2016-2017学年高中数学人教A版必修4课件:1.3.1 三角函数的诱导公式(一)

合集下载

高中数学 人教A版必修4 第1章 1.3三角函数的诱导公式(一)

高中数学 人教A版必修4    第1章 1.3三角函数的诱导公式(一)

的运用.利用诱导公式把求任意角的三角函数值转化为求锐角 的三角函数值,清晰地体现了化归的思想.
填一填·知识要点、记下疑难点
§1.3(一)
1.设 α 为任意角,则 π+α,-α,π-α 的终边与 α 的终边之间
本 课 时 栏 目 开 关
的对称关系.
相关角 π+ α 与 α -α 与 α π- α 与 α 终边之间的对称关系 关于 原点 对称 关于 x轴 对称 关于 y轴 对称
研一研·问题探究、课堂更高效
由三角函数的定义得
§1.3(一)
y sin α= y ,cos α= x ,tan α= x ,
-y y 本 又 sin(π+α)=-y ,cos(π+α)=-x ,tan(π+α)= -x = x ,
课 时 栏 ∴sin(π+α)=-sin α , cos(π+α)=-cos α,tan(π+α)= tan α . 目 开 关 (3)公式作用:第三象限角的三角函数转化为第一象限角的三
§1.3(一)
(1)公式内容:
sinπ+α=-sin α,
本 课 时 栏 目 开 关
cosπ+α=-cos α, tanπ+α=tan α.
(2)公式推导: 如图,设角 α 的终边与单位圆交于点 P1(x, y),则角 π+α 的终边与单位圆的交点为 P2(-x,-y),下面是根据三角函数定义推 导公式的过程,请你补充完整:
§1.3(一)
本 课 时 栏 目 开 关
§1.3(一)
【学习要求】 1.了解三角函数的诱导公式的意义和作用.
本 课 化简和证明问题. 时 3.能运用有关诱导公式解决一些三角函数的求值、 栏 目 【学法指导】 开 关 1.本节将要学习的诱导公式既是
1 3 2π - , 2 2 (4)角 的终边与单位圆的交点坐标为_______________ ,所以

高中数学人教版A版必修4《两角和与差的正弦、余弦、正切公式》优质PPT课件

高中数学人教版A版必修4《两角和与差的正弦、余弦、正切公式》优质PPT课件
明目标、知重点
(3)sin
1π2-
3cos
π 12.

方法一
原式=212sin
1π2-
3 2 cos
π 12
=2sin
π 6sin
1π2-cos
π 6cos
π 12
=-2cosπ6+1π2=-2cos π4=- 2.
方法二
原式=212sin
1π2-
3 2 cos
π 12
=2cos
π 3sin
3.函数f(x)=sin x- 3cos x(x∈R)的值域是 [-2,2] .
解析
∵f(x)=212sin
x-
3 2 cos
x=2sinx-π3.
∴f(x)∈[-2,2].
明目标、知重点
1234
4.已知锐角
α、β
满足
sin
α
=2
5 5
,cos
β=
1100,则
α+β

.
解析 ∵α,β 为锐角,sin α=255,cos β= 1100,
1π2-sin
π 3cos
π 12
=2sin1π2-π3=-2sin
π4=-
2.
明目标、知重点
例 2 已知 α∈0,π2,β∈-π2,0,且 cos(α-β)=35,sin β=
-102,求 α 的值. 解 ∵α∈0,π2,β∈-π2,0,∴α-β∈(0,π). ∵cos(α-β)=35,∴sin(α-β)=45. ∵β∈-π2,0,sin β=-102,∴cos β=7102.
明目标、知重点
跟踪训练 2 已知 sin α=35,cos β=-153,α 为第二象限角,β

高中数学 人教A版必修4 第1章 1.3三角函数的诱导公式(二)

高中数学 人教A版必修4    第1章 1.3三角函数的诱导公式(二)

研一研·问题探究、课堂更高效 (2)诱导公式五的推导:
§1.3(二)
π 问题 1 若 α 为任意角,那么 -α 的终边与角 α 的终边有怎 2 样的对称关系? 本 课 π 时 答 角 α 的终边与 -α 的终边关于直线 y=x 对称. 栏 2 目 π 开 问题 2 设角 α 与单位圆交于点 P(x, y), 则 - 2 关
y.
所以,对任意角 α
sin α .
π 都有:sin2-α=
cos α
π ,cos2-α=
研一研·问题探究、课堂更高效
探究点二 诱导公式六
π ,cos2+α=
§1.3(二)
(1)诱导公式六: π sin2 +α= cos α
本 课 时 栏 目 开 关
填一填·知识要点、记下疑难点
§1.3(二)
2.诱导公式五~六的记忆 π π -α, +α 的三角函数值,等于 α 的异名三角函数值, 2 2 本
课 时 栏 目 开 关
前面加上一个把 α 看成锐角时原函数值的符号, 记忆口诀 为“函数名改变,符号看象限”.
研一研·问题探究、课堂更高效
§1.3(二)
α 与单位圆交于点 P′,写出点 P′的坐标.
答 P′(y,x).
研一研·问题探究、课堂更高效
§1.3(二)
问题 3 根据任意角三角函数的定义,完成下列填空:
本 课 时 栏 目 开 关
sin α= y ,cos α= x ;
π sin2 -α=
x
π ,cos2-α=
§1.3(二)
本 课 时 栏 目 开 关
§1.3(二)
【学习要求】 1.掌握诱导公式五、六的推导,并能应用于解决简单的求值、化 简与证明问题. 本 课 时 2.对诱导公式一至六,能作综合归纳,体会出六组公式的共性与 栏 目 个性,培养由特殊到一般的数学推理意识和能力. 开 关 现问题、解决问题的能力.

高中数学第一章三角函数1.3三角函数的诱导公式课件新人教A版必修4

高中数学第一章三角函数1.3三角函数的诱导公式课件新人教A版必修4

sin
2
cos
,
cos
2
sin .
sin
2
cos
,
cos
2
sin
.
cos180 cos
原式=
cos
sin
sin cos
1
练习 利用公式求下列三角函数值:
1 cos 420 cos60 cos 60 1 2
2 sin
7 6
sin
5 6
sin
6
1 2
3sin 1300
4
cos
79 6
cos
5 6
cos
6
3 2
练习
化简 1sin 180 cos sin 180
4 tan 324 32 __ta_n__3_5_2_8_;
化简11scio原ns式52=cs2ions•22sin•2sin •c•osco2s
;
= sin • sin • cos
cos
= sin2
化简
2 cos2
tan 360
sin .
原式=cos2 tan sin
1.思考
给定一个角α (1)终边与角α的终边关于原点对称的角 与α有什么关系?它们的三角函数之间有 什么关系?
公式二
y
P(x,y)
sin(π+α)=-sinα cos(π+α)=-cosα
π +α α
O
x
tan(π+α)=tanα
P(-x,-y)
(2)终边与角α的终边关于x轴对称的角与α 有什么关系?它们的三角函数之间有什么 关系?
y
P(-x,y)
π-α P(x,y)

高中数学人教A版必修四第一章 1.3诱导公式(一)【教案】

高中数学人教A版必修四第一章 1.3诱导公式(一)【教案】

必修四第一章 1.3 诱导公式(一)【教学目标】
1.知识与技能:
(1)识记诱导公式.
(2)理解和掌握公式的内涵及结构特征,会初步运用诱导公式求三角函数的值,并进行简单三角函数式的化简和证明.
2.过程与方法:
(1)通过诱导公式的推导,培养学生的观察力、分析归纳能力,领会数学的归纳转化思想方法.
(2)通过诱导公式的推导、分析公式的结构特征,使学生体验和理解从特殊到一般的数学归纳推理思维方式.
(3)通过基础训练题组和能力训练题组的练习,提高学生分析问题和解决问题的实践能力.
3.情感态度价值观:
(1)通过诱导公式的推导,培养学生主动探索、勇于发现的科学精神,培养学生的创新意识和创新精神.
(2)通过归纳思维的训练,培养学生踏实细致、严谨科学的学习习惯,渗透从特殊到一般、把未知转化为已知的辨证唯物主义思想.
【重点难点】
1.教学重点:诱导公式的推导及应用,三角函数式的求值、化简和证明等。

2.教学难点:相关角边的几何对称关系及诱导公式结构特征的认识,三角函数式的求值、化简和证明等。

【教学策略与方法】
1.教学方法:合作探究、启发诱导,学生动手尝试相结合.
2.教具准备:直尺、多媒体
【教学过程】。

2016-2017学年人教A版必修4三角函数的诱导公式-第一课时-课件(31张)

2016-2017学年人教A版必修4三角函数的诱导公式-第一课时-课件(31张)

=tan(180°+45°)=tan 45°=1;
(3)cos 1196π=cos20π-π6 =cos-π6
=cos
π6 =
3 2.
第13页,共31页。
数学 必修4
第一章 三角函数
学案·新知自解
教案·课堂探究
练案·学业达标
[归纳升华]
利用诱导公式解决给角求值问题的步骤
第14页,共31页。
数学 必修4
第一章 三角函数
学案·新知自解
教案·课堂探究
练案·学业达标
1.求下列三角函数值: (1)sin 960°;(2)cos-436π.
第15页,共31页。
数学 必修4
第一章 三角函数
学案·新知自解
教案·课堂探究
解析: (1)sin 960°=sin(960°-720°)
=sin 240°(诱导公式一)
答案: A
第9页,共31页。
数学 必修4
第一章 三角函数
学案·新知自解
教案·课堂探究
练案·学业达标
3.化简:cos(-siαn)(tπan+(α7)π+α)=________.
解析:
原式=cos-αsintanαα=-ssiinn
α α=-1.
答案: -1
第10页,共31页。
数学 必修4
第一章 三角函数
cos(5π+α)=cos(π+α)=-cos α= 1-sin2α=232.
第28页,共31页。
数学 必修4
第一章 三角函数
学案·新知自解
(2)∵α+π3 -α-5π 3 =2π,
∴sinα-5π 3 =sinα+π3 -2π
=sinα+π3 =-12.

高中数学人教A版必修4课件:1.3三角函数的诱导公式(一)

高中数学人教A版必修4课件:1.3三角函数的诱导公式(一)

3
3
42 8
2.已知cos(α -75°)=- 1 ,且α 为第四象限角,求
3
sin(105°+α )的值. 【解题指南】由于105°+α =180°+(α -75°),故欲求 sin(105°+α ),需利用条件求出sin(α -75°).该三角函 数式只需用平方关系即可求得.
【解析】因为cos(α-75°)=- <1 0,且α为
(3)注意“1”的应用:1=sin2α +cos2α =tan .
4
【拓展延伸】三角函数式化简的思路以及含有kπ ±α 形式的处理方法 (1)总体思路是利用诱导公式将相应角向角α 的三角函 数转化. (2)含有kπ ±α 形式的化简时需对k分是偶数还是奇数 来确定选用的公式.
【变式训练】化简 scio n s(( 4 4 ))scio ns(2 5( ))cso in s2 2(( 3 )).
sin(2m )cos[2m 1 ] sin[2m 1 ]cos(2m )
sin()cos( ) sin(cos) 1. sin( )cos sincos
k为奇数时,设k=2m+1(m∈Z),
原式sin[s2im n(2m 2] c)cooss[ (2m 2m 1)]
提醒:设法消除已知式与所求式之间的种种差异是解决 问题的关键.
【补偿训练】1.已知 sin(-)=1,
3
2
求cos2(α - )·sin ( 2 + ) 的值.
3
3
【解析】cos2()sin(2+ )
33
=cos2[-(-)]sin[-(-)]
3
3

高中数学 第一章 三角函数 1.3 三角函数的诱导公式(第2课时)教学课件 新人教A版必修4

高中数学 第一章 三角函数 1.3 三角函数的诱导公式(第2课时)教学课件 新人教A版必修4

【多维探究】 (1)本例条件不变,如何求 cos56π-α的值?
(2)本例条件若变为“已知 sin23π+α=12”,其他不变,则 结果又如何?
(3)本例条件若不变,如何求 cos23π+α的值? (4)本例条件若不变,如何求 tanπ3-α的值?
解:(1)cos56π-α=cosπ2+π3-α=-sinπ3-α=-12. (2)cosπ6+α=cos23π+α-π2=cosπ2-23π+α =sin23π+α=12.
提示:因为
tanπ2+α

csoinsπ2π2++αα=-cossinαα=-cs1oins
α α


1 tan
α,所以
tanπ2+α=-tan1
α,即它们互为负倒数.
1.对诱导公式五、六的理解 (1)公式五、六中的角 α 是任意角. (2)公式五、六可以概括如下:π2±α 的正弦(余弦)函数值, 分别等于 α 的余弦(正弦)函数值,前面加上一个把 α 看成锐角 时原函数值的符号,可以简单地说成“函数名改变,符号看象 限”.
高中数学 第一章 三角函数 三角 的诱导公式(第 课时)教学课件
教 版必修
同学们,下课休息十分钟。现在是休息时间,你们休
睛,
看看远处,要保护好眼睛哦~站起来动一动,久坐对
哦~
1.sin 95°+cos 175°的值为( )
A.sin 5°
B.cos 5°
C.0
D.2sin 5°
解析:sin 95°+cos 175°=sin(90°+5°)+cos(180°
证明:∵左边=-2sin321π--2θsin-2 θsin θ-1
=-2sinπ+1-π2-2sθin2-θ sin θ-1=2sinπ2-1-θ2s-ins2inθ θ-1

高中数学 1.3.1三角函数的诱导公式课件 新人教A版必修4

高中数学 1.3.1三角函数的诱导公式课件 新人教A版必修4

典例剖析 知识点 1 给角求值 【例 1】 求下列各式的值: (1)cos(-2 640°)+cos(1 665°); (2)sin2nπ+23π·cosnπ+43π(n∈Z). 思路点拨:运用诱导公式转化为锐角三角函数,再求值.
第十页,共23页。
解:(1)cos(-2 640°)+cos(1 665°)=cos(-8×360°+240°)+
自主探究
是否存在角 α 和 β,当 α∈-π2,π2,β∈(0,π)时,等式
sin3π-α=
2cosπ2-β,
同时成立?若存在,则求出 α 和 β
3cos-α=- 2cosπ+β
的值;若不存在,请说明理由.
第五页,共23页。
解:存在 α=π4,β=π6使等式同时成立.理由如下:
由sin3π-α= 2cosπ2-β, 3cos-α=- 2cosπ+β,
第十七页,共23页。
3.若 tan(5π+α)=m,则sisninα--α3π-+cocossππ+-αα 的值为(
)
m+1 A.m-1
m-1 B.m+1
C.-1
D.1
【答案】A
第十八页,共23页。
误区解密 对由三角函数复合所得的函数认识模糊而出错 【例题】 若 f(sin x)=cos 17x,求 f12的值.
=-12-sin
π 4tan
π6=-12×-
22×
33=
6 12 .
第十三页,共23页。
知识点 2 化简三角函数式或证明三角恒等式 【例 2】 求证:tan2π-coαssαin--π2siπn-5απ-coαs6π-α=-tan α. 思路点拨: 运用诱导公式把各三角函数都转化为 α 的三角函数值. 证明:左边=-tan-αc·o-s αsi·nsinαα·cos α=-tan α=右边.所以原 等式成立.

2016-2017学年人教A版必修四 三角函数的诱导 公式 课件(36张)

2016-2017学年人教A版必修四   三角函数的诱导 公式       课件(36张)

4. sin(-30° )=________;cos 210° ________. 1 解析:sin(-30° )=-sin 30° =- ,cos 210°= 2 3 cos(180° +30° )=-cos 30° =- . 2 1 3 答案:- - 2 2
5.tan 690°的值为________. 解析:tan 690°=tan(2×360° -30° )=-tan 30° =- 3 . 3 3 答案:- 3
π π π -sin cos tan = 3 6 4

3 3 3 × ×1=- . 4 2 2
类型 2 给值(式)求值问题 1 [典例 2] (1)已知 sin(π+α)=- , 求 cos(5π+α) 3 的值为______________. (2)已知 sin(α-360°)-cos(180°-α)=m, 则 sin(180° +α)· cos(180° -α)等于________.
1 2.若 cos(π+α)=- ,则 cos α的值为( 3 1 A. 3 1 B.- 3 2 2 C. 3
)
2 2 D.- 3
1 解析: 由已知 cos(π+α)=-cos α=- , 得 cos α 3 1 = . 3 答案:A
3.sin 585°的值为(
)
2 2 3 3 A.- B. C.- D. 2 2 2 2 解析:sin 585°=sin(360° +180° +45° )=-sin 45°= 2 - . 2 答案:A
第一章
三角函数
1.3 三角函数的诱导公式 第 1 课时 诱导公式二、三、四
[学习目标] 1.能借助单位圆中的三角函数线推导诱 导公式二、三、四(难点). 2.理解三角函数的诱导公式 二、三、四(重点). 3.能正确地运用诱导公式二、三、 四求任意角的三角函数值, 化简简单的三角函数式及证明 简单的三角恒等式(重点、难点).

1.3 三角函数的诱导公式-人教A版高中数学必修四讲义(解析版)

1.3 三角函数的诱导公式-人教A版高中数学必修四讲义(解析版)

知识点一诱导公式一设角α的终边与单位圆的交点为P,由三角函数定义知P点坐标为(cos α,sin α).思考角π+α的终边与角α的终边有什么关系?角π+α的终边与单位圆的交点P1(cos(π+α),sin(π+α))与点P(cos α,sin α)呢?它们的三角函数之间有什么关系?答案角π+α的终边与角α的终边关于原点对称,P1与P也关于原点对称,它们的三角函数关系如下:诱导公式一sin(π+α)=-sin α,cos(π+α)=-cos α,tan(π+α)=tan α.知识点二诱导公式二思考角-α的终边与角α的终边有什么关系?角-α的终边与单位圆的交点P2(cos(-α),sin(-α))与点P(cos α,sin α)有怎样的关系?它们的三角函数之间有什么关系?教材要点学科素养学考高考考法指津高考考向1.απ+与α的正弦、余弦、正切值的关系数学抽象水平1 水平11.熟练掌握相应角的终边上点的坐标的特点。

2.使用诱导公式的目的在于将任意角的三角函数转化为锐角的三角函数。

【考查内容】诱导公式的应用,三角函数的基本关系式。

【考查题型】选择题、填空题【分值情况】5分2.α-与α的正弦、余弦、正切值的关系数学抽象水平1 水平 13.απ-与α的正弦、余弦、正切值的关系数学抽象水平1 水平14.απ±2与α的正弦、余弦、正切值的关系数学抽象水平1 水平1第三讲三角函数的诱导公式知识通关答案 角-α的终边与角α的终边关于x 轴对称,P 2与P 也关于x 轴对称,它们的三角函数关系如下: 诱导公式二知识点三 诱导公式三思考 角π-α的终边与角α的终边有什么关系?角π-α的终边与单位圆的交点P 3(cos(π-α),sin(π-α))与点P (cos α,sin α)有怎样的关系?它们的三角函数之间有什么关系?答案 角π-α的终边与角α的终边关于y 轴对称,P 3与P 也关于y 轴对称,它们的三角函数关系如下: 诱导公式三梳理 公式一~三都叫做诱导公式,它们分别反映了2k π+α(k ∈Z ),π+α,-α,π-α的三角函数值与α的三角函数之间的关系,这三组公式的共同特点是:2k π+α(k ∈Z ),π+α,-α,π-α的三角函数值等于α的同名函数值,前面加上一个把α看成锐角时原函数值的符号.简记为“函数名不变,符号看象限”.知识点四 诱导公式四完成下表,并由此总结角α,角π2-α的三角函数值间的关系.(1)sin π6=12,cos π3=12,sin π6=cos π3;(2)sin π4=22,cos π4=22,sin π4=cos π4;(3)sin π3=32,cos π6=32,sin π3=cos π6.由此可得 诱导公式四知识点五 诱导公式五思考 能否利用已有公式得出π2+α的正弦、余弦与角α的正弦、余弦之间的关系?答案 以-α代替公式四中的α得到 sin ⎝⎛⎭⎫α+π2=cos(-α), cos ⎝⎛⎭⎫α+π2=sin(-α). 由此可得 诱导公式五知识点六 诱导公式的推广与规律1.sin ⎝⎛⎭⎫32π-α=-cos α,cos ⎝⎛⎭⎫32π-α=-sin α, sin ⎝⎛⎭⎫32π+α=-cos α,cos ⎝⎛⎭⎫32π+α=sin α.2.诱导公式记忆规律:公式一~三归纳:α+2k π(k ∈Z ),-α,π±α的三角函数值,等于角α的同名三角函数值,前面加上一个把α看成锐角时原函数值的符号,简记为:“函数名不变,符号看象限”.公式四~五归纳:π2±α的正弦(余弦)函数值,分别等于α的余弦(正弦)函数值,前面加上一个把α看成锐角时原函数值的符号,简记为:“函数名改变,符号看象限”或“正变余、余变正、符号象限定”. 五组诱导公式可以统一概括为“k ·π2±α(k ∈Z )”的诱导公式.记忆口诀:奇变偶不变,符号看象限.其中“奇、偶”是指k ·π2±α(k ∈Z )中k 的奇偶性,当k 为奇数时,正弦变余弦,余弦变正弦;当k 为偶数时,函数名不变.“符号”看的应该是诱导公式中,把α看成锐角时原函数值的符号,而不是α函数值的符号.题型一 利用诱导公式求值 命题角度1 给角求值问题变式训练1-1 求下列各三角函数式的值: (1)sin 1 320°;(2)cos ⎝⎛⎭⎫-31π6;(3)tan(-945°).解析: (1) sin 1 320°=sin(3×360°+240°) =sin 240°=sin(180°+60°)=-sin 60°=-32. (2) cos ⎝⎛⎭⎫-31π6=cos ⎝⎛⎭⎫-6π+5π6 =cos ⎝⎛⎭⎫π-π6=-cos π6=-32. (3)tan(-945°)=-tan 945°=-tan(225°+2×360°) =-tan 225°=-tan(180°+45°)=-tan 45°=-1.命题角度2 给值求值或给值求角问题 例1-2 (1)已知sin(π+θ)=-3cos(2π-θ),|θ|<π2,则θ等于( )A .-π6B .-π3 C.π6 D.π3答案 D-α)题型三 利用诱导公式求值例3、 已知cos ⎝⎛⎭⎫α+π6=35,π2≤α≤3π2, 求sin ⎝⎛⎭⎫α+2π3的值. 解析: ∵α+2π3=⎝⎛⎭⎫α+π6+π2, ∴sin ⎝⎛⎭⎫α+2π3=sin ⎣⎡⎦⎤⎝⎛⎭⎫α+π6+π2=cos ⎝⎛⎭⎫α+π6=35.变式训练3已知sin ⎝⎛⎭⎫π6+α=33,求cos ⎝⎛⎭⎫π3-α的值. 解析: ∵π6+α+π3-α=π2,∴π3-α=π2-⎝⎛⎭⎫π6+α. ∴cos ⎝⎛⎭⎫π3-α=cos ⎣⎡⎦⎤π2-⎝⎛⎭⎫π6+α =sin ⎝⎛⎭⎫π6+α=33. 题型四 利用诱导公式证明三角恒等式 规律方法 例4、求证:tan (2π-α)sin (-2π-α)cos (6π-α)sin ⎝⎛⎭⎫α+3π2cos ⎝⎛⎭⎫α+3π2=-tan α.证明: ∵左边=tan (-α)·sin (-α)·cos (-α)sin ⎣⎡⎦⎤2π-⎝⎛⎭⎫π2-α·cos ⎣⎡⎦⎤2π-⎝⎛⎭⎫π2-α=(-tan α)·(-sin α)·cos αsin ⎣⎡⎦⎤-⎝⎛⎭⎫π2-αcos ⎣⎡⎦⎤-⎝⎛⎭⎫π2-α=sin 2α-sin ⎝⎛⎭⎫π2-αcos ⎝⎛⎭⎫π2-α =sin 2α-cos αsin α=-sin αcos α=-tan α=右边. ∴原等式成立. 变式训练4求证:sin θ+cos θsin θ-cos θ=2sin ⎝⎛⎭⎫θ-3π2cos ⎝⎛⎭⎫θ+π2-11-2sin 2(π+θ).证明: 右边=-2sin ⎝⎛⎭⎫3π2-θ·(-sin θ)-11-2sin 2θ=2sin ⎣⎡⎦⎤π+⎝⎛⎭⎫π2-θsin θ-11-2sin 2θ=-2sin ⎝⎛⎭⎫π2-θsin θ-11-2sin 2θ=-2cos θsin θ-1cos 2θ+sin 2θ-2sin 2θ=(sin θ+cos θ)2sin 2θ-cos 2θ=sin θ+cos θsin θ-cos θ=左边, 所以原等式成立.题型五 诱导公式的综合应用 规律方法例5 已知f (α)=sin (π-α)cos (-α)sin ⎝⎛⎭⎫π2+αcos (π+α)sin (-α).(1)化简f (α);(2)若角A 是△ABC 的内角,且f (A )=35,求tan A -sin A 的值. 解析: (1)f (α)=sin αcos αcos α-cos α(-sin α)=cos α.(2)因为f (A )=cos A =35,又A 为△ABC 的内角,所以由平方关系,得sin A =1-cos 2A =45,所以tan A =sin A cos A =43,所以tan A -sin A =43-45=815.变式训练5已知f (α)=tan (π-α)cos (2π-α)sin ⎝⎛⎭⎫π2+αcos (-α-π).(1)化简f (α);(2)若f ⎝⎛⎭⎫π2-α=-35,且α是第二象限角,求tan α. 解析:(1)f (α)=tan (π-α)cos (2π-α)sin ⎝⎛⎭⎫π2+αcos (-α-π)=-tan α·cos α·cos α-cos α=sin α.(2)由sin ⎝⎛⎭⎫π2-α=-35,得cos α=-35, 又α是第二象限角,所以sin α=1-cos 2 α=45, 则tan α=sin αcos α=-43.一、选择题1.已知tan α=4,则tan(π-α)等于( ) A .π-4 B .4 C .-4 D .4-π 解析: tan(π-α)=-tan α=-4. 答案 C2.cos(π+x )等于( ) A .cos x B .-cos x C .sin xD .-sin x解析: 由诱导公式得cos(π+x )=-cos x . 答案 B3.已知sin(π+α)=35,且α是第四象限角,则cos(α-2π)的值是( )A .-45 B.45 C .-35 D.35解析: 因为sin(π+α)=35,且sin(π+α)=-sin α,所以sin α=-35,又因为α是第四象限角,所以cos(α-2π)=cos α=1-sin 2α =1-⎝⎛⎭⎫-352=45. 答案 B4.记cos(-80°)=k ,那么tan 100°等于( ) A.1-k 2kB .-1-k 2kC.k1-k 2D .-k1-k 2解析: ∵cos(-80°)=k ,∴cos 80°=k , ∴sin 80°=1-k 2,则tan 80°=1-k 2k.∴tan 100°=-tan 80°=-1-k 2k.A 组 基础演练答案 B5.若sin(π-α)=log 814,且α∈⎝⎛⎭⎫-π2,0,则cos(π+α)的值为( ) A.53B .-53C .±53D .以上都不对解析: ∵sin(π-α)=sin α=32log 2-2=-23,α∈⎝⎛⎭⎫-π2,0, ∴cos(π+α)=-cos α=-1-sin 2α=-1-49=-53. 答案 B6.若cos(2π-α)=53,则sin ⎝⎛⎭⎫3π2-α等于( ) A .-53B .-23C.53D .±53解析: ∵cos(2π-α)=cos(-α)=cos α=53, ∴sin ⎝⎛⎭⎫3π2-α=-cos α=-53. 答案 A7.已知tan θ=2,则sin ⎝⎛⎭⎫π2+θ-cos (π-θ)sin ⎝⎛⎭⎫π2-θ-sin (π-θ)等于( )A .2B .-2C .0 D.23解析: sin ⎝⎛⎭⎫π2+θ-cos (π-θ)sin ⎝⎛⎭⎫π2-θ-sin (π-θ)=cos θ+cos θcos θ-sin θ=21-tan θ=21-2=-2.答案 B8.已知sin ⎝⎛⎭⎫5π2+α=15,那么cos α等于( )A .-25B .-15C.15D.25解析: sin ⎝⎛⎭⎫5π2+α=cos α,故cos α=15,故选C. 答案 C9.已知sin 10°=k ,则cos 620°的值为( ) A .k B .-k C .±k D .不确定解析: cos 620°=cos(360°+260°)=cos 260°=cos(270°-10°)=-sin 10°=-k 答案 B.10.若角A ,B ,C 是△ABC 的三个内角,则下列等式中一定成立的是( ) A .cos(A +B )=cos C B .sin(A +B )=-sin C C .cos A +C2=sin BD .sin B +C 2=cos A 2解析: ∵A +B +C =π,∴A +B =π-C ,∴cos(A +B )=-cos C ,sin(A +B )=sin C ,故A ,B 项不正确; ∵A +C =π-B ,∴A +C 2=π-B2,∴cos A +C 2=cos ⎝⎛⎭⎫π2-B 2=sin B2,故C 项不正确; ∵B +C =π-A , ∴sinB +C 2=sin ⎝⎛⎭⎫π2-A 2=cos A2,故D 项正确. 答案 D二、填空题11.已知600°角的终边上有一点P (a ,-3),则a 的值为______. 解析: tan 600°=tan(360°+240°)=tan(180°+60°)=tan 60°=-3a=3,即a =- 3.答案 -3 12.cos (-585°)sin 495°+sin (-570°)的值是________.解析: 原式=cos (360°+225°)sin (360°+135°)-sin (210°+360°)=cos 225°sin 135°-sin 210°=cos (180°+45°)sin (180°-45°)-sin (180°+30°)=-cos 45°sin 45°+sin 30°=-2222+12=2-2.答案 2-213.已知a =tan ⎝⎛⎭⎫-7π6,b =cos 23π4,c =sin ⎝⎛⎭⎫-33π4,则a ,b ,c 的大小关系是________.解析: ∵a =-tan 7π6=-tan π6=-33, b =cos ⎝⎛⎭⎫6π-π4=cos π4=22, c =-sin 33π4=-sin π4=-22,∴b >a >c . 答案 b >a >c14.化简sin ⎝⎛⎭⎫15π2+αcos ⎝⎛⎭⎫α-π2sin ⎝⎛⎭⎫9π2-αcos ⎝⎛⎭⎫3π2+α= .解析: 原式=sin ⎝⎛⎭⎫32π+α·cos ⎝⎛⎭⎫π2-αsin ⎝⎛⎭⎫π2-αsin α=(-cos α)·sin αcos α·sin α=-1.答案 -1三、解答题16.化简下列各式:(1)cos (π+α)·sin (2π+α)sin (-α-π)·cos (-π-α);(2)cos 190°·sin (-210°)cos (-350°)·tan (-585°).解析: (1)原式=-cos α·sin α-sin (π+α)·cos (π+α)=cos α·sin αsin α·cos α=1.(2)原式=cos (180°+10°)·[-sin (180°+30°)]cos (-360°+10°)·[-tan (360°+225°)]=-cos 10°·sin 30°cos 10°·[-tan (180°+45°)]=-sin 30°-tan 45°=12.17.已知角α的终边经过单位圆上的点P ⎝⎛⎭⎫45,-35.(1)求sin α的值;(2)求cos (2π-α)sin (π+α)·tan (π+α)cos (3π-α)的值.解析: (1)∵点P 在单位圆上,∴由正弦的定义得sin α=-35.(2)原式=cos α-sin α·tan α-cos α=sin αsin α·cos α=1cos α,由余弦的定义得cos α=45,故原式=54.一、选择题1.已知sin ⎝⎛⎭⎫α-π4=32,则sin ⎝⎛⎭⎫5π4-α的值为( )A.12 B .-12 C.32 D .-32解析: sin ⎝⎛⎭⎫5π4-α=sin ⎣⎡⎦⎤π-⎝⎛⎭⎫α-π4=sin ⎝⎛⎭⎫α-π4=32.答案 C2.化简sin 2(π+α)-cos(π+α)·cos(-α)+1的值为( )A .1B .2sin 2αC .0D .2解析: 原式=(-sin α)2-(-cos α)·cos α+1=sin 2α+cos 2α+1=2.答案 D3.已知n 为整数,化简sin (n π+α)cos (n π+α)所得的结果是( )A .tan nαB .-tan nαC .tan αD .-tan α解析: 当n =2k ,k ∈Z 时,sin (n π+α)cos (n π+α)=sin (2k π+α)cos (2k π+α)=sin αcos α=tan α;当n =2k +1,k ∈Z 时,sin (n π+α)cos (n π+α)=sin (2k π+π+α)cos (2k π+π+α)=sin (π+α)cos (π+α)=-sin α-cos α=tan α.故选C.答案 C4.已知sin ⎝⎛⎭⎫α+π4=13,则cos ⎝⎛⎭⎫π4-α的值为( ) A.223 B .-223 C.13 D .-13解析: cos ⎝⎛⎭⎫π4-α=cos ⎣⎡⎦⎤π2-⎝⎛⎭⎫α+π4=sin ⎝⎛⎭⎫α+π4=13.答案 C5.化简sin ⎝⎛⎭⎫α+π2·cos ⎝⎛⎭⎫α-3π2·tan ⎝⎛⎭⎫π2-α的结果是( )A .1B .sin 2αC .-cos 2αD .-1解析: 因为sin ⎝⎛⎭⎫α+π2=cos α,cos ⎝⎛⎭⎫α-3π2=cos ⎣⎡⎦⎤π+⎝⎛⎭⎫π2-α=-sin α,tan ⎝⎛⎭⎫π2-α=sin ⎝⎛⎭⎫π2-αcos ⎝⎛⎭⎫π2-α=cos αsin α,所以原式=cos α(-sin α)cos αsin α=-cos 2α,故选C.答案 C6.已知f (sin x )=cos 3x ,则f (cos 10°)的值为( )A .-12 B.12 C .-32 D.32解析: f (cos 10°)=f (sin 80°)=cos 240°=cos(180°+60°)=-cos 60°=-12.答案 A7.若sin(π+α)+cos ⎝⎛⎭⎫π2+α=-m ,则cos ⎝⎛⎭⎫32π-α+2sin(2π-α)的值为( )A .-2m 3 B.2m 3 C .-3m 2 D.3m2解析: ∵sin(π+α)+cos ⎝⎛⎭⎫π2+α=-sin α-sin α=-m ,∴sin α=m2.故cos ⎝⎛⎭⎫32π-α+2sin(2π-α)=-sin α-2sin α=-3sin α=-3m2.答案 C解析:∵f (2017)=a sin(2017π+α)+b cos(2017π+β)+4=3,∴a sin(2017π+α)+b cos(2017π+β)=-1,∴f (2018)=a sin(2017π+α+π)+b cos(2017π+β+π)+4=-a sin(2017π+α)-b cos(2017π+β)+4=1+4=5.答案 C10.计算sin 21°+sin 22°+sin 23°+…+sin 289°=( )A .89B .90 C.892D .45解析:原式=sin 21°+sin 22°+sin 23°+…+sin 244°+sin 245°+sin 2(90°-44°)+…+sin 2(90°-3°)+sin 2(90°-2°)+sin 2(90°-1°)=sin 21°+sin 22°+sin 23°+…+sin 244°+sin 245°+cos 244°+…+cos 23°+cos 22°+cos 21°=(sin 21°+cos 21°)+(sin 22°+cos 22°)+(sin 23°+cos 23°)+…+(sin 244°+cos 244°)+sin 245°=44+12=892. 答案 C二、填空题11.化简cos (-α)tan (7π+α)sin (π-α)=________. 解析: cos (-α)tan (7π+α)sin (π-α)=cos αtan (π+α)sin α =cos αtan αsin α=cos αsin αcos αsin α=1. 答案 112.设f (x )=a sin(πx +α)+b cos(πx +β),其中a ,b ,α,β为非零常数,若f (2 017)=-1,则f (2 018)=________. 解析: ∵f (2 018)=a sin(2 018π+α)+b cos(2 018π+β)=a sin(π+2 017π+α)+b cos(π+2 017π+β)=-a sin(2 017π+α)-b cos(2 017π+β)=-f (2 017),又f (2 017)=-1,∴f (2 018)=1.答案 113.已知f (x )=⎩⎪⎨⎪⎧sin πx ,x <0,f (x -1)-1,x >0,则f ⎝⎛⎭⎫-116+f ⎝⎛⎭⎫116的值为________. 解析: 因为f ⎝⎛⎭⎫-116=sin ⎝⎛⎭⎫-11π6 =sin ⎝⎛⎭⎫-2π+π6=sin π6=12; f ⎝⎛⎭⎫116=f ⎝⎛⎭⎫56-1=f ⎝⎛⎭⎫-16-2 =sin ⎝⎛⎭⎫-π6-2=-12-2=-52, 所以f ⎝⎛⎭⎫-116+f ⎝⎛⎭⎫116=-2. 答案 -214.给出下列三个结论,其中正确结论的序号是 .①sin(π+α)=-sin α成立的条件是角α是锐角;②若cos(n π-α)=13(n ∈Z ),则cos α=13; ③若α≠k π2(k ∈Z ),则tan ⎝⎛⎭⎫π2+α=-1tan α. 解析: 由诱导公式二,知α∈R 时,sin(π+α)=-sin α,所以①错误.当n =2k (k ∈Z )时,cos(n π-α)=cos(-α)=cos α,此时cos α=13, 当n =2k +1(k ∈Z )时,cos(n π-α)=cos [(2k +1)π-α]=cos(π-α)=-cos α,此时cos α=-13,所以②错误. 若α≠k π2(k ∈Z ),则tan ⎝⎛⎭⎫π2+α=sin ⎝⎛⎭⎫π2+αcos ⎝⎛⎭⎫π2+α=cos α-sin α=-1tan α,所以③正确. 答案 ③三、解答题15. 化简下列各式:(1)tan (2π-α)sin (-2π-α)cos (6π-α)cos (α-π)sin (5π-α); (2)1+2sin 290°cos 430°sin 250°+cos 790°. 解析: (1)原式=sin (2π-α)cos (2π-α)·sin (-α)cos (-α)cos (π-α)sin (π-α)=-sin α(-sin α)cos αcos α(-cos α)sin α=-sin αcos α=-tan α.(2)原式=1+2sin (360°-70°)cos (360°+70°)sin (180°+70°)+cos (720°+70°) =1-2sin 70°cos 70°-sin 70°+cos 70°=|cos 70°-sin 70°|cos 70°-sin 70°=sin 70°-cos 70°cos 70°-sin 70°=-1.16.已知sin(5π-θ)+sin ⎝⎛⎭⎫52π-θ=72,求sin 4⎝⎛⎭⎫π2-θ+cos 4⎝⎛⎭⎫32π+θ的值.解析: ∵sin(5π-θ)+sin ⎝⎛⎭⎫52π-θ =sin(π-θ)+sin ⎝⎛⎭⎫π2-θ=sin θ+cos θ=72,∴sin θcos θ=12[(sin θ+cos θ)2-1]=12×⎣⎡⎦⎤⎝⎛⎭⎫722-1=38,∴sin 4⎝⎛⎭⎫π2-θ+cos 4⎝⎛⎭⎫32π+θ=cos 4θ+sin 4θ=(sin 2θ+cos 2θ)2-2sin 2θcos 2θ=1-2×⎝⎛⎭⎫382=2332.17.已知α是第四象限角,且f (α)=sin (π-α)cos (2π-α)cos ⎝⎛⎭⎫π2-αsin (-π-α)cos (2π+α).(1)若cos ⎝⎛⎭⎫α-3π2=15,求f (α)的值;(2)若α=-1 860°,求f (α)的值.解析: f (α)=sin (π-α)cos (2π-α)cos ⎝⎛⎭⎫π2-αsin (-π-α)cos (2π+α)=sin αcos α-sin αsin (π+α)cos α=1sin α.(1)∵cos ⎝⎛⎭⎫α-3π2=15,∴cos ⎝⎛⎭⎫α-3π2+2π=15,∴cos ⎝⎛⎭⎫π2+α=15,∴sin α=-15,∴f (α)=1sin α=-5.(2)当α=-1 860°时,f (α)=1sin α=1sin (-1 860°)=1-sin 1 860°=1-sin (5×360°+60°)=1-sin 60° =-233.高中数学,同步讲义必修四第一章三角函数第三讲三角函数的诱导公式。

高中数学 1.3三角函数的诱导公式(一)课件 新人教A版必修4

高中数学 1.3三角函数的诱导公式(一)课件 新人教A版必修4
第二十五页,共43页。
【解析( jiě xī)】1.选B.sin2(π-α)-cos(π+α)cos(-α)+1
=sin2α+cos2α+1=2.
2.(1)原式
cos tan tan
tan .
sin
(2)当k为偶数时,原式 sin 2 cos 4
33
sin( ) cos( )
3
3
sin cos 3 33 4
6
6
【解析】因为(yīcons(w5èi) ) cos[ ( )] cos( ) 3 ,
所以
6
6
6
3
又因为si(ny2ī(n56wèi))
1
cos2
(
5 6
)
1
(
3)2 2. 33
所以 cos( ) cos[( )] cos( ) 3 .
6
6
6
3
sin2 (5 ) cos( )
6
6
2 3 2 3. 33 3
第二十一页,共43页。
【拓展提升】解决条件求值问题的策略 (1)解决条件求值问题,首先要仔细观察条件与所求式之间的角、函数名称 及有关(yǒuguān)运算之间的差异及联系. (2)可以将已知式进行变形向所求式转化,或将所求式进行变形向已知式转 化.
第二十二页,共43页。
第二十六页,共43页。
当k为奇数( jī shù)时,s原in 式2 cos( 4)
3
3
sin( )cos(2 )
3
3
sin cos 3 . 3 34
第二十七页,共43页。
【拓展提升】三角函数式化简的常用方法
(1)依据(yījù)所给式子合理选用诱导公式将所给角的三角函数转化

高中数学(新课标人教A版)必修4 第一章三角函数精品课件 1.2任意角的三角函数(3课时)

高中数学(新课标人教A版)必修4 第一章三角函数精品课件 1.2任意角的三角函数(3课时)


tan 3
例5.求下列三角函数值
sin1480 10

'
9 s 4
11 tan( ) 6
小结:
1.任意角的三角函数是由角的终边与单 位圆交点的坐标来定义的. 2.三角函数值的符号是利用三角函数的 定义来推导的.要正确记忆三个三角函数 在各个象限内的符号; 3.诱导公式一的作用可以把大角的三角 函数化为小角的三角函数.
应用 1.利用同角三角函数的基 本关系求某个角的三角函数 值 例1.已知sinα=-3/5,且 α在第三象限,求cosα和 tanα的值.
例2.已知 cos m (m 0, m 1), 求的其他三角函数值
4 sin 2 cos 例3.已知 tanα=3,求值(1) 5 cos 3 sin

y
a的终边 P(x,y)
1
P(x,y)
a
O
M
A(1,.0)
x
(1)y叫做 的正弦,记作sin ,即 sin y (2)x叫做 的余弦,记作cos,即 cos x y y (3) 叫做 的正切,记作tan ,即 tan x x
阅读课本P12:三角函数的定义
例题:
5 1 求 的正弦、余弦和正切值. 3
作业:
课本P20习题1.2A组
1,2,6,7,9
1.2.1任意角的三角函数(2)
复习回顾
1、三角函数的定义; 2、三角函数在各象限角的符号; 3、三角函数在轴上角的值; 4、诱导公式(一):终边相同的角的 同一三角函数的值相等; 5、三角函数的定义域.
角是一个图形概念,也是一个数量概 念(弧度数). 作为角的函数——三角函数是一个 数量概念(比值),但它是否也是一个 图形概念呢?

人教A版数学必修三角函数的诱导公式课件

人教A版数学必修三角函数的诱导公式课件
人教A版数学必修4第一章1.3 三角函数的诱导公式 课件(共54张PPT)
复习引入 人教A版数学必修4第一章1.3 三角函数的诱导公式 课件(共54张PPT)
同角三角函数的关系
小 结:
关于三角恒等式的证明, 常有以下方法: (1) 从一边开始,证得它等于另一边,一
般由繁到简;
人教A版数学必修4第一章1.3 三角函数的诱导公式 课件(共54张PPT)
同角三角函数的关系
练习4. 教材P.20练习第5题.
人教A版数学必修4第一章1.3 三角函数的诱导公式 课件(共54张PPT)
讲授新课 人教A版数学必修4第一章1.3 三角函数的诱导公式 课件(共54张PPT)
诱导公式 (一)
人教A版数学必修4第一章1.3 三角函数的诱导公式 课件(共54张PPT)
复习引入 人教A版数学必修4第一章1.3 三角函数的诱导公式 课件(共54张PPT)
同角三角函数的关系
小 结:
关于三角恒等式的证明, 常有以下方法: (1) 从一边开始,证得它等于另一边,一
般由繁到简; (2) 左右归一法:
证明左、右两边式子等于同一个式子.
人教A版数学必修4第一章1.3 三角函数的诱导公式 课件(共54张PPT)
点P、P',则点P与P'的位置关系如何? [关于原点对称] (4) 设点P(x,y),则点P'怎样表示?
(5) sin210o与sin30o的值关系如何?
人教A版数学必修4第一章1.3 三角函数的诱导公式 课件(共54张PPT)
讲授新课 人教A版数学必修4第一章1.3 三角函数的诱导公式 课件(共54张PPT)
讲授新课 人教A版数学必修4第一章1.3 三角函数的诱导公式 课件(共54张PPT)

5.3.1诱导公式二三四课件高一上学期数学人教A版

5.3.1诱导公式二三四课件高一上学期数学人教A版
原式=
cos(180°+)[-sin(180°+)]
sincos(-)
=
(-cos)sin
=
cos
=-1.
-cos
规律方法 利用诱导公式一至四化简应注意的问题
(1)利用诱导公式主要是进行角的转化,从而达到统一角的目的.
(2)化简时函数名不发生改变,但一定要注意函数的符号有没有改变.
5
.
13
1
6.已知cos(α-75°)=- 3,且α为第四象限角,则sin(105°+α)=
解析 因为 α 是第四象限角且
1
cos(α-75°)=- <0,
3
所以 α-75°是第三象限角,所以
2 2
sin(α-75°)=- 3 ,所以
2 2
[180°+(α-75°)]=-sin(α-75°)= 3 .
tan
1 2 3 4 5 6 7 8 9 10 11
B级
关键能力提升练
9. 1-2sin(π + 2)cos(π-2)=( A )
A.sin 2-cos 2
B.sin 2+cos 2
C.±(sin 2-cos 2)
D.cos 2-sin 2
解析
1-2sin(π + 2)cos(π-2) =
=|sin 2-cos 2|=sin 2-cos 2.
(1)弄清楚已知条件与所求式中角、函数名称及有关运算之间的差异及
联系.
(2)可以将已知式进行变形向所求式转化,或将所求式进行变形向已知式
转化.
探究点二
给值(式)求值问题
问题5对于三角函数的运算,给角求值的深入就是给值求值问题.这种问题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

答案:化简:(1) =________; sinπ-α
sin1 440° +α· cosα-1 080° (2) =________. cos-180° -α· sin-α-180°
[答案]
(1)1
(2)-1
[类题通法] 利用诱导公式一~四化简应注意的问题 (1)利用诱导公式主要是进行角的转化,从而达到统一 角的目的; (2)化简时函数名没有改变,但一定要注意函数的符号 有没有改变; (3)同时有切(正切)与弦(正弦、余弦)的式子化简,一般 采用切化弦,有时也将弦化切.
π π 119π π 3 20 π - - (3)cos =cos 6 =cos 6 =cos6= 2 . 6
[类题通法] 利用诱导公式解决给角求值问题的步骤
[活学活用] 求sin 585°cos 1 290°+cos(-30°)sin 210°+tan 135°的值.
提示:α与π-α的终边关于y轴对称, 如图所示,设P1(x,y)是α的终边与单位 圆的交点,则π-α与单位圆的交点为 P′(-x,y),P1,P′关于y轴对称,由 三角函数定义知,sin(π-α)=y=sin y cos α,tan(π-α)= =-tan α. -x α,cos(π-α)=-x=-
[类题通法] 解决条件求值问题的策略 (1)解决条件求值问题,首先要仔细观察条件与所求式之 间的角、函数名称及有关运算之间的差异及联系. (2)可以将已知式进行变形向所求式转化,或将所求式进 行变形向已知式转化.
[活学活用] 1 已知sin(π+α)=- ,求cos(5π+α)的值. 3
2 2 解:当α是第一象限角时,cos(5π+α)=- ;当α是第二 3 2 2 象限角时,cos(5π+α)= . 3
提示:α与-α的终边关于x轴对称,它们与单位圆的交 点P1与P2关于x轴对称,设P1的坐标为(x,y),则P2的坐标为 (x,-y).sin(-α)=-y=-sin α,cos(-α)=x=cos α, y tan(-α)=-x=-tan α.
问题3:任意角α与π-α的终边有何位置关系?它们与单位 圆的交点的位置关系怎样?试用三角函数定义验证α与π-α的各 三角函数值的关系.
[活学活用] tan2π-θsin2π-θcos6π-θ 化简: . -cos θsin5π+θ
答案:tan θ
[例3] 的值为 A.1 1 C. 3
1 (1)已知sin β= ,cos(α+β)=-1,则sin(α+2β) 3 ( B.-1 1 D.- 3 )
1 (2)已知cos(α-55°)=- ,且α为第四象限角,求sin 3 (α+125°)的值.
[导入新知] 1.诱导公式二 (1)角π+α与角α的终边关于 原点 对称. 如图所示. (2)公式:sin(π+α)= -sin α . cos(π+α)= -cos α . tan(π+α)= tan α .
2.诱导公式三 (1)角-α与角α的终边关于 x 轴对称. 如图所示. (2)公式:sin(-α)= -sin α . cos(-α)= cos α . tan(-α)= -tan α .
[答案]
[易错防范] 1.本题易混淆nπ+α(n∈Z)和2kπ+α(k∈Z)的区别,不
π 对n进行奇偶性的讨论,错用诱导公式一,得出2cos 4+α 的
错误答案. 2.在化简三角函数式时,若含有参数,要注意是否需 要进行分情况讨论.
[成功破障] sinα+nπ+sinα-nπ 化简: (n∈Z). sinα+nπcosα-nπ
答案:C
4 2.已知sin(π+α)= ,且α是第四象限角,则cos(α-2π)的值 5 是 3 A.- 5 3 C.± 5 3 B. 5 4 D. 5 ( )
sinα-3π+cosπ-α 3.设tan(5π+α)=m,则 =______. sin-α-cosπ+α m+ 1 答案: m- 1
3.忽视对参数的讨论导致错误
[典例] ________.
[解析]
4n+1π 4n-1π 化简:cos + cos +α -α(n∈Z)= 4 4
π π 原式=cosnπ+4+α+cosnπ-4+α.
当n=2k(k∈Z)时,
π π 原式=cos 4+α +cos- +α 4
π =2cos +α. 4
当n=2k+1(k∈Z)时,
π π 原式=cosπ+4 +α+cosπ-4 +α π =-2cos4 +α. π +α,n为偶数, 2cos 4 故原式= -2cosπ+α,n为奇数. 4 π +α,n为偶数, 2cos 4 π -2cos +α,n为奇数 4
答案:B
cos-585° 4. 的值是________. sin 495° +sin-570°
答案: 2-2
π 5.已知cos6-α= 5π 3 ,求cosα+ 6 的值. 3
3 答案:- 3
[例1]
求下列三角函数值:
119π (1)sin(-1 200°);(2)tan 945°;(3)cos . 6 [解] (1)sin(-1 200°)=-sin 1 200°=-sin(3×360°+
3 120°)=-sin 120°=-sin(180°-60°)=-sin 60°=- ; 2 (2)tan 945°=tan(2×360°+225°)=tan 225°=tan(180° +45°)=tan 45°=1;
2 cos αn为偶数, 答案:原式= - 2 n为奇数 cos α
[随堂即时演练]
1.如图所示,角θ的终边与单位圆交于点 P

5 2 5 ,则cos(π-θ)的值为( , 5 5 5 B.- 5 2 5 D. 5
)
2 5 A.- 5 5 C. 5
1.3
第一课时
三角函数的诱导公式
三角函数的诱导公式( 一)
[提出问题] 问题1:锐角α的终边与π+α角的终边位置关系如何?它 们与单位圆的交点的位置关系如何?任意角α与π+α呢?
提示:无论α是锐角还是任意角,π+α与α的终边互为 反向延长线,它们与单位圆的交点关于原点对称.
问题2:任意角α与-α的终边有怎样的位置关系?它们 与单位圆的交点有怎样的位置关系?试用三角函数的定义 验证-α与α的三角函数值的关系.
[解]
(1)D
1 (2)∵cos(α-55°)=- <0,且α是第四象限角, 3 ∴α-55°是第三象限角, 2 2 ∴sin(α-55°)=- 1-cos α-55° =- . 3
2
∵α+125°=180°+(α-55°), ∴sin(α+125°)=sin[180°+(α-55°)] 2 2 =-sin(α-55°)= . 3
3.诱导公式四 (1)角π-α与角α的终边关于 y 轴对称. 如图所示. (2)公式:sin(π-α)= sin α . cos(π-α)= -cos α . tan(π-α)= -tan α .
[化解疑难] 对诱导公式一~四的理解 (1)公式两边的三角函数名称应一致. (2)符号由将α看成锐角时α所在象限的三角函数值的 符号决定.但应注意,将α看成锐角只是为了公式记忆的 方便,事实上α可以是任意角.
相关文档
最新文档