湘教版初中数学八年级上册全册教案
最新湘教版八年级上册数学全册教案
1.1 分 式第1课时 分式的概念1.理解分式的概念,并能用分式表示现实生活中的量;2.掌握分式有、无意义的条件及分式的值为0的条件;(重点,难点)3.会求分式的值.一、情境导入埃及金字塔相传是古埃及法老的陵墓,是世界公认的“古代世界七大奇迹”之一.其中最大、最有名的是祖孙三代金字塔——胡夫金字塔、哈夫拉金字塔和门卡乌拉金字塔.胡夫金字塔底部边长230公尺,高146公尺,重大约650万吨,共用了x 万块石头,那么平均每块石头重多少吨?二、合作探究探究点一:分式的概念代数式-13x 2,a +2a -1,35,x -2π,3x2y,x2x中的分式有( ) A .1个 B .2个 C .3个 D .4个解析:a +2a -1,3x 2y ,x 2x 中的分母含有字母,是分式.其他的代数式分母不含字母,不是分式.故选C.方法总结:判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.特别注意π是常数,不是字母,因此x -2π不是分式.另外对于分式的判断是针对式子的形式,而不是化简之后的结果,如x2x不能约分后再判断,其分母中含有字母即为分式. 探究点二:分式有、无意义的条件 【类型一】 分式有意义的条件若分式2x |x |-1有意义,则( )A .x ≠-1B .x ≠1C .x ≠1且x ≠-1D .x 可为任何数 解析:当分母不等于0时,分式有意义,即|x |-1≠0,∴x ≠1且x ≠-1.故选C.方法总结:分式有意义的条件是分母不等于0.【类型二】 分式无意义的条件当a 为何值时,分式a -12a +1无意义?解:分式无意义,则2a +1=0,∴a =-12. 错误!探究点三:分式的值【类型一】 分式值为0的条件若分式x 2-1x -1的值为0,则( )A .x =1B .x =-1C .x =±1D .x ≠1 解析:由x 2-1=0解得:x =±1,又∵x -1≠0即x ≠1,∴x =-1,故选B.方法总结:分式的值为0应同时具备两个条件:①分子为0;②分母不为0.应特别注意后一个条件.【类型二】 求分式的值当a =3时,求分式a 2-3a +3的值.解:当a =3时,a 2-3a +3=32-33+3=1.方法总结:求分式的值与求代数式的值的方法一样,用数值代替分式中的字母,再化简计算即可.三、板书设计分式错误! 在教学过程中,通过生活中的情境导入,引导学生观察、类比(分数)、猜想、归纳,经历数学概念的生成过程.通过实例强调分式的值为0应同时具备两个条件:分子等于0而分母不等于0,这样突出重点,突破难点.1.1 分式第1课时 分式的概念教学目标一、知识与技能1.理解分式的含义,能区分整式与分式。
湘教版初中数学八年级上册教案
湘教版初中数学八年级上册教案一、教学目标1. 熟悉八年级上册数学教材的内容框架和知识点。
2. 培养学生的数学思维能力和解决实际问题的能力。
3. 培养学生的合作研究和实践操作能力。
二、教学重点1. 掌握八年级上册数学教材中的重要知识点。
2. 培养学生的数学思维能力,提高解决问题的能力。
三、教学内容本教案分为以下章节:第一章数与代数1. 数的认识2. 自然数的加减法3. 常见乘法口诀4. 等式和不等式第二章几何1. 几何图形的认识2. 平行线与三角形3. 相交线与平行线第三章数据与图表1. 统计调查2. 统计图表的制作和分析3. 平均数的计算第四章方程与函数1. 等式的解2. 函数的概念3. 一元一次方程第五章研究生活中的现象1. 比例与相似2. 棱柱和棱锥的计算3. 利润与利率的计算第六章三角函数1. 角的概念和性质2. 正弦、余弦和正切的计算四、教学方法本教案采用多种教学方法,包括讲授、实践操作、小组合作研究和讨论等。
通过多样化的教学活动,激发学生的研究兴趣,提高研究效果。
五、教学评价教师将根据学生的课堂表现、小组活动成果和个人作业完成情况等多方面进行评价,并及时给予反馈。
评价旨在帮助学生发现自身的优点和不足,进一步提高研究成绩。
六、教学资源教师将准备充足的教学资源,包括课本、教辅资料、实验器材等,以支持学生的研究和实践操作。
七、教学安排本教案将按照教学进度详细安排每一个章节的教学内容和相应的教学活动,确保教学顺利进行。
八、教学效果通过本教案的实施,教师将帮助学生全面掌握数学知识和思维方法,培养学生的数学能力和解决问题的能力,提高学生的学习兴趣和学习成绩。
新湘教版八年级数学上册教学计划8篇
新湘教版八年级数学上册教学计划8篇作好课前准备。
仔细钻研教材教法,仔细揣摩教学内容与新课程教学目标,充分考虑教材内容与学生的实际情况,精心设计探究示例,为不同层次的学生设计练习和作业,这里给大家分享一些关于新湘教版((八班级)数学)上册教学计划8篇,供大家参考。
八班级数学上册教学计划1一、指导思想在教学中努力推动九年义务(教育),落实新课改,体现新理念,培育创新精神通过数学课的教学,使学生切实学好从事现代化建设和进一步学习现代化科学技术所必需的数学基本知识和基本技能;努力培育学生的运算能力、(逻辑思维)能力,以及分析问题和解决问题的能力。
二、学情分析八班级是初中学习过程中的关键时期,学生基础的好坏,直接影响到将来是否能升学。
我班优生稍少,学生非常活跃,有少数学生不求上进,思维不紧跟老师。
有的学生思想单纯爱玩,缺乏自主学习的习惯,有部分同学基础较差,厌学无目标。
要在本期获得理想成绩,老师和学生都要付出努力,查漏补缺,充分发挥学生是学习的主体,老师是教的主体作用,注重(方法),培育能力。
三、教材分析本学期教学内容共计五章,知识的前后联系,教材的教学目标,重、难点分析如下:《义务教育教科书?数学》八班级下册包括二次根式,勾股定理,平行四边形,一次函数,数据的分析等五章内容,学习内容涉及到了《义务教育数学课程标准(20xx年版)》(以下简称《课程标准》)中“数与代数”“图形与几何”“统计与概率”“综合与实践”全部四个领域。
其中对于“综合与实践”领域的内容,本册书在第十九章、第二十章分别安排了一个课题学习,并在每一章的最后安排了两个数学活动,通过这些课题学习和数学活动落实“综合与实践”的要求。
第16章“二次根式”主要讨论如何对数和字母开平方而得到的特殊式子——二次根式的加、减、乘、除运算。
通过本章学习,学生将建立起比较完善的代数式及其运算的知识结构,并为勾股定理、一元二次方程、二次函数等内容的学习做好准备。
湘教版八年级数学上册教学计划(通用12篇)
湘教版八年级数学上册教学计划(通用12篇)湘教版八年级数学上册教学计划篇1一、指导思想海淀区是基础教育新课程改革国家级教改实验区,承担着教改的重任。
作为实验区的数学实验教师,我们应当认真学习和研究《基础教育课程改革纲要(试行)》以及《全日制义务教育数学课程标准》。
我们需深入研究社会和教育发展的趋势,掌握现代教育理念。
明确《基础教育课程改革纲要》中提出的三个目标维度在数学学科中的体现:知识与技能;过程与方法;情感态度与价值观。
明确《全日制义务教育数学课程标准》的基本理念,以及课程标准对数学课程的学习内容,着重强调学生的数学活动,发展学生的数感、符号感、空间观念、统计观念、应用意识和推理能力。
在教学过程中,强调改善学生的学习方法,引导学生学会学习,使其具有适应终生学习的基本知识、基本技能和方法,学会生存、学会做人。
二、重点工作1. 借课改东风,全面提升教学水平在推进课程改革的过程中,我们要树立三个意识:第一,要树立保底意识,使每一节课都尽可能作到精心准备。
这是教师最基本的职业道德和责任,是推进课程改革的根本保证。
第二,增强优化意识,改进和提高常规教学质量。
常规课体现了大多数教师、大多数课的实际水平,对教学质量影响最大,提高的潜力也最大。
我们需作到勤于反思,善于学习,不满足于目前的教学现状,适应教改新形势,在新的教学理念的指导下,把常规课上得更好。
优化与改进常规课的过程是教学改革过程的重要组成部分。
第三,强化改革意识,积极探索课改优质课。
教师在教学过程中需尽力作到与学生积极互动,共同发展。
使学生能够充满自信地学习,使数学教学活动成为师生共同探究未知的过程。
我们需注意改善和研究教学方法,尽快适应新课标与新教材的需要。
2. 调整角色、科学地发挥教师的作用课程改革的成败关键在于教师。
教师在教学中的重要作用是不容忽视的。
再先进的思想、再完善的课程、再优秀的教材,也要通过教师的教学行为具体实施。
我们则需注意调整角色,学会关注学生的智力类型、关注学生的生活经验、关注学生的学习方式、关注学生的处境与感受。
湘教版初中数学八年级上册全册教案
数学教案——八年级上册姓名:王德良班次:122012 年9 月第一章实数本章重点:体会到无理数是显示世界的客观存在,理解平方根、算术平方根的概念,能利用科学计算器求平方根和立方根,会用有理数估计无理数的范围,知道实数和数轴上的点一一对应、有序实数对与平面上的点一一对应的结论。
理念:力 数学不能丢掉数学的实际应用,应教给学生充满联系的数学,应当在数学与现实的接触点之间找联系。
应鼓励与提倡学生思维的多样性,尊重学生在解决问题过程中所表现出来的不同水平,注意因材施教。
平方根(一)目的要求:初步了解学习数的开方的意义,了解一个数的平方根的意义,会用根号表示一个数的平方根。
教学重点:平方根与算术平方根的概念。
教学难点:弄清平方根与算术平方根的意义。
教学方法:启发式教学过程:情境引入:我们已经学过那些数的运算?加法与减法这两种运算之间有什么关系? 乘法与除法之间呢?那么乘方是不是有逆运算呢? 我们来看下面的问题。
如:一个面积为 10.8 平方米的正方形展厅,用去正方形的地砖120块,它的边长应是多少?一个数的平方等于1000,这个数是多少?这些问题的共同特点是:已知乘方的结果的值, 求底数的值。
为了解决这些问题,就要进行乘方运算的逆运算,也就是要进行开方运算。
在这一章里, 我们来学习数的开方和实数的初步知识。
新课讲解:一个数的平方是9,那么这个数是什么数?因为3 2= 9, ( -3 ) 2= 9 ,所以这个数是 3 或-3。
又如 ,一个数的平方是254,因为254522=⎪⎭⎫ ⎝⎛、254522=⎪⎭⎫ ⎝⎛-,所以这个数是52或 -52。
一般的,如果一个数r 的平方等于 a ,这个数r 就叫做 a 一个的平方根 。
就是说,如果a x =2,x 就叫做 a 的平方根。
上面,3与-3 都是 9 的平方根,52与-52都是254的平方根。
启发学生观察,正数的两个平方根之间,有什么关系?其它数呢?进一步,总结一般结论:一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0本身;负数没有平方根。
湘教版数学八年级上册教案(全册)
湘教版数学八年级上册教案1.1 分 式第1课时 分式的概念1.理解分式的概念,并能用分式表示现实生活中的量;2.掌握分式有、无意义的条件及分式的值为0的条件;(重点,难点) 3.会求分式的值.一、情境导入埃及金字塔相传是古埃及法老的陵墓,是世界公认的“古代世界七大奇迹”之一.其中最大、最有名的是祖孙三代金字塔——胡夫金字塔、哈夫拉金字塔和门卡乌拉金字塔.胡夫金字塔底部边长230公尺,高146公尺,重大约650万吨,共用了x 万块石头,那么平均每块石头重多少吨?二、合作探究探究点一:分式的概念代数式-13x 2,a +2a -1,35,x -2π,3x 2y ,x2x 中的分式有( )A .1个B .2个C .3个D .4个 解析:a +2a -1,3x 2y ,x2x中的分母含有字母,是分式.其他的代数式分母不含字母,不是分式.故选C.方法总结:判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.特别注意π是常数,不是字母,因此x -2π不是分式.另外对于分式的判断是针对式子的形式,而不是化简之后的结果,如x2x不能约分后再判断,其分母中含有字母即为分式.探究点二:分式有、无意义的条件 【类型一】 分式有意义的条件若分式2x|x |-1有意义,则( )A .x ≠-1B .x ≠1C .x ≠1且x ≠-1D .x 可为任何数解析:当分母不等于0时,分式有意义,即|x |-1≠0,∴x ≠1且x ≠-1.故选C. 方法总结:分式有意义的条件是分母不等于0.【类型二】 分式无意义的条件当a 为何值时,分式a -12a +1无意义?解:分式无意义,则2a +1=0,∴a =-12.方法总结:分式无意义的条件是分母等于0.探究点三:分式的值【类型一】 分式值为0的条件若分式x 2-1x -1的值为0,则( )A .x =1B .x =-1C .x =±1D .x ≠1解析:由x 2-1=0解得:x =±1,又∵x -1≠0即x ≠1,∴x =-1,故选B.方法总结:分式的值为0应同时具备两个条件:①分子为0;②分母不为0.应特别注意后一个条件.【类型二】 求分式的值当a =3时,求分式a 2-3a +3的值.解:当a =3时,a 2-3a +3=32-33+3=1.方法总结:求分式的值与求代数式的值的方法一样,用数值代替分式中的字母,再化简计算即可.三、板书设计分式⎩⎪⎨⎪⎧分式的概念分式有无意义的条件⎩⎪⎨⎪⎧分式有意义:分母≠0分式无意义:分母=0分式的值⎩⎪⎨⎪⎧分式的值为0:分子=0且分母≠0求分式的值在教学过程中,通过生活中的情境导入,引导学生观察、类比(分数)、猜想、归纳,经历数学概念的生成过程.通过实例强调分式的值为0应同时具备两个条件:分子等于0而分母不等于0,这样突出重点,突破难点.第2课时 分式的基本性质1.通过与分数的类比学习,掌握这一基本而常用的数学思想方法;2.掌握分式的基本性质,并会运用分式的基本性质把分式变形;(重点,难点)3.理解最简分式的概念,会根据分式的基本性质把分式约分,化为最简分式.(重点)一、情境导入1.我们学过下列分数:12,24,36,它们是否相等?为什么?2.请叙述分数的基本性质.3.类比分数的基本性质,你能猜想分式的基本性质吗?二、合作探究探究点一:分式的基本性质【类型一】 分式基本性质的应用填空:(1)3xy =( )3ax 2y ;(2)x 2-y 2(x -y )2=x +y( ). 解析:(1)小题中,分母由xy 变为3ax 2y ,只需乘以3ax ,根据分式的基本性质,分子也应乘以3ax ,所以括号中应填9ax .(2)小题中,分子由x 2-y 2变为x +y ,只需除以x -y ,根据分式的基本性质,分母也应除以x -y ,所以括号中应填x -y .方法总结:利用分式的基本性质求未知的分子或分母时,若求分子,则看分母发生了何种变化,这时分子也应发生相应的变化;若求分母,则看分子发生了何种变化,这时分母也应发生相应的变化.【类型二】 分式的符号法则下列各式从左到右的变形不正确的是( )A.-23y =-23y B.-y -6x =y 6xC .-8x 3y =8x -3yD .-a -b y -x =b -a x -y解析:选项A 中,同时改变分式的分子及分式本身的符号,其值不变,正确;选项B 中,同时改变分式的分子、分母的符号,其值不变,正确;选项C 中,同时改变分式的分母及分式本身的符号,其值不变,正确;选项D 中,分式的分子、分母及分式本身的符号,同时改变三个,其值变化,错误.故选D.方法总结:根据分式的符号法则,分式的分子、分母、分式本身的符号,同时改变其中的两个,分式的值不变.探究点二:分式的约分【类型一】 运用约分,化简分式约分:(1)8x 2yz 3-32xyz 5; (2)a 2+ab a 2+2ab +b 2. 解析:约分的关键是确定分式中分子、分母的公因式,(1)中分子与分母的公因式是8xyz 3,(2)小题先因式分解,分子与分母的公因式是(a +b ).解:(1)原式=x ·8xyz 34z 2·(-8xyz 3)=-x4z2; (2)原式=a (a +b )(a +b )2=aa +b. 方法总结:①约分的依据是分式的基本性质,关键是找出分子与分母的公因式;②约分时必须将分子、分母先写成乘积的形式,再进行约分,不能只对分子、分母中的某一项或某一部分进行约分;③约分一定要彻底,约分的结果应是最简分式或整式.【类型二】 运用约分,化简求值先约分,再求值:2a 2-ab4a 2-4ab +b 2,其中a =-1,b =2.解:原式=a (2a -b )(2a -b )2=a2a -b. 当a =-1,b =2时,a 2a -b =-12×(-1)-2=14.方法总结:利用分式的基本性质约分求值时,要先把分式化为最简分式再代值计算.探究点三:最简分式下列分式是最简分式的是( ) A.2a 3a 2b B.aa 2-3aC.a +b a 2+b 2D.a 2-ab a 2-b 2解析:选项A 中的分子、分母能约去公因式a ,故选项A 不是最简分式;选项B 中的分子、分母能约去公因式a ,故选项B 不是最简分式;选项C 中的分子、分母没有公因式,选项C 是最简分式,故选C ;选项D 中的分子、分母能约去公因式(a -b ),故选项D 不是最简分式.方法总结:判断最简分式的标准是分子与分母是否有公因式,如果有公因式就不是最简分式.当分子、分母是多项式时,一般要进行因式分解,以便判断是否能约分.三、板书设计 分式的基本性质:f g =f ·hg ·h ,f g =f ÷hg ÷h(h ≠0)↓约分 (找出分子与分母的公因式) ↓最简分式 (分子与分母无公因式)本节课利用类比分数的基本性质学习了分式的基本性质,在学习过程中,应注重让学生在学法上的迁移,突出分式基本性质中的的两个关键词:“都”、“同”,尽量避免符号出错.1.2 分式的乘法和除法第1课时 分式的乘除1.理解并掌握分式的乘、除法法则;2.会用分式的乘、除法法则进行运算.(重点,难点)一、情境导入1.请同学们计算: (1)34×52; (2)13÷25. 2.根据上述分数的乘、除法运算,你能猜想下面这两个式子的运算结果吗? (1)f g ·u v ; (2)f g ÷u v.二、合作探究探究点一:分式的乘法运算【类型一】 分子、分母都是单项式计算: (1)16xy y 2·y 22x ; (2)5a 3bc 22x 2y ·-8x 2y 310a 2bc2.解析:分式乘分式,用分子的积作积的分子,分母的积作积的分母,然后再约分. 解:(1)16xy y 2·y 22x =16xy ·y 2y 2·2x=8y ;(2)5a 3bc 22x 2y ·-8x 2y 310a 2bc 2=-5a 3bc 2·8x 2y 32x 2y ·10a 2bc2=-2ay 2.方法总结:分式乘法运算的方法:①注意运算顺序及解题步骤,注意符号问题,不要漏乘负号;②整式与分式的运算,根据题目的特点,可将整式化为分母为“1”的分式;③运算中及时约分、化简;④注意运算律的正确使用;⑤结果应化为最简分式或整式.【类型二】 分子、分母中有多项式计算:m 2-4n 2m 2-mn ·m -nm 2-2mn.解析:观察分式的特点,分子与分母含有多项式,应先将多项式因式分解,再应用分式乘法法则运算.解:m 2-4n 2m 2-mn ·m -n m 2-2mn =(m +2n )(m -2n )m (m -n )·m -n m (m -2n )=m +2n m2.方法总结:分式中含多项式的乘法运算的一般步骤:①运用分式乘法的法则,用分子之积作为新分子,用分母之积作为新分母;②确定分子与分母的公因式;③约分,化为最简分式或整式.探究点二:分式的除法运算【类型一】 分子、分母都是单项式计算:2m 5n ÷4m2-10n2.解析:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘. 解:2m 5n ÷4m 2-10n 2=-2m 5n ·10n 24m 2=-n m. 方法总结:进行分式的除法运算时,先把分式的除法转化成乘法,然后按照乘法法则进行计算,要注意结果的符号.【类型二】 分子、分母中有多项式计算:(1)x 2-1y ÷x +1y2;(2)(xy -x 2)÷x -yxy; (3)x 2-6x +99-x 2÷2x -6x 2+3x. 解析:(1)小题中,先把除法转化为乘法,把x 2-1因式分解,再约分.(2)小题中,把xy -x 2看作是分母是1的分式,把除法转化为乘法,因式分解,再约分.(3)小题中,把除法转化为乘法,把各个分子、分母因式分解,再约分.解:(1)原式=(x +1)(x -1)y ·y2x +1=y (x -1);(2)原式=x (y -x )·xy x -y=-x 2y ; (3)原式=(x -3)2-(x +3)(x -3)·x (x +3)2(x -3)=-x2.方法总结:分式的除法计算首先要转化为乘法运算,若除式是整式,应将这个整式看作是分母为“1”的分式,然后对式子进行化简.化简时如果分子、分母有多项式,一般应先进行因式分解,然后再约分.分式的乘除运算实际就是分式的约分.三、板书设计1.分式的乘法:f g ·u v =fu gv.2.分式的除法:f g ÷u v =f g ·v u =fv gu(u ≠0).本节课学习了分式的乘、除法运算,通过观察、比较、猜想、分析,类比分数的乘、除法运算,得出分式的乘、除法运算法则.在运算中,把除法转化为乘法,分子、分母有多项式的要先因式分解,同时要注意避免符号出错.第2课时 分式的乘方1.理解并掌握分式的乘方法则,并会运用分式的乘方法则进行分式的乘方运算;(重点) 2.进一步熟练掌握分式乘、除法的混合运算.(难点)一、情境导入1.计算:(35)2,(35)3,(35)n;2.类似地,请你计算:(fg)n.二、合作探究探究点一:分式的乘方计算: (1)(3y 2x 2)2; (2)(-x 2y 2z 2xyz)3.解析:把分式的分子、分母分别乘方,(2)小题还可以先约分,再乘方. 解:(1)(3y 2x 2)2=(3y )2(2x 2)2=9y 24x 4;(2)(-x 2y 2z 2xyz )3=(-x 2y 2z )3(2xyz )3=-x 3y38. 方法总结:分式的乘方,把分子、分母各自乘方,运算时要注意符号,明确“正数的任何次幂都是正数,负数的偶数次幂是正数,负数的奇数次幂是负数”,还要注意最后结果是最简分式或整式.探究点二:分式的乘除、乘方混合运算计算:(1)(-2a 2b cd 3)3÷2a d 3·(c a)3;(2)(ab 3)2·(-b a2)3÷(-b a)4;(3)a -b a ·(b b -a )2÷b 2a2.解析:先算乘方,再把除法转化为乘法,然后约分. 解:(1)(-2a 2b cd 3)3÷2a d 3·(c a )3=-8a 6b 3c 3d 9·d 32a ·c 3a 3=-4a 2b 3d6;(2)(ab 3)2·(-b a 2)3÷(-b a )4=a 2b 6·(-b 3a 6)·a 4b4=-b 5;(3)a -b a ·(b b -a )2÷b 2a 2=a -b a ·b 2(a -b )2·a 2b 2=aa -b. 方法总结:进行分式的乘除、乘方混合运算时,先算乘方,再算乘除,最后结果应化成最简分式或整式,通常情况下,计算得到的最后结果要使分子和分母第一项的符号为正号.对于含负号的分式,奇次方为负,偶次方为正.三、板书设计1.分式的乘方法则:(f g )n =f ngn .2.分式乘除、乘方的混合运算:先算乘方,再算乘除.本节课学习了分式的乘方及分式的乘除、乘方混合运算,在教学中应注重激发学生的积极性,勇于尝试.本节课的混合运算是一个难点,也是学生常出错的地方,教学时要引导学生注意运算顺序,优先确定运算符号,提高运算的准确率.1.3整数指数幂1.3.1同底数幂的除法1.经历同底数幂的除法法则的探索过程,理解同底数幂的除法法则;2.会用同底数幂的除法法则进行运算.(重点,难点)一、情境导入传说,印度的舍罕国王打算重赏国际象棋的发明人——大臣西萨·班·达依尔.这位聪明的大臣跪在国王面前说:“陛下,请你在这张棋盘的第一个小格内,赏给我一粒麦子,在第二个小格内给两粒,在第三个小格内给四粒,照这样下去,每一小格内都比前一小格加一倍.国王说:“你的要求不高,会如愿以偿的.”说着,他下令把一袋麦子拿到宝座前,计算麦粒的工作开始了……还没到第二十小格,袋子已经空了,麦粒数一格接一格地增长得那样迅速,很快看出,即使拿出来全印度的粮食,国王也兑现不了他对象棋发明人许下的诺言.问题1:国王应该给发明者多少粒麦子?问题2:假如一粒麦子是0.02克,用计算器算出国王应奖励给发明者的麦子总质量大约多少克?问题3:假如每个人每顿吃250克,一天三顿饭,一年365天,这些粮食可供1010(10亿)人食用多少年?二、合作探究探究点一:同底数幂的除法【类型一】底数是单项式计算:(1)(-a)3÷(-a)2; (2)(a3)2÷a5;(3)(xy3)3(-xy3)2; (4)-x3n+2x3n-1.解析:根据同底数幂的除法法则,即a m÷a n=a m-n进行运算.(3)小题可先确定符号,再按同底数幂的除法法则计算.解:(1)原式=(-a)3-2=-a;(2)原式=a 6÷a 5=a6-5=a ;(3)原式=(xy 3)3(xy 3)2=xy 3;(4)原式=-x 3.方法总结:进行同底数幂的除法运算时,只有底数相同时,才能把指数相减.因此计算时首先必须确定底数是否相同,如果底数是互为相反数,可以通过符号变化把底数化为相同.【类型二】 底数是多项式计算:(1)(x -y )8÷(y -x )6;(2)(a -b )3(b -a )2n ÷(a -b )2n -1.解析:底数为多项式时,可把多项式看作一个整体,再根据同底数幂的除法法则计算.解:(1)原式=(y -x )8÷(y -x )6=(y -x )2;(2)原式=(a -b )3(a -b )2n ÷(a -b )2n -1=(a -b )3+2n -(2n -1)=(a -b )4.方法总结:两数(式)互为相反数,则它们的偶次幂相等,奇次幂仍是互为相反数.即:(b -a )2n =(a -b )2n ,(b -a )2n +1=-(a -b )2n +1.(n 是正整数)探究点二:逆用同底数幂的性质已知a m =3,a n =4,求a 2m -n的值.解析:首先应用含a m 、a n 的代数式表示a 2m -n ,然后将a m 、a n的值代入即可求解.解:∵a m =3,a n=4,∴a2m -n=a 2m ÷a n =(a m )2÷a n =32÷4=94.方法总结:逆用同底数幂的除法法则:a m÷a n=a m -n,可以得到a m -n=a m÷a n.解决这类问题的关键在于把要求的式子a m -n 分别用a m 和a n来表示.这类题一般同时考查两个知识点:同底数幂的除法,幂的乘方,解题时应熟练掌握运算性质并能灵活运用.探究点三:同底数幂除法的实际应用某种液体中每升含有1012个有害细菌,某种杀虫剂1滴可杀死109个此种有害细菌.现要将这种2升液体中的有害细菌杀死,要用这种杀虫剂多少滴?解析:根据题意可知2升液体中有2×1012个有害细菌,而1滴可杀死109个此种有害细菌,把两个量相除即可求得答案.解:∵液体中每升含有1012个有害细菌,∴2升液体中的有害细菌有2×1012个,又∵杀虫剂1滴可杀死109个此种有害细菌,∴用这种杀虫剂的滴数为2×1012÷109=2×103=2000滴. 方法总结:本题主要考查同底数幂的除法及学生阅读理解题意的能力,是数学与生活相结合的例子.解决这类问题的方法是:先列出解决问题的式子,再根据同底数幂的除法法则进行计算.三、板书设计 同底数幂的除法a m=a m-n(a≠0).即:同底数幂相除,底数不变,指数相减.a n本节课学习了同底数幂的除法法则及运用法则进行计算.易错点有两个:一是理解法则错误,认为同底数幂相除,底数不变,指数相除;二是对于底数是互为相反数的指数幂的除法运算,容易出现符号错误.在课堂上,让学生把这些错误展示在黑板上,大家共同分析产生错误的原因以及怎样避免错误的发生.1.3.2 零次幂和负整数指数幂1.理解零次幂和负整数指数幂的意义,并能进行负整数指数幂的运算;(重点,难点) 2.会用科学记数法表示绝对值较小的数.(重点)一、情境导入上节课我们学习了同底数幂的除法法则:a m a n =a m -n,其中a ≠0,m ,n 是正整数,且m >n .在这里,如果m =n 或m =0,又会出现什么结果呢?二、合作探究 探究点一:零次幂【类型一】 零次幂有意义的条件已知(3x -2)0有意义,则x 应满足的条件是________.解析:根据零次幂的意义可知:(3x -2)0有意义,则3x -2≠0,x ≠23.故填x ≠23.方法总结:零次幂有意义的条件是底数不等于0,所以解决有关零次幂的意义类型的题目时,可列出关于底数不等于0的式子求解即可.【类型二】 零次幂的运算计算: (1)30; (2)(-2)0;(3)(-12)0; (4)-22+|4-7|+(3-π)0.解析:(1),(2),(3)小题根据零次幂的意义计算;(4)小题先分别求乘方、绝对值、零次幂,再计算.解:(1)30=1;(2)(-2)0=1;(3)(-12)0=1;(4)-22+|4-7|+(3-π)0=-4+3+1=0.方法总结:①任何不等于零的数的零次幂等于1.零次幂式子的特征是:底数不等于0,指数等于0,要注意的是结果等于1而不等于0.②零次幂与其他运算相结合时,要分别计算.计算-22时,易错误的计算为-22=4,因此要正确理解-22和(-2)2的意义.【类型三】 零次幂的综合运用若(x -1)x +1=1,求x 的值.解析:由于任何不等于零的数的零次幂等于1,1的任何次幂都等于1,-1的偶数次幂等于1,故应分三种情况讨论.解:①当x +1=0,即x =-1时,原式=(-2)0=1;②当x -1=1,x =2时,原式=13=1;③x -1=-1,x =0,0+1=1不是偶数.故舍去. 故x =-1或2.方法总结:乘方的结果为1,可分为三种情况:不为零的数的零次幂等于1;1的任何次幂都等于1;-1的偶次幂等于1即在底数不等于0的情况下考虑指数等于0;考虑底数等于1或-1.探究点二:负整数指数幂【类型一】 负整数指数幂的意义与运算计算:(1)3-3; (2)(-2)-2; (3)(-23)-4.解析:根据负整数指数幂的意义知,一个数的负整数指数幂的结果,底数是原来底数的倒数,指数是原来指数的相反数.解:(1)3-3=133=127;(2)(-2)-2=1(-2)2=14;(3)(-23)-4=(-32)4=8116.方法总结:求负整数指数幂的方法:把底数取倒数,指数变为相反数.【类型二】 运用零次幂和负整数指数幂来计算计算:|-5|-(π-1)0+(12)-2.解析:本题涉及零次幂、负整数指数幂、绝对值三个知识点.在计算时,需要针对每个知识点分别进行计算,然后根据运算法则计算.解:|-5|-(π-1)0+(12)-2=5-1+22=5-1+4=8.方法总结:此题主要考查了学生的综合运算能力,是中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零次幂、绝对值等考点的运算.【类型三】 运用零次幂和负整数指数幂来化简、求值已知a x=3,求a 2x -a -2xa x -a-x 的值.解析:根据负整数指数幂的意义先化简分式,然后代入求值.解:a 2x -a -2x a x -a -x =(a x )2-(a -x )2a x -a -x=a x +a -x =3+3-1=103. 方法总结:求值时,把要求的式子根据负整数指数幂的意义用已知的式子表示出来是解题的关键.探究点三:用科学记数法表示绝对值小于1的数一种花瓣的花粉颗粒直径约为0.0000065米,0.0000065用科学记数法表示为( )A.6.5×10-5 B.6.5×10-6C.6.5×10-7 D.65×10-6解析:把0.0000065的小数点向右移动6位变成6.5×0.000001=6.5×10-6,故选B.方法总结:绝对值很小的数用科学记数法表示时,先把小数点向右移动n位,使这个数变成一个整数数位只有一位的数a,再在后面乘以10-n.即用科学记数法把一个绝对值很小的数写成a ×10-n的形式时,n等于第一个非零数前面零的个数(包括小数点前面的零).三、板书设计1.零次幂2.负整数指数幂3.科学记数法:a×10-n(1≤|a|<10,n等于第一个非零数前面所有零的个数).本节课学习了零次幂和负整数指数幂,在学习中,以正整数指数幂为基础,探究零次幂和负整数指数幂的运算法则.本节课的易错点一是误认为零次幂等于0,二是用科学记数法表示绝对值小于1的数:a×10-n,误认为一定是负数.在课堂教学中,老师应让学生积极参与,主动练习,从练习中发现问题,纠正错误.1.3.3 整数指数幂的运算法则1.理解整数指数幂的运算法则;2.会用整数指数幂的运算法则进行计算.(重点,难点)一、情境导入1.请同学们回顾,我们学过的正整数指数幂的运算法则有哪些?2.我们在前面还学过,可以把幂的指数从正整数推广到整数.这时我们怎样理解这些运算法则呢?二、合作探究探究点一:整数指数幂的运算【类型一】 乘积形式的整数指数幂的运算计算:(1)(-a )3÷a -1÷(a -2)-2;(2)(a -2b -3)-3·(a 2b )-2;(3)(2x -3y 2z -2)-2(3xy -3z 2)2;(4)(-2a -3)2b 3÷2a -6b -2.解:(1)原式=-a 3÷a -1÷a 4=-a 4÷a 4=-1;(2)原式=a 6b 9·a -4b -2=a 2b 7;(3)原式=(2-2x 6y -4z 4)(32x 2y -6z 4)=2-2·32x 8y-10z 8=9x 8z 84y10;(4)原式=4a -6b 3÷2a -6b -2=2b 5.方法总结:整数指数幂的运算要注意运算顺序:先算乘方,再算乘除.最后结果要化为正整数指数.【类型二】 商形式的整数指数幂的运算计算:(1)(x 2+x x 2+2x +1)-1÷(x x +1)-2;(2)[(2a -3b -2c 3a -4b -2)-1]-2;(3)[(a -b )-3(a +b )3(a +b )2(a -b )-2]-2. 解:(1)原式=[x (x +1)(x +1)2]-1·(x x +1)2=x +1x ·x 2(x +1)2=xx +1;(2)原式=(2a -3b -2c 3a -4b -2)2=4a 2c29;(3)原式=(a -b )6(a +b )-6(a +b )-4(a -b )4=(a -b )2(a +b )2.方法总结:商形式的整数指数幂的运算有两种方法:一是先把负整数指数幂转化为正整数指数幂,再约分化简;二是先计算整数指数幂,最后再把负整数指数幂化为正整数指数幂.【类型三】 逆用幂的运算法则求值已知a -m =3,b n =2,则(a -m b -2n )-2=________.解析:(a -m b-2n )-2=(a -m )-2·b 4n =(a -m )-2(b n )4=3-2×24=169.故填169.方法总结:把要求的代数式逆用幂的运算法则,用已知的式子来表示是解题的关键.计算:(278)x -1·(23)3x -4.解:(278)x -1·(23)3x -4=(32)3x -3·(23)3x -4=(23)3-3x ·(23)3x -4=(23)3-3x +3x -4=(23)-1=32.方法总结:利用负整数指数幂,把底数是互为相反数的两数可以转化为相同,再根据幂的运算法则进行计算.探究点二:整数指数幂运算的实际应用某房间空气中每立方米含3×106个病菌,为了试验某种杀菌剂的效果,科学家们进行实验,发现1毫升杀菌剂可以杀死2×105个这种病菌,问要将长10m ,宽8m ,高3m 的房间内的病菌全部都杀死,需要多少杀菌剂?解:(10×8×3)×(3×106)÷(2×105)=(720×106)÷(2×105)=360×10=3.6×103(毫升).答:需要3.6×103毫升杀菌剂才能将房间中的病菌全部杀死.方法总结:科学记数法在实际生活中应用广泛,在运用科学记数法解题时要注意a ×10-n中n 的值.三、板书设计整数指数幂的运算法则:(1)同底数幂的乘法:a m ·a n =a m +n(a ≠0,m ,n 都是整数);(2)幂的乘方:(a m )n =a mn(a ≠0,m ,n 都是整数);(3)积的乘方:(ab )n =a n ·b n(a ≠0,b ≠0,n 是整数).本节课通过把正整数指数幂的五个运算法则,推广到整数范围内,从而可用三个运算法则来概括.整数指数幂的运算是学生学习过程中的一个难点,也是易错点,在教学过程中,可让学生把典型错误展示在黑板上,引导学生分析产生错误的原因.1.4 分式的加法和减法第1课时 同分母分式的加减1.理解同分母分式的加减法的法则,会进行同分母分式的加减法运算;(重点) 2.会把分母互为相反数的分式化为同分母分式进行加减运算.(难点)一、情境导入市场上有A ,B 两种电脑,花10000元可以买A 型电脑a 台,花8000元可以买B 型电脑a 台,A 型电脑比B 型电脑每台贵多少元?二、合作探究探究点一:同分母分式的加减法计算: (1)3a -2b 3ab -3a +3b 3ab ;(2)1a -1+-a 2a -1; (3)x -2x -1-2x -3x -1. 解析:根据同分母分式加减法的法则,把分子相加减,分母不变.注意(1),(3)两小题属于同分母分式的减法运算,减式的分子要变号.解:(1)原式=3a -2b -3a -3b 3ab =-5b 3ab =-53a ;(2)原式=1-a 2a -1=-(a +1)(a -1)a -1=-a -1;(3)原式=x -2-2x +3x -1=-x +1x -1=-1.方法总结:同分母分式相加减,分母不变,分子相加减,最后结果要化为最简分式或整式.探究点二:分式的符号法则计算: (1)2x 2-3y 2x -y +x 2-2y 2y -x ;(2)2a +3b b -a +2b a -b -3b b -a.解析:(1)先把第二个分式的分母y -x 化为-(x -y ),再把分子相加减,分母不变; (2)先把第二个分式的分母a -b 化为-(b -a ),再把分子相加减,分母不变. 解:(1)原式=2x 2-3y 2x -y -x 2-2y2x -y=2x 2-3y 2-(x 2-2y 2)x -y=x 2-y 2x -y =(x +y )(x -y )x -y=x +y ; (2)原式=2a +3b b -a -2b b -a -3b b -a=2a +3b -2b -3b b -a=2a -2b b -a =-2(b -a )b -a=-2. 方法总结:分式的分母是互为相反数时,可以把其中一个分母放到带有负号的括号内,把分母化为完全相同.再根据同分母分式相加减的法则进行运算.三、板书设计1.同分母分式加减法的法则:f g ±h g =f ±hg.2.分式的符号法则:f g =-f -g ,-f g =f -g =-f g.本节课通过同分母分数的加减法类比得出同分母分式的加减法.易错点一是符号,二是结果的化简.在教学中,让学生参与课堂探究,进行自主归纳,并对易错点加强练习.从而让学生对知识的理解从感性认识上升到理性认识.第2课时 分式的通分1.会确定几个分式的最简公分母;2.会根据分式的基本性质把分式进行通分.(重点,难点)一、情境导入 1.通分:12,23.2.分数通分的依据是什么? 3.类比分数,怎样把分式通分? 二、合作探究探究点一:最简公分母分式1x 2-3x 与2x 2-9的最简公分母是________. 解析:∵x 2-3x =x (x -3),x 2-9=(x +3)(x -3),∴最简公分母为:x (x +3)(x -3). 方法总结:最简公分母的确定:最简公分母的系数,取各个分母的系数的最小公倍数;字母及式子取各分母中所有字母和式子的最高次幂.“所有字母和式子的最高次幂”是指“凡出现的字母(或含字母的式子)为底数的幂的因式选取指数最大的”;当分母是多项式时,一般应先因式分解.探究点二:分式的通分【类型一】 分母是单项式分式的通分通分.(1)c bd ,ac2b2; (2)b 2a 2c ,2a 3bc2; (3)45y 2z ,310xy 2,5-2xz2. 解析:先确定最简公分母,找到各个分母应当乘的单项式,分子也相应地乘以这个单项式.解:(1)最简公分母是2b 2d ,c bd =2bc 2b 2d ,ac 2b 2=acd 2b 2d; (2)最简公分母是6a 2bc 2,b 2a 2c =3b 2c 6a 2bc 2,2a 3bc 2=4a36a 2bc2;(3)最简公分母是10xy 2z 2,45y 2z =8xz 10xy 2z 2,310xy 2=3z 210xy 2z 2,5-2xz 2=-25y210xy 2z2.方法总结:通分时,先确定最简公分母,然后根据分式的基本性质把各分式的分子、分母同时乘以一个适当的整式,使分母化为最简公分母.【类型二】 分母是多项式分式的通分通分.(1)a 2(a +1),1a 2-a; (2)2mn 4m 2-9,3m 4m 2-6m +9. 解析:先把分母因式分解,再确定最简公分母,然后再通分. 解:(1)最简公分母是2a (a +1)(a -1),a 2(a +1)=a 2(a -1)2a (a +1)(a -1),1a 2-a =2(a +1)2a (a +1)(a -1); (2)最简公分母是(2m +3)(2m -3)2,2mn 4m 2-9=2mn (2m -3)(2m +3)(2m -3)2,3m 4m 2-6m +9=3m (2m +3)(2m +3)(2m -3)2. 方法总结:①确定最简公分母是通分的关键,通分时,如果分母是多项式,一般应先因式分解,再确定最简公分母;②在确定最简公分母后,还要确定分子、分母应乘的因式,这个因式就是最简公分母除以原分母的商.三、板书设计 1.最简公分母 2.通分:(1)依据:分式的基本性质;(2)方法:先确定最简公分母,再把各分式的分母化为最简公分母.本节课学习了分式的通分,方法可类比分数的通分.在教学中应注意循序渐进,先让学生学会确定最简公分母,再让学生学习通分.通分时,一要注意避免符号错误,二要注意通分不改变分式的值,即分母乘了一个整式,分子也要乘以同样的一个整式.。
湘教版八年级上册初中数学全册优质公开课教案(教学设计)
1.1 分式(第1课时)【教学目标】1、 了解分式的基本概念并能用分式表示现实生活中的数量关系,会判断一个代数式是否为分式;2、 会求使一个分式有意义的条件;会判断分式的值是否为零,会求分式的值;3、 通过类比学习,经历分式的概念形成过程,初步学会运用类比转化的数学思想方法研究数学问题;4、 感受事物之间的联系,培养良好的辩证思维,严谨的科学态度。
【教学重点】理解分式的概念,掌握分式有意义的条件,会求分式的值。
【教学难点】掌握分式有意义的条件,分式值为零的条件。
【教学过程】一、 情境引入1、(1)某长方形的面积为S m 2,长为4m,则它的宽为 m; (2)某长方形的面积为12 m 2,长为x m,则它的宽为 m; (3)某三角形的面积为3 m 2,底为x m,则它的高为 m; (4)苹果a 元/千克,梨子b 元/千克,小明买了2千克苹果,n 千克梨子,共花元;(5)一个数除以这个数与2的差,设这个数为x ,则可以列式表示;(6)在一次数学考试中,小亮得m 分,小明得n 分,小红是小亮与小明得分和的一半,则小红得分。
2、将上面所列的分数式进行分类,说说你的分类标准(不用拘泥于按整式与分式分类,但老师在引导中,要引出整式与分式的分类,由此引出课题)二、 自主学习1、自学教材,回答下列问题:什么叫作分式?⒉下列代数式,哪些是分式?哪些是整式?3132,,,,,,3,3522x a x m n x x y x a y x y π--+-++-分式有:整式有:3、思考:分式5x x+中x 取任何实数都可以吗?为什么? 4、小结知识:一个整式f 除以一个非零整式g (g 中含有字母),所得的商记作f g ,把代数式f g叫作分式,其中f 是分式的分子,g 是分式的分母,0g ≠。
三、典例精析例1:当x 取什么值时,分式34-+x x 的值,⑴不存在;⑵等于0。
(让学生独立思考,给出答案后再交流,教师参与给予适当指导。
湘教版数学八年级上册教案(全册)
湘教版数学八年级上册教案1.1 分 式第1课时 分式的概念1.理解分式的概念,并能用分式表示现实生活中的量;2.掌握分式有、无意义的条件及分式的值为0的条件;(重点,难点) 3.会求分式的值.一、情境导入埃及金字塔相传是古埃及法老的陵墓,是世界公认的“古代世界七大奇迹”之一.其中最大、最有名的是祖孙三代金字塔——胡夫金字塔、哈夫拉金字塔和门卡乌拉金字塔.胡夫金字塔底部边长230公尺,高146公尺,重大约650万吨,共用了x 万块石头,那么平均每块石头重多少吨?二、合作探究探究点一:分式的概念代数式-13x 2,a +2a -1,35,x -2π,3x 2y ,x2x 中的分式有( )A .1个B .2个C .3个D .4个 解析:a +2a -1,3x 2y ,x2x中的分母含有字母,是分式.其他的代数式分母不含字母,不是分式.故选C.方法总结:判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.特别注意π是常数,不是字母,因此x -2π不是分式.另外对于分式的判断是针对式子的形式,而不是化简之后的结果,如x2x不能约分后再判断,其分母中含有字母即为分式.探究点二:分式有、无意义的条件 【类型一】 分式有意义的条件若分式2x|x |-1有意义,则( )A .x ≠-1B .x ≠1C .x ≠1且x ≠-1D .x 可为任何数解析:当分母不等于0时,分式有意义,即|x |-1≠0,∴x ≠1且x ≠-1.故选C. 方法总结:分式有意义的条件是分母不等于0.【类型二】 分式无意义的条件当a 为何值时,分式a -12a +1无意义?解:分式无意义,则2a +1=0,∴a =-12.方法总结:分式无意义的条件是分母等于0.探究点三:分式的值【类型一】 分式值为0的条件若分式x 2-1x -1的值为0,则( )A .x =1B .x =-1C .x =±1D .x ≠1解析:由x 2-1=0解得:x =±1,又∵x -1≠0即x ≠1,∴x =-1,故选B.方法总结:分式的值为0应同时具备两个条件:①分子为0;②分母不为0.应特别注意后一个条件.【类型二】 求分式的值当a =3时,求分式a 2-3a +3的值.解:当a =3时,a 2-3a +3=32-33+3=1.方法总结:求分式的值与求代数式的值的方法一样,用数值代替分式中的字母,再化简计算即可.三、板书设计分式⎩⎪⎨⎪⎧分式的概念分式有无意义的条件⎩⎪⎨⎪⎧分式有意义:分母≠0分式无意义:分母=0分式的值⎩⎪⎨⎪⎧分式的值为0:分子=0且分母≠0求分式的值在教学过程中,通过生活中的情境导入,引导学生观察、类比(分数)、猜想、归纳,经历数学概念的生成过程.通过实例强调分式的值为0应同时具备两个条件:分子等于0而分母不等于0,这样突出重点,突破难点.第2课时 分式的基本性质1.通过与分数的类比学习,掌握这一基本而常用的数学思想方法;2.掌握分式的基本性质,并会运用分式的基本性质把分式变形;(重点,难点)3.理解最简分式的概念,会根据分式的基本性质把分式约分,化为最简分式.(重点)一、情境导入1.我们学过下列分数:12,24,36,它们是否相等?为什么?2.请叙述分数的基本性质.3.类比分数的基本性质,你能猜想分式的基本性质吗?二、合作探究探究点一:分式的基本性质【类型一】 分式基本性质的应用填空:(1)3xy =( )3ax 2y ;(2)x 2-y 2(x -y )2=x +y( ). 解析:(1)小题中,分母由xy 变为3ax 2y ,只需乘以3ax ,根据分式的基本性质,分子也应乘以3ax ,所以括号中应填9ax .(2)小题中,分子由x 2-y 2变为x +y ,只需除以x -y ,根据分式的基本性质,分母也应除以x -y ,所以括号中应填x -y .方法总结:利用分式的基本性质求未知的分子或分母时,若求分子,则看分母发生了何种变化,这时分子也应发生相应的变化;若求分母,则看分子发生了何种变化,这时分母也应发生相应的变化.【类型二】 分式的符号法则下列各式从左到右的变形不正确的是( )A.-23y =-23y B.-y -6x =y 6xC .-8x 3y =8x -3yD .-a -b y -x =b -a x -y解析:选项A 中,同时改变分式的分子及分式本身的符号,其值不变,正确;选项B 中,同时改变分式的分子、分母的符号,其值不变,正确;选项C 中,同时改变分式的分母及分式本身的符号,其值不变,正确;选项D 中,分式的分子、分母及分式本身的符号,同时改变三个,其值变化,错误.故选D.方法总结:根据分式的符号法则,分式的分子、分母、分式本身的符号,同时改变其中的两个,分式的值不变.探究点二:分式的约分【类型一】 运用约分,化简分式约分:(1)8x 2yz 3-32xyz 5; (2)a 2+ab a 2+2ab +b 2. 解析:约分的关键是确定分式中分子、分母的公因式,(1)中分子与分母的公因式是8xyz 3,(2)小题先因式分解,分子与分母的公因式是(a +b ).解:(1)原式=x ·8xyz 34z 2·(-8xyz 3)=-x4z2; (2)原式=a (a +b )(a +b )2=aa +b. 方法总结:①约分的依据是分式的基本性质,关键是找出分子与分母的公因式;②约分时必须将分子、分母先写成乘积的形式,再进行约分,不能只对分子、分母中的某一项或某一部分进行约分;③约分一定要彻底,约分的结果应是最简分式或整式.【类型二】 运用约分,化简求值先约分,再求值:2a 2-ab4a 2-4ab +b 2,其中a =-1,b =2.解:原式=a (2a -b )(2a -b )2=a2a -b. 当a =-1,b =2时,a 2a -b =-12×(-1)-2=14.方法总结:利用分式的基本性质约分求值时,要先把分式化为最简分式再代值计算.探究点三:最简分式下列分式是最简分式的是( ) A.2a 3a 2b B.aa 2-3aC.a +b a 2+b 2D.a 2-ab a 2-b 2解析:选项A 中的分子、分母能约去公因式a ,故选项A 不是最简分式;选项B 中的分子、分母能约去公因式a ,故选项B 不是最简分式;选项C 中的分子、分母没有公因式,选项C 是最简分式,故选C ;选项D 中的分子、分母能约去公因式(a -b ),故选项D 不是最简分式.方法总结:判断最简分式的标准是分子与分母是否有公因式,如果有公因式就不是最简分式.当分子、分母是多项式时,一般要进行因式分解,以便判断是否能约分.三、板书设计 分式的基本性质:f g =f ·hg ·h ,f g =f ÷hg ÷h(h ≠0)↓约分 (找出分子与分母的公因式) ↓最简分式 (分子与分母无公因式)本节课利用类比分数的基本性质学习了分式的基本性质,在学习过程中,应注重让学生在学法上的迁移,突出分式基本性质中的的两个关键词:“都”、“同”,尽量避免符号出错.1.2 分式的乘法和除法第1课时 分式的乘除1.理解并掌握分式的乘、除法法则;2.会用分式的乘、除法法则进行运算.(重点,难点)一、情境导入1.请同学们计算: (1)34×52; (2)13÷25. 2.根据上述分数的乘、除法运算,你能猜想下面这两个式子的运算结果吗? (1)f g ·u v ; (2)f g ÷u v.二、合作探究探究点一:分式的乘法运算【类型一】 分子、分母都是单项式计算: (1)16xy y 2·y 22x ; (2)5a 3bc 22x 2y ·-8x 2y 310a 2bc2.解析:分式乘分式,用分子的积作积的分子,分母的积作积的分母,然后再约分. 解:(1)16xy y 2·y 22x =16xy ·y 2y 2·2x=8y ;(2)5a 3bc 22x 2y ·-8x 2y 310a 2bc 2=-5a 3bc 2·8x 2y 32x 2y ·10a 2bc2=-2ay 2.方法总结:分式乘法运算的方法:①注意运算顺序及解题步骤,注意符号问题,不要漏乘负号;②整式与分式的运算,根据题目的特点,可将整式化为分母为“1”的分式;③运算中及时约分、化简;④注意运算律的正确使用;⑤结果应化为最简分式或整式.【类型二】 分子、分母中有多项式计算:m 2-4n 2m 2-mn ·m -nm 2-2mn.解析:观察分式的特点,分子与分母含有多项式,应先将多项式因式分解,再应用分式乘法法则运算.解:m 2-4n 2m 2-mn ·m -n m 2-2mn =(m +2n )(m -2n )m (m -n )·m -n m (m -2n )=m +2n m2.方法总结:分式中含多项式的乘法运算的一般步骤:①运用分式乘法的法则,用分子之积作为新分子,用分母之积作为新分母;②确定分子与分母的公因式;③约分,化为最简分式或整式.探究点二:分式的除法运算【类型一】 分子、分母都是单项式计算:2m 5n ÷4m2-10n2.解析:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘. 解:2m 5n ÷4m 2-10n 2=-2m 5n ·10n 24m 2=-n m. 方法总结:进行分式的除法运算时,先把分式的除法转化成乘法,然后按照乘法法则进行计算,要注意结果的符号.【类型二】 分子、分母中有多项式计算:(1)x 2-1y ÷x +1y2;(2)(xy -x 2)÷x -yxy; (3)x 2-6x +99-x 2÷2x -6x 2+3x. 解析:(1)小题中,先把除法转化为乘法,把x 2-1因式分解,再约分.(2)小题中,把xy -x 2看作是分母是1的分式,把除法转化为乘法,因式分解,再约分.(3)小题中,把除法转化为乘法,把各个分子、分母因式分解,再约分.解:(1)原式=(x +1)(x -1)y ·y2x +1=y (x -1);(2)原式=x (y -x )·xy x -y=-x 2y ; (3)原式=(x -3)2-(x +3)(x -3)·x (x +3)2(x -3)=-x2.方法总结:分式的除法计算首先要转化为乘法运算,若除式是整式,应将这个整式看作是分母为“1”的分式,然后对式子进行化简.化简时如果分子、分母有多项式,一般应先进行因式分解,然后再约分.分式的乘除运算实际就是分式的约分.三、板书设计1.分式的乘法:f g ·u v =fu gv.2.分式的除法:f g ÷u v =f g ·v u =fv gu(u ≠0).本节课学习了分式的乘、除法运算,通过观察、比较、猜想、分析,类比分数的乘、除法运算,得出分式的乘、除法运算法则.在运算中,把除法转化为乘法,分子、分母有多项式的要先因式分解,同时要注意避免符号出错.第2课时 分式的乘方1.理解并掌握分式的乘方法则,并会运用分式的乘方法则进行分式的乘方运算;(重点) 2.进一步熟练掌握分式乘、除法的混合运算.(难点)一、情境导入1.计算:(35)2,(35)3,(35)n;2.类似地,请你计算:(fg)n.二、合作探究探究点一:分式的乘方计算: (1)(3y 2x 2)2; (2)(-x 2y 2z 2xyz)3.解析:把分式的分子、分母分别乘方,(2)小题还可以先约分,再乘方. 解:(1)(3y 2x 2)2=(3y )2(2x 2)2=9y 24x 4;(2)(-x 2y 2z 2xyz )3=(-x 2y 2z )3(2xyz )3=-x 3y38. 方法总结:分式的乘方,把分子、分母各自乘方,运算时要注意符号,明确“正数的任何次幂都是正数,负数的偶数次幂是正数,负数的奇数次幂是负数”,还要注意最后结果是最简分式或整式.探究点二:分式的乘除、乘方混合运算计算:(1)(-2a 2b cd 3)3÷2a d 3·(c a)3;(2)(ab 3)2·(-b a2)3÷(-b a)4;(3)a -b a ·(b b -a )2÷b 2a2.解析:先算乘方,再把除法转化为乘法,然后约分. 解:(1)(-2a 2b cd 3)3÷2a d 3·(c a )3=-8a 6b 3c 3d 9·d 32a ·c 3a 3=-4a 2b 3d6;(2)(ab 3)2·(-b a 2)3÷(-b a )4=a 2b 6·(-b 3a 6)·a 4b4=-b 5;(3)a -b a ·(b b -a )2÷b 2a 2=a -b a ·b 2(a -b )2·a 2b 2=aa -b. 方法总结:进行分式的乘除、乘方混合运算时,先算乘方,再算乘除,最后结果应化成最简分式或整式,通常情况下,计算得到的最后结果要使分子和分母第一项的符号为正号.对于含负号的分式,奇次方为负,偶次方为正.三、板书设计1.分式的乘方法则:(f g )n =f ngn .2.分式乘除、乘方的混合运算:先算乘方,再算乘除.本节课学习了分式的乘方及分式的乘除、乘方混合运算,在教学中应注重激发学生的积极性,勇于尝试.本节课的混合运算是一个难点,也是学生常出错的地方,教学时要引导学生注意运算顺序,优先确定运算符号,提高运算的准确率.1.3整数指数幂1.3.1同底数幂的除法1.经历同底数幂的除法法则的探索过程,理解同底数幂的除法法则;2.会用同底数幂的除法法则进行运算.(重点,难点)一、情境导入传说,印度的舍罕国王打算重赏国际象棋的发明人——大臣西萨·班·达依尔.这位聪明的大臣跪在国王面前说:“陛下,请你在这张棋盘的第一个小格内,赏给我一粒麦子,在第二个小格内给两粒,在第三个小格内给四粒,照这样下去,每一小格内都比前一小格加一倍.国王说:“你的要求不高,会如愿以偿的.”说着,他下令把一袋麦子拿到宝座前,计算麦粒的工作开始了……还没到第二十小格,袋子已经空了,麦粒数一格接一格地增长得那样迅速,很快看出,即使拿出来全印度的粮食,国王也兑现不了他对象棋发明人许下的诺言.问题1:国王应该给发明者多少粒麦子?问题2:假如一粒麦子是0.02克,用计算器算出国王应奖励给发明者的麦子总质量大约多少克?问题3:假如每个人每顿吃250克,一天三顿饭,一年365天,这些粮食可供1010(10亿)人食用多少年?二、合作探究探究点一:同底数幂的除法【类型一】底数是单项式计算:(1)(-a)3÷(-a)2; (2)(a3)2÷a5;(3)(xy3)3(-xy3)2; (4)-x3n+2x3n-1.解析:根据同底数幂的除法法则,即a m÷a n=a m-n进行运算.(3)小题可先确定符号,再按同底数幂的除法法则计算.解:(1)原式=(-a)3-2=-a;(2)原式=a 6÷a 5=a6-5=a ;(3)原式=(xy 3)3(xy 3)2=xy 3;(4)原式=-x 3.方法总结:进行同底数幂的除法运算时,只有底数相同时,才能把指数相减.因此计算时首先必须确定底数是否相同,如果底数是互为相反数,可以通过符号变化把底数化为相同.【类型二】 底数是多项式计算:(1)(x -y )8÷(y -x )6;(2)(a -b )3(b -a )2n ÷(a -b )2n -1.解析:底数为多项式时,可把多项式看作一个整体,再根据同底数幂的除法法则计算.解:(1)原式=(y -x )8÷(y -x )6=(y -x )2;(2)原式=(a -b )3(a -b )2n ÷(a -b )2n -1=(a -b )3+2n -(2n -1)=(a -b )4.方法总结:两数(式)互为相反数,则它们的偶次幂相等,奇次幂仍是互为相反数.即:(b -a )2n =(a -b )2n ,(b -a )2n +1=-(a -b )2n +1.(n 是正整数)探究点二:逆用同底数幂的性质已知a m =3,a n =4,求a 2m -n的值.解析:首先应用含a m 、a n 的代数式表示a 2m -n ,然后将a m 、a n的值代入即可求解.解:∵a m =3,a n=4,∴a2m -n=a 2m ÷a n =(a m )2÷a n =32÷4=94.方法总结:逆用同底数幂的除法法则:a m÷a n=a m -n,可以得到a m -n=a m÷a n.解决这类问题的关键在于把要求的式子a m -n 分别用a m 和a n来表示.这类题一般同时考查两个知识点:同底数幂的除法,幂的乘方,解题时应熟练掌握运算性质并能灵活运用.探究点三:同底数幂除法的实际应用某种液体中每升含有1012个有害细菌,某种杀虫剂1滴可杀死109个此种有害细菌.现要将这种2升液体中的有害细菌杀死,要用这种杀虫剂多少滴?解析:根据题意可知2升液体中有2×1012个有害细菌,而1滴可杀死109个此种有害细菌,把两个量相除即可求得答案.解:∵液体中每升含有1012个有害细菌,∴2升液体中的有害细菌有2×1012个,又∵杀虫剂1滴可杀死109个此种有害细菌,∴用这种杀虫剂的滴数为2×1012÷109=2×103=2000滴. 方法总结:本题主要考查同底数幂的除法及学生阅读理解题意的能力,是数学与生活相结合的例子.解决这类问题的方法是:先列出解决问题的式子,再根据同底数幂的除法法则进行计算.三、板书设计 同底数幂的除法a m=a m-n(a≠0).即:同底数幂相除,底数不变,指数相减.a n本节课学习了同底数幂的除法法则及运用法则进行计算.易错点有两个:一是理解法则错误,认为同底数幂相除,底数不变,指数相除;二是对于底数是互为相反数的指数幂的除法运算,容易出现符号错误.在课堂上,让学生把这些错误展示在黑板上,大家共同分析产生错误的原因以及怎样避免错误的发生.1.3.2 零次幂和负整数指数幂1.理解零次幂和负整数指数幂的意义,并能进行负整数指数幂的运算;(重点,难点) 2.会用科学记数法表示绝对值较小的数.(重点)一、情境导入上节课我们学习了同底数幂的除法法则:a m a n =a m -n,其中a ≠0,m ,n 是正整数,且m >n .在这里,如果m =n 或m =0,又会出现什么结果呢?二、合作探究 探究点一:零次幂【类型一】 零次幂有意义的条件已知(3x -2)0有意义,则x 应满足的条件是________.解析:根据零次幂的意义可知:(3x -2)0有意义,则3x -2≠0,x ≠23.故填x ≠23.方法总结:零次幂有意义的条件是底数不等于0,所以解决有关零次幂的意义类型的题目时,可列出关于底数不等于0的式子求解即可.【类型二】 零次幂的运算计算: (1)30; (2)(-2)0;(3)(-12)0; (4)-22+|4-7|+(3-π)0.解析:(1),(2),(3)小题根据零次幂的意义计算;(4)小题先分别求乘方、绝对值、零次幂,再计算.解:(1)30=1;(2)(-2)0=1;(3)(-12)0=1;(4)-22+|4-7|+(3-π)0=-4+3+1=0.方法总结:①任何不等于零的数的零次幂等于1.零次幂式子的特征是:底数不等于0,指数等于0,要注意的是结果等于1而不等于0.②零次幂与其他运算相结合时,要分别计算.计算-22时,易错误的计算为-22=4,因此要正确理解-22和(-2)2的意义.【类型三】 零次幂的综合运用若(x -1)x +1=1,求x 的值.解析:由于任何不等于零的数的零次幂等于1,1的任何次幂都等于1,-1的偶数次幂等于1,故应分三种情况讨论.解:①当x +1=0,即x =-1时,原式=(-2)0=1;②当x -1=1,x =2时,原式=13=1;③x -1=-1,x =0,0+1=1不是偶数.故舍去. 故x =-1或2.方法总结:乘方的结果为1,可分为三种情况:不为零的数的零次幂等于1;1的任何次幂都等于1;-1的偶次幂等于1即在底数不等于0的情况下考虑指数等于0;考虑底数等于1或-1.探究点二:负整数指数幂【类型一】 负整数指数幂的意义与运算计算:(1)3-3; (2)(-2)-2; (3)(-23)-4.解析:根据负整数指数幂的意义知,一个数的负整数指数幂的结果,底数是原来底数的倒数,指数是原来指数的相反数.解:(1)3-3=133=127;(2)(-2)-2=1(-2)2=14;(3)(-23)-4=(-32)4=8116.方法总结:求负整数指数幂的方法:把底数取倒数,指数变为相反数.【类型二】 运用零次幂和负整数指数幂来计算计算:|-5|-(π-1)0+(12)-2.解析:本题涉及零次幂、负整数指数幂、绝对值三个知识点.在计算时,需要针对每个知识点分别进行计算,然后根据运算法则计算.解:|-5|-(π-1)0+(12)-2=5-1+22=5-1+4=8.方法总结:此题主要考查了学生的综合运算能力,是中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零次幂、绝对值等考点的运算.【类型三】 运用零次幂和负整数指数幂来化简、求值已知a x=3,求a 2x -a -2xa x -a-x 的值.解析:根据负整数指数幂的意义先化简分式,然后代入求值.解:a 2x -a -2x a x -a -x =(a x )2-(a -x )2a x -a -x=a x +a -x =3+3-1=103. 方法总结:求值时,把要求的式子根据负整数指数幂的意义用已知的式子表示出来是解题的关键.探究点三:用科学记数法表示绝对值小于1的数一种花瓣的花粉颗粒直径约为0.0000065米,0.0000065用科学记数法表示为( )A.6.5×10-5 B.6.5×10-6C.6.5×10-7 D.65×10-6解析:把0.0000065的小数点向右移动6位变成6.5×0.000001=6.5×10-6,故选B.方法总结:绝对值很小的数用科学记数法表示时,先把小数点向右移动n位,使这个数变成一个整数数位只有一位的数a,再在后面乘以10-n.即用科学记数法把一个绝对值很小的数写成a ×10-n的形式时,n等于第一个非零数前面零的个数(包括小数点前面的零).三、板书设计1.零次幂2.负整数指数幂3.科学记数法:a×10-n(1≤|a|<10,n等于第一个非零数前面所有零的个数).本节课学习了零次幂和负整数指数幂,在学习中,以正整数指数幂为基础,探究零次幂和负整数指数幂的运算法则.本节课的易错点一是误认为零次幂等于0,二是用科学记数法表示绝对值小于1的数:a×10-n,误认为一定是负数.在课堂教学中,老师应让学生积极参与,主动练习,从练习中发现问题,纠正错误.1.3.3 整数指数幂的运算法则1.理解整数指数幂的运算法则;2.会用整数指数幂的运算法则进行计算.(重点,难点)一、情境导入1.请同学们回顾,我们学过的正整数指数幂的运算法则有哪些?2.我们在前面还学过,可以把幂的指数从正整数推广到整数.这时我们怎样理解这些运算法则呢?二、合作探究探究点一:整数指数幂的运算【类型一】 乘积形式的整数指数幂的运算计算:(1)(-a )3÷a -1÷(a -2)-2;(2)(a -2b -3)-3·(a 2b )-2;(3)(2x -3y 2z -2)-2(3xy -3z 2)2;(4)(-2a -3)2b 3÷2a -6b -2.解:(1)原式=-a 3÷a -1÷a 4=-a 4÷a 4=-1;(2)原式=a 6b 9·a -4b -2=a 2b 7;(3)原式=(2-2x 6y -4z 4)(32x 2y -6z 4)=2-2·32x 8y-10z 8=9x 8z 84y10;(4)原式=4a -6b 3÷2a -6b -2=2b 5.方法总结:整数指数幂的运算要注意运算顺序:先算乘方,再算乘除.最后结果要化为正整数指数.【类型二】 商形式的整数指数幂的运算计算:(1)(x 2+x x 2+2x +1)-1÷(x x +1)-2;(2)[(2a -3b -2c 3a -4b -2)-1]-2;(3)[(a -b )-3(a +b )3(a +b )2(a -b )-2]-2. 解:(1)原式=[x (x +1)(x +1)2]-1·(x x +1)2=x +1x ·x 2(x +1)2=xx +1;(2)原式=(2a -3b -2c 3a -4b -2)2=4a 2c29;(3)原式=(a -b )6(a +b )-6(a +b )-4(a -b )4=(a -b )2(a +b )2.方法总结:商形式的整数指数幂的运算有两种方法:一是先把负整数指数幂转化为正整数指数幂,再约分化简;二是先计算整数指数幂,最后再把负整数指数幂化为正整数指数幂.【类型三】 逆用幂的运算法则求值已知a -m =3,b n =2,则(a -m b -2n )-2=________.解析:(a -m b-2n )-2=(a -m )-2·b 4n =(a -m )-2(b n )4=3-2×24=169.故填169.方法总结:把要求的代数式逆用幂的运算法则,用已知的式子来表示是解题的关键.计算:(278)x -1·(23)3x -4.解:(278)x -1·(23)3x -4=(32)3x -3·(23)3x -4=(23)3-3x ·(23)3x -4=(23)3-3x +3x -4=(23)-1=32.方法总结:利用负整数指数幂,把底数是互为相反数的两数可以转化为相同,再根据幂的运算法则进行计算.探究点二:整数指数幂运算的实际应用某房间空气中每立方米含3×106个病菌,为了试验某种杀菌剂的效果,科学家们进行实验,发现1毫升杀菌剂可以杀死2×105个这种病菌,问要将长10m ,宽8m ,高3m 的房间内的病菌全部都杀死,需要多少杀菌剂?解:(10×8×3)×(3×106)÷(2×105)=(720×106)÷(2×105)=360×10=3.6×103(毫升).答:需要3.6×103毫升杀菌剂才能将房间中的病菌全部杀死.方法总结:科学记数法在实际生活中应用广泛,在运用科学记数法解题时要注意a ×10-n中n 的值.三、板书设计整数指数幂的运算法则:(1)同底数幂的乘法:a m ·a n =a m +n(a ≠0,m ,n 都是整数);(2)幂的乘方:(a m )n =a mn(a ≠0,m ,n 都是整数);(3)积的乘方:(ab )n =a n ·b n(a ≠0,b ≠0,n 是整数).本节课通过把正整数指数幂的五个运算法则,推广到整数范围内,从而可用三个运算法则来概括.整数指数幂的运算是学生学习过程中的一个难点,也是易错点,在教学过程中,可让学生把典型错误展示在黑板上,引导学生分析产生错误的原因.1.4 分式的加法和减法第1课时 同分母分式的加减1.理解同分母分式的加减法的法则,会进行同分母分式的加减法运算;(重点) 2.会把分母互为相反数的分式化为同分母分式进行加减运算.(难点)一、情境导入市场上有A ,B 两种电脑,花10000元可以买A 型电脑a 台,花8000元可以买B 型电脑a 台,A 型电脑比B 型电脑每台贵多少元?二、合作探究探究点一:同分母分式的加减法计算: (1)3a -2b 3ab -3a +3b 3ab ;(2)1a -1+-a 2a -1; (3)x -2x -1-2x -3x -1. 解析:根据同分母分式加减法的法则,把分子相加减,分母不变.注意(1),(3)两小题属于同分母分式的减法运算,减式的分子要变号.解:(1)原式=3a -2b -3a -3b 3ab =-5b 3ab =-53a ;(2)原式=1-a 2a -1=-(a +1)(a -1)a -1=-a -1;(3)原式=x -2-2x +3x -1=-x +1x -1=-1.方法总结:同分母分式相加减,分母不变,分子相加减,最后结果要化为最简分式或整式.探究点二:分式的符号法则计算: (1)2x 2-3y 2x -y +x 2-2y 2y -x ;(2)2a +3b b -a +2b a -b -3b b -a.解析:(1)先把第二个分式的分母y -x 化为-(x -y ),再把分子相加减,分母不变; (2)先把第二个分式的分母a -b 化为-(b -a ),再把分子相加减,分母不变. 解:(1)原式=2x 2-3y 2x -y -x 2-2y2x -y=2x 2-3y 2-(x 2-2y 2)x -y=x 2-y 2x -y =(x +y )(x -y )x -y=x +y ; (2)原式=2a +3b b -a -2b b -a -3b b -a=2a +3b -2b -3b b -a=2a -2b b -a =-2(b -a )b -a=-2. 方法总结:分式的分母是互为相反数时,可以把其中一个分母放到带有负号的括号内,把分母化为完全相同.再根据同分母分式相加减的法则进行运算.三、板书设计1.同分母分式加减法的法则:f g ±h g =f ±hg.2.分式的符号法则:f g =-f -g ,-f g =f -g =-f g.本节课通过同分母分数的加减法类比得出同分母分式的加减法.易错点一是符号,二是结果的化简.在教学中,让学生参与课堂探究,进行自主归纳,并对易错点加强练习.从而让学生对知识的理解从感性认识上升到理性认识.第2课时 分式的通分1.会确定几个分式的最简公分母;2.会根据分式的基本性质把分式进行通分.(重点,难点)一、情境导入 1.通分:12,23.2.分数通分的依据是什么? 3.类比分数,怎样把分式通分? 二、合作探究探究点一:最简公分母分式1x 2-3x 与2x 2-9的最简公分母是________. 解析:∵x 2-3x =x (x -3),x 2-9=(x +3)(x -3),∴最简公分母为:x (x +3)(x -3). 方法总结:最简公分母的确定:最简公分母的系数,取各个分母的系数的最小公倍数;字母及式子取各分母中所有字母和式子的最高次幂.“所有字母和式子的最高次幂”是指“凡出现的字母(或含字母的式子)为底数的幂的因式选取指数最大的”;当分母是多项式时,一般应先因式分解.探究点二:分式的通分【类型一】 分母是单项式分式的通分通分.(1)c bd ,ac2b2; (2)b 2a 2c ,2a 3bc2; (3)45y 2z ,310xy 2,5-2xz2. 解析:先确定最简公分母,找到各个分母应当乘的单项式,分子也相应地乘以这个单项式.解:(1)最简公分母是2b 2d ,c bd =2bc 2b 2d ,ac 2b 2=acd 2b 2d; (2)最简公分母是6a 2bc 2,b 2a 2c =3b 2c 6a 2bc 2,2a 3bc 2=4a36a 2bc2;(3)最简公分母是10xy 2z 2,45y 2z =8xz 10xy 2z 2,310xy 2=3z 210xy 2z 2,5-2xz 2=-25y210xy 2z2.方法总结:通分时,先确定最简公分母,然后根据分式的基本性质把各分式的分子、分母同时乘以一个适当的整式,使分母化为最简公分母.【类型二】 分母是多项式分式的通分通分.(1)a 2(a +1),1a 2-a; (2)2mn 4m 2-9,3m 4m 2-6m +9. 解析:先把分母因式分解,再确定最简公分母,然后再通分. 解:(1)最简公分母是2a (a +1)(a -1),a 2(a +1)=a 2(a -1)2a (a +1)(a -1),1a 2-a =2(a +1)2a (a +1)(a -1); (2)最简公分母是(2m +3)(2m -3)2,2mn 4m 2-9=2mn (2m -3)(2m +3)(2m -3)2,3m 4m 2-6m +9=3m (2m +3)(2m +3)(2m -3)2. 方法总结:①确定最简公分母是通分的关键,通分时,如果分母是多项式,一般应先因式分解,再确定最简公分母;②在确定最简公分母后,还要确定分子、分母应乘的因式,这个因式就是最简公分母除以原分母的商.三、板书设计 1.最简公分母 2.通分:(1)依据:分式的基本性质;(2)方法:先确定最简公分母,再把各分式的分母化为最简公分母.本节课学习了分式的通分,方法可类比分数的通分.在教学中应注意循序渐进,先让学生学会确定最简公分母,再让学生学习通分.通分时,一要注意避免符号错误,二要注意通分不改变分式的值,即分母乘了一个整式,分子也要乘以同样的一个整式.。
新版湘教版八年级上册数学全册教案
湘教版八年级上册数学全册教案第1章分式约22课时1.1分式1.2分式的乘法和除法1.3整数指数幂1.4分式的加法和减法1.5可化为一元一次方程的分式方程小结与复习第2章三角形约27课时2.1三角形2.2命题与证明2.3等腰三角形2.4线段的垂直平分线2.5全等三角形2.6用尺规作三角形小结与复习第3章实数约9课时3.1平方根3.2立方根3.3实数小结与复习第4章一元一次不等式(组)约13课时4.1不等式4.2不等式的基本性质4.3一元一次不等式的解法4.4一元一次不等式的应用4.5一元一次不等式组小结与复习第5章二次根式约14课时 5.1二次根式5.2二次根式的乘法和除法5.3二次根式的加法和减法小结与复习八年级上学期数学教学计划一、指导思想:以《初中数学新课程标准》为依据,全面推进素质教育。
数学是人们生活、劳动和学习必不可少的工具,能够帮助人们处理数据、进行计算、推理和证明,数学模型可以有效地描述自然现象和社会现象;数学为其他科学提供了语言、思想和方法,是一切重大技术发展的基础;数学在提高人的推理能力、抽象能力、想像力和创造力等方面有着独特的作用;数学是人类的一种文化,它的内容、思想、方法和语言是现代文明的重要组成部分。
学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。
内容的呈现应采用不同的表达方式,以满足多样化的学习需求。
有效的数学学习活动不能单纯地依赖模仿与记忆动手实践、自主探索与合作交流是学生学习数学的重要方式。
由于学生所处的文化环境、家庭背景和自身思维方式的不同,学生的数学学习活动应当是一个生动活泼的、主动的和富有个性的过程。
二、学生的基本情况:上学期学生学习了一元一次方程及其应用,二元一次方程组及其应用,整式的乘法,相交线与平行线以及统计的一些简单知识,学生数学上的计算能力、阅读理解能力、实践探究能力得到了发展与培养,对图形及图形间数量关系有初步认识,逻辑思维与逻辑推理能力得到了发展与培养,学生从形象思维到抽象思维的过渡阶段,抽象思维得到了较好的发展。
湘教版八年级上册数学教案精编版
湘教版八年级上册数学教案公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-一、指导思想:以《初中数学新课程标准》为依据,全面推进素质教育。
数学是人们生活、劳动和学习必不可少的工具,能够帮助人们处理数据、进行计算、推理和证明,数学模型可以有效地描述自然现象和社会现象;数学为其他科学提供了语言、思想和方法,是一切重大技术发展的基础;数学在提高人的推理能力、抽象能力、想像力和创造力等方面有着独特的作用;数学是人类的一种文化,它的内容、思想、方法和语言是现代文明的重要组成部分。
学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。
内容的呈现应采用不同的表达方式,以满足多样化的学习需求。
有效的数学学习活动不能单纯地依赖模仿与记忆动手实践、自主探索与合作交流是学生学习数学的重要方式。
由于学生所处的文化环境、家庭背景和自身思维方式的不同,学生的数学学习活动应当是一个生动活泼的、主动的和富有个性的过程。
二、学生的基本情况:上学期学生学习了一元一次方程及其应用,二元一次方程组及其应用,整式的乘法,相交线与平行线以及统计的一些简单知识,学生数学上的计算能力、阅读理解能力、实践探究能力得到了发展与培养,对图形及图形间数量关系有初步认识,逻辑思维与逻辑推理能力得到了发展与培养,学生从形象思维到抽象思维的过渡阶段,抽象思维得到了较好的发展。
绝大部分学生能够认真对等每次作业,及时纠正作业中的错误,课堂上能专心致至的进行学习和思考问题,学生学习数学的兴趣得到了激发与进一步的发展,但学习习惯上,学生的课前预习、课堂上记笔记的习惯培养得很不理想,应该在课堂上充分发挥学生的想象与思考,敢于大胆思考,课堂上就把时间有在思考问题上。
本学期要思考如何克服课前预习、课堂上记笔记的弊端,发挥其有利的一面,学生对思考规律的小结,及时复习、总结上的习惯,还需要加强,课堂上专心致至的听讲,想在老师和同学的前面,及时纠正作业和试卷中的错误的习惯还需要加强,表扬和鼓励阅读与数学有关的课外读物,引导学生自主拓展和加深自己的知识的广度与深度;在学习方法上,一题多解,多题一解,从不同的角度看问题,从对称的角度思考问题,用不同的方法检验答案,需要加强训练与培养。
2019年最新湘教版八年级数学上学期全册教案
第1章 分式1.1 分式第1课时 分式1.理解分式的定义,能够根据定义判断一个式子是否是分式.2.能写出分式存在的条件,会求分式的值为0时字母的取值范围.(重难点)3.能根据字母的取值求分式的值.(重点)4.能用分式表示现实情境中的数量关系.(重点)自学指导:阅读教材P2~3,完成下列问题.(一)知识探究1.一般地,如果一个整式f 除以一个非零整式g(g 中含有字母),所得商f g叫作分式,其中f 是分式的分子,g 是分式的分母,g ≠0.2.(1)分式f g 存在的条件是g ≠0;(2)分式f g 不存在的条件是g =0;(3)分式f g的值为0的条件是f =0,g ≠0.(二)自学反馈1.下列各式中,哪些是分式?①2b -s ;②3 000300-a ;③27;④v s ;⑤s 32;⑥2x 2+15;⑦45b +c ;⑧-5;⑨3x 2-1;⑩x 2-xy +y 22x -1;⑪5x -7.解:分式有①②④⑦⑩.判断是否是分式主要看分母是不是含有字母.这是判断分式的唯一条件.2.当x 取何值时,下列分式的值不存在?当x 取何值时,下列分式的值等于0?(1)3-x x +2;(2)x +53-2x. 解:(1)当x +2=0时,即x =-2时,分式3-x x +2的值不存在.当x =3时,分式3-x x +2的值等于0. (2)当3-2x =0时,即x =32时,分式x +53-2x 的值不存在.当x =-5时,分式x +53-2x的值等于0.分母是否为0决定分式的值是否存在.活动1 小组讨论例1 列代数式表示下列数量关系,并指出哪些是整式?哪些是分式?(1)甲每小时做x 个零件,他做80个零件需多少小时;(2)轮船在静水中每小时走a 千米,水流的速度是b 千米/时,轮船的顺流速度是多少千米/时,轮船的逆流速度是多少千米/时;(3)x 与y 的差除以4的商是多少.解:(1)80x ;分式.(2)a +b ,a -b ;整式.(3)x -y 4;整式. 例2 当x 取何值时,分式2x -5x 2-4的值存在?当x 取何值时,分式2x -5x 2-4的值为零? 解:当2x -5x 2-4的值存在时,x 2-4≠0,即x ≠±2; 当2x -5x 2-4的值为0时,有2x -5=0且x 2-4≠0,即x =52.分式的值存在的条件:分式的分母不能为0.分式的值不存在的条件:分式的分母等于0.分式值为0的条件:分式的分子等于0,但分母不能等于0.分式的值为零一定是在有意义的条件下成立的.活动2 跟踪训练1.下列各式中,哪些是分式?①4x ;②a 4;③1x -y ;④3x 4;⑤12x 2. 解:①③是分式.2.当x 取何值时,分式x 2+13x -2的值存在? 解:3x -2≠0,即x ≠23时,x 2+13x -2存在. 3.求下列条件下分式x -2x +3的值. (1)x =1;(2)x =-1.解:(1)当x =1时,x -2x +3=-14. (2)当x =-1时,x -2x +3=-32.活动3 课堂小结1.分式的定义及根据条件列分式.2.分式的值存在的条件,以及分式值为0的条件.第2课时 分式的基本性质1.理解并掌握分式的基本性质.(重点)2.能运用分式的基本性质约分,并进行简单的求值运算.(重难点)自学指导:阅读教材P4~6,完成下列问题.(一)知识探究1.分式的基本性质:分式的分子与分母同时乘(或除以)一个不等于零的整式,分式的值不变.用式子表示为f g =(f ·h )g ·h(h ≠0). 2.根据分式的基本性质,把一个分式的分子与分母的公因式约去(即分子与分母都除以它们的公因式),叫作分式的约分.3.分子与分母没有公因式的分式叫作最简分式.(二)自学反馈1.下列等式的右边是怎样从左边得到的?(1)a 2b =ac 2bc (c ≠0);(2)x 3xy =x 2y. 解:(1)由c ≠0,知a 2b =a ·c 2b ·c =ac 2bc. (2)由x ≠0,知x 3xy =x 3÷x xy ÷x =x 2y .应用分式的基本性质时,一定要确定分式在有意义的情况下才能应用.2.填空,使等式成立:(1)34y =3(x +y )4y (x +y )(其中x +y ≠0);(2)y +2y 2-4=1(y -2).在分式有意义的情况下,正确运用分式的基本性质,保证分式的值不变,给分式变形.3.约分:(1)a 2bc ab ;(2)-32a 3b 2c 24a 2b 3d. 解:(1)公因式为ab ,所以a 2bc ab=ac. (2)公因式为8a 2b 2,所以-32a 3b 2c 24a 2b 3d =-4ac 3bd .活动1 小组讨论例1 约分:(1)-3a 3a 4;(2)12a 3(y -x )227a (x -y );(3)x 2-1x 2-2x +1. 解:(1)-3a 3a 4=-3a. (2)12a 3(y -x )227a (x -y )=4a 2(x -y )9. (3)x 2-1x 2-2x +1=(x +1)(x -1)(x -1)2=x +1x -1.约分的过程中注意完全平方式(a -b)2=(b -a)2的应用.像(3)这样的分子分母是多项式,应先分解因式再约分.例2 先约分,再求值:x 2y +xy 22xy,其中x =3,y =1. 解:x 2y +xy 22xy =xy (x +y )2xy =x +y 2. 当x =3,y =1时,x +y 2=3+12. 活动2 跟踪训练1.约分:(1)-15(a +b )2-25(a +b );(2)m 2-3m 9-m 2. 解:(1)-15(a +b )2-25(a +b )=3(a +b )5. (2)m 2-3m 9-m 2=m (m -3)(3+m )(3-m )=-m m +3. 2.先约分,再求值:(1)3m +n 9m 2-n 2,其中m =1,n =2; (2)x 2-4y 2x 2-4xy +4y 2,其中x =2,y =4.解:(1)3m +n 9m 2-n 2=13m -n =13×1-2=1. (2)x 2-4y 2x 2-4xy +4y 2=(x +2y )(x -2y )(x -2y )2=x +2y x -2y =2+2×42-2×4=-53. 活动3 课堂小结1.分数的基本性质.2.约分、化简求值.1.2 分式的乘法和除法第1课时 分式的乘法和除法1.理解分式的乘、除法的法则.(重点)2.会进行分式的乘除运算.(重难点)自学指导:阅读教材P8~9,完成下列问题.(一)知识探究分式的乘、除法运算法则:(1)分式乘分式,把分子乘分子、分母乘分母分别作为积的分子、分母.用式子表示为f g ·u v =fu gv. (2)分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.用式子表示为:如果u ≠0,则规定f g ÷u v =f g ·v u =fv gu. (二)自学反馈1.计算x y ·y 2x 的结果是12. 2.化简m -1m ÷m -1m 2的结果是m. 3.下列计算对吗?若不对,要怎样改正?(1)b a ·a b =1;(2)b a÷a =b ; (3)-x 2b ·6b x 2=3b x ;(4)4x 3a ÷a 2x =23. 解:(1)对.(2)错.正确的是b a 2.(3)错.正确的是-3x .(4)错.正确的是8x 23a 2.活动1 小组讨论例1 计算:(1)4x 3y ·y 2x 3;(2)ab 22c 2÷-3a 2b 24cd. 解:(1)原式=4x ·y 3y ·2x 3=4xy 6x 3y =23x 2. (2)原式=ab 22c 2·4cd -3a 2b 2=-ab 2·4cd 2c 2·3a 2b 2=-2d 3ac. 例2 计算:(1)a 2-4a +4a 2-2a +1·a -1a 2-4;(2)149-m 2÷1m 2-7m. 解:(1)原式=(a -2)2(a -1)2·a -1(a +2)(a -2)=(a -2)2(a -1)(a -1)2(a -2)(a +2)=a -2(a -1)(a +2). (2)原式=149-m 2·m 2-7m 1=1(7+m )(7-m )·m (m -7)1=m (m -7)(7+m )(7-m )=-m 7+m .整式与分式运算时,可以把整式看成分母是1的分式.注意变换过程中的符号.活动2 跟踪训练1.计算:(1)3a 4b ·16b 9a 2;(2)12xy 5a ÷8x 2y ;(3)-3xy ÷2y 23x. 解:(1)原式=3a ·16b 4b ·9a 2=43a. (2)原式=12xy 5a ·18x 2y =12xy 5a ·8x 2y =310ax. (3)原式=-3xy ·3x 2y 2=-3xy ·3x 2y 2=-9x 22y .(2)和(3)要把除法转换成乘法运算,然后约分,运算结果要化为最简分式.2.计算:(1)x 2-4x 2-4x +3÷x 2+3x +2x 2-x; (2)2x +64-4x +x 2÷(x +3)·x 2+x -63-x. 解:(1)原式=x 2-4x 2-4x +3·x 2-x x 2+3x +2=(x +2)(x -2)(x -3)(x -1)·x (x -1)(x +1)(x +2)=x (x -2)(x -3)(x +1)=x 2-2x x 2-2x -3. (2)原式=2x +64-4x +x 2·1x +3·x 2+x -63-x =2(x +3)(x -2)2·1x +3·(x +3)(x -2)-(x -3)=-2(x +3)(x -2)(x -3).分式的乘除要严格按着法则运算,除法必须先换算成乘法,如果分式的分子或分母是多项式,那么就把分子或分母分解因式,然后约分,化成最简分式.运算过程一定要注意符号. 活动3 课堂小结1.分式的乘、除运算法则.2.分式的乘、除法法则的运用.第2课时 分式的乘方1.理解分式乘方的运算法则.(重点)2.熟练地进行分式乘方及乘、除、乘方混合运算.(重难点)自学指导:阅读教材P10~11,完成下列问题.(一)知识探究 分式的乘方法则:分式的乘方要把分子、分母分别乘方.用式子表示为(f g )n =f ng n .(其中n 为正整数) (二)自学反馈1.计算:(1)(2ab )2;(2)(-b 2a)3. 解:(1)(2ab )2=4a 2b 2. (2)(-b 2a )3=-b 6a 3. 2.计算:(1)(-2a b )2·b 36a 2;(2)(3a 2b)2÷(-b 2a)2. 解:(1)原式=4a 2b 2·b 36a 2=23b. (2)原式=9a 4b 2÷b 24a 2=9a 4b 2·4a 2b 2=36a 6.活动1 小组讨论例1 计算:(1)(n 2m )3;(2)(a 2b -cd 3)3. 解:(1)(n 2m )3=n 6m 3.(2)(a 2b -cd 3)3=(a 2b )3(-cd 3)3=a 6b 3-c 3d 9.分式的乘方运算将分式的分子、分母分别乘方,再根据幂的乘方进行运算.例2 计算:(1)m 3n 2÷(m n )3;(2)(-n 2m )2÷(n 2m 3)3·(2n m )3. 解:(1)m 3n 2÷(m n )3=m 3n 2÷m 3n 3=m 3n 2·n 3m 3=n 5. (2)(-n 2m )2÷(n 2m 3)3·(2n m )3=n 24m 2÷n 6m 9·8n 3m 3=n 24m 2·m 9n 6·8n 3m 3=2m 4n .分式混合运算,要注意:(1)化除法为乘法;(2)分式的乘方;(3)约分化简成最简分式. 活动2 跟踪训练1.计算:(1)2m 2n 3pq 2·5p 2q 4mn 2÷5mnp 3q; (2)16-a 2a 2+8a +16÷a -42a +8·a -2a +2; (3)(a -1a +3)2÷(a -1)·9-a 2a -1. 解:(1)原式=2m 2n 3pq 2·5p 2q 4mn 2·3q 5mnp =12n 2. (2)原式=(4+a )(4-a )(a +4)2·2(a +4)a -4·a -2a +2=-2(a -2)a +2. (3)原式=(a -1)2(a +3)2·1a -1·(3+a )(3-a )a -1=3-a a +3. 2.计算:(1)(-2x 4y 23z )3;(2)(2ab 3-c 2d )2÷6a 4b 3·(-3c b 2)3. 解:(1)原式=(-2x 4y 2)3(3z )3=-8x 12y 627z 3. (2)原式=4a 2b 6c 4d 2·b 36a 4·-27c 3b 6=-18b 3a 2cd 2. 3.化简求值:b 2a 2-ab ÷(b a -b )2·a 2b a -b ,其中a =12,b =-3. 解:化简结果是ab ;求值结果为-32.化简过程中注意“-”.化简中,乘除混合运算顺序要从左到右.活动3 课堂小结1.分式乘方的运算.2.分式乘除法及乘方的运算方法.1.3 整数指数幂1.3.1 同底数幂的除法1.理解同底数幂的除法法则.(重点)2.熟练进行同底数幂的除法运算.(重难点)自学指导:阅读教材P14~15,完成下列问题.(一)知识探究 同底数幂相除,底数不变,指数相减.设a ≠0,m ,n 是正整数,且m >n ,则a m a n =a n ·(a m -n )a n =a m -n . (二)自学反馈1.计算a 10÷a 2(a ≠0)的结果是(C)A.a 5B.-a 5C.a 8D.-a 82.计算:x 5÷(-x)2=x 3;(ab)5÷(ab)2=a 3b3.活动1 小组讨论例1 计算:(1)(-x )5x 3;(2)(xy )8(-xy )5. 解:(1)(-x )5x 3=-x 5-3=-x 2. (2)(xy )8(-xy )5=x 8y 8-x 5y 5=-x 3y 3. 例2 计算:(x -y)6÷(y -x)3÷(x -y).解:原式=(x -y)6÷[-(x -y)]3÷(x -y)=-(x -y)6-3-1=-(x -y)2. 活动2 跟踪训练1.计算:(1)a 5a 2;(2)(x 2y 3)2(-x 2y 3)2. 解:(1)原式=a 3.(2)原式=1.2.计算:(p -q)4÷(q -p)3·(p -q)2.解:原式=(p -q)4÷[-(p -q)3]·(p -q)2=-(p -q)·(p -q)2=-(p -q)3. 活动3 课堂小结同底数幂的除法的运算.1.3.2 零次幂和负整数指数幂1.理解零次幂和整数指数幂的运算性质,并能解决一些实际问题.(重难点)2.理解零指数幂和负整数指数幂的意义.(重点)3.负整数指数幂在科学记数法中的应用.(重难点)自学指导:阅读教材P16~18,完成下列问题.(一)知识探究1.任何不等于零的数的零次幂都等于1,即a 0=1(a ≠0).2.a -n =1a n (n 是正整数,a ≠0). (二)自学反馈1.计算:30=1;(-2)-3=-18. 2.用科学记数法表示数0.000 201 6为2.016×10-4.3.计算:23-(12)0-(12)-2. 解:原式=8-1-4=3.活动1 小组讨论例1 计算:(1)3-2;(2)(10)-3;(3)(45)-2. 解:(1)3-2=132=19.(2)10-3=1103=0.001. (3)(45)-2=(54)2=2516. 例2 把下列各式写成分式的形式:(1)3x -3;(2)2x -23y -3.解:(1)3x -3=3x 3.(2)2x -23y -3=6x 2y 3. 例3 用科学记数法表示下列各数:(1)0.000 326 7;(2)-0.001 1.解:(1)0.000 326 7=3.267×10-4.(2)-0.001 1=-1.10×10-3.活动2 跟踪训练1.计算:(-2)0=1;3-1=13. 2.把(-100)0,(-3)-2,(-13)2按从小到大的顺序排列为(-100)0>(-13)2=(-3)-2. 3.计算:(-1)2 012×(3-π)0+(12)-1. 解:原式=1×1+2=3.活动3 课堂小结1.零次幂和整数指数幂的运算性质.2.零指数幂和负整数指数幂的意义.3.负整数指数幂在科学记数法中的应用.1.3.3 整数指数幂的运算法则1.理解整数指数幂的运算法则.(重点)2.熟练掌握整数指数幂的各种运算.(重难点)自学指导:阅读教材P19~20,完成下列问题.(一)知识探究1.a m ·a n =am +n (a ≠0,m ,n 都是整数). 2.(a m )n =a mn(a ≠0,m ,n 都是整数).3.(ab)n =a n b n (a ≠0,b ≠0,m ,n 都是整数).(二)自学反馈计算:(1)a 3·a -5=a -2=1a 2;(2)a -3·a -5=a -8=1a8; (3)a 0·a -5=a -5=1a5;(4)a m ·a n =a m +n (m ,n 为任意整数).a m ·a n =a m +n 这条性质对于m ,n 是任意整数的情形仍然适用.同样正整数指数幂的运算可以推广到整数指数幂的运算.活动1 小组讨论例1 计算:(1)(a -1b 2)3;(2)a -2b 2·(a 2b -2)-3.解:(1)原式=a -3b 6=b 6a 3. (2)原式=a -2b 2·a -6b 6=a -8b 8=b 8a 8. 例2 下列等式是否正确?为什么?(1)a m ÷a n =a m ·a -n ;(2)(a b)n =a n b -n . 解:(1)正确.理由:a m ÷a n =am -n =a m +(-n)=a m ·a -n . (2)正确.理由:(a b )n =a n b n =a n ·1bn =a n b -n . 活动2 跟踪训练1.下列式子中,正确的有(D)①a 2÷a 5=a -3=1a 3;②a 2·a -3=a -1=1a ;③(a ·b)-3=1(ab )3=1a 3b 3;④(a 3)-2=a -6=1a6. A.1个 B.2个 C.3个 D.4个2.计算:[x(x 2-4)]-2·(x 2-2x)2=1(x +2)2. 活动3 课堂小结牢记整数指数幂的运算法则.1.4 分式的加法和减法第1课时 同分母分式的加减法1.掌握同分母分式的加、减法则,并能运用法则进行同分母分式的加减运算.(重点)2.会将分母互为相反数的分式化为同分母分式进行运算.(重难点)自学指导:阅读教材P23~24,完成下列问题.(一)知识探究1.同分母的分式相加减,分母不变,把分子相加减.即,f g ±h g =f ±h g. 2.-f g =f -g =-f g ,-f -g =f g. (二)自学反馈1.计算:y x +2x =y +2x ;5y -a y =5-a y. 2.计算:(1)32-3x -1+3x 2-3x ;(2)a 2a -b -b 2-2ab b -a. 解:(1)32-3x -1+3x 2-3x =3-1-3x 2-3x =2-3x 2-3x=1. (2)a 2a -b -b 2-2ab b -a =a 2a -b +b 2-2ab a -b =(a -b )2a -b=a -b.活动1 小组讨论例1 计算:(1)x -1x +1x ;(2)5x +3y x 2-y 2-2x x 2-y 2. 解:(1)原式=x -1+1x =x x=1. (2)原式=5x +3y -2x x 2-y 2=3x +3y (x +y )(x -y )=3(x +y )(x +y )(x -y )=3x -y. 例2 计算:(1)m m -1-11-m ;(2)5x x 2-x -51-x. 解:(1)原式=m m -1+1m -1=m +1m -1. (2)原式=5x x (x -1)-51-x =5x -1+5x -1=5+5x -1=10x -1. 活动2 跟踪训练1.化简x 2x -1+x 1-x的结果是(D) A.x +1 B.x -1C.-xD.x2.化简a 2a -b -b 2a -b的结果是(A) A.a +b B.a -bC.a 2-b 2D.13.计算:(1)x +1x -1x ;(2)a b +1+2a b +1-3a b +1. 解:(1)原式=x +1-1x =1.(2)原式=a +2a -3a b +1=0.1.在分式有关的运算中,一般总是先把分子、分母分解因式;2.注意:计算过程中,分子、分母一般保持分解因式的形式.活动3 课堂小结1.分式相加减时,如果分子是一个多项式,要将分子看成一个整体,先用括号括起来,再运算,可减少出现符号错误.2.分式加减运算的结果要约分,化为最简分式(或整式).第2课时 通分1.了解什么是最简公分母,会求最简公分母.(重点)2.了解通分的概念,并能将异分母分式通分.(重难点)自学指导:阅读教材P25~26,完成下列问题.(一)知识探究1.异分母分式进行加减运算时,也要先化成同分母分式,然后再加减.2.根据分式的基本性质,把几个异分母的分式化成同分母的分式的过程,叫作分式的通分.3.通分时,关键是确定公分母,一般取各分母的所有因式的最高次幂的积作为公分母,这样的公分母称为最简公分母.(二)自学反馈1.12x ,13y的最简公分母是6xy. 2.对分式y 2x ,x 3y 2,14xy通分时,最简公分母是12xy 2. 3.通分:(1)3c 2ab 2与-a 8bc 2;(2)x 4a (x +2)与x 6b (x +2). 解:(1)3c 2ab 2=3c ·4c 22ab 2·4c 2=12c 38ab 2c 2;-a 8bc 2=-a ·ab 8bc 2·ab =-a 2b 8ab 2c 2. (2)x 4a (x +2)=3bx 12ab (x +2),y 6b (x +2)=2ay 12ab (x +2).活动1 小组讨论例1 通分:(1)32a 2b 与a -b ab 2c ;(2)2x x -5与3x x +5. 解:(1)最简公分母是2a 2b 2c.32a 2b =3·bc 2a 2b ·bc =3bc 2a 2b 2c, a -b ab 2c =(a -b )·2a ab 2c ·2a =2a (a -b )2a 2b 2c. (2)最简公分母是(x +5)(x -5).2x x -5=2x (x +5)(x -5)(x +5)=2x 2+10x x 2-25, 3x x +5=3x (x -5)(x +5)(x -5)=3x 2-15x x 2-25. 例2 通分:(1)2c bd 与3ac 4b 2;(2)1x 2-4与x 4-2x. 解:(1)最简公分母是4b 2d.2c bd =8bc 4b 2d ,3ac 4b 2=3acd 4b 2d. (2)最简公分母是2(x +2)(x -2).1x 2-4=1×2(x +2)(x -2)×2=22x 2-8, x 4-2x =x -2(x -2)=-x ·(x +2)2(x +2)(x -2)=-x 2+2x 2x 2-8. 活动2 跟踪训练1.分式1x 2-4,x 2(x -2)的最简公分母为(B)A.(x +2)(x -2)B.2(x +2)(x -2)C.2(x +2)(x -2)2D.-(x +2)(x -2)22.分式1x 2-1,x -1x 2-x ,1x 2+2x +1的最简公分母是x(x +1)2(x -1). 3.通分:(1)x 3y 与3x 2y 2;(2)x -y 2x +2y 与xy (x +y )2;(3)2mn 4m 2-9与2m -32m +3. 解:(1)x 3y =2xy 6y 2,3x 2y 2=9x 6y 2. (2)x -y 2x +2y =x 2-y 22(x +y )2,xy (x +y )2=2xy 2(x +y )2. (3)2mn 4m 2-9=2mn 4m 2-9,2m -32m +3=(2m -3)24m 2-9. 活动3 课堂小结1.确定最简公分母.2.将异分母分式通分.第3课时 异分母分式的加减法1.熟练掌握求最简公分母的方法.2.能根据异分母分式的加减法则进行计算.(重难点)自学指导:阅读教材P27~29,完成下列问题.(一)知识探究 异分母的分式相加减时,要先通分,即把各个分式的分子、分母同乘一个适当的整式,化成同分母分式,然后再加减.(二)自学反馈1.化简分式1x +1x (x -1)的结果是(C) A.x B.1x 2 C.1x -1 D.x x -12.下列计算正确的是(D)A.1x +12x =13xB.1x -1y =1x -yC.x x +1+1=1x +1D.1a -1-1a +1=2a 2-1活动1 小组讨论例1 计算:(1)3x +2y ;(2)1a +1-1a -1. 解:(1)原式=3y xy +2x xy =3y +2x xy. (2)原式=a -1(a +1)(a -1)-(a +1)(a +1)(a -1)=-2(a +1)(a -1). 例2 计算:(1)(1-b a +b )÷a a 2-b 2;(2)12p +3q +12p -3q. 解:(1)原式=a +b -b a +b ·a 2-b 2a =a a +b ·(a +b )(a -b )a=a -b. (2)原式=2p -3q (2p +3q )(2p -3q )+2p +3q (2p +3q )(2p -3q )=2p -3q +2p +3q (2p +3q )(2p -3q )=4p 4p 2-9q 2. 活动2 跟踪训练1.计算(a 2a -3+93-a )÷a +3a的结果为(A) A.a B.-aC.(a +3)2D.12.化简(1+4a -2)÷a a -2的结果是(A) A.a +2a B.a a +2C.a -2aD.a a -23.化简x 2-1x 2-2x +1·x -1x 2+x +2x 的结果是3x. 4.化简(1-1m +1)(m +1)的结果是m.1.在分式有关的运算中,一般总是先把分子、分母分解因式;2.注意:化简过程中,分子、分母一般保持分解因式的形式.活动3 课堂小结1.分式加减运算的方法思路:异分母相加减――→通分转化为同分母相加减――→分母不变分子(整式)相加减2.分式相加减时,如果分子是一个多项式,要将分子看成一个整体,先用括号括起来,再运算,可减少出现符号错误.3.分式加减运算的结果要约分,化为最简分式(或整式).1.5 可化为一元一次方程的分式方程第1课时可化为一元一次方程的分式方程1.理解分式方程的意义.2.了解分式方程的基本思路和解法.(重点)3.理解分式方程可能无解的原因,并掌握验根的方法.(重点)自学指导:阅读教材P32~34,完成下列问题.(一)知识探究1.分母中含有未知数的方程叫作分式方程.2.在检验分式方程的根时,将所求的未知数的值代入最简公分母中,如果它使最简公分母的值不等于0,那么它是原分式方程的一个根;如果它使最简公分母的值为0,那么它不是原分式方程的根,称它是原方程的增根.3.解分式方程有可能产生增根,因此解分式方程必须检验.(二)自学反馈1.下列方程中,哪些是分式方程?哪些是整式方程?①x-22=x3;②4x+3y=7;③1x-2=3x;④x(x-1)x=-1;⑤3-xπ=x2;⑥2x+x-15=10;⑦x-1x=2;⑧2x +1x+3x =1. 解:①⑤⑥是整式方程,②③④⑦⑧是分式方程.判断整式方程和分式方程的方法就是看分母中是否含有未知数.2.解分式方程的一般步骤是:(1)去分母;(2)解整式方程;(3)验根;(4)小结.活动1 小组讨论例1 解方程:2x -3=3x. 解:方程两边同乘x(x -3),得2x =3(x -3).解得x =9.检验:当x =9时,x(x -3)≠0.所以,原分式方程的解为x =9.例2 解方程:x x -1-1=3(x -1)(x +2). 解:方程两边同乘(x -1)(x +2),得x(x +2)-(x -1)(x +2)=3.解得x =1.检验:当x =1时,(x -1)(x +2)=0.所以x =1不是原方程的解.所以,原方程无解.活动2 跟踪训练解方程:(1)12x =2x +3;(2)x x +1=2x 3x +3+1;(3)2x -1=4x 2-1;(4)5x 2+x -1x 2-x=0. 解:(1)方程两边同乘2x(x +3),得x +3=4x.化简得3x =3.解得x =1. 检验:当x =1时,2x(x +3)≠0.所以x =1是方程的解.(2)方程两边同乘3(x +1),得3x =2x +3x +3.解得x =-32. 检验:当x =-32时,3x +3≠0. 所以x =-32是方程的解. (3)方程两边同乘x 2-1,得2(x +1)=4.解得x =1.检验:当x =1时,x 2-1=0,所以x =1不是方程的解.所以原方程无解.(4)方程两边同乘x(x +1)(x -1),得5(x -1)-(x +1)=0.解得x =32. 检验:当x =32时,x(x +1)(x -1)≠0. 所以x =32是原方程的解.方程中分母是多项式,要先分解因式再找公分母.活动3 课堂小结解分式方程的思路是:第2课时 分式方程的应用能将实际问题中的相等关系用分式方程表示,并进行方法总结.(重难点)自学指导:阅读教材P35~36,完成下列问题.(一)知识探究列分式方程解应用题的一般步骤是:(1)审题设未知数;(2)找等量关系列方程;(3)去分母,化分式方程为整式方程;(4)解整式方程.(5)验根是否符合实际意义;(6)答题.(二)自学反馈重庆市政府打算把一块荒地建成公园,动用了一台甲型挖土机,4天挖完了这块地的一半.后又加一台乙型挖土机,两台挖土机一起挖,结果1天就挖完了这块地的另一半.乙型挖土机单独挖这块地需要几天?甲型挖土机4天完成了一半,那么甲型挖土机每天挖12÷4=18,如果设乙型挖土机单独挖这块地需要x 天,那么一天挖1x ;两台挖土机一天共挖18+1x ;两台一天完成另一半.所以列方程为18+1x =12;解得x =83,即乙单独挖需83天.认真分析题意.根据等量关系列方程.活动1 小组讨论例 甲、乙两人分别从相距36千米的A ,B 两地相向而行,甲从A 出发到1千米时发现有东西遗忘在A 地,立即返回,取过东西后又立即从A 向B 行进,这样两人恰好在AB 中点处相遇.已知甲比乙每小时多走0.5千米,求二人的速度各是多少?分析:路程 速度 时间 甲 18+1×2 x +0.5 18+1×2x +0.5乙18x18x等量关系:t 甲=t 乙.解:设乙的速度为x 千米/小时,则甲的速度为(x +0.5)千米/小时. 根据题意,列方程得 18+1×2x +0.5=18x .解得x =4.5.检验:当x =4.5时,x(x +0.5)≠0. 所以x =4.5是原方程的解.则x +0.5=5.答:甲的速度为5千米/小时,乙的速度为4.5千米/小时.等量关系是时间相等,那么就要找到相等时间里每个人所走的路程,甲的路程比乙的路程多两个1千米. 活动2 跟踪训练1.A 、B 两地相距135千米,有大、小两辆汽车从A 地开往B 地,大汽车比小汽车早出发5小时,小汽车比大汽车晚到30分钟.已知大、小汽车速度的比为2∶5,求两辆汽车的速度. 解:设大汽车的速度为2x 千米/小时,则小汽车的速度为5x 千米/小时. 根据题意,列方程得135-2x ×52x =135-12×5x5x .解得x =9.检验:当x =9时,10x ≠0. 所以,x =9是原方程的解. 则2x =18,5x =45.答:大汽车的速度是18千米/小时,小汽车的速度是45千米/小时.等量关系是大汽车5小时后剩下路程所走的时间,等于小汽车去掉30分钟路程所用的时间.2.一项工程,需要在规定日期内完成,如果甲队独做,恰好如期完成,如果乙队独做,就要超过规定3天,现在由甲、乙两队合作2天,剩下的由乙队独做,也刚好在规定日期内完成,问规定日期是几天?解:设规定日期是x 天,则甲队独做需x 天,乙队独做需(x +3)天,根据题意,列方程得 2x +xx +3=1.解得x =6. 检验:当x =6时,x(x +3)≠0.所以,x =6是原方程的解. 答:规定日期是6天. 活动3 课堂小结1.列分式方程解应用题,应该注意解题的六个步骤.2.列方程的关键是要在准确设元(可直接设,也可设间接)的前提下找出等量关系.3.解题过程注意画图或列表帮助分析题意找等量关系.4.注意不要遗漏检验和写答案.第2章 三角形2.1 三角形第1课时 三角形的有关概念及三边关系1.通过具体实例,进一步认识三角形的概念及其基本要素.2.学会三角形的表示及根据“是否有边相等”对三角形进行的分类.3.掌握三角形三条边之间的关系.(重点)自学指导:阅读教材P42~44,完成下列各题. (一)知识探究1.定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫作三角形.2.等边三角形:三条边都相等的三角形.3.等腰三角形:有两边相等的三角形,其中相等的两条边叫作腰,另一边叫作底边,两腰的夹角叫作顶角,腰和底边的夹角叫作底角.4.不等边三角形:三条边都不相等的三角形.5.三角形按边的相等关系分类:三角形⎩⎪⎨⎪⎧不等边三角形等腰三角形⎩⎪⎨⎪⎧底边和腰不相等的等腰三角形等边三角形 6.三角形三边的关系:三角形任意两边之和大于第三边.三角形两边之和大于第三边指的是三角形任意两边之和大于第三边,即a +b>c ,b +c>a ,c +a>b 三个不等式同时成立. (二)自学反馈1.找一找,图中有多少个三角形,并把它们写下来.解:图中有5个三角形.分别是△ABE 、△DEC 、△BEC 、△ABC 、△DBC. 2.下列长度的三条线段能否组成三角形? (1)3,4,8;(不能) (2)2,5,6;(能)(3)5,6,10;(能)(4)5,6,11.(不能)用较短的两条线段之和与最长的线段比较,若和大,能组成三角形;反之,则不能.活动1 小组讨论例如图,D是△ABC的边AC上一点,AD=BD,试判断AC与BC的大小.解:在△BDC中,有BD+DC>BC(三角形的任意两边之和大于第三边).又因为AD=BD,则BD+DC=AD+DC=AC,所以AC>BC.活动2 跟踪训练1.现有两根木棒,它们的长度分别为20 cm和30 cm,若不改变木棒的长度,要钉成一个三角形木架,应在下列四根木棒中选取(B)A.10 cm的木棒B.20 cm的木棒C.50 cm的木棒D.60 cm的木棒2.看图填空,如图:(1)如图中共有4个三角形,它们是△ABC、△EBG、△AEF、△CGF;(2)△BGE的三个顶点分别是B、G、E,三条边分别是BE、EG、BE,三个角分别是∠B、∠BEG、∠BGE;(3)△AEF中,顶点A所对的边是EF;边AF所对的顶点是E;(4)∠ACB是△ACB的内角,∠ACB的对边是AB.3.用一根长为18厘米的细铁丝围成一个等腰三角形.(1)如果腰长是底边的2倍,那么各边的长是多少?(2)能围成有一边的长为4厘米的等腰三角形吗?解:(1)设底边长为x厘米,则腰长为2x厘米.则x+2x+2x=18.解得x=3.6.所以三边长分别为3.6厘米、7.2厘米、7.2厘米.(2)①当4厘米长为底边,设腰长为x厘米,则4+2x=18.解得x=7.所以等腰三角形的三边长为7厘米、7厘米、4厘米;②当4厘米长为腰长,设底边长为x厘米,可得4×2+x=18.解得x=10.因为4+4<10,所以此时不能构成三角形.即可围成等腰三角形,且三边长分别为7厘米、7厘米和4厘米.活动3 课堂小结1.由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫作三角形.三角形的对、角、顶点及表示方法.2.三角形的分类:按边和角分类.3.三角形的三边关系:三角形的任何两边之和大于第三边,任何两边的差小于第三边.第2课时三角形的高、角平分线和中线1.能找到一个三角形的高,知道三角形的角平分线和中线的含义,了解三角形的重心.(重点)2.能应用三角形的高、角平分线和中线解决相关的问题.(难点)自学指导:阅读教材P44~45,完成下列问题.(一)知识探究1.从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫作三角形的高线,简称三角形的高.2.在三角形中,一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫作三角形的角平分线.3.在三角形中,连接一个顶点与它对边中点的线段,叫作这个三角形的中线;三角形的三条中线相交于一点,我们把这三条中线的交点叫作三角形的重心.(二)自学反馈1.如图,过△ABC的顶点A作BC边上的高,以下作法正确的是(A)2.如图所示,D、E分别是△ABC的边AC、BC的中点,那么下列说法中不正确的是(D)A.在△CDE中,∠C的对边是DEB.BD是△ABC的中线C.AD=DC,BE=ECD.DE是△ABC的中线3.如图所示,在△ABC中,D,E,F是BC边上的三点,且∠1=∠2=∠3=∠4,AE是哪个三角形的角平分线(D)A.△ABEB.△ADFC.△ABCD.△ABC,△ADF活动1 小组讨论例如图,AD是△ABC的中线,AE是△ABC的高.(1)图中共有几个三角形?请分别列举出来.(2)其中哪些三角形的面积相等?解:(1)图中有6个三角形,它们分别是△ABD ,△ADE ,△AEC ,△ABE ,△ADC ,△ABC. (2)因为AD 是△ABC 的中线, 所以BD =DC.因为AE 是△ABC 的高,也是△ABD 和△ADC 的高, 又S △ABD =12BD ·AE ,S △ADC =12DC ·AE ,所以S △ABD =S △ADC .活动2 跟踪训练1.一定能将三角形面积平分成相等两部分的是三角形的(B) A.高线 B.中线 C.角平分线 D.不确定2.如图所示,在△ABC 中,∠ACB =90°,把△ABC 沿直线AC 翻折180°,使点B 落在点B ′的位置,则线段AC(D)A.是边BB ′上的中线B.是边BB ′上的高C.是∠BAB ′的角平分线D.以上都对3.如图所示,在△ABC 中,D 、E 分别是BC 、AD 的中点,S △ABC =4 cm 2,则S △ABE 的面积是1cm 2.活动3 课堂小结三角形中几条重要线段:高、角平分线、中线.第3课时三角形内角和定理1.知道三角形的内角和是180°,能应用此性质解决相关问题.2.知道三角形的分类,并会用数学符号表示直角三角形.3.会找一个三角形的外角,能应用三角形外角的性质解决相关问题.(重点)自学指导:阅读教材P46~48,完成下列问题.(一)知识探究1.三角形的内角和等于180°.2.三角形中,三个角都是锐角的三角形叫锐角三角形,有一个角是直角的三角形叫直角三角形,有一个角是钝角的三角形叫作钝角三角形.3.三角形的一个外角等于与它不相邻的两个内角的和.(二)自学反馈1.△ABC中,若∠A+∠B=∠C,则△ABC是(B)A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形2.在△ABC中,∠A=80°,∠B=∠C,则∠C=50°.3.求下列各图中∠1的度数.解:75°,125°.活动1 小组讨论例在△ABC中,∠A的度数是∠B的度数的3倍,∠C比∠B大15°,求∠A,∠B,∠C的度数. 解:设∠B为x°,则∠A为(3x)°,∠C为(x+15)°,从而有3x+x+(x+15)=180.解得x=33.所以3x=99,x+15=48.答:∠A,∠B,∠C的度数分别为99°,33°,48°.活动2 跟踪训练1.在△ABC中,∠A∶∠B∶∠C=3∶4∶5,则∠C的度数为(C)A.45°B.60°C.75°D.90°2.如图,AC∥ED,∠C=26°,∠CBE=37°,则∠BED的度数是(A)A.63°B.83°C.73°D.53°3.如图,AD是△ABC的外角∠CAE的平分线,∠B=30°,∠DAE=50°,则∠D的度数为20°,∠ACD的度数为110°.活动3 课堂小结2.2 命题与证明第1课时定义与命题1.知道“定义”和“命题”,能判断给出的语句哪些是命题.2.能把简单的命题写成“如果……,那么……”的形式,能找到命题的条件和结论.(重点)3.知道什么是“原命题”、“逆命题”和“互逆命题”,能写出已知命题的逆命题.(重难点)自学指导:阅读教材P50~52,完成下列问题.(一)知识探究1.对一个概念的含义加以描述说明或作出明确规定的语句叫作这个概念的定义.2.对某一件事情作出判断的语句(陈述句)叫作命题.3.命题通常写成“如果……,那么……”的形式,其中“如果”引出的部分就是条件,“那么”引出的部分就是结论.4.对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,我们把这样的两个命题称为互逆命题,其中一个叫作原命题,另一个叫作逆命题.只要将一个命题的条件和结论互换,就可得到它的逆命题,所以每一个命题都有逆命题.(二)自学反馈1.下列语句中,属于定义的是(D)A.两点确定一条直线B.平行线的同位角相等C.两点之间线段最短D.直线外一点到直线的垂线段的长度,叫作点到直线的距离2.下列语句中哪些是命题,哪些不是命题?(1)负数都小于零;(2)当a>0时,|a|=a;(3)平角与周角一定不相等.解:(1)(2)(3)都是命题.3.把下列命题改写成“如果……,那么……”的形式.(1)对顶角相等;解:如果这两个角是对顶角,那么这两个角相等.(2)同位角相等.解:如果两个角是同位角,那么这两个角相等.活动1 小组讨论例1判断下列语句哪些是命题?哪些不是?(1)画一个角等于已知角;(2)两直线平行,同位角相等;(3)同位角相等,两条直线平行吗?(4)鸟是动物;(5)若x-5=0,求x的值.解:(2)(4)是命题;(1)(3)(5)不是命题.例2指出下列命题的条件和结论,并改写成“如果……,那么……”的形式,并写出它的逆命题.(1)两直线平行,同位角相等;解:条件是“两直线平行”,结论是“同位角相等”.可以改写成“如果两直线平行,那么同位角相等”.逆命题是:同位角相等,两直线平行.(2)垂直于同一直线的两条直线平行;解:条件是“垂直于同一直线的两条直线”,结论是“这两条直线平行”.可以改写成“如果有两条直线垂直于同一条直线,那么这两条直线平行”.逆命题是:两条直线平行,这两条直线会垂直于同一直线.(3)对顶角相等.解:条件是“两个角是对顶角”,结论是“两个角相等”.可以改写成“如果两个角是对顶角,那么这两个角相等”.逆命题是:相等的角是对顶角.活动2 跟踪训练1.下列语句中,是命题的是(B)A.连接A、B两点B.锐角小于钝角C.作平行线D.取线段AB的中点M2.把下列命题改写成“如果……,那么……”的形式,并写出它的逆命题.(1)能被2整除的数必能被4整除;解:如果一个数能被2整除,那么这个数一定能被4整除.(2)异号两数相加得零.解:如果两个数异号,那么这两个数相加的和为零.3.写出下列命题的逆命题.(1)直角三角形的两个锐角互余;解:两个锐角互余的三角形是直角三角形.(2)若a=0,则ab=0.解:若ab=0,则a=0.。
2020新版湘教版八年级上册数学全册教案
2020湖南武冈邓老师湘教版八年级上册数学全册教案第1章分式约22课时1.1分式1.2分式的乘法和除法1.3整数指数幂1.4分式的加法和减法1.5可化为一元一次方程的分式方程小结与复习第2章三角形约27课时2.1三角形2.2命题与证明2.3等腰三角形2.4线段的垂直平分线2.5全等三角形2.6用尺规作三角形小结与复习第3章实数约9课时3.1平方根3.2立方根3.3实数小结与复习第4章一元一次不等式(组)约13课时4.1不等式4.2不等式的基本性质4.3一元一次不等式的解法4.4一元一次不等式的应用4.5一元一次不等式组小结与复习第5章二次根式约14课时 5.1二次根式5.2二次根式的乘法和除法5.3二次根式的加法和减法小结与复习八年级上学期数学教学计划一、指导思想:以《初中数学新课程标准》为依据,全面推进素质教育。
数学是人们生活、劳动和学习必不可少的工具,能够帮助人们处理数据、进行计算、推理和证明,数学模型可以有效地描述自然现象和社会现象;数学为其他科学提供了语言、思想和方法,是一切重大技术发展的基础;数学在提高人的推理能力、抽象能力、想像力和创造力等方面有着独特的作用;数学是人类的一种文化,它的内容、思想、方法和语言是现代文明的重要组成部分。
学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。
内容的呈现应采用不同的表达方式,以满足多样化的学习需求。
有效的数学学习活动不能单纯地依赖模仿与记忆动手实践、自主探索与合作交流是学生学习数学的重要方式。
由于学生所处的文化环境、家庭背景和自身思维方式的不同,学生的数学学习活动应当是一个生动活泼的、主动的和富有个性的过程。
二、学生的基本情况:上学期学生学习了一元一次方程及其应用,二元一次方程组及其应用,整式的乘法,相交线与平行线以及统计的一些简单知识,学生数学上的计算能力、阅读理解能力、实践探究能力得到了发展与培养,对图形及图形间数量关系有初步认识,逻辑思维与逻辑推理能力得到了发展与培养,学生从形象思维到抽象思维的过渡阶段,抽象思维得到了较好的发展。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学教案——八年级上册姓名:班次:年月第一章 实 数本章重点:体会到无理数是显示世界的客观存在,理解平方根、算术平方根的概念,能利用科学计算器求平方根和立方根,会用有理数估计无理数的范围,知道实数和数轴上的点一一对应、有序实数对与平面上的点一一对应的结论。
理念:数学不能丢掉数学的实际应用,应教给学生充满联系的数学,应当在数学与现实的接触点之间找联系。
应鼓励与提倡学生思维的多样性,尊重学生在解决问题过程中所表现出来的不同水平,注意因材施教。
平方根(一)目的要求:初步了解学习数的开方的意义,了解一个数的平方根的意义,会用根号表示一个数的平方根。
教学重点:平方根与算术平方根的概念。
教学难点:弄清平方根与算术平方根的意义。
教学方法:启发式教学过程:情境引入:我们已经学过那些数的运算?加法与减法这两种运算之间有什么关系? 乘法与除法之间呢?那么乘方是不是有逆运算呢? 我们来看下面的问题。
如:一个面积为 10.8 平方米的正方形展厅,用去正方形的地砖120块,它的边长应是多少?一个数的平方等于1000,这个数是多少?这些问题的共同特点是:已知乘方的结果的值, 求底数的值。
为了解决这些问题,就要进行乘方运算的逆运算,也就是要进行开方运算。
在这一章里, 我们来学习数的开方和实数的初步知识。
新课讲解:一个数的平方是9,那么这个数是什么数?因为3 2= 9, ( -3 ) 2= 9 ,所以这个数是 3 或-3。
又如 ,一个数的平方是254,因为254522=⎪⎭⎫ ⎝⎛、254522=⎪⎭⎫ ⎝⎛-,所以这个数是52或 -52。
一般的,如果一个数r 的平方等于 a ,这个数r 就叫做 a 一个的平方根 。
就是说,如果a x =2,x 就叫做 a 的平方根。
上面,3与-3 都是 9 的平方根,52与-52都是254的平方根。
启发学生观察,正数的两个平方根之间,有什么关系?其它数呢?进一步,总结一般结论:一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0本身;负数没有平方根。
求一个非负数 a 的平方根的运算,叫做开平方。
我们看到,3与-3 的平方都是 9 , 9 的平方根是 3与-3。
就是说,平方与开平方互为逆运算。
根据这种运算关系,我们可以通过平方运算来求一个数的平方根,以及检验一个数是不是另一个数的平方根。
一个正数 a 的正的平方根, 用符号“a ” 表示,称为a 的算术平方根,读作“根号 a ”,其中a 叫做被开方数。
正数a 的负的平方根,用符号“- a ”表示。
这两个平方根合起来可以记作“±a ”。
这里,a 也可记作2a ,只是通常将这个 2 省略不写,如,±2a 记作±a ,读作“正、负根号 a ”。
注:3是9的平方根,9的平方根是3。
这句话对吗?例1 求下列各数的算术平方根:(1)900 ; (2)1 ; (3);6449 (4)14 . 解:(1)因为900302=,所以900的算术平方根是30,即;30900=(2)因为112=,所以1的算术平方根是1,即;11= (3)因为,6449872=⎪⎭⎫ ⎝⎛所以6449的算术平方根是87,即;876449= (4)14的算术平方根是.14例2 求下列各数的平方根:(1)64 ; (2);12149 (3)0.0004 ; (4)();252- (5)11。
解:(1)因为(),6482=±所以64的平方根是8±,即;864±=±(2)因为,121491172=⎪⎭⎫ ⎝⎛±所以12149的平方根是117±,即11712149±=±; (3)因为(),0004.002.02=±所以0004.0的平方根是02.0±,即02.00004.0±=±; (4)因为()()()();2525,2525,25252222±=-±±--=±即的平方根是所以(5)11是平方根是11±。
注意以下几点:1、引导学生根据平方根的意义来求解。
并使学生加深对数的平方根意义的认识。
2、注意抓住学生可能遗漏负平方根的错误,强化正数的平方根有两个这一特点。
3、注意±a 表示互为相反数的两个数。
注意平方根与算术平方根的区别与联系。
课堂练习:课本4页练习 1,2,3写出下列各数的平方根:36 ,0.25 ,2.89 ,100001 , 0 , -16 课堂小结:这一节课的主要内容是:乘方的逆运算是开方; 平方根的定义; 正数、0、负数的平方根的个数;平方根的符号表示与读法。
课外作业:习题1.1 A 组第1,2 题。
教学后记:平方根(二)目的要求:通过例题讲解与练习, 进一步认识一个数的平方根的意义,熟悉平方根的符号表示。
教学重点:会计算一个数的平方根,认识平方与开平方的互逆性。
(B 组2,3题) 教学难点:进一步理解平方根与算术平方根的概念教学方法:启发式教学过程:复习提问:1、什么叫做一个数的平方根?2、100 的平方根是什么?0.01 的呢?3、0 的平方根是什么?负数有平方根吗?4、怎样用符号表示 10 的平方根?新课讲解:例1 下列各数有平方根吗?如果有,求出它的平方根;如果没有,说明理由。
( 1 ) -64 ; ( 2 ) 0 ; ( 3 ) (-4 )2;解:( 1 ) 因为-64 是负数,所以-64 没有平方根;( 2 ) 0 有一个平方根,它是 0 ;( 3 ) 因为 (-4 ) 2 =16 >0 ,所以 (-4 ) 2有两个平方根,即:±2)4(-=±16=±4 ;想一想()()?12149?64122等于多少等于多少⎪⎪⎭⎫ ⎝⎛ ()()?2.722等于多少 ()()?,32等于多少对于正数a a课堂练习:教科书第8页练习B 组:1、2、 3难度较大,注意学生之间的探究学习与小组合作学习。
课堂小结 :这一堂课主要讲算术平方根与平方根的区别与联系,如何根据带根号的式子的形式来判断它所表示的是算术平方根、负平方根还是平方根。
课外作业:1、填空:(1)25的平方根是 ;(2)()_____________52=-; (3)()_____________52=;2、(1)一个正数的平方等于361,求这个正数;(2)一个负数的平方等于121,求这个负数;(3)一个数的平方等于196,求这个数。
3、求满足下列条件的未知数x :(1)x 2=49 (2)x 2=8125 4、求下列各式的值:(1)24 (2)2)4(- (3)2)8.0( 试一试对于任意数a ,2a 一定等于a 吗?教学后记:平方根(三)教学目标:1、通过操作,拼出面积为8的正方形,抽象出无理数的概念。
2、能用科学计算器求平方根及其近似值。
重点:无理数的定义及用科学计算器求平方根及其近似值难点:如何拼出面积为8的正方形。
教学过程:情境引入:发现无理数的代价说到无理数,还得从公元前6世纪古希腊的毕达哥拉斯学派的一个成员名叫希伯斯的说起.伟大的数学家——毕达哥拉斯认为:世界上只存在整数和分数,除此以外,没有别的什么数了.可是不久就出现了一个问题:当一个正方形的边长是1的时候,对角线的长m等于多少?是整数呢,还是分数?毕达哥拉斯和他的门徒费了九牛二虎之力,也不知道这个m究竟是什么数.世界上除了整数和分数以外还有没有别的数?这个问题引起了学派成员希伯斯的兴趣,他花费了很多的时间去钻研,最终希伯斯断言:m既不是整数也不是分数,是当时人们还没有认识的新数.从希伯斯的发现中,人们知道了除了整数和分数以外,还存在着一种新数.给新发现的数起个什么名字呢?当时人们觉得,整数和分数是容易理解的,就把整数和分数合称“有理数”,而希伯斯发现的这种新数不好理解,就取名为“无理数”.希伯斯的发现,推翻了毕达哥拉斯学派的理论,动摇了这个学派的基础,为此引起了他们的恐慌.为了维护学派的威信,他们严密封锁希伯斯的发现,如果有人胆敢泄露出去,就处以极刑——活埋.然而真理是封锁不住的,尽管毕达哥拉斯学派规矩森严,希伯斯的发现还是被许多人知道了.他们追查泄密的人,追查的结果,发现泄密的不是别人,正是希伯斯本人!这还了得!希伯斯竟背叛老师,背叛自己的学派.毕达哥拉斯学派按着规矩,要活埋希伯斯.希伯斯听到风声逃跑了.希伯斯在国外流浪了好几年,由于思念家乡,他偷偷地返回希腊.在地中海的一条海船上,毕达哥拉斯的忠实门徒发现了希伯斯,他们残忍地将希伯斯扔进地中海.这样,无理数的发现人被谋杀了!我们已经知道,开方开不尽时所得到的数都是无限不循环小数,即无理数.但是,也确有一些无限不循环小数不是由于开方开不尽而产生的,在中学数学里遇到的有两个数:π和e就是如此.π的实际意义是圆的周长与该圆的直径之比,称为圆周率.我国伟大的数学家祖冲之对π值的推算结果为:3.1415926< π< 3.1415927.对于e的实际意义由于超出目前的知识范围,暂不作叙述,只介绍它的值为e=2.71828….综上所说,无理数可分为两类:一类是由于开方开不尽而产生的,称根数;另一类是像π和e这样的数,它们不是由于开方开不尽而产生的,称超越数.同学们读完后有怎样的感触呢?希伯斯勇于追求真理的精神令人敬佩,而人类对数学的研究也在不断的深入和拓展……希望同学们能以此为鉴,努力学习,将来拥有足够的能力去探索和开拓数学领域的新世界.今天,我们就来学习一些与上面故事有关的知识:探究:1、当一个正方形的边长是1的时候,对角线的长m等于多少?能否用面积法与平方根的有关知识求解呢?注:探的目的是让学生通过自己的动手操作,得出答案,进一步感受到无理数的客观存在,在操作的过程中,有些学生也许会出现这样那样的问题,教师不要急于纠正,可以让学生小组合作讨论交流得出正确的结论。
2、2大概是多少?你能估计出来吗?新授:1、无理数的概念:无限不循环小数。
哪些数是无理数呢?2、如何用计算器求2的近似值?学生研读书本P4---P7的内容。
课堂练习:书P7 1,2小结:1、在学习的过程中,你有什么疑难问题,你觉得本节课最大的收获在哪里?2、家里有电脑的同学可以到网上查阅有关无理数的知识。
课外作业:书P8 A 3,4,5 B 1,2,3教学后记:立方根教学目标:1、了解立方根的概念,会用根号表示一个数的立方根。
2、能用立方运算求某数的立方根,能用计算器求某数的立方根及其近似值,了解开立方与立方互为逆运算。
3、从实际问题引入立方根的概念,说明学习的立方根的意义,立方根的计算有着广泛的应用,空间形体都是三维的,有关空间形体的计算经常涉及开方。