,则() A.1a <1b B.b a +a b >0C .a 2>b 2D .a <|b |答案 C解析 因为ab <0,a >b ,则a >0,b <0,1a >0,1b <0,A 不正确;b a <0,a b <0,则b a +a b <0,B 不正确;又a+b>0,即a>-b>0,则a2>(-b)2,a2>b2,C正确;由a>-b>0得a>|b|,D不正确.(2)设a>b>1>c>0,下列四个结论正确的是________.(填序号)①1ac>1bc;②ba c>ab c;③(1-c)a<(1-c)b;④log b(a+c)>log a(b+c).答案③④解析由题意知,a>b>1>c>0,所以对于①,ac>bc>0,故1ac<1bc,所以①错误;对于②,取a=3,b=2,c=1 2,则ba c=23,ab c=32,所以ba c<ab c,故②错误;对于③,因为0<1-c<1,且a>b,所以(1-c)a<(1-c)b,故③正确;对于④,a+c>b+c>1,所以log b(a+c)>log b(b+c)>log a(b+c),故④正确.题型三不等式性质的综合应用例3(1)已知-1<x<4,2<y<3,则x-y的取值范围是________,3x+2y的取值范围是________.答案(-4,2)(1,18)解析∵-1<x<4,2<y<3,∴-3<-y <-2,∴-4<x -y <2.由-1<x <4,2<y <3,得-3<3x <12,4<2y <6,∴1<3x +2y <18.(2)已知3<a <8,4<b <9,则a b的取值范围是________. 答案 ⎝⎛⎭⎫13,2解析 ∵4<b <9,∴19<1b <14, 又3<a <8,∴19×3<a b <14×8, 即13<a b<2. 延伸探究 若将本例(1)中条件改为-1<x +y <4,2<x -y <3,求3x +2y 的取值范围. 解 设3x +2y =m (x +y )+n (x -y ),则⎩⎪⎨⎪⎧ m +n =3,m -n =2,∴⎩⎨⎧ m =52,n =12.即3x +2y =52(x +y )+12(x -y ), 又∵-1<x +y <4,2<x -y <3,∴-52<52(x +y )<10,1<12(x -y )<32, ∴-32<52(x +y )+12(x -y )<232, 即-32<3x +2y <232,∴3x +2y 的取值范围为⎝⎛⎭⎫-32,232. 教师备选已知0<β<α<π2,则α-β的取值范围是________. 答案 ⎝⎛⎭⎫0,π2 解析 ∵0<β<π2,∴-π2<-β<0, 又0<α<π2,∴-π2<α-β<π2, 又β<α,∴α-β>0,即0<α-β<π2. 思维升华 求代数式的取值范围,一般是利用整体思想,通过“一次性”不等关系的运算求得整体范围.跟踪训练3 (1)已知a >b >c ,2a +b +c =0,则c a的取值范围是( ) A .-3<c a<-1 B .-1<c a <-13 C .-2<c a<-1 D .-1<c a <-12 答案 A解析 因为a >b >c ,2a +b +c =0,所以a >0,c <0,b =-2a -c ,因为a >b >c ,所以-2a -c <a ,即3a >-c ,解得c a>-3, 将b =-2a -c 代入b >c 中,得-2a -c >c ,即a <-c ,得c a <-1,所以-3<c a <-1. (2)已知1<a <b <3,则a -b 的取值范围是________,a b的取值范围是________. 答案 (-2,0) ⎝⎛⎭⎫13,1解析 ∵1<b <3,∴-3<-b <-1,又1<a <3,∴-2<a -b <2,又a <b ,∴a -b <0,∴-2<a -b <0,又13<1b <1a ,∴a3<ab <1,又a3>13,∴13<ab <1.综上所述,a -b 的取值范围为(-2,0);a b 的取值范围为⎝⎛⎭⎫13,1.课时精练1.已知a >0,b >0,M =a +b ,N =a +b ,则M 与N 的大小关系为() A .M >NB .M <NC .M ≤ND .M ,N 大小关系不确定答案 B解析 M 2-N 2=(a +b )-(a +b +2ab )=-2ab <0,∴M <N .2.已知非零实数a ,b 满足a <b ,则下列命题成立的是( )A .a 2<b 2B .ab 2<a 2bC.1ab 2<1a 2b D.b a <a b答案 C解析 若a <b <0,则a 2>b 2,故A 不成立;若⎩⎪⎨⎪⎧ ab >0,a <b ,则a 2b <ab 2,故B 不成立;若a =1,b =2,则b a =2,a b =12,b a >a b ,故D 不成立,由不等式的性质知,C 正确.3.已知-3<a <-2,3<b <4,则a 2b 的取值范围为( )A .(1,3) B.⎝⎛⎭⎫43,94C.⎝⎛⎭⎫23,34D.⎝⎛⎭⎫12,1答案 A解析 因为-3<a <-2,所以a 2∈(4,9),而3<b <4,故a 2b 的取值范围为(1,3).4.若a >1,m =log a (a 2+1),n =log a (a +1),p =log a (2a ),则m ,n ,p 的大小关系是() A .n >m >p B .m >p >nC .m >n >pD .p >m >n答案 B解析 由a >1知,a 2+1-2a =(a -1)2>0,即a 2+1>2a ,而2a -(a +1)=a -1>0,即2a >a +1,∴a 2+1>2a >a +1,而y =log a x 在定义域上单调递增,∴m >p >n .5.已知a ,b ∈R ,则“|a |>|b |”是“a b >1”成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 B解析 不妨令a =1,b =0,故|a |>|b |不能推出a b >1,若a b >1,故a ,b 同号,若a ,b 都大于0,则a >b >0,从而|a |>|b |;若a ,b 都小于0,则a <b <0,从而|a |>|b |,故a b >1能推出|a |>|b |,从而“|a |>|b |”是“a b >1”成立的必要不充分条件.6.(2022·济宁模拟)已知x >y >z ,x +y +z =0,则下列不等式恒成立的是() A .xy >yz B .xy >xzC .xz >yzD .x |y |>|y |z答案 B解析 因为x >y >z ,x +y +z =0,所以x >0,z <0,y 的符号无法确定,对于A ,因为x >0>z ,若y <0,则xy <0<yz ,故A 错误;对于B ,因为y >z ,x >0,所以xy >xz ,故B 正确;对于C ,因为x >y ,z <0,所以xz <yz ,故C 错误;对于D ,因为x >z ,当|y |=0时,x |y |=|y |z ,故D 错误.7.设a ,b ,c ,d 为实数,且a >b >0>c >d ,则下列不等式正确的是( )A .c 2>cdB .a -c <b -dC .ac <bdD.c a -d b >0 答案 D解析 因为a >b >0>c >d ,所以a >b >0,0>c >d ,对于A ,因为0>c >d ,由不等式的性质可得c 2<cd ,故选项A 错误;对于B ,取a =2,b =1,c =-1,d =-2,则a -c =3,b -d =3,所以a -c =b -d ,故选项B 错误;对于C ,取a =2,b =1,c =-1,d =-2,则ac =-2,bd =-2,所以ac =bd ,故选项C 错误;对于D ,因为a >b >0,d <c <0,则ad <bc ,所以c a >d b, 故c a -d b>0,故选项D 正确. 8.若0<a <1,b >c >1,则( )A.⎝⎛⎭⎫b c a <1B.c -a b -a >c b C .c a -1<b a -1D .log c a <log b a答案 D解析 对于A ,∵b >c >1,∴b c>1. ∵0<a <1,则⎝⎛⎭⎫b c a >⎝⎛⎭⎫b c 0=1,故选项A 错误;对于B ,若c -a b -a >c b, 则bc -ab >bc -ac ,即a (c -b )>0,这与0<a <1,b >c >1矛盾,故选项B 错误;对于C ,∵0<a <1,∴a -1<0.∵b >c >1,∴c a -1>b a -1,故选项C 错误;对于D ,∵0<a <1,b >c >1,∴log c a <log b a ,故选项D 正确.9.已知M =x 2+y 2+z 2,N =2x +2y +2z -π,则M ________N .(填“>”“<”或“=”) 答案 >解析 M -N =x 2+y 2+z 2-2x -2y -2z +π=(x -1)2+(y -1)2+(z -1)2+π-3≥π-3>0,故M >N .10.(2022·宜丰模拟)若1a <1b <0,已知下列不等式:①a +b <ab ;②|a |>|b |;③a <b ;④b a +a b>2.其中正确的不等式的序号为________.答案 ①④解析 因为1a <1b<0, 所以b <a <0,故③错误;所以a +b <0<ab ,故①正确;所以|a |<|b |,故②错误;所以b a >0,a b >0且均不为1,b a +a b ≥2b a ·a b =2,当且仅当b a =a b =1时,等号成立,所以b a +a b>2,故④正确. 11.若0<a <b ,且a +b =1,则将a ,b ,12,2ab ,a 2+b 2从小到大排列为________________. 答案 a <2ab <12<a 2+b 2<b 解析 方法一 令a =13,b =23, 则2ab =49,a 2+b 2=19+49=59, 故a <2ab <12<a 2+b 2<b . 方法二 ∵0<a <b 且a +b =1,∴a <12<b <1,∴2b >1且2a <1, ∴a <2b ·a =2a (1-a )=-2a 2+2a=-2⎝⎛⎭⎫a -122+12<12, 即a <2ab <12. 又a 2+b 2=(a +b )2-2ab =1-2ab >1-12=12, 即a 2+b 2>12.∵12<b <1, ∴(a 2+b 2)-b =[(1-b )2+b 2]-b =2b 2-3b +1=(2b -1)(b -1)<0,即a 2+b 2<b ,综上可知a <2ab <12<a 2+b 2<b . 12.若α,β满足-π2<α<β<π2,则2α-β的取值范围是________. 答案 ⎝⎛⎭⎫-3π2,π2 解析 ∵-π2<α<π2,∴-π<2α<π.∵-π2<β<π2,∴-π2<-β<π2, ∴-3π2<2α-β<3π2. 又α-β<0,α<π2,∴2α-β<π2. 故-3π2<2α-β<π2.13.(2022·长沙模拟)设实数a ,b ,c 满足b +c =6-4a +3a 2,c -b =4-4a +a 2,则下列不等式恒成立的是( )A .c <bB .b ≤1C .b ≤aD .a <c 答案 D解析 ∵⎩⎪⎨⎪⎧ b +c =6-4a +3a 2,c -b =4-4a +a 2, 两式相减得2b =2a 2+2,即b =a 2+1,∴b ≥1.又b -a =a 2+1-a =⎝⎛⎭⎫a -122+34>0, ∴b >a .而c -b =4-4a +a 2=(a -2)2≥0,∴c ≥b ,从而c ≥b >a .14.实数a ,b ,c ,d 满足下列三个条件:①d >c ;②a +b =c +d ;③a +d <b +c .那么a ,b ,c ,d 的大小关系是________.答案 b >d >c >a解析 由题意知d >c ①,②+③得2a +b +d <2c +b +d ,化简得a <c ④,由②式a +b =c +d及a <c 可得到,要使②成立,必须b >d ⑤成立,综合①④⑤式得到b >d >c >a .15.已知函数f (x )=ax 2+bx +c 满足f (1)=0,且a >b >c ,则c a的取值范围是________. 答案 ⎝⎛⎭⎫-2,-12 解析 因为f (1)=0,所以a +b +c =0,所以b =-(a +c ).又a >b >c ,所以a >-(a +c )>c ,且a >0,c <0,所以1>-a +c a >c a ,即1>-1-c a >c a. 所以⎩⎨⎧ 2c a <-1,c a >-2,解得-2<c a <-12. 即c a的取值范围为⎝⎛⎭⎫-2,-12. 16.某学习小组由学生和教师组成,人员构成同时满足以下三个条件:(1)男学生人数多于女学生人数;(2)女学生人数多于教师人数;(3)教师人数的两倍多于男学生人数.①若教师人数为4,则女学生人数的最大值为________.②该小组人数的最小值为________.答案 ①6 ②12解析 设男学生人数为x ,女学生人数为y ,教师人数为z ,由已知得⎩⎪⎨⎪⎧ x >y ,y >z ,2z >x ,且x ,y ,z均为正整数.①当z =4时,8>x >y >4,∴x 的最大值为7,y 的最大值为6,故女学生人数的最大值为6.②x >y >z >x 2,当x =3时,条件不成立,当x =4时,条件不成立,当x =5时,5>y >z >52,此时z =3,y =4.∴该小组人数的最小值为12.。

高考数学一轮复习 第七章 不等式、推理与证明7

高考数学一轮复习 第七章 不等式、推理与证明7

高考数学一轮复习第七章不等式、推理与证明7.3二元一次不等式(组)与简单的线性规划问题考试要求 1.会从实际情境中抽象出二元一次不等式组.2.了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.3.会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.知识梳理1.二元一次不等式(组)表示的平面区域不等式表示区域Ax+By+C>0 直线Ax+By+C=0某一侧所有点组成的平面区域不包括边界Ax+By+C≥0包括边界不等式组各个不等式表示的平面区域的公共部分2.线性规划中的基本概念名称意义约束条件由变量x,y组成的不等式(组)线性约束条件由x,y的一次不等式(或方程)组成的不等式组目标函数关于x,y的函数解析式,如z=2x+3y等线性目标函数关于x,y的一次解析式可行解满足线性约束条件的解(x,y)可行域所有可行解组成的集合最优解使目标函数取得最大值或最小值的可行解线性规划问题在线性约束条件下求线性目标函数的最大值或最小值问题思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)二元一次不等式组所表示的平面区域是各个不等式所表示的平面区域的交集.( √ ) (2)不等式Ax +By +C >0表示的平面区域一定在直线Ax +By +C =0的上方.( × ) (3)点(x 1,y 1),(x 2,y 2)在直线Ax +By +C =0同侧的充要条件是(Ax 1+By 1+C )(Ax 2+By 2+C )>0,在异侧的充要条件是(Ax 1+By 1+C )(Ax 2+By 2+C )<0.( √ )(4)目标函数z =ax +by (b ≠0)中,z 的几何意义是直线ax +by -z =0在y 轴上的截距.( × )教材改编题1.某校对高三美术生划定录取分数线,专业成绩x 不低于95分,文化课总分y 高于380分,体育成绩z 超过45分,用不等式表示就是( ) A.⎩⎪⎨⎪⎧ x ≥95,y ≥380,z >45 B.⎩⎪⎨⎪⎧ x ≥95,y >380,z ≥45 C.⎩⎪⎨⎪⎧x >95,y >380,z >45 D.⎩⎪⎨⎪⎧x ≥95,y >380,z >45答案 D解析 “不低于”即“≥”,“高于”即“>”,“超过”即“>”, ∴x ≥95,y >380,z >45.2.不等式组⎩⎪⎨⎪⎧x -y +1<0,x +y -3≥0表示的区域(阴影部分)是( )答案 D解析 将点(0,0)代入x -y +1<0不成立,则点(0,0)不在不等式x -y +1<0所表示的平面区域内, 将点(0,0)代入x +y -3≥0不成立,则点(0,0)不在不等式x +y -3≥0所表示的平面区域内, 所以表示的平面区域不包括原点,排除A ,C ;x -y +1<0不包括边界,用虚线表示,x +y -3≥0包括边界,用实线表示,故选D. 3.设变量x ,y 满足约束条件:⎩⎪⎨⎪⎧x +y -3≤0,x -y ≥0,y ≥0,则目标函数z =x +2y 的最大值为________.答案 92解析 根据不等式组作出可行域,如图中阴影部分(含边界)所示,当目标函数z =x +2y 经过点⎝⎛⎭⎫32,32时,z 取最大值为92.题型一 二元一次不等式(组)表示的平面区域 例1 (1)(2022·新乡模拟)不等式组⎩⎪⎨⎪⎧x +y ≤2,2x -y ≥1,y +1≥0表示的平面区域的面积为______.答案 3解析 画出可行域,如图中阴影部分(含边界)所示,联立⎩⎪⎨⎪⎧ x +y =2,2x -y =1,解得⎩⎪⎨⎪⎧x =1,y =1,即A (1,1), 联立⎩⎪⎨⎪⎧2x -y =1,y =-1,解得⎩⎪⎨⎪⎧x =0,y =-1,即B (0,-1), 联立⎩⎪⎨⎪⎧ x +y =2,y =-1, 解得⎩⎪⎨⎪⎧x =3,y =-1,即C (3,-1), S △ABC =12×|3-0|×|1-(-1)|=3.(2)已知不等式组⎩⎪⎨⎪⎧x -y +1≥0,2x -y -2≤0,x >m 表示的平面区域为三角形,则实数m 的取值范围为____________. 答案 (-∞,3)解析 根据题意,先作出不等式组⎩⎪⎨⎪⎧x -y +1≥0,2x -y -2≤0表示的平面区域,如图中阴影部分所示,由⎩⎪⎨⎪⎧y =2x -2,y =x +1,可得A (3,4), 要使不等式组表示的平面区域为三角形,只需m <3, 所以m 的取值范围为(-∞,3).教师备选已知点A (3,0),B (-3,2),若直线ax -y -1=0与线段AB 总有公共点,则a 的取值范围是( ) A.⎣⎡⎦⎤-1,13 B .(-∞,-1]∪⎣⎡⎭⎫13,+∞ C.⎣⎡⎦⎤-13,1 D.⎝⎛⎦⎤-∞,-13∪[1,+∞) 答案 B解析 因为直线ax -y -1=0与线段AB 总有公共点, 所以点A 和点B 不同在直线的一侧, 所以(3a -0-1)(-3a -2-1)≤0, 解得a ≤-1或a ≥13.即a 的取值范围是(-∞,-1]∪⎣⎡⎭⎫13,+∞. 思维升华 平面区域的形状问题主要有两种题型(1)确定平面区域的形状,求解时先作出满足条件的平面区域,然后判断其形状.(2)根据平面区域的形状求解参数问题,求解时通常先作出满足条件的平面区域,但要注意对参数进行必要的讨论.跟踪训练1 (2022·西安模拟)若不等式组⎩⎪⎨⎪⎧x ≥0,x +y ≥2,3x +y ≤5所表示的平面区域被直线y =kx +2分成面积相等的两个部分,则实数k 的值为( ) A .1 B .2 C .3 D .4 答案 A解析 作出不等式组对应的平面区域,如图中阴影部分(含边界)所示,B (0,5),因为直线y =kx +2过定点C (0,2), 所以C 点在可行域内,要使直线y =kx +2将可行域分成面积相等的两部分, 则直线y =kx +2必过线段AB 的中点D .由⎩⎪⎨⎪⎧x +y =2,3x +y =5,解得⎝⎛⎭⎫32,12,即A ⎝⎛⎭⎫32,12, 所以AB 的中点D ⎝⎛⎭⎫34,114,将D 的坐标代入直线y =kx +2,得114=34k +2,解得k =1.题型二 求目标函数的最值问题 命题点1 求线性目标函数的最值例2 (2021·浙江)若实数x ,y 满足约束条件⎩⎪⎨⎪⎧x +1≥0,x -y ≤0,2x +3y -1≤0,则z =x -12y 的最小值是( )A .-2B .-32C .-12 D.110答案 B解析 作出可行域如图中阴影部分(含边界)所示,作出直线y =2x 并平移,数形结合可知,当平移后的直线经过点A 时z 取得最小值.由⎩⎪⎨⎪⎧ 2x +3y -1=0,x +1=0,得⎩⎪⎨⎪⎧x =-1,y =1, 所以A (-1,1),z min =-1-12=-32.命题点2 求非线性目标函数的最值例3 (1)如果点P (x ,y )在平面区域⎩⎪⎨⎪⎧2x -y +2≥0,x -2y +1≤0,x +y -2≤0上,则y +1x -2的取值范围是( )A.⎣⎡⎦⎤-2,-13 B.⎣⎡⎦⎤-2,-32 C.⎣⎡⎦⎤-2,13 D.⎣⎡⎦⎤-13,2 答案 A解析 作出点P (x ,y )所在的平面区域,如图中阴影部分(含边界)所示,y +1x -2表示动点P 与定点Q (2,-1)连线的斜率. 联立⎩⎪⎨⎪⎧ x -2y +1=0,x +y -2=0,解得⎩⎪⎨⎪⎧x =1,y =1.于是k QE =1+11-2=-2,k QF =0+1-1-2=-13.因此-2≤y +1x -2≤-13.(2)若变量x ,y 满足约束条件⎩⎪⎨⎪⎧2x -y ≤0,x +y -3≤0,x ≥0,则(x -1)2+y 2的最小值为( )A .1 B.45 C.255 D .2答案 B解析 结合题意作出不等式组对应的平面区域,如图中阴影部分(含边界)所示,而(x -1)2+y 2的几何意义是可行域内的点与(1,0)的距离的平方, 又(1,0)到直线2x -y =0的距离为25, 故(x -1)2+y 2的最小值为45.命题点3 求参数值或取值范围例4 已知k >0,x ,y 满足约束条件⎩⎪⎨⎪⎧x -2≥0,x +y -3≤0,y ≥k x -3,若z =2x +y 的最小值为1,则k 等于( )A .3B .5 C.12 D.14答案 A解析 由不等式组知可行域只能是图中△ABC 内部阴影部分(含边界)所示,作直线l :2x +y =0,平移直线l ,只有当l 过点B 时,z =2x +y 取得最小值, 易知B (2,-k ), ∴4-k =1,解得k =3. 教师备选1.(2022·六安模拟)已知实数x ,y 满足不等式组⎩⎪⎨⎪⎧x -1≥0,y -2≥0,x +y -5≤0,则z =2x +y 的最大值为( )A .4B .5C .8D .10 答案 C解析 不等式组表示的可行域,如图中阴影部分(含边界)所示,由z =2x +y ,得y =-2x +z , 作出直线y =-2x ,向上平移过点C 时,z =2x +y 取得最大值,由⎩⎪⎨⎪⎧ y -2=0,x +y -5=0,得⎩⎪⎨⎪⎧x =3,y =2,即C (3,2), 所以z =2x +y 的最大值为2×3+2=8. 2.已知实数x ,y 满足不等式⎩⎪⎨⎪⎧x -y +2≥0,2x +y -5≤0,y ≥1,则z =x 2+y 2的最大值为________.答案 10解析 根据约束条件⎩⎪⎨⎪⎧x -y +2≥0,2x +y -5≤0,y ≥1,画出可行域,如图中阴影部分(含边界)所示,z =x 2+y 2是指可行域内的动点(x ,y )与定点(0,0)之间的距离的平方, 由图可知,点P 到原点O 的距离的平方最大,又因为⎩⎪⎨⎪⎧x -y +2=0,2x +y -5=0,即⎩⎪⎨⎪⎧x =1,y =3,所以P (1,3), 故z max =12+32=10.3.设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥a ,x -y ≤-1,且z =x +ay 的最小值为7,则a =________.答案 3解析 作出不等式组对应的平面区域,如图中阴影部分(含边界)所示,联立⎩⎪⎨⎪⎧x -y =-1,x +y =a ,解得⎩⎨⎧x =a -12,y =a +12,∴A ⎝⎛⎭⎫a -12,a +12.①当a =0时,A ⎝⎛⎭⎫-12,12,x =z 无最小值,不满足题意; ②当a <0时,由z =x +ay 得y =-1a x +za,要使z 最小,则直线y =-1a x +za 在y 轴上的截距最大,满足条件的最优解不存在;③当a >0时,由z =x +ay 得y =-1a x +za,由图可知,当直线过点A 时直线在y 轴上的截距最小,z 最小,此时,-1a ≥-1,即a ≥1,此时z =a -12+a ·a +12=a 2+2a -12=7.即a 2+2a -15=0, 解得a =3或a =-5(舍). 思维升华 常见的三类目标函数 (1)截距型:形如z =ax +by . (2)距离型:形如z =(x -a )2+(y -b )2. (3)斜率型:形如z =y -bx -a.跟踪训练2 (1)已知A (1,2),点B (x ,y )的坐标x ,y 满足⎩⎪⎨⎪⎧x +y ≤3,2x -y -2≤0,x ≥1,则OA →·OB →的取值范围是________. 答案 [1,5]解析 作不等式组⎩⎪⎨⎪⎧x +y ≤3,2x -y -2≤0,x ≥1的可行域,如图中阴影部分(含边界)所示.设z =OA →·OB →,则z =x +2y , 将z =x +2y 化为y =-12x +z 2,由图象可得,当直线y =-12x +z2过点A (1,2)时,z 取最大值,最大值为5.当直线y =-12x +z2过点C (1,0)时,z 取最小值,最小值为1.∴OA →·OB →的取值范围是[1,5].(2)(2022·平顶山模拟)若实数x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -5≤0,y -2≥0,x -1≥0,则z =x +2y +3x +1的最小值是______. 答案 52解析 作出可行域,如图中阴影部分(含边界)所示,z =x +2y +3x +1=1+2y +1x +1,其中k =y +1x +1表示可行域内点P (x ,y )与定点Q (-1,-1)连线的斜率,由⎩⎪⎨⎪⎧ x +y -5=0,y =2得⎩⎪⎨⎪⎧x =3,y =2,即C (3,2), 由图可得k min =k CQ =2+13+1=34, 所以z min =1+2×34=52.(3)(2022·金华模拟)已知x ,y 满足⎩⎪⎨⎪⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0,若z =y -ax 取得最大值的最优解不唯一,则a 的值为________. 答案 -1或2解析 作出可行域,如图中阴影部分(含边界)所示,作直线l :y -ax =0,在z =y -ax 中,y =ax +z ,a 是斜率,z 是纵截距,直线向上平移,z 增大,因此要使最大值的最优解不唯一,则直线l 与AB 或AC 平行, 所以a =-1或a =2.题型三 实际生活中的线性规划问题例5 (2022·新乡模拟)快递行业的高速发展极大地满足了人们的购物需求,也提供了大量的就业岗位,出现了大批快递员.某快递公司接到甲、乙两批快件,基本数据如下表:体积(立方分米/件)重量(千克/件)快递员工资(元/件)甲批快件 20108乙批快件102010快递员小马接受派送任务,小马的送货车载货的最大容积为350立方分米,最大载重量为250千克,小马一次送货可获得的最大工资额为( ) A .150元 B .170元 C .180元 D .200元答案 B解析 设一次派送甲批快件x 件、乙批快件y 件,则x ,y 满足⎩⎪⎨⎪⎧20x +10y ≤350,10x +20y ≤250,x ≥0,y ≥0,x ,y ∈N ,即⎩⎪⎨⎪⎧2x +y ≤35,x +2y ≤25,x ≥0,y ≥0,x ,y ∈N ,小马派送完毕获得的工资z =8x +10y (元), 画出可行域,如图中阴影部分(含边界)所示,由⎩⎪⎨⎪⎧2x +y =35,x +2y =25,解得x =15,y =5, 所以目标函数在点M (15,5)处取得最大值, 故z max =8×15+10×5=170(元).所以小马一次送货可获得的最大工资额为170元. 教师备选某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5 kg ,乙材料1 kg ,用5个工时;生产一件产品B 需要甲材料0.5 kg ,乙材料0.3 kg ,用3个工时,生产一件产品A 的利润为2 100元,生产一件产品B 的利润为900元.该企业现有甲材料150 kg ,乙材料90 kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为( ) A .180 000元 B .216 000元 C .189 000元 D .256 000元答案 B解析 设生产产品A 为x 件,产品B 为y 件,获利z 元. ∴⎩⎪⎨⎪⎧1.5x +0.5y ≤150,x +0.3y ≤90,5x +3y ≤600,x ∈N ,y ∈N ,目标函数z =2 100x +900y ,作出可行域,如图中阴影部分(含边界)所示.将z =2 100x +900y 化为y =-73x +z900,由图象可得,当直线y =-73x +z900过点M 时,在y 轴上的截距最大,即z 最大.联立⎩⎪⎨⎪⎧x +0.3y =90,5x +3y =600,得M (60,100),∴z max =2 100×60+900×100=216 000(元), ∴利润最大为216 000元.思维升华 解线性规划应用题的步骤(1)转化——设元,写出约束条件和目标函数,从而将实际问题转化为线性规划问题; (2)求解—— 解这个纯数学的线性规划问题;(3)作答——将线性规划问题的答案还原为实际问题的答案.跟踪训练3 某企业在“精准扶贫”行动中,决定帮助一贫困山区将水果运出销售.现有8辆甲型车和4辆乙型车,甲型车每次最多能运6吨且每天能运4次,乙型车每次最多能运10吨且每天能运3次,甲型车每天费用320元,乙型车每天费用504元.若需要一天内把180吨水果运输到火车站,则通过合理调配车辆,运送这批水果的费用最少为( ) A .2 400元 B .2 560元 C .2 816元 D .4 576元答案 B解析 设甲型车x 辆,乙型车y 辆,运送这批水果的费用为z 元, 则⎩⎪⎨⎪⎧0≤x ≤8,0≤y ≤4,24x +30y ≥180,x ∈N ,y ∈N目标函数z =320x +504y , 作出不等式组⎩⎪⎨⎪⎧x ∈N ,y ∈N ,0≤x ≤8,0≤y ≤4,24x +30y ≥180所表示的平面区域,如图所示的阴影部分(含边界).作直线320x +504y =0,并平移,结合实际情况分析可得当直线过整点(8,0)时,z 取得最小值, 即z min =8×320+0×504=2 560(元).课时精练1.将不等式组⎩⎪⎨⎪⎧x -2y +2≥0,x +y <0表示的平面区域记为F ,则属于F 的点是( )A .(1,1)B .(-1,1)C .(-1,-1)D .(1,-1)答案 C解析 将点(1,1)代入方程组得⎩⎪⎨⎪⎧1≥0,2>0,故不在区域F 内,将点(-1,1)代入方程组得⎩⎪⎨⎪⎧-1<0,0=0,故不在区域F 内,将点(-1,-1)代入方程组得⎩⎪⎨⎪⎧3≥0,-2<0,故在区域F 内,将点(1,-1)代入方程组得⎩⎪⎨⎪⎧5≥0,0=0,故不在区域F 内.2.(2022·合肥质检)不等式组⎩⎪⎨⎪⎧x -3≤0,x +y ≥0,x -y ≥0围成的封闭图形的面积是( )A .12B .6C .9D .15 答案 C解析 作出可行域,如图中阴影部分(含边界)所示,由⎩⎪⎨⎪⎧ x -3=0,x -y =0得A (3,3), 由⎩⎪⎨⎪⎧x -3=0,x +y =0得B (3,-3), 所以可行域的面积为12×3×6=9.3.(2021·全国乙卷)若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥4,x -y ≤2,y ≤3,则z =3x +y 的最小值为( )A .18B .10C .6D .4 答案 C解析 方法一 (数形结合法)作出可行域,如图中阴影部分(含边界)所示,作出直线y =-3x ,并平移,数形结合可知,当平移后的直线经过点A 时,直线y =-3x +z 在y 轴上的截距最小,即z 最小.解方程组⎩⎪⎨⎪⎧ x +y =4,y =3得⎩⎪⎨⎪⎧x =1,y =3,即点A 的坐标为(1,3).从而z =3x +y 的最小值为3×1+3=6.方法二 (代点比较法)画图易知,题设不等式组对应的可行域是封闭的三角形区域,所以只需要比较三角形区域三个顶点处的z 的大小即可.易知直线x +y =4与y =3的交点坐标为(1,3),直线x +y =4与x -y =2的交点坐标为(3,1),直线x -y =2与y =3的交点坐标为(5,3),将这三个顶点的坐标分别代入z =3x +y 可得z 的值分别为6,10,18,所以比较可知z min =6.方法三 (巧用不等式的性质)因为x +y ≥4,所以3x +3y ≥12. ① 因为y ≤3,所以-2y ≥-6.②于是,由①+②可得3x +3y +(-2y )≥12+(-6),即3x +y ≥6,当且仅当x +y =4且y =3,即x =1,y =3时不等式取等号,易知此时不等式x -y ≤2成立. 4.不等式(x -2y +1)(x +y -3)≤0在直角坐标平面内表示的区域(用阴影部分表示),应是下列图形中的( )答案 C解析 (x -2y +1)(x +y -3)≤0等价于⎩⎪⎨⎪⎧ x -2y +1≥0,x +y -3≤0或⎩⎪⎨⎪⎧x -2y +1≤0,x +y -3≥0,即不等式表示的区域是同时在两直线的上方部分或同时在两直线的下方部分,只有选项C 符合题意.5.(2022·长沙模拟)若x ,y 满足⎩⎪⎨⎪⎧x +y ≥0,x -y ≥0,x ≤1,则z =2x -y 的取值范围是( )A .[0,3]B .[1,3]C .[-3,0]D .[-3,-1]答案 A解析 作出⎩⎪⎨⎪⎧x +y ≥0,x -y ≥0,x ≤1表示的可行域,如图中阴影部分(含边界)所示,联立⎩⎪⎨⎪⎧ x =1,x +y =0,解得⎩⎪⎨⎪⎧x =1,y =-1,即B (1,-1),化目标函数z =2x -y 为y =2x -z ,由图可知,当直线y =2x -z 过原点时,直线在y 轴上的截距最大,z 有最小值,为2×0-0=0;当直线y =2x -z 过点B 时,直线在y 轴上的截距最小,z 有最大值,为2×1-(-1)=3, ∴z =2x -y 的取值范围是[0,3].6.一小商贩准备用50元钱在某批发市场购买甲、乙两种小商品,甲每件进价4元,乙每件进价7元,甲商品每卖出去1件可赚1元,乙商品每卖出去1件可赚1.8元.该商贩若想获取最大收益,则购买甲、乙两种商品的件数应分别为( ) A .甲7件,乙3件 B .甲9件,乙2件 C .甲4件,乙5件 D .甲2件,乙6件答案 D解析 设购买甲、乙两种商品的件数应分别x ,y 件,利润为z 元,由题意⎩⎪⎨⎪⎧4x +7y ≤50,x ,y ∈N ,z =x +1.8y ,画出可行域,如图中阴影部分(含边界)所示,结合实际情况,显然当y =-59x +59z 经过整点A (2,6)时,z 最大.7.设x ,y 满足约束条件⎩⎪⎨⎪⎧x -6≤0,x +y -1≥0,2x -y +1≥0,则z =y -1x +1的最大值是( )A.127 B.12 C .1 D .2答案 A解析 作出约束条件表示的可行域,如图中阴影部分(含边界)所示,z =y -1x +1表示可行域中的点(x ,y )与点P (-1,1)的连线的斜率, 由图可知z =y -1x +1的最大值在A 点取得,由⎩⎪⎨⎪⎧x -6=0,2x -y +1=0, 得A (6,13), 所以z max =13-16+1=127.8.在某校冬季长跑活动中,学校要给获得一、二等奖的学生购买奖品,要求花费总额不得超过200元.已知一等奖和二等奖奖品的单价分别为20元、10元,一等奖人数与二等奖人数的比值不得高于13,且获得一等奖的人数不能少于2人,那么下列说法中错误的是( )A .最多可以购买4份一等奖奖品B .最多可以购买16份二等奖奖品C .购买奖品至少要花费100元D .共有20种不同的购买奖品方案 答案 D解析 设获得一等奖和二等奖的人数分别为x ,y (x ,y ∈N *),由题意得⎩⎪⎨⎪⎧20x +10y ≤200,3x ≤y ,x ≥2,作出该不等式组对应的平面区域,如图中阴影部分(含边界)所示,由图可知,2≤x ≤4,6≤y ≤16,故x 可取2,3,4,故最多可以购买4份一等奖奖品,最多可以购买16份二等奖奖品, 购买奖品至少要花费2×20+6×10=100(元),故A ,B ,C 正确; 当x =2时,y 可取6,7,8,9,10,11,12,13,14,15,16,共有11种, 当x =3时,y 可取9,10,11,12,13,14,共6种, 当x =4时,y 可取12,共1种, 故共有11+6+1=18(种),故D 不正确.9.已知点(1,1)在直线x +2y +b =0的下方,则实数b 的取值范围是________. 答案 (-∞,-3)解析 因为点(1,1)在直线x +2y +b =0的下方,所以1+2+b <0,解得b <-3. 10.已知实数x ,y 满足⎩⎪⎨⎪⎧x -y ≤0,x +y -2≥0,x -3y +6≥0,则2y4x 的最小值为________. 答案 18解析 画出可行域,如图中阴影部分(含边界)所示,2y 4x =2y -2x,若使2y -2x 最小,需y -2x 最小. 令z =y -2x ,则y =2x +z , z 表示直线在y 轴上的截距,根据平移知,当x =3,y =3时,z =y -2x 有最小值为-3, 则2y 4x 的最小值为2-3=18. 11.已知实数x ,y 满足⎩⎪⎨⎪⎧2x -y +4≥0,x +y -1≥0,x ≤1,若直线y =k (x -1)将可行域分成面积相等的两部分,则实数k 的值为________. 答案 -4解析 画出可行域,如图中阴影部分(含边界)所示,其中A (1,6),B (1,0),C (-1,2).由于直线y =k (x -1)过定点B (1,0)且将可行域分成面积相等的两部分,所以当直线y =k (x -1)过线段AC 的中点D (0,4)时,△ABD 和△BCD 的面积相等, 此时k =k BD =4-00-1=-4.12.现某小型服装厂锁边车间有锁边工10名,杂工15名,有7台电脑机,每台电脑机每天可给12件衣服锁边;有5台普通机,每台普通机每天可给10件衣服锁边.如果一天至少有100件衣服需要锁边,用电脑机每台需配锁边工1名,杂工2名,用普通机每台需要配锁边工1名,杂工1名,用电脑机给一件衣服锁边可获利8元,用普通机给一件衣服锁边可获利6元,则该服装厂锁边车间一天最多可获利________元. 答案 780解析 设每天安排电脑机和普通机各x ,y 台, 则一天可获利z =12×8x +10×6y =96x +60y , 线性约束条件为⎩⎪⎨⎪⎧x +y ≤10,2x +y ≤15,12x +10y ≥100,0<x ≤7,0<y ≤5,画出可行域(图略),可知当目标函数经过(5,5)时,z max =780.13.(2022·郑州模拟)已知M (x ,y )是不等式组⎩⎪⎨⎪⎧x -y -2≤0,x +y +2≥0,y ≤1所表示的平面区域内的任意一点,且M (x ,y )满足x 2+y 2≤a ,则a 的最小值为( ) A .3 B .4 C .9 D .10 答案 D解析 作出不等式组⎩⎪⎨⎪⎧x -y -2≤0,x +y +2≥0,y ≤1所表示的可行域,如图中的阴影部分(含边界)所示,联立⎩⎪⎨⎪⎧x +y +2=0,y =1,可得⎩⎪⎨⎪⎧x =-3,y =1,即点A (-3,1),同理可得B (3,1),C (0,-2), 且OA =OB =10,OC =2,x 2+y 2的几何意义为原点O 与可行域内的点M (x ,y )的距离的平方,由图可知,当点M 与点A 或点B 重合时,OM 取最大值,故x 2+y 2的最大值为10, ∴a ≥10,即a 的最小值为10.14.已知实数x ,y 满足不等式组⎩⎪⎨⎪⎧x +y -2≤0,x ≥a ,x ≤y ,且z =2x -y 的最大值是最小值的2倍,则a 等于( ) A.34 B.56 C.65 D.43 答案 B解析 根据题中所给的约束条件,画出相应的可行域,如图中阴影部分(含边界)所示,作出直线l :y =2x ,平移直线l ,由图可知,当直线经过点D 时,直线在y 轴上的截距最小, 此时z =2x -y 取得最大值,由⎩⎪⎨⎪⎧x +y -2=0,x =y ,可得D (1,1), 所以z =2x -y 的最大值是1;当直线经过点B 时,直线在y 轴上的截距最大, 此时z =2x -y 取得最小值,由⎩⎪⎨⎪⎧x +y -2=0,x =a ,可得B (a ,2-a ), 所以z =2x -y 的最小值是3a -2, 因为z =2x -y 的最大值是最小值的2倍, 所以6a -4=1,解得a =56.15.实数对(x ,y )满足不等式组⎩⎪⎨⎪⎧x -y -2≤0,x +2y -5≥0,y -2≤0,且目标函数z =kx -y 当且仅当x =3,y =1时取最大值,则k 的取值范围为( ) A.⎝⎛⎭⎫-12,+∞ B.⎣⎡⎭⎫-12,1 C.⎝⎛⎭⎫-12,1 D .(-∞,1]答案 C解析 作出可行域,如图中阴影部分(含边界)所示,其中A (1,2),B (4,2),C (3,1),由z =kx -y ,将直线l :y =kx -z 进行平移可得直线在y 轴上的截距为-z , 因此直线在y 轴上截距最小时,目标函数z 达到最大值. 因为当且仅当l 经过点C (3,1)时,目标函数z 达到最大值, 所以直线l 的斜率应介于直线AC 的斜率与直线BC 的斜率之间, k AC =1-23-1=-12,k BC =2-14-3=1,所以k 的取值范围是⎝⎛⎭⎫-12,1. 16.(2022·宜春模拟)设实数x ,y 满足约束条件⎩⎪⎨⎪⎧2x +y -6≥0,x +2y -6≤0,y ≥0,则2y 2-xy x 2的最小值是________. 答案 -18解析 作出不等式组对应的平面区域如图中阴影部分(含边界)所示,k =yx 的几何意义为可行域内的点到原点的斜率, 由图象可知,OA 的斜率最大,由⎩⎪⎨⎪⎧2x +y -6=0,x +2y -6=0得A (2,2), ∴0≤k ≤1,∴2y 2-xy x 2=2⎝⎛⎭⎫y x 2-y x=2k 2-k =2⎝⎛⎭⎫k -142-18≥-18⎝⎛⎭⎫当且仅当k =14时,取到最小值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

-5-
知识梳理
双基自测
1 2 3 4 5
1.下列结论正确的打“√”,错误的打“×”. (1)归纳推理得到的结论不一定正确,类比推理得到的结论一定 正确.( ) (2)归纳推理与类比推理都是由特殊到一般的推理.( ) (3)在类比时,平面中的三角形与空间中的平行六面体作为类比 对象较为合适.( ) (4)演绎推理是由特殊到一般再到特殊的推理.( ) (5)演绎推理在大前提、小前提和推理形式都正确时,得到的结 论一定正确.( )
为乙知道丙的成绩,所以乙知道自己的成绩.又因为乙、丙的成绩是一位
优秀一位良好,所以甲、丁的成绩也是一位优秀一位良好.又因为丁知道
甲的成绩,所以丁也知道自己的成绩,故选D. D
-9解析 关闭
答案
知识梳理
双基自测
1 2 3 4 5
5.(教材习题改编P7T2)在平面内,若两个正三角形的边长的比为 1∶2,则它们的面积比为1∶4.类似地,在空间中,若两个正四面体的 棱长的比为1∶2,则它们的体积比为 .
-4-
知识梳理
双基自测
1 2
2.演绎推理 (1)定义:从一般性的原理出发,推出某个特殊情况下的结论,我们 把这种推理称为演绎推理.简言之,演绎推理是由一般到 特殊 的推理. (2)“三段论”是演绎推理的一般模式,包括 ①大前提——已知的一般原理; ②小前提——所研究的特殊情况; ③结论——根据一般原理,对特殊情况作出的判断.
关闭
A
-7解析
答案
知识梳理
双基自测
1 2 3 4 5
3.(教材习题改编P7T1)如图,根据图中的数构成的规律可知a表示 的数是( )
A.12 B.48
C.60 D.144
关闭
由题干图中的数据可知,每行除首末两个数外,其他数等于其上一行两肩
关闭
上的数字的乘积.故a=12×12=144. D
-8解析
答案
由 特殊
到 特殊 的推理
-3-
知识梳理
双基自测
1 2
归纳推理 一 般 步 骤 (1)通过个别情况发现某 些相同性质; (2)从已知的相同性质中 推出一个明确的一般性命 题(猜想)
类比推理 (1)找出两类事物之间的相似性 或一致性; (2)用一类事物的性质去推测另 一类事物的性质,得出一个明确 的命题(猜想)
7 .3
合情推理与演绎推理
知识梳理
双基自测
1 2
1.合情推理 (1)定义:归纳推理和类比推理都是根据已有的事实,先经过观察、 分析、比较、联想,再进行归纳、 类比 ,然后提出猜想的推 理,我们把它们统称为合情推理.
-2-
知识梳理
双基自测
1 2
(2)归纳推理与类比推理
归纳推理 由某类事物的 部分对象 具有某些特征,推出该类 定 事物的全部对象 都具有 义 这些特征的推理,或者由 个别事实 概括出 一般结论 的推理 由 部分 到 整体 、 特 由 个别 到 一般 的 点 推理 类比推理 由两类对象具有 某些类似特征 和其中一类对象 的 某些已知特征 ,推出另一类 对象也具有这些特征的推理
关闭
(1)× (2)× (3)× (4)× (5)√
-6-
答案
知识梳理
双基自测
1 2 3 4 5
2.(2017安徽滁州模拟)若大前提是:任何实数的平方都大于0,小前 提是:a∈R,结论是:a2>0,则这个演绎推理出错在( ) A.大前提 B.小前提 C.推理过程 D.没有出错
关闭
本题中大前提是错误的,因为0的平方不大于0,所以选A.
1∶8
-10-
关闭
答案
考点1
考点2
考点3
考点 1
归纳推理
例1(1)如图是按一定规律排列的三角形等式表,现将等式从左至 右,从上至下依次编上序号,即第一个等式为20+21=3,第二个等式为 20+22=5,第三个等式为21+22=6,第四个等式为20+23=9,第五个等式 为21+23=10,……,依此类推,则第99个等式为( ) 20+21=3 20+22=5 21+22=6 20+23=9 21+23=10 22+23=12 20+24=17 21+24=18 22+24=20 23+24=24 …… A.27+213=8 320 B.27+214=16 512 C.28+214=16 640 D.28+213=8 448
考点2
考点3
答案: (1)B (2)1 051 解析: (1)依题意,用(t,s)表示2t+2s,题中的等式的规律为:第一行为 3(0,1);第二行为5(0,2),6(1,2);第三行为9(0,3),10(1,3),12(2,3);第四行 为17(0,4),18(1,4),20(2,4),24(3,4);……,又因为 99=(1+2+3+…+13)+8,因此第99个等式应位于第14行的从左至右 的第8个位置,即是27+214=16 512,故选B. (2)先求第30行的第1个数,再求第30行的第3个数.观察每一行的 第一个数,由归纳推理可得第30行的第1个数是 1+4+6+8+10+…+60= 30× (2+60)-1=929.又第n行从左到右的第2个 2 数比第1个数大2n,第3个数比第2个数大2n+2,所以第30行从左到右 的第2个数比第1个数大60,第3个数比第2个数大62,故第30行从左 到右第3个数是929+60+62=1 051.
-13-
考点1
考点2
考点3
解题心得归纳推理是依据特殊现象推断出一般现象,因而在进行 归纳推理时,首先观察题目给出的特殊数或式的变化规律(如本例 中,要观察各行出现的等式个数的变化规律,每个等式左边第一个 指数和第二个指数的变化规律);然后用这种规律试一试这些特殊 的数或式是否符合观察得到的规律,若不符合,则应继续寻找规律; 若符合,则可运用此规律推出一般结论.
-11-考点1考点2考点3(2)有一个奇数组成的数阵排列如下: 1 3 7 13 21 … 5 9 15 23 … … 11 17 25 … … … 19 27 … … … … 29 … … … … … … … … … … … 则第30行从左到右第3个数是 思考如何进行归纳推理?
.
-12-
考点1
知识梳理
双基自测
1 2 3 4 5
4.(2017全国Ⅱ,理7)甲、乙、丙、丁四位同学一起去向老师询问 成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给 甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩,看后甲对大 家说:我还是不知道我的成绩.根据以上信息,则( ) A.乙可以知道四人的成绩 B.丁可以知道四人的成绩 关闭 C.乙、丁可以知道对方的成绩 因为甲不知道自己的成绩,所以乙、丙的成绩是一位优秀一位良好.又因 D.乙、丁可以知道自己的成绩
相关文档
最新文档