2018成都市中考必备数学模拟试卷(20)附详细试题答案

合集下载

初2018届成都市郫都区中考数学九年级一诊数学试卷(含答案)

初2018届成都市郫都区中考数学九年级一诊数学试卷(含答案)

初2018届成都市郫都区中考数学九年级一诊试卷(考试时间:120分钟满分150分)A卷(共100分)一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.如图摆放的圆锥、圆柱、三棱柱、球,其主视图、左视图、俯视图都相同的是()A.B.C.D.2.一元二次方程5x2﹣4x﹣3=0的二次项系数与一次项系数分别为()A.5,﹣1 B.5,4 C.5x2,﹣4x D.5,﹣43.已知=,则的值是()A.B.C.﹣D.﹣4.如图,在平面直角坐标系中,点A的坐标为(4,3),那么cosα的值是()A.B.C.D.5.若m是一元二次方程x2﹣5x﹣2=0的一个实数根,则2018﹣m2+5m的值为()A.2015 B.2016 C.2017 D.20186.下列哪种光线形成的投影不是中心投影()A.探照灯B.太阳C.手电筒D.路灯7.如图所示,阳光中学教学楼前喷水池喷出的抛物线形水柱,其解析式为y=﹣(x﹣2)2+6,则水柱的最大高度是()A.2 B.4 C.6 D.2+8.函数y=中,自变量x的取值范围是()A.x>5 B.x<5 C.x≥5 D.x≤59.小红上学要经过两个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路口都是绿灯,但实际这样的机会是()A.B.C.D.10.在同一坐标系中,一次函数y=ax+b与二次函数y=ax2+b的大致图象为()A.B.C.D.二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.若反比例函数y=的图象在第一、三象限内,则k的取值范围为.12.抛物线y=x2+2x﹣2向右平移2个单位长度,所得抛物线的对称轴为直线.13.如图,河两岸分别有A、B两村,测得A、B、D在一直线上,A、C、E在一条直线上,BC∥DE,DE=100m,BC=70m,BD=30m,则A、B两村间的距离为.14.在一个不透明的口袋中装有4个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球试验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有个.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.(12分)(1)计算:||+﹣2tan45°﹣2sin60°(2)解方程:x2﹣6x+5=016.(6分)如图是由6个小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置小立方块的个数,请按要求画出该几何体的主视图与左视图.17.(8分)如图,一艘核潜艇在海面下500米A点处测得俯角为31°正前方的海底C点处有黑匣子信号发出,继续在同一深度直线航行3000米后再次在B点处测得俯角为62°正前方的海底C点处有黑匣子信号发出,求海底黑匣子C点处距离海面的深度CH.(参考数据:sin62°≈0.88,cos62°≈0.47,tan62°≈1.88)18.(8分)端午节那天,小贤回家看到桌上有一盘粽子,其中有豆沙粽、肉粽各1个,蜜枣粽2个,这些粽子除馅外无其他差别.(1)小贤随机地从盘中取出一个粽子,取出的是肉粽的概率是多少?(2)小贤随机地从盘中取出两个粽子,试用画树状图或列表的方法表示所有可能的结果,并求出小贤取出的两个都是蜜枣粽的概率.19.(10分)如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象与反比例函数y=图象交于点A (1,5)和点B(n,1).(1)求m,n的值;(2)设直线AB与x轴交于点C,求△AOC的面积;(3)若图中一次函数的函数值小于反比例函数的函数值,直接写出x的取值范围.20.(10分)如图,已知矩形ABCD中,过对角线AC的中点O作AC的垂线,分别交射线AD和CB于点E、F,交DC于点G,交AB于点H,连接AF,CE.(1)求证:四边形AFCE是菱形;(2)若=,△DGE的面积是2,求△CGF的面积;(3)如果OF=2GO,求证:GO2=DG•GC.B卷(共50分)一、填空题(本大题共5分,每小题4分,共20分,答案写在答题卡上)21.已知三角形的3条中位线分别为3cm、4cm、6cm,则这个三角形的周长是.22.已知x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,且x1+x2=﹣2,x1•x2=﹣2,则b a的值为.23.已知函数y=(k﹣3)x2+2x+1的图象与x轴有两个交点,则k的取值范围是.24.从﹣2、﹣1、0、1这四个数中随机抽取一个记为a,则使关于x的不等式组有解,且使关于x的一次函数y=的图象与反比例函数y=的图象有1个交点的概率是.25.如图,正方形ABCD的边长为2,E,F分别是AB,BC的中点,AF与DE,DB分别交于点M、N,则S △MND:S△AFD的值为.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.(8分)受益于国家支持新能源汽车发展和“一带一路”发展战略等多重利好因素,我市某汽车零部件生产企业的利润逐年提高,据统计,2015年利润为2亿元,2017年利润为2.88亿元.(1)求该企业从2015年到2017年利润的年平均增长率;(2)若保持年平均增长率不变,该企业2018年的利润能否超过3.4亿元?27.(10分)如图,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,将△DEF与△ABC重合在一起,△ABC不动,△DEF运动,并满足:点E在边BC上沿B到C的方向运动,且DE始终经过点A,EF与AC交于M点.(1)求证:△ABE∽△ECM;(2)探究:在△DEF运动过程中,重叠部分能否构成等腰三角形?若能,求出BE的长;若不能,请说明理由;(3)当线段BE为何值时,线段AM最短,最短是多少?28.(12分)如图,在平面直角坐标系中,抛物线F1:y=ax2+bx﹣4(a≠0)与x轴交于点A(﹣1,0)和点B(3,0),将抛物线F1沿x轴翻折得到抛物线F2,抛物线F2与y轴交于点C.(1)求抛物线F1和抛物线F2的解析式;(2)若点P是抛物线F2在第一象限的图象上的一个动点,过点P作PE平行于y轴交直线BC于点E,求PE 的最大长度及△PCB的最大面积;(3)若点Q在抛物线F1上,且到∠OCB的两边的距离相等,求点Q的坐标.参考答案与试题解析1.【解答】解:球的三视图是大小相同的圆,而圆锥、圆柱、三棱柱的三视图都不完全相同.所以主视图、左视图、俯视图都完全相同的是球.故选:D.2.【解答】解:一元二次方程5x2﹣4x﹣3=0的二次项系数和一次项系数分别为5,﹣4,故选:D.3.【解答】解:∵=,∴a=5k,b=13k,∴=,故选:A.4.【解答】解:由点A的坐标为(4,3),那么OA==5,∴cosα的值为A的横坐标:OA=4:5,故选:B.5.【解答】解:∵m是一元二次方程x2﹣5x﹣2=0的一个实数根,∴m2﹣5m﹣2=0,即m2﹣5m=2,∴2018﹣m2+5m=2018﹣(m2﹣5m)=2018﹣2=2016.故选:B.6.【解答】解:中心投影的光源为灯光,平行投影的光源为阳光与月光,在各选项中只有B选项得到的投影为平行投影,故选B.7.【解答】解:∵抛物线形水柱,其解析式为y=﹣(x﹣2)2+6,∴水柱的最大高度是:6.故选:C.8.【解答】解:根据题意得:x﹣5≥0解得:x≥5故选:C.9.【解答】解:共4种情况,有1种情况每个路口都是绿灯,所以概率为.故选:A.10.【解答】解:A、由一次函数y=ax+b的图象可得:a>0,此时二次函数y=ax2+b的图象应该开口向上,故A错误;B、由一次函数y=ax+b的图象可得:a<0,b>0,此时二次函数y=ax2+b的图象应该开口向下,顶点的纵坐标大于零,故B正确;C、由一次函数y=ax+b的图象可得:a<0,b<0,此时二次函数y=ax2+b的图象应该开口向下,故C错误;D、由一次函数y=ax+b的图象可得:a<0,b>0,此时二次函数y=ax2+b的图象应该开口向下,故D错误;故选:B.二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.【解答】解:∵反比例函数y=的图象在第一、三象限内,∴k﹣5>0,解得 k>5.故答案为:k>5.12.【解答】解:∵y=x2+2x﹣2=(x+1)2﹣3,∴向右平移2个单位长度后抛物线解析式为y=(x﹣1)2+3,∴所得抛物线的对称轴为直线 x=1.故答案是:x=1.13.【解答】解:∵BC∥DE,∴△ABC∽△AED,∴=,即=,解得,AB=70,故答案为:70.14.【解答】解:设白球个数为:x个,∵摸到红色球的频率稳定在25%左右,∴口袋中得到红色球的概率为25%,∴=,解得:x=12,故白球的个数为12个.故答案为:12.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.【解答】解:(1)原式=2﹣+3﹣2×1﹣2×=;(2)(x﹣5)(x+1)=0,x﹣5=0或x+1=0,所以x1=5,x2=1.16.【解答】解:如图所示:17.【解答】解:在△ABC中∠CAG=31°,∠CBG=62°,∴BC=AB=3000m,在Rt△BCG中,∠BCD=62°,∴sin∠CBG=,∴CG=0.88×3000≈2640 (m),∴CH=CG﹣GH=2640+500=3140(m),∴海底黑匣子C点处距离海面的深度CH为3140m.18.【解答】解:(1)∵有豆沙粽、肉粽各1个,蜜枣粽2个,∴随机地从盘中取出一个粽子,取出的是肉粽的概率是:;(2)如图所示:,一共有12种可能,取出的两个都是蜜枣粽的有2种,故取出的两个都是蜜枣粽的概率为:=.19.【解答】解:(1)∵点A(1,5)在反比例函数y=图象上,∴m=1×5=5,∴反比例函数的解析式为y=,∵点B(n,1)在反比例函数y=的图象上,∴n=5.(2)∵点A(1,5)和点B(5,1)在直线y=kx+b上∴,解得,∴直线AB的解析式为y=﹣x+6,∴点C的坐标为(6,0),OC=6,∴△AOC的面积=×6×5=15,(3)观察图象可知:当图中一次函数的函数值小于反比例函数的函数值,x的取值范围为:0<x<1或x >5.20.【解答】证明:(1)∵四边形ABCD是矩形,∴AD∥BC,∴∠EAC=∠ACF,在△EOA和△FOC中,,∴△EOA≌△FOC(ASA).∴AE=CF,OE=OF.∴四边形AFCE是平行四边形.∵AC⊥EF,∴四边形AFCE是菱形;(2)∵四边形AFCE是菱形∴AE∥CF,AE=CF.∴△DGE∽△CGF.∴=()2.∵=,△DGE的面积是2,∴=()2.∴S△CGF=18;(3)∵∠EDG=∠COG=90°,∠EGD=∠CGO,∴△EGD∽△CGO.∴EG:DG=CG:GO.∵OF=2GO,∴EG=GO.∴GO2=DG•GC.一、填空题(本大题共5分,每小题4分,共20分,答案写在答题卡上)21.【解答】解:∵三角形的3条中位线分别为3cm、4cm、6cm,根据三角形的中位线定理,得三角形的三边分别是6cm、8cm、12cm,则三角形的周长是26cm.故答案为26cm.22.【解答】解:∵x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,∴x1+x2=﹣a=﹣2,x1•x2=﹣2b=﹣2,解得a=2,b=1,∴b a=12=1.故答案为:1.23.【解答】解:∵函数y=(k﹣3)x2+2x+1的图象与x轴有两个交点,∴令y=0,则(k﹣3)x2+2x+1=0,则△=4﹣4(k﹣3)>0,且k﹣3≠0,解得,k<4且k≠3.故答案是:k<4且k≠3.24.【解答】解:由题意:当a=﹣1时,关于x的不等式组有解,关于x的一次函数y=的图象与反比例函数y=的图象有1个交点,当a=0或1时,关于x的不等式组有解,关于x的一次函数y=的图象与反比例函数y =的图象有2个交点,∴使关于x的不等式组有解,且使关于x的一次函数y=的图象与反比例函数y=的图象有1个交点的概率是.故答案.25.【解答】解:连接DF,如图,∵E,F分别是AB,BC的中点,∴AE=BF=,∵四边形ABCD是正方形,∴AD∥BC,AB=BC=,∴DE=AF==5,在△ADE和△BAF中,∴△ADE≌△BAF(SAS),∴∠ADE=∠BAF,∵∠BAF+∠FAD=90°,∴∠FAD+∠ADE=90°,∴∠AMD=90°,∴AM⊥DE,∵AM•DE=AE•AD,∴AM==2,在Rt△AMD中,DM==4,又∵AD∥BF,∴△AND∽△FNB,∴,∴AN=2NF==×5=,∴MN=﹣2=,∴S△DMN=DM•MN=×4×=8,∵S△ADF=×2×2=30,∴S△MND:S△AFD=8:30=4:15.故答案为4:15.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.【解答】解:(1)设这两年该企业年利润平均增长率为x,根据题意得:2(1+x)2=2.88,解答:x1=0.2=20%,x2=﹣2.2(不合题意,舍去),则设这两年该企业年利润平均增长率为20%;(2)如果2018年仍保持相同的年平均增长率,那么2018年该企业年利润为:2.88(1+20%)=3.456,且3.456>3.4,则该企业2018年的利润能超过3.4亿元.27.【解答】解:(1)∵AB=AC,∴∠B=∠C,∵△ABC≌△DEF,∴∠AEF=∠B,又∵∠AEF+∠CEM=∠AEC=∠B+∠BAE,∴∠CEM=∠BAE,∴△ABE∽△ECM;(2)能.∵∠AEF=∠B=∠C,且∠AME>∠C,∴∠AME>∠AEF∴AE≠AM;当AE=EM时,则△ABE≌△ECM,∴CE=AB=5,∴BE=BC﹣EC=6﹣5=1,当AM=EM时,则∠MAE=∠MEA,∴∠MAE+∠BAE=∠MEA+∠CEM,即∠CAB=∠CEA,∵∠C=∠C,∴△CAE∽△CBA,∴,∴CE=,∴BE=6﹣=;∴BE=1或.(3)设BE=x,又∵△ABE∽△ECM,∴,即:,∴CM=﹣+x=﹣(x﹣3)2+,∴AM=5﹣CM=(x﹣3)2+,∴当x=3时,AM最短为.28.【解答】解:(1)F1的表达式为:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),即﹣3a=﹣4,解得:a=,故函数F1的表达式为:y=x2﹣x﹣4,将抛物线F1沿x轴翻折得到抛物线F2,抛物线的表达式为:y=﹣x2+x+4;(2)点B、C的坐标分别为(3,0)、(0,4),将点B、C坐标代入一次函数表达式:y=kx+b并解得:直线C的表达式为:y=﹣x+4,设点P(x,﹣x2+x+4),则点E(x,﹣x+4),PE=﹣x2+x+4﹣(﹣x+4)=﹣(x﹣)2+3,∵<0,∴当x=时,PE的最大值为3;(3)如图,在y轴上截取CB=CD=5,则点D(0,﹣1),设BD的中点为H(,﹣),同理过点C、H的直线表达式为:y=﹣3x+4,∵CH平分∠OCB,则CH与抛物线F1的交点Q到∠PCB两边的距离相等,,解得:x=,故点Q(,)或(,)。

四川省成都市2018年中考数学试题(含答案)

四川省成都市2018年中考数学试题(含答案)

成都市2018年中考数学试题及答案A 卷(共100分) 第Ⅰ卷(共30分)一、选择题:本大题共10个小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.实数,,,a b c d 在数轴上对应的点的位置如图所示,这四个数中最大的是( )A .aB .bC .cD .d2.2018年5月21日,西昌卫星发射中心成功发射探月工程嫦娥四号任务“鹊桥号”中继星,卫星进入近地点高度为200公里、远地点高度为40万公里的预定轨道。

将数据40万用科学记数法表示为( ) A .60.410⨯ B .5410⨯ C .6410⨯ D .60.410⨯ 3。

如图所示的正六棱柱的主视图是( )A .B .C .D .4。

在平面直角坐标系中,点()3,5P --关于原点对称的点的坐标是( ) A .()3,5- B .()3,5- C.()3,5 D .()3,5-- 5.下列计算正确的是( )A .224x x x += B .()222x y x y -=- C.()326x yx y = D .()235x x x -•=6。

如图,已知ABC DCB ∠=∠,添加以下条件,不能判定ABC DCB ∆∆≌的是( ) A .A D ∠=∠ B .ACB DBC ∠=∠ C 。

AC DB = D .AB DC =7.如图是成都市某周内日最高气温的折线统计图,关于这7天的日最高气温的说法正确的是( )A .极差是8℃B .众数是28℃ C.中位数是24℃ D .平均数是26℃ 8。

分式方程1112x x x ++=-的解是( ) A .y B .1x =- C.3x = D .3x =- 6题图9。

如图,在ABCD 中,60B ∠=︒,C ⊙的半径为3,则图中阴影部分的面积是( )A .πB .2πC 。

3πD .6π10。

关于二次函数2241y x x =+-,下列说法正确的是( )A .图像与y 轴的交点坐标为()0,1B .图像的对称轴在y 轴的右侧C 。

2018年四川省成都市中考数学试卷及解析

2018年四川省成都市中考数学试卷及解析

2018年四川省成都市中考数学试卷一、选择题(每小题3分,共30分)1.(3分)实数a,b,c,d在数轴上对应的点的位置如图所示,这四个数中最大的是()A.a B.b C.c D.d2.(3分)2018年5月21日,西昌卫星发射中心成功发射探月工程嫦娥四号任务“鹊桥号”中继星,卫星进入近地点高度为200公里、远地点高度为40万公里的预定轨道.将数据40万用科学记数法表示为()A.4×104B.4×105C.4×106D.×1063.(3分)如图所示的正六棱柱的主视图是()A. B. C. D.4.(3分)在平面直角坐标系中,点P(﹣3,﹣5)关于原点对称的点的坐标是()A.(3,﹣5)B.(﹣3,5)C.(3,5)D.(﹣3,﹣5)5.(3分)下列计算正确的是()A.x2+x2=x4B.(x﹣y)2=x2﹣y2C.(x2y)3=x6y D.(﹣x)2•x3=x56.(3分)如图,已知∠ABC=∠DCB,添加以下条件,不能判定△ABC≌△DCB的是()A.∠A=∠D B.∠ACB=∠DBCC.AC=DB D.AB=DC7.(3分)如图是成都市某周内最高气温的折线统计图,关于这7天的日最高气温的说法正确的是()第7题第9题A.极差是8℃B.众数是28℃C.中位数是24℃D.平均数是26℃8.(3分)分式方程=1的解是()A.x=1 B.x=﹣1 C.x=3 D.x=﹣39.(3分)如图,在▱ABCD中,∠B=60°,⊙C的半径为3,则图中阴影部分的面积是()A.πB.2πC.3πD.6π10.(3分)关于二次函数y=2x2+4x﹣1,下列说法正确的是()A.图象与y轴的交点坐标为(0,1) B.图象的对称轴在y轴的右侧C.当x<0时,y的值随x值的增大而减小 D.y的最小值为﹣3二、填空题(每小题4分,共16分)11.(4分)等腰三角形的一个底角为50°,则它的顶角的度数为.12.(4分)在一个不透明的盒子中,装有除颜色外完全相同的乒乓球共16个,从中随机摸出一个乒乓球,若摸到黄色乒乓球的概率为,则该盒子中装有黄色乒乓球的个数是.13.(4分)已知==,且a+b﹣2c=6,则a的值为.14.(4分)如图,在矩形ABCD中,按以下步骤作图:①分别以点A和C为圆心,以大于AC的长为半径作弧,两弧相交于点M和N;②作直线MN交CD于点E.若DE=2,CE=3,则矩形的对角线AC的长为.三、解答题(本大题共6个小题,共54分)15.(12分)(1)22+﹣2sin60°+|﹣|(2)化简:(1﹣)÷16.(6分)若关于x的一元二次方程x2﹣(2a+1)x+a2=0有两个不相等的实数根,求a的取值范围.17.(8分)为了给游客提供更好的服务,某景区随机对部分游客进行了关于“景区服务工作满意度”的调查,并根据调查结果绘制成如下不完整的统计图表.满意度学生数(名)百分比非常满意1210%满意54m比较满意n40%不满意65%根据图表信息,解答下列问题:(1)本次调查的总人数为,表中m的值;(2)请补全条形统计图;(3)据统计,该景区平均每天接待游客约3600人,若将“非常满意”和“满意”作为游客对景区服务工作的肯定,请你估计该景区服务工作平均每天得到多少名游客的肯定.18.(8分)由我国完全自主设计、自主建造的首艘国产航母于2018年5月成功完成第一次海上实验任务.如图,航母由西向东航行,到达A处时,测得小岛C位于它的北偏东70°方向,且与航母相距80海里,再航行一段时间后到达B处,测得小岛C位于它的北偏东37°方向.如果航母继续航行至小岛C的正南方向的D处,求还需航行的距离BD的长.(参考数据:sin70°≈,cos70°≈,tan70°≈2,75,sin37°≈,cos37°≈,tan37°≈)19.(10分)如图,在平面直角坐标系xOy中,一次函数y=x+b的图象经过点A(﹣2,0),与反比例函数y=(x>0)的图象交于B(a,4).(1)求一次函数和反比例函数的表达式;(2)设M是直线AB上一点,过M作MN∥x轴,交反比例函数y=(x>0)的图象于点N,若A,O,M,N为顶点的四边形为平行四边形,求点M的坐标.20.(10分)如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,O为AB上一点,经过点A,D的⊙O分别交AB,AC于点E,F,连接OF交AD于点G.(1)求证:BC是⊙O的切线;(2)设AB=x,AF=y,试用含x,y的代数式表示线段AD的长;(3)若BE=8,sinB=,求DG的长,四、填空题(每小题4分,共20分)21.(4分)已知x+y=,x+3y=1,则代数式x2+4xy+4y2的值为.22.(4分)汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝.如图所示的弦图中,四个直角三角形都是全等的,它们的两直角边之比均为2:3.现随机向该图形内掷一枚小针,则针尖落在阴影区域的概率为.第22题第24题第25题23.(4分)已知a>0,S1=,S2=﹣S1﹣1,S3=,S4=﹣S3﹣1,S5=,…(即当n为大于1的奇数时,S n=;当n为大于1的偶数时,S n=﹣S n﹣1﹣1),按此规律,S2018= .24.(4分)如图,在菱形ABCD中,tanA=,M,N分别在边AD,BC上,将四边形AMNB沿MN翻折,使AB的对应线段EF经过顶点D,当EF⊥AD时,的值为.25.(4分)设双曲线y=(k>0)与直线y=x交于A,B两点(点A在第三象限),将双曲线在第一象限的一支沿射线BA的方向平移,使其经过点A,将双曲线在第三象限的一支沿射线AB的方向平移,使其经过点B,平移后的两条曲线相交于P,Q两点,此时我们称平移后的两条曲线所围部分(如图中阴影部分)为双曲线的“眸”,PQ为双曲线的“眸径“,当双曲线y=(k>0)的眸径为6时,k的值为.五、解答题(本大题共3小题,共30分)26.(8分)为了美化环境,建设宜居成都,我市准备在一个广场上种植甲、乙两种花卉,经市场调查,甲种花卉的种植费用y(元)与种植面积x(m2)之间的函数关系如图所示,乙种花卉的种植费用为每平方米100元.(1)直接写出当0≤x≤300和x>300时,y与x的函数关系式;(2)广场上甲、乙两种花卉的种植面积共1200m2,若甲种花卉的种植面积不少于200m2,且不超过乙种花卉种植面积的2倍,那么应该怎样分配甲、乙两种花卉的种植面积才能使种植总费用最少最少总费用为多少元\27.(10分)在Rt△ABC中,∠ACB=90°,AB=,AC=2,过点B作直线m∥AC,将△ABC 绕点C顺时针旋转得到△A′B′C′(点A,B的对应点分别为A',B′),射线CA′,CB′分別交直线m于点P,Q.(1)如图1,当P与A′重合时,求∠ACA′的度数;(2)如图2,设A′B′与BC的交点为M,当M为A′B′的中点时,求线段PQ的长;(3)在旋转过程中,当点P,Q分别在CA′,CB′的延长线上时,试探究四边形PA'B′Q 的面积是否存在最小值.若存在,求出四边形PA′B′Q的最小面积;若不存在,请说明理由.28.(12分)如图,在平面直角坐标系xOy中,以直线x=对称轴的抛物线y=ax2+bx+c与直线l:y=kx+m(k>0)交于A(1,1),B两点,与y轴交于C(0,5),直线与y轴交于点D.(1)求抛物线的函数表达式;(2)设直线l与抛物线的对称轴的交点为F,G是抛物线上位于对称轴右侧的一点,若=,且△BCG与△BCD面积相等,求点G的坐标;(3)若在x轴上有且仅有一点P,使∠APB=90°,求k的值.2018年四川省成都市中考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)【考点】2A:实数大小比较;29:实数与数轴.【分析】根据实数的大小比较解答即可.【解答】解:由数轴可得:a<b<c<d,故选:D.【点评】此题考查实数大小比较,关键是根据实数的大小比较解答.2.(3分)【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.万=10000=104.【解答】解:40万=4×105,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)【考点】U1:简单几何体的三视图.【分析】根据主视图是从正面看到的图象判定则可.【解答】解:从正面看是左右相邻的3个矩形,中间的矩形的面积较大,两边相同.故选:A.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.4.(3分)【考点】R6:关于原点对称的点的坐标.【分析】根据关于原点对称的点的坐标特点解答.【解答】解:点P(﹣3,﹣5)关于原点对称的点的坐标是(3,5),故选:C.【点评】本题考查的是关于原点的对称的点的坐标,平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),即关于原点的对称点,横纵坐标都变成相反数.5.(3分)【考点】47:幂的乘方与积的乘方;35:合并同类项;46:同底数幂的乘法;4C:完全平方公式.【分析】根据合并同类项法则、完全平方公式、积的乘方法则、同底数幂的乘法法则计算,判断即可.【解答】解:x2+x2=2x2,A错误;(x﹣y)2=x2﹣2xy+y2,B错误;(x2y)3=x6y3,C错误;(﹣x)2•x3=x2•x3=x5,D正确;故选:D.【点评】本题考查的是合并同类项、完全平方公式、积的乘方、同底数幂的乘法,掌握它们的运算法则是解题的关键.6.(3分)【考点】KD:全等三角形的判定与性质.【分析】全等三角形的判定方法有SAS,ASA,AAS,SSS,根据定理逐个判断即可.【解答】解:A、∠A=∠D,∠ABC=∠DCB,BC=BC,符合AAS,即能推出△ABC≌△DCB,故本选项错误;B、∠ABC=∠DCB,BC=CB,∠ACB=∠DBC,符合ASA,即能推出△ABC≌△DCB,故本选项错误;C、∠ABC=∠DCB,AC=BD,BC=BC,不符合全等三角形的判定定理,即不能推出△ABC≌△DCB,故本选项正确;D、AB=DC,∠ABC=∠DCB,BC=BC,符合SAS,即能推出△ABC≌△DCB,故本选项错误;故选:C.【点评】本题考查了全等三角形的性质和判定,等腰三角形的性质的应用,能正确根据全等三角形的判定定理进行推理是解此题的关键,注意:全等三角形的判定方法有SAS,ASA,AAS,SSS.7.(3分)【考点】VD:折线统计图;W1:算术平均数;W4:中位数;W5:众数;W6:极差.【分析】根据折线统计图中的数据可以判断各个选项中的数据是否正确,从而可以解答本题.【解答】解:由图可得,极差是:30﹣20=10℃,故选项A错误,众数是28℃,故选项B正确,这组数按照从小到大排列是:20、22、24、26、28、28、30,故中位数是26℃,故选项C 错误,平均数是:=℃,故选项D错误,故选:B.【点评】本题考查折线统计图、极差、众数、中位数、平均数,解答本题的关键是明确题意,能够判断各个选项中结论是否正确.8.(3分)【考点】B3:解分式方程.【分析】观察可得最简公分母是x(x﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:=1,去分母,方程两边同时乘以x(x﹣2)得:(x+1)(x﹣2)+x=x(x﹣2),x2﹣x﹣2+x=x2﹣2x,x=1,经检验,x=1是原分式方程的解,故选:A.【点评】考查了解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.9.(3分)【考点】MO:扇形面积的计算;L5:平行四边形的性质.【分析】根据平行四边形的性质可以求得∠C的度数,然后根据扇形面积公式即可求得阴影部分的面积.【解答】解:∵在▱ABCD中,∠B=60°,⊙C的半径为3,∴∠C=120°,∴图中阴影部分的面积是:=3π,故选:C.【点评】本题考查扇形面积的计算、平行四边形的性质,解答本题的关键是明确题意,利用扇形面积的计算公式解答.10.(3分)【考点】H3:二次函数的性质;H7:二次函数的最值.【分析】根据题目中的函数解析式可以判断各个选项中的结论是否成立,从而可以解答本题.【解答】解:∵y=2x2+4x﹣1=2(x+1)2﹣3,∴当x=0时,y=﹣1,故选项A错误,该函数的对称轴是直线x=﹣1,故选项B错误,当x<﹣1时,y随x的增大而减小,故选项C错误,当x=﹣1时,y取得最小值,此时y=﹣3,故选项D正确,故选:D.【点评】本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.二、填空题(每小题4分,共16分)11.(4分)【考点】KH:等腰三角形的性质;K7:三角形内角和定理.【分析】本题给出了一个底角为50°,利用等腰三角形的性质得另一底角的大小,然后利用三角形内角和可求顶角的大小.【解答】解:∵等腰三角形底角相等,∴180°﹣50°×2=80°,∴顶角为80°.故填80°.【点评】本题考查等腰三角形的性质,即等边对等角.找出角之间的关系利用三角形内角和求角度是解答本题的关键.12.(4分)【考点】X4:概率公式.【分析】直接利用摸到黄色乒乓球的概率为,利用总数乘以概率即可得出该盒子中装有黄色乒乓球的个数.【解答】解:∵装有除颜色外完全相同的乒乓球共16个,从中随机摸出一个乒乓球,若摸到黄色乒乓球的概率为,∴该盒子中装有黄色乒乓球的个数是:16×=6.故答案为:6.【点评】此题主要考查了概率公式,正确利用摸到黄色乒乓球的概率求出黄球个数是解题关键.13.(4分)【考点】S1:比例的性质.【分析】直接利用已知比例式假设出a,b,c的值,进而利用a+b﹣2c=6,得出答案.【解答】解:∵==,∴设a=6x,b=5x,c=4x,∵a+b﹣2c=6,∴6x+5x﹣8x=6,解得:x=2,故a=12.故答案为:12.【点评】此题主要考查了比例的性质,正确表示出各数是解题关键.14.(4分)【考点】N2:作图—基本作图;KG:线段垂直平分线的性质;LB:矩形的性质.【分析】连接AE,如图,利用基本作图得到MN垂直平分AC,则EA=EC=3,然后利用勾股定理先计算出AD,再计算出AC.【解答】解:连接AE,如图,由作法得MN垂直平分AC,∴EA=EC=3,在Rt△ADE中,AD==,在Rt△ADC中,AC==.故答案为.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).三、解答题(本大题共6个小题,共54分)15.(12分)【考点】6C:分式的混合运算;2C:实数的运算;T5:特殊角的三角函数值.【分析】(1)根据立方根的意义,特殊角锐角三角函数,绝对值的意义即可求出答案.(2)根据分式的运算法则即可求出答案.【解答】解:(1)原式=4+2﹣2×+=6(2)原式=×=×=x﹣1【点评】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.16.(6分)【考点】AA:根的判别式.【分析】根据方程的系数结合根的判别式△>0,即可得出关于a的一元一次不等式,解之即可得出a的取值范围.【解答】解:∵关于x的一元二次方程x2﹣(2a+1)x+a2=0有两个不相等的实数根,∴△=[﹣(2a+1)]2﹣4a2=4a+1>0,解得:a>﹣.【点评】本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.17.(8分)【考点】VC:条形统计图;V5:用样本估计总体;W2:加权平均数.【分析】(1)利用12÷10%=120,即可得到m的值;用120×40%即可得到n的值.(2)根据n的值即可补全条形统计图;(3)根据用样本估计总体,3600××100%,即可答.【解答】解:(1)12÷10%=120,故m=120,n=120×40%=48,m==45%.故答案为%.(2)根据n=48,画出条形图:(3)3600××100%=1980(人),答:估计该景区服务工作平均每天得到1980名游客的肯定.【点评】本题考查了条形统计图、扇形统计图等知识,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.18.(8分)【考点】TB:解直角三角形的应用﹣方向角问题.【分析】根据题意得:∠ACD=70°,∠BCD=37°,AC=80海里,在直角三角形ACD中,由三角函数得出CD=海里,在直角三角形BCD中,得出BD,即可得出答案.【解答】解:由题意得:∠ACD=70°,∠BCD=37°,AC=80海里,在直角三角形ACD中,CD=AC•cos∠ACD=海里,在直角三角形BCD中,BD=CD•tan∠BCD=海里.答:还需航行的距离BD的长为海里.【点评】此题考查了解直角三角形的应用﹣方向角问题,三角函数的应用;求出CD的长度是解决问题的关键.19.(10分)【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)根据一次函数y=x+b的图象经过点A(﹣2,0),可以求得b的值,从而可以解答本题;(2)根据平行四边形的性质和题意,可以求得点M的坐标,注意点M的横坐标大于0.【解答】解:(1)∵一次函数y=x+b的图象经过点A(﹣2,0),∴0=﹣2+b,得b=2,∴一次函数的解析式为y=x+2,∵一次函数的解析式为y=x+2与反比例函数y=(x>0)的图象交于B(a,4),∴4=a+2,得a=2,∴4=,得k=8,即反比例函数解析式为:y=(x>0);(2)∵点A(﹣2,0),∴OA=2,设点M(m﹣2,m),点N(,m),当MN∥AO且MN=AO时,四边形AOMN是平行四边形,||=2,解得,m=2或m=+2,∴点M的坐标为(﹣2,)或(,2+2).【点评】本题考查反比例函数与一次函数的交点问题,解答本题的关键是明确题意,利用数形结合的思想解答.20.(10分)【考点】MR:圆的综合题.【分析】(1)连接OD,由AD为角平分线得到一对角相等,再由等边对等角得到一对角相等,等量代换得到内错角相等,进而得到OD与AC平行,得到OD与BC垂直,即可得证;(2)连接DF,由(1)得到BC为圆O的切线,由弦切角等于夹弧所对的圆周角,进而得到三角形ABD与三角形ADF相似,由相似得比例,即可表示出AD;(3)连接EF,设圆的半径为r,由sinB的值,利用锐角三角函数定义求出r的值,由直径所对的圆周角为直角,得到EF与BC平行,得到sin∠AEF=sinB,进而求出DG的长即可.【解答】(1)证明:如图,连接OD,∵AD为∠BAC的角平分线,∴∠BAD=∠CAD,∵OA=OD,∴∠ODA=∠OAD,∴∠ODA=∠CAD,∴OD∥AC,∵∠C=90°,∴∠ODC=90°,∴OD⊥BC,∴BC为圆O的切线;(2)解:连接DF,由(1)知BC为圆O的切线,∴∠FDC=∠DAF,∴∠CDA=∠CFD,∴∠AFD=∠ADB,∵∠BAD=∠DAF,∴△ABD∽△ADF,∴=,即AD2=AB•AF=xy,则AD=;(3)解:连接EF,在Rt△BOD中,sinB==,设圆的半径为r,可得=,解得:r=5,∴AE=10,AB=18,∵AE是直径,∴∠AFE=∠C=90°,∴EF∥BC,∴∠AEF=∠B,∴sin∠AEF==,∴AF=AE•sin∠AEF=10×=,∵AF∥OD,∴===,即DG=AD,∴AD===,则DG=×=.【点评】此题属于圆的综合题,涉及的知识有:切线的判定与性质,相似三角形的判定与性质,锐角三角函数定义,勾股定理,以及平行线的判定与性质,熟练掌握各自的性质是解本题。

四川省成都市2018年中考数学试题(含答案)

四川省成都市2018年中考数学试题(含答案)

成都市2018年中考数学试题及答案A 卷(共100分) 第Ⅰ卷(共30分)一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.实数,,,a b c d 在数轴上对应的点的位置如图所示,这四个数中最大的是( )A .aB .bC .cD .d年5月21日,西昌卫星发射中心成功发射探月工程嫦娥四号任务“鹊桥号”中继星,卫星进入近地点高度为200公里、远地点高度为40万公里的预定轨道.将数据40万用科学记数法表示为( ) A .60.410⨯ B .5410⨯ C .6410⨯ D .60.410⨯ 3.如图所示的正六棱柱的主视图是( ) [A .B .C .D .4.在平面直角坐标系中,点()3,5P --关于原点对称的点的坐标是( ) A .()3,5- B .()3,5- C.()3,5 D .()3,5--5.下列计算正确的是( )A .224x x x += B .()222x y x y -=- C.()326x yx y = D .()235x x x -•=6.如图,已知ABC DCB ∠=∠,添加以下条件,不能判定ABC DCB ∆∆≌的是( )A .A D ∠=∠B .ACB DBC ∠=∠ C.AC DB =D .AB DC =7.如图是成都市某周内日最高气温的折线统计图,关于这7天的日最高气温的说法正确的是( )A .极差是8℃B .众数是28℃ C.中位数是24℃ D .平均数是26℃!8.分式方程1112xx x++=-的解是()A.y B.1x=- C.3x=D.3x=-9.如图,在ABCD中,60B∠=︒,C⊙的半径为3,则图中阴影部分的面积是()A.πB.2π C.3πD.6π10.关于二次函数2241y x x=+-,下列说法正确的是()A.图像与y轴的交点坐标为()0,1B.图像的对称轴在y轴的右侧C.当0x<时,y的值随x值的增大而减小D.y的最小值为-3第Ⅱ卷(共70分)<二、填空题(每题4分,满分16分,将答案填在答题纸上)11.等腰三角形的一个底角为50︒,则它的顶角的度数为.12.在一个不透明的盒子中,装有除颜色外完全相同的乒乓球共16个,从中随机摸出一个乒乓球,若摸到黄色乒乓球的概率为38,则该盒子中装有黄色兵乓球的个数是.13.已知54a b cb==,且26a b c+-=,则a的值为.14.如图,在矩形ABCD中,按以下步骤作图:①分别以点A和C为圆心,以大于12AC的长为半径作弧,两弧相交于点M和N;②作直线MN交CD于点E.若2DE=,3CE=,则矩形的对角线AC的长为.三、解答题(本大题共6小题,共54分.解答应写出文字说明、证明过程或演算步骤.)15. (1)23282sin603+-︒+-. (2)化简21111xx x⎛⎫-÷⎪+-⎝⎭.16. 若关于x的一元二次方程()22210x a x a-++=有两个不相等的实数根,求a的取值范围.17.为了给游客提供更好的服务,某景区随机对部分游客进行了关于“景区服务工作满意度”的调查,并根据调查结果绘制成如下不完整的统计图表.—根据图标信息,解答下列问题:14题图(2)请补全条形统计图;(3)据统计,该景区平均每天接待游客约3600人,若将“非常满意”和“满意”作为游客对景区服务工作的肯定,请你估计该景区服务工作平均每天得到多少名游客的肯定.18. 由我国完全自主设计、自主建造的首舰国产航母于2018年5月成功完成第一次海上试验任务.如图,航母由西向东航行,到达A 处时,测得小岛C 位于它的北偏东70︒方向,且于航母相距80海里,再航行一段时间后到达处,测得小岛C 位于它的北偏东37︒方向.如果航母继续航行至小岛C 的正南方向的D 处,求还需航行的距离BD 的长.(参考数据:sin700.94︒≈,cos700.34︒≈,tan70 2.75︒≈,sin370.6︒≈,cos370.80︒≈,tan370.75︒≈)19. 如图,在平面直角坐标系xOy 中,一次函数y x b =+的图象经过点()2,0A -,与反比例函数()0ky x x=>的图象交于(),4B a . (1)求一次函数和反比例函数的表达式;(2)设M 是直线AB 上一点,过M 作//MN x 轴,交反比例函数()0ky x x=>的图象于点N ,若,,,A O M N 为顶点的四边形为平行四边形,求点M 的坐标..20.如图,在Rt ABC ∆中,90C ∠=︒,AD 平分BAC ∠交BC 于点D ,O 为AB 上一点,经过点A ,D 的O ⊙分别交AB ,AC 于点E ,F ,连接OF 交AD 于点G .(1)求证:BC 是O ⊙的切线;(2)设AB x =,AF y =,试用含,x y 的代数式表示线段AD 的长; (3)若8BE =,5sin 13B =,求DG 的长.B 卷(共50分)一、填空题(每题4分,满分20分,将答案填在答题纸上)21.已知0.2x y +=,31x y +=,则代数式2244x xy y ++的值为 .22.汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝.如图所示的弦图中,四个直角三角形都是全等的,它们的两直角边之比均为2:3,现随机向该图形内掷一枚小针,则针尖落在阴影区域的概率为.23.已知0a>,11Sa=,211S S=--,321SS=,431S S=--,541SS=,…(即当n为大于1的奇数时,11nnSS-=;当n为大于1的偶数时,11n nS S-=--),按此规律,2018S=.24.如图,在菱形ABCD中,4tan3A=,,M N分别在边,AD BC上,将四边形AMNB沿MN翻折,使AB的对应线段EF经过顶点D,当EF AD⊥时,BNCN的值为.25.设双曲线()0ky kx=>与直线y x=交于A,B两点(点A在第三象限),将双曲线在第一象限的一支沿射线BA的方向平移,使其经过点A,将双曲线在第三象限的一支沿射线AB的方向平移,使其经过点B,平移后的两条曲线相交于点P,Q两点,此时我称平移后的两条曲线所围部分(如图中阴影部分)为双曲线的“眸”,PQ为双曲线的“眸径”当双曲线()0ky kx=>的眸径为6时,k的值为.二、解答题(本大题共3小题,共30分.解答应写出文字说明、证明过程或演算步骤.)26.为了美化环境,建设宜居成都,我市准备在一个广场上种植甲、乙两种花卉.经市场调查,甲种花卉的种植费用y(元)与种植面积()2x m之间的函数关系如图所示,乙种花卉的种植费用为每平方米100元.(1)直接写出当0300x≤≤和300x>时,y与x的函数关系式;(2)广场上甲、乙两种花卉的种植面积共21200m ,若甲种花卉的种植面积不少于2200m ,且不超过乙种花卉种植面积的2倍,那么应该怎忙分配甲、乙两种花卉的种植面积才能使种植费用最少最少总费用为多少元27.在Rt ABC ∆中,90ABC ∠=︒,7AB =,2AC =,过点B 作直线//m AC ,将ABC ∆绕点C 顺时针得到A B C ∆′′(点A ,B 的对应点分别为A ′,B ′)射线CA ′,CB ′分别交直线m 于点P ,Q .(1)如图1,当P 与A ′重合时,求ACA ∠′的度数; (2)如图2,设A B ′′与BC 的交点为M ,当M 为A B ′′的中点时,求线段PQ 的长; (3)在旋转过程时,当点,P Q 分别在CA ′,CB ′的延长线上时,试探究四边形PA B Q ′′的面积是否存在最小值.若存在,求出四边形PA B Q ′′的最小面积;若不存在,请说明理由. 28.如图,在平面直角坐标系xOy 中,以直线512x =为对称轴的抛物线2y ax bx c =++与直线():0l y kx m k =+>交于()1,1A ,B 两点,与y 轴交于()0,5C ,直线l 与y 轴交于D 点.(1)求抛物线的函数表达式;(2)设直线l 与抛物线的对称轴的交点为F 、G 是抛物线上位于对称轴右侧的一点,若34AF FB =,且BCG ∆与BCD ∆面积相等,求点G 的坐标; !(3)若在x 轴上有且仅有一点P ,使90APB ∠=︒,求k 的值.试卷答案 A 卷一、选择题1-5:DBACD 6-10:CBACD11.80︒三、解答题·15.(1)解:原式12242=+-⨯ 124=+94(2)解:原式()()11111x x x x x+-+-=⨯+ ()()111x x xx x+-=⨯+ 1x =-16.解:由题知:()2222214441441a a a a a a ∆=+-=++-=+. 原方程有两个不相等的实数根,410a +>∴,14a >-∴. 17.解:(1)120,45%;(2)比较满意;12040%=48⨯(人)图略; —(3)12+543600=1980120⨯(人).答:该景区服务工作平均每天得到1980人的肯定.18.解:由题知:70ACD ∠=︒,37BCD ∠=︒,80AC =.在Rt ACD ∆中,cos CD ACD AC ∠=,0.3480CD=∴,27.2CD =∴(海里). 在Rt BCD ∆中,tan BD BCD CD ∠=,0.7527.2BD=∴,20.4BD =∴(海里).答:还需要航行的距离BD 的长为海里.19.解:(1)一次函数的图象经过点()2,0A -,20b -+=∴,2b =∴,1y x =+∴.一次函数与反比例函数()0ky x x=>交于(),4B a . 24a +=∴,2a =∴,()2,4B ∴,()80y x x=>∴.)(2)设()2,M m m -,8,N m m ⎛⎫⎪⎝⎭.当//MN AO 且MN AO =时,四边形AOMN 是平行四边形.即:()822m m--=且0m >,解得:22m =或232m =+, M ∴的坐标为()222,22-或()23,232+.20.B 卷12131a a +-2732解:(1)()()130,03008015000.300x x y x x ≤≤⎧⎪=⎨+>⎪⎩(2)设甲种花卉种植为2am ,则乙种花卉种植()21200a m -.()200,21200a a a ≥⎧⎪⎨≤-⎪⎩∴200800a ≤≤∴.当200300a ≤<时,()1130100120030120000W a a a =+-=+. 当200a =时,min 126000W =元.当300800a ≤≤时,()2801500010020013500020W a a a =++-=-. 当800a =时,min 119000W =元.119000126000<,∴当800a =时,总费用最低,最低为119000元.此时乙种花卉种植面积为21200800400m -=.答:应分配甲种花卉种植面积为2800m ,乙种花卉种植面积为2400m ,才能使种植总费用最少,最少总费用为119000元. 27.解:(1)由旋转的性质得:'2AC A C ==.90ACB ∠=︒,//m AC ,'90A BC ∠=︒∴,cos ''BC A CB A C ∠==∴'30A CB ∠=︒∴,'60ACA ∠=︒∴.}(2)M 为''A B 的中点,''A CM MA C ∠=∴.由旋转的性质得:'MA C A ∠=∠,'A A CM ∠=∠∴.tan tan PCB A ∠=∠=∴32PB ==∴.tan tan2Q PCA ∠=∠=,2BQ BC ===∴,72PQ PB BQ =+=∴.(3)''''PA B Q PCQ A CB PCQ S S S S ∆∆∆=-=''PA B Q S ∴最小,PCQ S ∆即最小,12PCQ S PQ BC PQ ∆=⨯=∴. 法一:(几何法)取PQ 中点G ,则90PCQ ∠=︒.12CG PQ =∴. 当CG 最小时,PQ 最小,CG PQ ⊥∴,即CG 与CB 重合时,CG 最小.min CG =∴min PQ =,()min 3PCQ S ∆=∴,''3PA B Q S =.、法二:(代数法)设PB x =,BQ y =.()22222262612x y x y xy x y xy +=++=++≥+=∴.当x y ==“=”成立,PQ ==∴28.解:(1)由题可得:5,225, 1.b a c a b c ⎧-=⎪⎪=⎨⎪++=⎪⎩解得1a =,5b =-,5c =.∴二次函数解析式为:255y x x =-+.(2)作AM x ⊥轴,BN x ⊥轴,垂足分别为,M N ,则34AF MQ FB QN ==. 32MQ =,2NQ =∴,911,24B ⎛⎫ ⎪⎝⎭,1,91,24k m k m +=⎧⎪⎨+=⎪⎩∴,解得1,21,2k m ⎧=⎪⎪⎨⎪=⎪⎩,1122t y x =+∴,102D ⎛⎫ ⎪⎝⎭,. 同理,152BC y x =-+. ?BCD BCG S S ∆∆=,∴①//DG BC (G 在BC 下方),1122DG y x =-+, 2115522x x x -+=-+∴,即22990x x -+=,123,32x x ==∴.52x >,3x =∴,()3,1G -∴.②G 在BC 上方时,直线23G G 与1DG 关于BC 对称.1211922G G y x =-+∴,21195522x x x -+=-+∴,22990x x --=∴.52x >,x =∴,967,48G ⎛⎫+- ⎪ ⎪⎝⎭∴. 综上所述,点G 坐标为()13,1G -;296744G ⎛⎫+- ⎪ ⎪⎝⎭. (3)由题意可得:1k m +=.1m k =-∴,11y kx k =+-∴,2155kx k x x +-=-+∴,即()2540x k x k -+++=.11x =∴,24x k =+,()24,31B k k k +++∴.设AB 的中点为'O ,P 点有且只有一个,∴以AB 为直径的圆与x 轴只有一个交点,且P 为切点.OP x ⊥∴轴,P ∴为MN 的中点,5,02k P +⎛⎫⎪⎝⎭∴. AMP PNB ∆∆∽,AM PNPM BN=∴,AM BN PN PM •=•∴, ()255314122k k k k k ++⎛⎫⎛⎫⨯++=+-- ⎪⎪⎝⎭⎝⎭∴1,即23650k k +-=,960∆=>.0k >,1k ==-∴.。

2018年四川成都市中考数学模拟试题(一)含答案

2018年四川成都市中考数学模拟试题(一)含答案

成都市2018年高中阶段教育学校统一招生考试(含成都市初三毕业会考)模拟试卷1(满分:150分考试时间:120分钟)A卷(共100分)第I卷选择题(共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.﹣6的绝对值是()A.6 B.﹣6 C.±6 D.2.用4个小立方块搭成如图所示的几何体,该几何体的左视图是()第2题A.B.C.D.3.在下列交通标志中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.4.“PM2.5”是指大气中危害健康的直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物,它们含有大量的有毒、有害物质,对人体健康和大气环境质量有很大危害,2.5微米即0.0000025米.将0.0000025用科学记数法表示为()A.2.5×10﹣7B.2.5×10﹣6C.25×10﹣7D.0.25×10﹣55.下列计算正确的是()A.x2+x3=x5B.x2•x3=x6C.(x2)3=x5D.x5÷x3=x26.函数y=中的自变量x的取值范围是()A.x≥0 B.x≠2 C.x>0 D.x≥0且x≠27.一元二次方程x2﹣4x+5=0的根的情况是()A.没有实数根B.只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根8.如图,已知D、E在△ABC的边上,DE∥BC,∠B=60°,∠AED=40°,则∠A的度数为()A.100°B.90°C.80°D.70°第8题第9题第10题9.如图,AB是⊙O的直径,若∠BAC=35°,则∠ADC= ()A.35°B.55°C.70°D.110°10.如图,在4×4的正方形网格中,每个小正方形的边长为1,若将△AOC绕点O顺时针旋转90°得到△BOD,则的长为()A.πB.6πC.3πD.1.5π第II卷非选择题(共70分)二、填空题(本大题共4小题,每小题4分,共16分.请把答案填在题中的横线上)11.分解因式:x3﹣4x2﹣12x=.12.若等腰三角形两边长分别为3和5,则它的周长是.13.在某公益活动中,小明对本班同学的捐款情况进行了统计,绘制成如图不完整的统计图.其中捐100元的人数占全班总人数的25%,则本次捐款的中位数是元.第13题第14题14.如图,锐角三角形ABC中,直线PL为BC的垂直平分线,射线BM为∠ABC的平分线,PL与BM相交于P点.若∠PBC=30°,∠ACP=20°,则∠A的度数为°.三、解答题(本大题共6小题,共54分,解答应写出必要的文字说明,证明过程或演算步骤)15.(12分)(1)计算:()﹣2+(π﹣2014)0+sin60°+|﹣2|;(2)求不等式组的整数解.16.(8分)先化简,再求值:(﹣)÷,其中a=﹣1.17.(8分)如图,据热气球的探测器显示,从热气球A看一栋高楼顶部B的仰角为30°,看这栋高楼底部C的俯角为60°,热气球A与高楼的水平距离为120m,求这栋高楼BC的高度.第17题18.(8分)如图,已知A(﹣4,),B(﹣1,a)是一次函数y=x+b与反比例函数y=(m≠0,m<0)图象的两个交点,AC⊥x轴于C,BD⊥y轴于D.(1)求m、a的值及一次函数表达式;(2)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标.第18题19.(8分)为了解中考体育科目训练情况,某县从全县九年级学生中随机抽取了部分学生进行了一次中考体育科目测试(把测试结果分为四个等级:A级:优秀;B级:良好;C级:及格;D级:不及格),并将测试结果绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题:第19题(1)本次抽样测试的学生人数是;(2)图1中∠α的度数是,并把图2条形统计图补充完整;(3)该县九年级有学生3500名,如果全部参加这次中考体育科目测试,请估计不及格的人数为.(4)测试老师想从4位同学(分别记为E、F、G、H,其中E为小明)中随机选择两位同学了解平时训练情况,请用列表或画树形图的方法求出选中小明的概率.20.(10分)已知如图半圆O的半径OA=4,P是OA延长线上一点,过线段OP的中点B 作垂线交⊙O于点C,射线PC交⊙O于点D,联结OD.(1)若=,求∠COD的度数;(2)若=,求弦CD的长;(3)若点C在上时,设PA=x,CD=y,求y与x的函数关系式及自变量x的取值范围.第20题B卷(共50分)一、填空题(本大题共5小题,每小题4分,共20分.请把答案填在题中的横线上)21.设一元二次方程x2﹣8x+3=0的两实数根分为x1和x2,则x12﹣11x1﹣3x2+5=.22.如图,是由四个直角边分别为3和4的全等的直角三角形拼成的“赵爽弦图”,小亮随机的往大正方形区域内投针一次,则针扎在阴影部分的概率是.第22题23.为确保信息安全,信息需加密传输,发送方由明文→密文(加密);接收方由密文→明文(解密).已知加密规则为:明文a,b,c,d对应的密文为a+b,b+c,c+d,d+2a.例如:明文1,2,3,4对应的密文为3,5,7,6.当接收方收到密文8,11,15,15时,则解密得到的明文应为.24.如图,在矩形ABCD中,AB的长度为a,BC的长度为b,其中b<a<b.将此矩形纸片按下列顺序折叠,则C′D′的长度为(用含a、b的代数式表示).第24题25.如图,在平面直角坐标系中,直线y=﹣x+1分别交x轴、y轴于A,B两点,点P(a,b)是反比例函数y=在第一象限内的任意一点,过点P分别作PM⊥x轴于点M,PN⊥y 轴于点N,PM,PN分别交直线AB于E,F,有下列结论:①AF=BE;②图中的等腰直角三角形有4个;③S△OEF=(a+b﹣1);④∠EOF=45°.其中结论正确的序号是.第25题二、解答题(本大题共3小题,共30分,解答应写出必要的文字说明,证明过程或演算步骤)26.(8分)由于国家重点扶持节能环保产业,某种节能产品的销售市场逐渐回暖,某经销商销售这种产品,年初与生产厂家签订了一份进货合同,约定一年内进价为0.1万元/台.若一年内该产品的售价y(万元/台)与月份x(1≤x≤12且为整数)满足关系式:y=,一年后,发现这一年来实际每月的销售量p(台)与月份x之间存在如图所示的变化趋势.(1)求实际每月的销售量p(台)与月份x之间的函数表达式;(2)全年中哪个月份的实际销售利润w最高,最高为多少万元?第26题27.(10分)已知:如图,菱形ABCD中,对角线AC,BD相交于点O,且AC=12cm,BD=16cm.点P从点B出发,沿BA方向匀速运动,速度为1cm/s;同时,直线EF从点D出发,沿DB 方向匀速运动,速度为1cm/s,EF⊥BD,且与AD,BD,CD分别交于点E,Q,F;当直线EF停止运动时,点P也停止运动.连接PF,设运动时间为t(s)(0<t<8).解答下列问题:(1)当t为何值时,四边形APFD是平行四边形?(2)设四边形APFE的面积为y(cm2),求y与t之间的函数关系式;(3)是否存在某一时刻t,使S四边形APFE:S菱形ABCD=17:40?若存在,求出t的值,并求出此时P,E两点间的距离;若不存在,请说明理由.第27题28.(12分)如图1,在平面直角坐标系中,已知点A的坐标是(4,0),并且OA=OC=4OB,动点P在过A,B,C三点的抛物线上.(1)求抛物线的解析式;(2)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;(3)过动点P作PE垂直于y轴于点E,交直线AC于点D,过点D作x轴的垂线.垂足为F,连接EF,以线段EF的中点G为圆心,以EF为直径作⊙G,当⊙G最小时,求出点P的坐标.第28题成都市2018年高中阶段教育学校统一招生考试(含成都市初三毕业会考)模拟试卷1(参考答案)A卷一、1.A解析:﹣6的绝对值是6,故选A.2.A 解析:从几何体左面看得到一列正方形的个数为2,故选A.3.C 解析:A、是轴对称图形,不是中心对称图形.故错误;B、不是轴对称图形,也不是中心对称图形.故错误;C、是轴对称图形,也是中心对称图形.故正确;D、不是轴对称图形,也不是中心对称图形.故错误.故选C.4.B 解析:0.0000025=2.5×10﹣6.故选B.5.D 解析:A、x2与x3不是同类项,不能合并,故此选项错误;B、x2•x3=x2+3=x5,故此选项错误;C、(x2)3=x6,故此选项错误;D、x5÷x3=x2,故此选项正确;故选D.6.D 解析:由题意,得x≥0且x﹣2≠0.解得x≥0且x≠2,故选D.7.A 解析:∵一元二次方程x2﹣4x+5=0,∴△=(﹣4)2﹣4×5=16﹣20=﹣4<0,即△<0,∴一元二次方程x2﹣4x+5=0无实数根,故选A.8.C 解析:∵DE∥BC,∠AED=40°,∴∠C=∠AED=40°,∵∠B=60°,∴∠A=180°﹣∠C ﹣∠B=180°﹣40°﹣60°=80°.故选C.9.B 解析:∵AB是⊙O的直径,∴∠ACB=90°,∵∠BAC=35°,∴∠ABC=180°﹣90°﹣35°=55°,∴∠ADC=∠ABC=55°.故选B.10.D 解析:的长==1.5π.故选D.二. 11.x(x+2)(x﹣6)解析:x3﹣4x2﹣12x=x(x2﹣4x﹣12)=x(x+2)(x﹣6).12.11或13 解析:有两种情况:①腰长为3,底边长为5,三边为:3,3,5可构成三角形,周长=3+3+5=11;②腰长为5,底边长为3,三边为:5,5,3可构成三角形,周长=5+5+3=13.13.20 解析:∵捐100元的15人占全班总人数的25%,∴全班总人数为15÷25%=60人,∴捐款20元的有60﹣20﹣15﹣10=15人,∴中位数是第30和第31人的平均数,均为20元∴中位数为20元.14.70 解析:∵射线BM为∠ABC的平分线,∠PBC=30°,∴∠ABC=60°,∵直线PL 为BC的垂直平分线,∴∠PCB=30°,∴∠A的度数=180°﹣60°﹣30°﹣20°=70°,三、15.解:(1)原式=9+1++2﹣=12﹣;(2),由①得:x≥1;由②得:x<4,∴不等式组的解集为1≤x<4,则原不等式组的整数解为1,2,3.16.解:原式=÷=•(a+1)=,当a=﹣1时,原式==﹣7﹣4.17.解:过A作AD⊥BC,垂足为D.在Rt△ABD中,∵∠BAD=30°,AD=120m,∴BD=AD•tan30°=120×=40m,在Rt△ACD中,∵∠CAD=60°,AD=120m,∴CD=AD•tan60°=120×=120m,∴BC=BD+CD=40+120=160m.18.解:(1)∵反比例y=的图象过点(﹣4,),∴m=﹣4×=﹣2,把B(﹣1,a)代入y=﹣得﹣a=2,解得a=﹣2,∵y=x+b的图象过点A(﹣4,)∴×(﹣4)+b=,解得b=,∴一次函数的表达式是y=x+;(2)连接PC、PD,如图,设P(x,x+),∵△PCA和△PDB面积相等,∴××(x+4)=×|﹣1|×(2﹣x﹣),解得x=,当x=时,y=x+=,∴P点坐标是(﹣,).19.解:(1)本次抽样测试的学生人数是:=40(人),故答案为40;(2)根据题意,得360°×=54°,答:图1中∠α的度数是54°;C级的人数是:40﹣6﹣12﹣8=14(人),如图:故答案为:54°;(3)根据题意,得3500×=700(人),答:不及格的人数为700人.故答案为700;(4)根据题意画树形图如下:共有12种情况,选中小明的有6种,则P(选中小明)==.20.解:(1)连接OC,如图1,∵BC⊥PO,PB=OB,∴CP=CO,∴∠P=∠COP,∵,∴∠DOC=∠COP,在△COD中,2∠DCO+∠DOC=180°,∵∠DCO=∠P+∠COP=2∠COP=2∠DOC,∴5∠DOC=180°,∴∠DOC=36°;(2)∵,∴∠DOC=∠COP,∵BC垂直平分OP,∴PC=OC=4,∴∠P=∠POC=∠DOC,∴△DOC∽△DPO,∴=,设CD=y,则16=(y+4)y,解得:y=2﹣2,即CD的长为2﹣2;(3)延长PO交圆于Q点,连结AC,如图2,∵∠PQD+∠ACD=180°,∴∠PCA=∠PQD,∵∠P=∠P,∴△PCA∽△PQD,∴,∴4(4+y)=x(x+8),∴y=(4﹣4<x<4).B卷一. 21.﹣22 解析:∵一元二次方程x2﹣8x+3=0的两实数根分为x1和x2,∴x12﹣8x1+3=0,即x12﹣8x1=﹣3,x1+x2=8,∴x12﹣11x1﹣3x2+5=x12﹣8x1﹣3(x1+x2)+5=﹣3﹣3×8+5=﹣22.22.解析:根据勾股定理可知正方形的边长为5,面积为25,阴影部分的面积=正方形的面积﹣4个三角形的面积=25﹣4××3×4=25﹣24=1,故针扎在阴影部分的概率.23.3,5,6,9 解析:设密文8,11,15,15分别对应的明文为a,b,c,d,由题意,得,解得:.24.3a﹣2b 解析:由轴对称可以得出A′B=AB=a,∵BC=b,∴A′C=b﹣a.由轴对称可以得出A′C′=b﹣a,∴C′D′=a﹣2(b﹣a),∴C′D′=3a﹣2b.25.②③④解析:∵P(a,b),∴OM=a,PM=b,∴点E的横坐标为a,F的纵坐标为b,又E和F都在直线y=﹣x+1上,∴点E(a,1﹣a),点F(1﹣b,b),即OM=a,EM=1﹣a,ON=b,NF=1﹣b,∴PE=PM﹣EM=b﹣(1﹣a)=a+b﹣1,PF=PN﹣NF=a﹣(1﹣b)=a+b﹣1,∴S△EOF=S矩形MONP﹣S△EMO﹣S△FNO﹣S△EPF,=ab﹣a(1﹣a)﹣b(1﹣b)﹣(a+b ﹣1)2=(a+b﹣1),选项③正确;∵BE==a,AF==b,∴BE与AF不一定相等,选项①错误;∵直线y=﹣x+1分别交x轴、y轴于A,B两点,∴令x=0,求出y=1,即B(0,1);令y=0,求出x=1,即A(1,0),∵OA=OB=1,且∠AOB=90°,即△AOB为等腰直角三角形,又∠BNF=90°,∠NBF=45°,∴△BNF为等腰直角三角形,同理△PEF和△AEM都为等腰直角三角形,则图中等腰三角形有4个,选项②正确;∵△AOB为等腰直角三角形,∴∠FAO=∠EBO=45°,∵点P(a,b)是曲线y=上一点,∴2ab=1,即AF•BE=a•b=2ab=1,又∵OA•OB=1,∴=,∴△AOF∽△BEO,∴∠AFO=∠BOE,又∠BOE=∠BOF+∠FOE,且∠AFO=∠OBF+∠BOF,∴∠FOE=∠OBE,又∠OBE=45°,则∠FOE=45°,选项④正确,综上,正确选项的序号有:②③④.二、26.解:(1)p=,(2)①当1≤x<4时,w=(﹣0.05x+0.4﹣0.1)×(﹣5x+40)=(x﹣6)(x﹣8)=x2﹣x+12 ∵a=>0,﹣=7>4,∴当1≤x<4时,w随x的增大而减小,∴当x=1时取得w的最大值为:×12﹣×1+12=8.75 (万元).②当4≤x≤12时,w=(0.2﹣0.1)×(2x+12)=x+∵k=>0,∴当4≤x≤12时,w随x的增大而增大,∴当x=12时取得w的最大值为3.6:×12+=3.6 (万元).综上得:全年中1月份的实际销售利润w最高为8.75万元.27.解:(1)∵四边形ABCD是菱形,∴AB∥CD,AC⊥BD,OA=OC=AC=6,OB=OD=BD=8.在Rt△AOB中,AB==10.∵EF⊥BD,∴∠FQD=∠COD=90°.又∵∠FDQ=∠CDO,∴△DFQ∽△DCO.∴=.即=,∴DF=t.∵四边形APFD是平行四边形,∴AP=DF.即10﹣t=t,解这个方程,得t=.∴当t=s时,四边形APFD是平行四边形.(2)如图,过点C作CG⊥AB于点G,∵S菱形ABCD=AB•CG=AC•BD,即10•CG=×12×16,∴CG=.∴S梯形APFD=(AP+DF)•CG=(10﹣t+t)•=t+48.∵△DFQ∽△DCO,∴=.即=,∴QF=t.同理,EQ=t.∴EF=QF+EQ=t.∴S△EFD=EF•QD=×t×t=t2.∴y=(t+48)﹣t2= ﹣t2+t+48.(3)如图,过点P作PM⊥EF于点M,PN⊥BD于点N,若S四边形APFE:S菱形ABCD=17:40,则﹣t2+t+48=×96,即5t2﹣8t﹣48=0,解这个方程,得t1=4,t2=﹣(舍去)过点P作PM⊥EF于点M,PN⊥BD于点N,当t=4时,∵△PBN∽△ABO,∴==,即==.∴PN=,BN=.∴EM=EQ﹣MQ==.PM=BD ﹣BN﹣DQ==.在Rt△PME中,PE===(cm).28.解:(1)由A(4,0),可知OA=4,∵OA=OC=4OB,∴OA=OC=4,OB=1,∴C(0,4),B(﹣1,0).设抛物线的解析式是y=ax2+bx+x,则,解得:,则抛物线的解析式是:y=﹣x2+3x+4;(2)存在.第一种情况,如图1,当以C为直角顶点时,过点C作CP1⊥AC,交抛物线于点P1.过点P1作y轴的垂线,垂足是M.∵∠ACP1=90°,∴∠MCP1+∠ACO=90°.∵∠ACO+∠OAC=90°,∴∠MCP1=∠OAC.∵OA=OC,∴∠MCP1=∠OAC=45°,∴∠MCP1=∠MP1C,∴MC=MP1,设P(m,﹣m2+3m+4),则m=﹣m2+3m+4﹣4,解得:m1=0(舍去),m2=2.∴﹣m2+3m+4=6,即P(2,6).第二种情况,如图1,当点A 为直角顶点时,过A作AP2,AC交抛物线于点P2,过点P2作y轴的垂线,垂足是N,AP 交y轴于点F.∴P2N∥x轴,由∠CAO=45°,∴∠OAP=45°,∴∠FP2N=45°,AO=OF.∴P2N=NF,设P2(n,﹣n2+3n+4),则n=(﹣n2+3n+4)﹣1,解得:n1=﹣2,n2=4(舍去),∴﹣n2+3n+4=﹣6,则P2的坐标是(﹣2,﹣6).综上所述,P的坐标是(2,6)或(﹣2,﹣6);(3)如图2,连接OD,由题意可知,四边形OFDE是矩形,则OD=EF.根据垂线段最短,可得当OD⊥AC时,OD最短,即EF最短.由(1)可知,在直角△AOC中,OC=OA=4,则AC==4,根据等腰三角形的性质,D是AC的中点.又∵DF∥OC,∴DF=OC=2,∴点P的纵坐标是2.则﹣x2+3x+1=2,解得:x=,∴当EF最短时,圆最小.点P的坐标是:(,2)或(,2).。

成都市2018年中考数学试卷及答案解析

成都市2018年中考数学试卷及答案解析

成都市2018年中考数学试卷及答案解析A 卷(共100分)第Ⅰ卷(共30分)一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.实数,,,a b c d 在数轴上对应的点的位置如图所示,这四个数中最大的是()A.a B.b C.c D.d2.2018年5月21日,西昌卫星发射中心成功发射探月工程嫦娥四号任务“鹊桥号”中继星,卫星进入近地点高度为200公里、远地点高度为40万公里的预定轨道.将数据40万用科学记数法表示为()A.60.410⨯B.5410⨯C.6410⨯D.60.410⨯3.如图所示的正六棱柱的主视图是()A.B.C.D.4.在平面直角坐标系中,点()3,5P --关于原点对称的点的坐标是()A.()3,5-B.()3,5- C.()3,5D.()3,5--5.下列计算正确的是()A.224x x x +=B.()222x y x y-=- C.()326x yx y=D.()235xxx -∙=6.如图,已知ABC DCB ∠=∠,添加以下条件,不能判定ABC DCB ∆∆≌的是()A.A D ∠=∠B.ACB DBC ∠=∠ C.AC DB =D.AB DC=7.如图是成都市某周内日最高气温的折线统计图,关于这7天的日最高气温的说法正确的是()A.极差是8℃B.众数是28℃ C.中位数是24℃D.平均数是26℃8.分式方程1112x x x ++=-的解是()A.yB.1x =- C.3x =D.3x =-9.如图,在ABCD 中,60B ∠=︒,C ⊙的半径为3,则图中阴影部分的面积是()A.πB.2π C.3πD.6π10.关于二次函数2241y x x =+-,下列说法正确的是()A.图像与y 轴的交点坐标为()0,1B.图像的对称轴在y 轴的右侧C.当0x <时,y 的值随x 值的增大而减小D.y 的最小值为-3第Ⅱ卷(共70分)二、填空题(每题4分,满分16分,将答案填在答题纸上)11.等腰三角形的一个底角为50︒,则它的顶角的度数为.12.在一个不透明的盒子中,装有除颜色外完全相同的乒乓球共16个,从中随机摸出一个乒乓球,若摸到黄色乒乓球的概率为38,则该盒子中装有黄色兵乓球的个数是.13.已知54a b cb ==,且26a bc +-=,则a 的值为.14.如图,在矩形ABCD 中,按以下步骤作图:①分别以点A 和C 为圆心,以大于12AC 的长为半径作弧,两弧相交于点M 和N ;②作直线MN 交CD 于点E .若2DE =,3CE =,则矩形的对角线AC 的长为.三、解答题(本大题共6小题,共54分.解答应写出文字说明、证明过程或演算步骤.)15.(1)23282sin 603+-︒+-.(2)化简21111xx x ⎛⎫-÷ ⎪+-⎝⎭.16.若关于x 的一元二次方程()22210x a x a -++=有两个不相等的实数根,求a 的取值范围.17.为了给游客提供更好的服务,某景区随机对部分游客进行了关于“景区服务工作满意度”的调查,并根据调查结果绘制成如下不完整的统计图表.根据图标信息,解答下列问题:(1)本次调查的总人数为,表中m 的值;(2)请补全条形统计图;(3)据统计,该景区平均每天接待游客约3600人,若将“非常满意”和“满意”作为游客对景区服务工作的肯定,请你估计该景区服务工作平均每天得到多少名游客的肯定.18.由我国完全自主设计、自主建造的首舰国产航母于2018年5月成功完成第一次海上试验任务.如图,航母由西向东航行,到达A 处时,测得小岛C 位于它的北偏东70︒方向,且于航母相距80海里,再航行一段时间后到达处,测得小岛C 位于它的北偏东37︒方向.如果航母继续航行至小岛C 的正南方向的D 处,求还需航行的距离BD 的长.(参考数据:sin 700.94︒≈,cos 700.34︒≈,tan 70 2.75︒≈,sin 370.6︒≈,cos370.80︒≈,tan 370.75︒≈)19.如图,在平面直角坐标系xOy 中,一次函数y x b =+的图象经过点()2,0A -,与反比例函数()0ky x x=>的图象交于(),4B a .(1)求一次函数和反比例函数的表达式;(2)设M 是直线AB 上一点,过M 作//MN x 轴,交反比例函数()0ky x x=>的图象于点N ,若,,,A O M N 为顶点的四边形为平行四边形,求点M 的坐标.20.如图,在Rt ABC ∆中,90C ∠=︒,AD 平分BAC ∠交BC 于点D ,O 为AB 上一点,经过点A ,D 的O ⊙分别交AB ,AC 于点E ,F ,连接OF 交AD 于点G .(1)求证:BC 是O ⊙的切线;(2)设AB x =,AF y =,试用含,x y 的代数式表示线段AD 的长;(3)若8BE =,5sin 13B =,求DG 的长.B 卷(共50分)一、填空题(每题4分,满分20分,将答案填在答题纸上)21.已知0.2x y +=,31x y +=,则代数式2244x xy y ++的值为.22.汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝.如图所示的弦图中,四个直角三角形都是全等的,它们的两直角边之比均为2:3,现随机向该图形内掷一枚小针,则针尖落在阴影区域的概率为.23.已知0a >,11S a =,211S S =--,321S S =,431S S =--,541S S =,…(即当n 为大于1的奇数时,11n n S S -=;当n 为大于1的偶数时,11n n S S -=--),按此规律,2018S =.24.如图,在菱形ABCD 中,4tan 3A =,,M N 分别在边,AD BC 上,将四边形AMNB 沿MN 翻折,使AB 的对应线段EF 经过顶点D ,当EF AD ⊥时,BNCN的值为.25.设双曲线()0ky k x=>与直线y x =交于A ,B 两点(点A 在第三象限),将双曲线在第一象限的一支沿射线BA 的方向平移,使其经过点A ,将双曲线在第三象限的一支沿射线AB 的方向平移,使其经过点B ,平移后的两条曲线相交于点P ,Q 两点,此时我称平移后的两条曲线所围部分(如图中阴影部分)为双曲线的“眸”,PQ 为双曲线的“眸径”当双曲线()0ky k x=>的眸径为6时,k 的值为.二、解答题(本大题共3小题,共30分.解答应写出文字说明、证明过程或演算步骤.)26.为了美化环境,建设宜居成都,我市准备在一个广场上种植甲、乙两种花卉.经市场调查,甲种花卉的种植费用y (元)与种植面积()2x m 之间的函数关系如图所示,乙种花卉的种植费用为每平方米100元.(1)直接写出当0300x ≤≤和300x >时,y 与x 的函数关系式;(2)广场上甲、乙两种花卉的种植面积共21200m ,若甲种花卉的种植面积不少于2200m ,且不超过乙种花卉种植面积的2倍,那么应该怎忙分配甲、乙两种花卉的种植面积才能使种植费用最少?最少总费用为多少元?27.在Rt ABC ∆中,90ABC ∠=︒,7AB =,2AC =,过点B 作直线//m AC ,将ABC∆绕点C 顺时针得到A B C ∆′′(点A ,B 的对应点分别为A ′,B ′)射线CA ′,CB ′分别交直线m 于点P ,Q .(1)如图1,当P 与A ′重合时,求ACA ∠′的度数;(2)如图2,设A B ′′与BC 的交点为M ,当M 为A B ′′的中点时,求线段PQ 的长;(3)在旋转过程时,当点,P Q 分别在CA ′,CB ′的延长线上时,试探究四边形PA B Q ′′的面积是否存在最小值.若存在,求出四边形PA B Q ′′的最小面积;若不存在,请说明理由.28.如图,在平面直角坐标系xOy 中,以直线512x =为对称轴的抛物线2y ax bx c =++与直线():0l y kx m k =+>交于()1,1A ,B 两点,与y 轴交于()0,5C ,直线l 与y 轴交于D 点.(1)求抛物线的函数表达式;(2)设直线l 与抛物线的对称轴的交点为F 、G 是抛物线上位于对称轴右侧的一点,若34AF FB =,且BCG ∆与BCD ∆面积相等,求点G 的坐标;(3)若在x 轴上有且仅有一点P ,使90APB ∠=︒,求k 的值.试卷答案A 卷一、选择题1-5:DBACD6-10:CBACD二、填空题11.80︒12.613.1214.30三、解答题15.(1)解:原式1322342=+-⨯+12334=+-+94(2)解:原式()()11111x x x x x+-+-=⨯+()()111x x xx x +-=⨯+1x =-16.解:由题知:()2222214441441a a a a a a ∆=+-=++-=+. 原方程有两个不相等的实数根,410a +>∴,14a >-∴.17.解:(1)120,45%;(2)比较满意;12040%=48⨯(人)图略;(3)12+543600=1980120⨯(人).答:该景区服务工作平均每天得到1980人的肯定.18.解:由题知:70ACD ∠=︒,37BCD ∠=︒,80AC =.在Rt ACD ∆中,cos CDACD AC ∠=,0.3480CD=∴,27.2CD =∴(海里).在Rt BCD ∆中,tan BDBCD CD ∠=,0.7527.2BD=∴,20.4BD =∴(海里).答:还需要航行的距离BD 的长为20.4海里.19.解:(1) 一次函数的图象经过点()2,0A -,20b -+=∴,2b =∴,1y x =+∴.一次函数与反比例函数()0ky x x =>交于(),4B a .24a +=∴,2a =∴,()2,4B ∴,()80y x x =>∴.(2)设()2,M m m -,8,N m m ⎛⎫ ⎪⎝⎭.当//MN AO 且MN AO =时,四边形AOMN 是平行四边形.即:()822m m --=且0m >,解得:22m =或232m =+,M ∴的坐标为()222,22-或()23,232+.20.B卷21.0.3622.12 1323.1a a+-24.2725.3226.解:(1)()()130,03008015000.300x x y x x ≤≤⎧⎪=⎨+>⎪⎩(2)设甲种花卉种植为2am ,则乙种花卉种植()21200a m -.()200,21200a a a ≥⎧⎪⎨≤-⎪⎩∴200800a ≤≤∴.当200300a ≤<时,()1130100120030120000W a a a =+-=+.当200a =时,min 126000W =元.当300800a ≤≤时,()2801500010020013500020W a a a =++-=-.当800a =时,min 119000W =元.119000126000< ,∴当800a =时,总费用最低,最低为119000元.此时乙种花卉种植面积为21200800400m -=.答:应分配甲种花卉种植面积为2800m ,乙种花卉种植面积为2400m ,才能使种植总费用最少,最少总费用为119000元.27.解:(1)由旋转的性质得:'2AC A C ==.90ACB ∠=︒ ,//m AC ,'90A BC ∠=︒∴,3cos ''2BC A CB A C ∠==∴,'30A CB ∠=︒∴,'60ACA ∠=︒∴.(2)M 为''A B 的中点,''A CM MA C ∠=∴.由旋转的性质得:'MA C A ∠=∠,'A A CM ∠=∠∴.3tan tan 2PCB A ∠=∠=∴,3322PB BC ==∴.3tan tan 2Q PCA ∠=∠= ,223233BQ BC =⨯=⨯=∴,72PQ PB BQ =+=∴.(3)''''3PA B Q PCQ A CB PCQ S S S S ∆∆∆=-=-,''PA B Q S ∴最小,PCQ S ∆即最小,1322PCQ S PQ BC PQ ∆=⨯=∴.法一:(几何法)取PQ 中点G ,则90PCQ ∠=︒.12CG PQ =∴.当CG 最小时,PQ 最小,CG PQ ⊥∴,即CG 与CB 重合时,CG 最小.min 3CG =∴,min 23PQ =,()min 3PCQ S ∆=∴,''33PA B Q S =-.法二:(代数法)设PB x =,BQ y =.由射影定理得:3xy =,∴当PQ 最小,即x y +最小,()22222262612x y x y xy x y xy +=++=++≥+=∴.当3x y ==时,“=”成立,3323PQ =+=∴.28.解:(1)由题可得:5,225, 1.b ac a b c ⎧-=⎪⎪=⎨⎪++=⎪⎩解得1a =,5b =-,5c =.∴二次函数解析式为:255y x x =-+.(2)作AM x ⊥轴,BN x ⊥轴,垂足分别为,M N ,则34AF MQ FB QN ==.32MQ = ,2NQ =∴,911,24B ⎛⎫⎪⎝⎭,1,91,24k m k m +=⎧⎪⎨+=⎪⎩∴,解得1,21,2k m ⎧=⎪⎪⎨⎪=⎪⎩,1122ty x =+∴,102D ⎛⎫ ⎪⎝⎭,.同理,152BC y x =-+.BCD BCG S S ∆∆= ,∴①//DG BC (G 在BC 下方),1122DG y x =-+,2115522x x x -+=-+∴,即22990x x -+=,123,32x x ==∴.52x >,3x =∴,()3,1G -∴.②G 在BC 上方时,直线23G G 与1DG 关于BC 对称.1211922G G y x =-+∴,21195522x x x -+=-+∴,22990x x --=∴.52x > ,93174x +=∴,931767317,48G ⎛⎫+- ⎪ ⎪⎝⎭∴.综上所述,点G 坐标为()13,1G -;2931767317,44G ⎛⎫+- ⎪ ⎪⎝⎭.(3)由题意可得:1k m +=.1m k =-∴,11y kx k =+-∴,2155kx k x x +-=-+∴,即()2540x k x k -+++=.11x =∴,24x k =+,()24,31B k k k +++∴.设AB 的中点为'O ,P 点有且只有一个,∴以AB 为直径的圆与x 轴只有一个交点,且P 为切点.OP x ⊥∴轴,P ∴为MN 的中点,5,02k P +⎛⎫ ⎪⎝⎭∴.AMP PNB ∆∆ ∽,AM PN PM BN=∴,AM BN PN PM ∙=∙∴,()255314122k k k k k ++⎛⎫⎛⎫⨯++=+-- ⎪⎪⎝⎭⎝⎭∴1,即23650k k +-=,960∆=>.0k > ,64626163k -+==-+∴.。

2018年四川省成都市中考数学试卷(含答案与解析)

2018年四川省成都市中考数学试卷(含答案与解析)

---------------- 密★启用前 四川省成都市 2018 年高中阶段教育学校统一招生考试数学_-------------------- 第Ⅰ卷(选择题 共 30 分)__ __ _号 卷生 __ 考 __ __ 上 __答 __ --------------------⨯104B . 4 ⨯105C . 4 ⨯106D . 0.4 ⨯107 3.如图所示的正六棱柱的主视图是 ____ _ -------------------- 8.分式方程 x + 1 --------------------面直角坐标系中,点 P(-3, -5) 关于原点对称的点的坐标是 A .a _ __ __ __ __ 一项是符合题目要求的)__ ( )__ _ _ _ _ _ _ 2.2018 年 5 月 21 日,西昌卫星发射中心成功发射探月工程嫦娥四号任务“鹊桥号”中继 _ _ _ _ 星,卫星进入近地点高度为 200 公里、远地点高度为 40 万公里的预定轨道.将数据 40 _ _ 名 __ 万用科学记数法表示为 ( ) 姓 __ _ __ __ _题校 学 业 毕-------------绝在--------------------(本试卷满分 150 分,考试时间 120 分钟)此 A 卷(共 100 分)一、选择题(本大题共 10 小题,每小题 3 分,共 30 分.在每小题给出的四个选项中,只有--------------------1.实数 a ,b ,c ,d 在数轴上对应的点的位置如图所示,这四个数中最大的是-------------------- B .b C .c D .d( )A B C D无4.在平( )A . (3,-5)B . (-3,5)C . (3,5)D . (-3,-5)5.下列计算正确的是( )A . x 2 + x 2 = x 4B . ( x - y)2 = x 2 - y 2C . ( x 2 y)3 = x 6 yD . (- x 2 ) x 3 = x 56.如图,已知 ∠ABC = ∠DCB ,添加以下条件 ,不能判定 △ABC ≌△DCB 的是 ( )A . ∠A = ∠DB . ∠ACB = ∠DBCC . AC = DBD . AB = DC7.如图是成都市某周内日最高气温的折线统计图 ,关于这 7 天的日最高气温的说法正确的是 ( )A .极差是 8 ℃B .众数是 28 ℃C .中位数是 24 ℃D .平均数是 26 ℃1x + x - 2 = 1 的解是( )A . x = 1B . x = -1C . x = 3D . x = -39.如图,□在 ABCD 中, ∠B = 60 , ⊙C 的半径为 3,则图中阴影部分的面积是( )A . πB . 2πC . 3πD . 6π10.关于二次函数 y = 2 x 2 + 4 x - 1 ,下列说法正确的是 ( )A .图象与 y 轴的交点坐标为 (0,1)B .图象的对称轴在 y 轴的右侧C .当 x <0 时, y 的值随 x 值的增大而减小D . y 的最小值为 -3效数学试卷 第 1 页(共 44 页)数学试卷 第 2 页(共 44 页)8 , 则该盒子中装有黄色兵乓球的个数6 = 5 = ,且 a + b - 2c = 6 ,则 a 的值为2 AC 的长为半径作弧 ,两弧相交于点 M 和x + 1) ÷ 第Ⅱ卷(非选择题 共 70 分)二、填空题(本大题共 4 小题,每小题 4 分,共 16 分.请把答案填在题中的横线上)11.等腰三角形的一个底角为 50 ,则它的顶角的度数为 .12.在一个不透明的盒子中,装有除颜色外完全相同的乒乓球共 16 个,从中随机摸出一个乒乓球 , 若摸到黄色乒乓球的概率为 3是 .13.已知 a bc4.17.(本小题满分 8 分)为了给游客提供更好的服务,某景区随机对部分游客进行了关于“景区服务工作满意14.如图,在矩形 ABCD 中,按以下步骤作图:①分别以点 A 和 C为圆心 ,以大于 1N ;②作直线 MN 交 CD 于点 E .若 DE = 2 , CE = 3 ,则矩形的对角线 AC 的长为.三、解答题(本大题共 6 小题,共 54 分.解答应写出文字说明、证明过程或演算步骤)15.(本小题满分 12 分,每题 6 分)(1)计算: 2-2 + 3 8 - 2sin60 + | - 3 | ;度”的调查,并根据调查结果绘制成如下不完整的统计图表.满意度 人数 所占百分比非常满意 12 10%满意 54 m比较满意 n 40%不满意 6 5%根据图表信息,解答下列问题:(1)本次调查的总人数为 ,表中 m 的值 ; (2)请补全条形统计图;(3)据统计,该景区平均每天接待游客约 3 600 人,若将“非常满意”和“满意”作为(2)化简: (1- 1 xx 2 - 1 .游客对景区服务工作的肯定 ,请你估计该景区服务工作平均每天得到多少名游客的肯定.18.(本小题满分 8 分)由我国完全自主设计、自主建造的首艘国产航母于 2018 年 5 月成功完成第一次海上16.(本小题满分 6 分)若关于 x 的一元二次方程 x 2 - (2a + 1)x + a 2 = 0 有两个不相等的实数根 ,求 a 的取值范围.数学试卷 第 3 页(共 44 页)试验任务 .如图,航母由西向东航行 ,到达 A 处时,测得小岛 C 位于它的北偏东 70 方向,且与航母相距 80 海里,再航行一段时间后到达 B 处,测得小岛 C 位于它的北偏东37 方向.如果航母继续航行至小岛 C 的正南方向的 D 处,求还需航行的距离 BD 的长.数学试卷 第 4 页(共 44 页)tan37 ≈ 0.75 )__ 此__ 如图,在平面直角坐标系 xOy 中,一次函数 y = x + b 的图象经过点 A(-2,0) ,与反比例 _x ( x >0) 的图象交于 B(a,4) . __ 生 __ 卷 考 __ (2)设 M 是直线 AB 上一点,过 M 作 MN ∥x 轴,交反比例函数 y = kx ( x >0) 的图象于 ___ _ _ ____ 答__ __23.已知 a >0 , S = 1 a , S = -S - 1 , S =S , S = -S - 1 , S = S ; 当 n 为 大 于 1 的 偶 数 时 , S = -S=.(用含 a 的代数式表示)3 , M , N 分别在边CN 的值19.(本 _ 20 x (k >0) 与直线 y = x 交于 A , B 两点(点 A13 ,求 DG 的长.(2)-----------------------------(参考数据:sin70 ≈ 0.94 , cos70 ≈ 0.34 , tan70 ≈ 2.75 , sin37 ≈ 0.6 , cos37 ≈ 0.80 ,在--------------------__ __ --------------------小题满分 10 分)____ 函数 y = k号 (1)求一次函数和反比例函数的表达式; -------------------- ___ _ _ 点 N .若以 A ,O ,M ,N 为顶点的四边形是平行四边形,求点 M 的坐标. _ _ _上__ -------------------- _ _ _ _ _ _ 名 _ 姓 _ _ --------------------_ __ __ __ __ 校 题学 --------------------.(本小题满分 10 分)B 卷(共 50 分)一、填空题(本大题共 5 小题,每小题 4 分,共 20 分.请把答案填在题中的横线上)21.已知 x + y = 0.2 , x + 3 y = 1,则代数式 x 2 + 4 x y + 4 y 2 的值为 . 22.汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝 .如图所示的弦图中 ,四个直角三角形都是全等的 ,它们的两直角边之比均为 2:3 .现随机向该图形内掷一枚小针 ,则针尖落在阴影区域的概率为 .1 1,…(即当 n 为大于 1 1 2 13 4 3 5 S 2 41 的奇数时 , S = - 1 ), 按 此 规 律 ,n n n -1 n -1S24. 如图 , 在菱形 ABCD 中 , tanA = 4AD , BC 上,将四边形 AMNB 沿 MN 翻折,使 AB 的对应 线 段 EF 经 过顶 点 D . 当 EF ⊥ AD 时 , BN为 .业毕如图,在 △Rt ABC 中, ∠C = 90 , AD 平分 ∠BAC 交 BC 于点 D , O 为 AB 上一点,经过点 A , D 的 ⊙O 分别交 AB , AC 于点 E , F ,连接 OF 交 AD 于点 G .25.该双曲线 y = k在第三象限 ),将双曲线在第一象限的一支沿射线 BA 的无(1)求证: BC 是 ⊙O 的切线; 方向平移,使其经过点 A ,将双曲线在第三象限的一支沿 --------------------设 AB = x , AF = y ,试用含 x , y 的代数式表示线段 AD 的长;(3)若 BE = 8 , sinB = 5射线 AB 的方向平移 ,使其经过点 B ,平移后的两条曲线相交于点 P , Q 两点,此时我们称平移后的两条曲线所围部分(如图中阴影部分)为双曲线的“眸”, PQ 为双曲线效数学试卷 第 5 页(共 44 页)数学试卷 第 6 页(共 44 页)x(k>0)的眸径为6时,k的值为2为对称轴的抛物线y=ax2+bx+c与4,且△BCG与△BCD面积相等,求点G的坐标;的“眸径”.当双曲线y=k.二、解答题(本大题共3小题,共30分.解答应写出文字说明、证明过程或演算步骤)26.(本小题满分8分)为了美化环境,建设宜居成都,成都市准备在一个广场上种植甲、乙两种花卉.经市场调查,甲种花卉的种植费用y(元)与种植面积x(m2)之间的函数关系如图所示,乙种花卉的种植费用为每平方米100元.(1)直接写出当0≤x≤300和x>300时,y与x的函数关系式;(2)广场上甲、乙两种花卉的种植面积共1200m2,若甲种花卉的种植面积不少于200m2,且不超过乙种花卉种植面积的2倍,那么应该怎样分配甲、乙两种花卉的种植面积才能使种植费用最少?最少总费用为多少元?图1图2备用图28.(本小题满分12分)如图,在平面直角坐标系xOy中,以直线x=5直线l:y=kx+m(k>0)交于A(1,1),B两点,与y轴交于C(0,5),直线l与y轴交于点D.(1)求抛物线的函数表达式;(2)设直线l与抛物线的对称轴的交点为F,G是抛物线上位于对称轴右侧的一点,若AFFB=3(3)若在x轴上有且只有一点P,使∠APB=90,求k的值.27.(本小题满分10分)在△Rt ABC中,∠ACB=90,AB=7,AC=2,过点B作直线m∥AC,将△ABC绕点C顺时针得到△A'B'C(点A,B的对应点分别为A',B'),射线CA',CB'分别交直线m于点P,Q.(1)如图1,当P与A'重合时,求∠ACA'的度数;(2)如图2,设A'B'与BC的交点为M,当M为A'B'的中点时,求线段PQ的长;(3)在旋转过程时,当点P,Q分别在CA',CB'的延长线上时,试探究四边形P A'B'Q的面积是否存在最小值.若存在,求出四边形P A'B'Q的最小面积;若不存在,请说明理由.备用图数学试卷第7页(共44页)数学试卷第8页(共44页)四川省成都市2018年高中阶段教育学校统一招生考试数学答案解析A卷第Ⅰ卷一、选择题1.【答案】D【解析】解:根据数轴可知a<b<0<c<d,∴这四个数中最大的数是d,故答案为:D.【考点】数轴上数的表示,比较数的大小2.【答案】B【解析】解:40万=4⨯105故答案为:B.【考点】科学记数法表示数3.【答案】A【解析】解:∵从正面看是左右相邻的3个矩形,中间的矩形面积较大,两边的矩形面积相同,∴答案A符合题意,故答案为:A.【考点】几何体的主视图4.【答案】C【解析】解:点P(-3,-5)关于原点对称的点的坐标为(3,5),故答案为:C.【考点】原点对称,点的坐标变化5.【答案】D【解析】解:A、x2+x2=2x2,因此A不符合题意;B、(x-y)2=x2-2x y+y2,因此B不符合题意;C、(x2y)3=x6y3,因此C不符合题意;D、(-x2)x3=x5,因此D符合题意;故答案为:D.【考点】整式的运算6.【答案】C【解析】解:A、∵∠A=∠D,∠ABC=∠DCB,BC=CB,∴△ABC≌△DCB,因此A不符合题意;B、∵AB=DC,∠ABC=∠DCB,BC=CB,∴△ABC≌△DCB,因此B不符合题意;(D 、∵ AB = DC , ∠ABC = ∠DCB , BC = CB ,∴ △ABC ≌△DCB ,因此 D 不符合题意;故答案为:C .【考点】全等三角形的判定7.【答案】B【解析】A 、极差 = 30 ℃ - 20 ℃ = 10 ℃,因此 A 不符合题意;B 、∵20、28、28、24、26、30、22 这 7 个数中,28 出现两次,是出现次数最多的数,∴众数是 28,因此 B 符合题意;C 、排序:20、22、24、26、28、28、30,最中间的数是 24、26,∴中位数为: (24 + 26) ÷ 2 = 25 ,因此 C 不符合题意;D 、平均数为:(20 + 22 + 24 + 26 + 28 + 28 + 30) ÷ 7 ≠ 26 ,因此 D 不符合题意;故答案为:B .【考点】统计图的应用,平均数及其计算,中位数,极差、标准差,众数8.【答案】A【解析】解:方程两边同时乘以 x( x - 2) 得: x +1)(x - 2) + x = x( x - 2) , x 2 - x - 2 + x = x 2 - 2x ,解之:x = 1 .经检验: x = 1 是原方程的根.故答案为:A .【考点】解分式方程9.【答案】C【解析】解:∵平行四边形 ABCD ,∴ AB ∥DC ,∴ ∠B + ∠C = 180 ,∴ ∠C = 180︒ - 60︒ = 120︒ ,∴阴影部分的面积 = π ⨯ 32 ⨯120 ÷ 360 = 3π ,故答案为:C .【考点】平行四边形的性质,扇形的面积10.【答案】D【解析】解:A 、当 x = 0 时, y = -1 ,图像与 y 轴的交点坐标为 (0, -1) ,因此 A 不符合题意;B 、对称轴为直线 x = -1 ,对称轴在 y 轴的左侧,因此 B 不符合题意;C 、当 x < - 1 时 y 的值随 x 值的增大而减小,当-1<x <0 时 ,y 随 x 的增大而增大 , 因此 C 不符合题意; D 、 a = 2>0 , 当 x = -1 时 ,y 的最小值= 2 - 4 - 1 = -3 ,因此 D 符合题意;故答案为:D .【考点】二次函数的图象与性质第Ⅱ卷二、填空题11.【答案】 8015.【答案】(1)解:原式=1∴它的顶角的度数为:180-50⨯2=80,故答案为:80.【考点】三角形的内角和定理,等腰三角形的性质12.【答案】6【解析】解:设该盒子中装有黄色兵乓球的个数为x个,根据题意得:【考点】概率的概念,解方程13.【答案】12x3=,解之:x=6,故答案为:6. 168【解析】解:设a b c===k,则a=6k,b=5k,c=4k,∵a+b-2c=6, 654∴6k+5k-8k=6,解之:k=2,∴a=6⨯2=12,故答案为:12.【考点】比例的基本性质14.【答案】30【解析】连接AE,根据题意可知MN垂直平分AC,∴AE=CE=3,在△Rt ADE中,AD2=AE2-DE2,AD2=9-4=5,∵AC2=AD2+DC2,AC2=5+25=30,∴AC=30.【考点】尺规作图,线段的垂直平分线的性质,矩形的性质,勾股定理三、解答题3+2-2⨯+342=1+2-3+3 4=9 4【解析】(1)解:原式12 2(2)解:原式x 1 1 (x 1)(x 1) x 1 xx (x 1)(x 1) x 1 xx 13 2 2342142 3 39 4(2)解:原式x 1 1 (x 1)(x 1) x 1 xx (x 1)(x 1) x 1 xx 1【考点】实数的综合运算,分式的化简 16.【答案】解:由题知:(2a 1) 4a 2 4a 2 4a 1 4a 2 4a 1 .∵原方程有两个不相等的实数根,∴ 4a 1>0 ,∴ a >14.【解析】解:由题知:(2a 1) 4a 24a 2 4a 1 4a 2 4a 1 .∵原方程有两个不相等的实数根,∴ 4a 1>0 ,∴ a >1 4.【考点】一元二次方程的判别式17.【答案】解:(1)12045%(2)比较满意;120 40%=48 (人);补全条形统计图如下:在△Rt ACD中,cos∠ACD=CD(3)3600⨯12+54=1980(人). 120答:该景区服务工作平均每天得到1980人的肯定.【解析】解:(1)120,45%;(2)比较满意;120⨯40%=48(人)图略;(3)3600⨯12+54=1980(人). 120答:该景区服务工作平均每天得到1980人的肯定.【考点】统计知识的运用18.【答案】3 2【解析】解:由题知:∠ACD=70,∠BCD=37,AC=80.CD,∴0.34=,∴CD=27.2(海里).AC80在△Rt BCD中,tan∠BCD=BD BD,∴0.75=,∴BD=20.4(海里). CD27.2答:还需要航行的距离BD的长为20.4海里.【考点】解直角三角形的应用19.【答案】解:(1)∵一次函数的图象经过点A(-2,0),∴-2+b=0得b=2.∴一次函数的解析式为y=x+2,∵一次函数的解析式为y=x+2与反比例函数y=∴4=a+2得a=2,kx(x>0)的图象交于B(a,4).即反比例函数的解析式为:y= (2)∵点A(-2,0),OA=2,8x(x>0);设点M(m-2,m),点N(8m,m).当MN∥AO且MN=AO时,四边形AOMN是平行四边形, |8-(m-2)|=2,m解得,m=22或m=23+2,∴点M的坐标为(22-2,22)或(23,23+2).【解析】解:(1)∵一次函数的图象经过点A(-2,0),∴-2+b=0得b=2.∴一次函数的解析式为y=x+2,∵一次函数的解析式为y=x+2与反比例函数y=∴4=a+2得a=2,kx(x>0)的图象交于B(a,4).∴4=k2,得k=8,即反比例函数的解析式为:y=8x(x>0);(2)∵点A(-2,0),OA=2,设点M(m-2,m),点N(8,m). m当MN∥AO且MN=AO时,四边形AOMN是平行四边形, |8-(m-2)|=2,m解得,m=22或m=23+2,∴点M的坐标为(22-2,22)或(23,23+2).【考点】一次函数和反比例函数的图象与性质AD =20.【答案】(1)如图,连接 OD ,∵AD 为 ∠BAC 的角平分线,∴ ∠BAD = ∠CAD .∵ OA = OD ,∴ ∠ODA = ∠OAD ,∴ ∠ODA = ∠CAD .∴ OD ∥AC .又∵ ∠C = 90 ,∴ ∠ODC = 90 ,∴ OD ⊥ BC ,∴BC 是 O 的切线;(2)连接 DF , ,由(1)可知,BC 为切线,∴ ∠FDC = ∠DAF .∴ ∠CDA = ∠CFD .∴ ∠AFD = ∠ADB .又∵ ∠BAD = ∠DAF ,∴ △ABD ∽△ADF ,∴ AB AD AF ,∴ AD 2 = AB AF .∴ AD 2 = xy ,AD xyOB=r+813,AE=13=DG=23AD.13=231313=(3)连接EF,在△Rt BOD中,sinB=OD513,设圆的半径为r,∴r=5∴r=5.∴AE=10,AB=18.∵AE是直径,∠AFE=90,而∠C=90,∴EF∥BC,∴∠AEF=∠B,∴sin∠AEF=AF513.∴AF=AE sin∠AEF=10⨯5∵AF∥OD,5013.∴AG AF1310OD=5=13,∴DG=13∴AD=AB AF=18⨯50301313,∴DG=13⨯30302313.AD =【解析】(1)如图,连接 OD,∵AD 为 ∠BAC 的角平分线,∴ ∠BAD = ∠CAD .∵ OA = OD ,∴ ∠ODA = ∠OAD ,∴ ∠ODA = ∠CAD .∴ OD ∥AC .又∵ ∠C = 90 ,∴ ∠ODC = 90 ,∴ OD ⊥ BC ,∴BC 是 O 的切线;(2)连接 DF , ,由(1)可知,BC 为切线,∴ ∠FDC = ∠DAF .∴ ∠CDA = ∠CFD .∴ ∠AFD = ∠ADB .又∵ ∠BAD = ∠DAF ,∴ △ABD ∽△ADF ,∴ AB AD AF ,∴ AD 2 = AB AF .∴ AD 2 = xy ,AD xy在△Rt BOD中,sinB=OD∴sin∠AEF=AF∴AGAB AF=18⨯50DG=1330(3)连接EF,5=,OB13设圆的半径为r,∴r5=,r+813∴r=5.∴AE=10,AB=18.∵AE是直径,∠AFE=90,而∠C=90,∴EF∥BC,∴∠AEF=∠B,5=.AE13∴AF=AE sin∠AEF=10⨯∵AF∥OD,AF1310===,DG OD513550=.1313∴DG=1323AD.∴AD=30=13,1313∴30⨯13=13231323.【考点】圆的基本性质,切线的判定,相似三角形的判定和性质,锐角三角函数的运用,勾股定理B卷S a aS ∵ S = -S - 1 ,∴ S = (- aa + 1 a + 1a a a +121.【答案】0.36【解析】∵ x + y = 0.2..... ① , x + 3 y = 1......② 由 ① + ② 得: 2x + 4 y = 1.2 ,即 x + 2 y = 0.6 ,∵ x 2 + 4xy + y 2 = ( x + 2 y)2 = 0.62 = 0.36 .【考点】求代数式的值22.【答案】 1213【解析】∵四个直角三角形都是全等的,它们的两直角边之比均为 2:3 ,设两直角边的长分别为 2x 、3x ,∴大正方形的面积为 (2 x )2 + (3x)2 = 13x 2 ,小正方形的边长为 3x - 2 x = x ,则小正方形的面积为 x 2,∴阴影部分的面积为:13x 2 - x 2 = 12x 2 ,∴针尖落在阴影区域的概率为: 12x 2 12 12= ,故答案为: .13x 2 13 13【考点】正方形的面积关系,求概率23.【答案】 - a + 1a【解析】解:∵ S = 1 1 a 1 1 a + 1 , S = -S - 1 , S = ,∴ S = - - 1 = - ,2 1 5 2 4 ∵, S = 13 2,∴ S = 1 ÷ (- 3 a + 1 a ) =- a a + 1,4 3 4) - 1 = - 1,∴ S = -a - 1 、 S = a 、 S = 5 6 7∴ 2 018 ÷ 4 = 54⋯2 ,1 a + 1、 S =- …8∴ S a + 1,故答案为: - .a a【考点】探索规律24.【答案】 27【解析】解:∵菱形 AMNB 沿 MN 翻折,使 AB 的对应线段 EF 经过顶点 D ,∴ ∠A = ∠E = ∠C , ∠1 = ∠B , EM = AM , AB = EF = DC = AD ,∵ EF ⊥ EF ,∴tan∠E=ta n∠A=45x,5x)2,5x,∴FH=DH-DF=365x:DM=3DE,设DM=4x,DE=3x,则EM=AM=5x=EF,∴DC=AD=A M+DM=9x,DF=EF-DE=9x-3x=6x,延长EF交BC于点H,∴AD∥BC,EF⊥EF,∴∠EDM=∠DHC=90,∵∠E=∠C,∴△DEM∽△HCD,∴EM:DC=DE:CH,即5x:9x=3x:CH,解之:CH=27在△Rt DHC中,DH2=DC2-CH2,DH2=81x2-(27解之:DH=3665x-6x=5x,∵∠1+∠HFN=180∠B+∠C=180,∠1=∠B,∴∠HFN=∠C,∠DHC=∠FHN=90,∴△FHN∽△CHD,∴FN:DC=FH:CH,即FN:9x=6解之:FN=2x=BN,∴CN=BC-BN=9x-2x=7x,BN2275x,26.【答案】(1) ⎨ ; 80 x + 1500( x >300)故答案为: 2 7 .【考点】轴对称性质,全等三角形的判定和性质,锐角三角函数的定义25.【答案】 32【解析】解:∵双曲线是关于原点成中心对称,点 P 、Q 关于原点对称和直线 AB 对称,∴四边形 P AQB 是菱形,∵ PQ = 6 ,∴ PO = 3 ,根据题意可得出 △APB 是等边三角形.∴在 △Rt POB 中, OB = tan30 ⨯ PO =设点 B 的坐标为 ( x , x) ,∴ 2 x 2 = 3 ,x 2 = 3 = k , 23 3⨯ 3 = 3 ,故答案为: 3 2.【考点】图形的平移,双曲线的图象与性质二、解答题⎧130 x (0≤x ≤300) ⎩(2)设甲种花卉种植为 a m 2 ,则乙种花卉种植 (1200 - a) m 2 .∴⎨ a ≤2(1200 - a)∴⎨ a ≤2(1200 - a)⎧a ≥200, ⎩,∴ 200≤a ≤800 .当 200≤a <300 时, W = 130a + 100(1200 - a) = 30a + 120 000 . 1当 a = 200 时, Wmin = 126 000 元.当 300≤a ≤800 时, W = 80a + 15 000 + 100(200 - a) = 135 000 - 20a .2当 a = 800 时, W min = 119 000 元. ∵ 119 000<126 000 ,∴当 a = 800 时,总费用最低,最低为 119 000 元.此时乙种花卉种植面积为1200 - 800 = 400 m 2 .答:应分配甲种花卉种植面积为 800 m 2 ,乙种花卉种植面积为 400 m 2 ,才能使种植总费用最少,最少总费用为 119 000 元.⎧130 x (0≤x ≤300) 【解析】(1) ⎨ ; ⎩80 x + 1500( x >300)(2)设甲种花卉种植为 a m 2 ,则乙种花卉种植 (1200 - a) m 2 .⎧a ≥200, ⎩, ∴ 200≤a ≤800 .当 200≤a <300 时, W = 130a + 100(1200 - a) = 30a + 120 000 . 1当 a = 200 时, Wmin = 126 000 元.当 300≤a ≤800 时, W = 80a + 15 000 + 100(200 - a) = 135 000 - 20a .2当 a = 800 时, W min = 119 000 元. ∵ 119 000<126 000 ,∴当 a = 800 时,总费用最低,最低为 119 000 元.此时乙种花卉种植面积为1200 - 800 = 400 m 2 .答:应分配甲种花卉种植面积为 800 m 2 ,乙种花卉种植面积为 400 m 2 ,才能使种植总费用最少,最少总费用为 119 000 元.【考点】一次函数的应用27.【答案】解:(1)由旋转的性质得: AC = A 'C = 2 .∵ ∠ACB = 90 , m ∥AC ,∴ ∠A 'BC = 90 ,∴ cos ∠A 'CB =(2)∵ M 为 A 'B ' 的中点,∴ ∠A 'CM = MA 'C .由旋转的性质得: ∠MA 'C = ∠A ,∴ ∠A = ∠A 'CM . BC 3 = A 'C 2 ,∴ ∠A 'CB = 30 ,∴ ∠ACA ' = 60 .△S PCQ - △S A 'CB ' = △S PCQ - 3 ,∴ S1△S PCQ - △S A 'CB ' = △S PCQ - 3 ,∴ S1∵ tan ∠Q = tan ∠PCA =3 2 2 2 7 ,∴ BQ = BC ⨯ = 3 ⨯ = 2 ,∴ PQ = PB + BQ = . 3 3 2 (3)∵ S P A 'B 'Q = P A 'B 'Q 最小, S △PCQ 即最小,∴ S3 PQ ⨯ BC = PQ . 2 2 法一:(几何法)取 PQ 中点 G ,则 ∠PCQ = 90 .∴ CG = 1PQ . 2当 CG 最小时, PQ 最小,∴ CG ⊥ PQ ,即 CG 与 CB 重合时, CG 最小.∴ CG min = 3 , PQ min = 2 3 ,∴ (S ) △PCQ min = 3 , SP A 'B 'Q = 3 - 3 .法二:(代数法)设 PB = x , BQ = y . 由射影定理得: xy = 3 ,∴当 PQ 最小,即 x + y 最小, ∴ ( x + y)2 = x 2 + y 2 + 2xy = x 2 + y 2 + 6≥2xy + 6 = 12 . 当 x = y = 3 时,“ = ”成立,∴ PQ = 3 + 3 = 2 3 . 【解析】解:(1)由旋转的性质得: AC = A 'C = 2 .∵ ∠ACB = 90 , m ∥AC ,∴ ∠A 'BC = 90 ,∴ cos ∠A 'CB =(2)∵ M 为 A 'B ' 的中点,∴ ∠A 'CM = MA 'C .由旋转的性质得: ∠MA 'C = ∠A ,∴ ∠A = ∠A 'CM .3 3 3 ∴ tan ∠PCB = tan ∠A =,∴ PB = BC = . 2 2 2BC 3 =A 'C 2,∴ ∠A 'CB = 30 ,∴ ∠ACA ' = 60 .∵ tan ∠Q = tan ∠PCA = 3 2 2 2 7 ,∴ BQ = BC ⨯ = 3 ⨯ = 2 ,∴ PQ = PB + BQ = . 3 3 2 (3)∵ SP A 'B 'Q = P A 'B 'Q最小, S △PCQ 即最小, ∴ S 3 PQ ⨯ BC = PQ . 2 2法一:(几何法)取 PQ 中点 G ,则 ∠PCQ = 90 .∴ CG = 1PQ . 2当 CG 最小时, PQ 最小,∴ CG ⊥ PQ ,即 CG 与 CB 重合时, CG 最小.∴ CG min = 3 , PQ min = 2 3 ,∴ (S ) △PCQ min = 3 , SP A 'B 'Q = 3 - 3 .法二:(代数法)设 PB = x , BQ = y .由射影定理得:xy=3,∴当PQ最小,即x+y最小,⎪ 2a = , 则 AF ,∴ NQ = 2 , B( ⎧k + m = 1, ⎪⎪ 2 ∴ ⎨ 9 1 ,解得 ⎨ , D(0, ) . 2 2 2 ⎩ ⎩ 2 2 2 ∵ x > ,∴ x = 3 ,∴ G(3,-1) .当 x = y = 3 时,“ = ”成立,∴ PQ = 3 + 3 = 2 3 .【考点】旋转的性质,勾股定理,锐角三角函数,直角三角形的性质,相似三角形的判定与性质,求图形的面积 ⎧ b 5 - 2 ⎪ 28.【答案】解:(1)由题可得: ⎨c = 5, 解得 a = 1 , b = -5 , c = 5 . ⎪a + b + c = 1. ⎪ ⎩∴二次函数解析式为: y = x 2 - 5x + 5 ;(2)作 AM ⊥ x 轴, BN ⊥ x 轴,垂足分别为 M , N ,MQ 3= = . FB QN 4 ∵ MQ = 39 , 11) , 2 2 4⎪ ⎧ 1 k = , ⎪ 2 k + m = 4 , ⎪m = 1 , ⎪ 21 1 1 ,∴ y = x + t 同理, yBC = - 1 x + 5 . 2 ∵ S △BCD = S△BCG,∴① DG ∥BC ( G 在 BC 下方), y DG =- 1 x + 1 2 , ∴ - 1 x + 21 3 = x2 - 5x + 5 ,即 2x 2 - 9x + 9 = 0 ,∴ x = , x =3 . 1 25 2 ② G 在 BC 上方时,直线 G G 与 DG 关于 BC 对称.2 31 ∴ y G G 1 21 =- x +2 19 2 1 19 ,∴ - x + = x 2 - 5x + 5 ,∴ 2x 2 - 9x - 9 = 0 . 2 2 ∵ x > 5,∴ x = 9 + 3 17 9 + 3 17 67 - 3 17 ,∴ G( , ) .∵ △AMP ∽△PNB ,∴ AM ∵ k >0 ,∴ k = -6 + 4 6 ⎪ 2a = , 则 AF ,∴ NQ = 2 , B( ⎧k + m = 1, ⎪⎪ 2 ∴ ⎨ 9 1 ,解得 ⎨ ⎪m = 1 , ⎪⎩ 2 ,∴ y = 1 x + 1 , D(0, ) . 2 2 2综上所述,点 G 坐标为 G (3, -1) ; G ( 1 2 9 + 3 17 67 - 3 17 , ) . 4 4(3)由题意可得: k + m = 1 .∴ m = 1 - k ,∴ y = kx + 1 - k ,∴ kx + 1 - k = x 2 - 5x + 5 ,即 x 2 - (k + 5)x + k + 4 = 0 .1 ∴ x = 1 , x = k + 4 ,∴ B(k + 4, k2 + 3k + 1) . 1 2设 AB 的中点为 O ' ,∵ P 点有且只有一个,∴以 AB 为直径的圆与 x 轴只有一个交点,且 P 为切点. ∴ OP ⊥ x 轴,∴ P 为 MN 的中点,∴ P( k + 5 2,0) .PN = PM BN ,∴ AM BN = PN PM ,∴ 1⨯ (k 2+ 3k + 1) = (k + 4 - k + 5 k + 5 )( - 1) ,即 3k 2 + 6k - 5 = 0 , ∆ = 96>0 . 2 2 2 6 = -1 + 6 3. ⎧ b 5 - 2 ⎪ 【解析】解:(1)由题可得: ⎨c = 5, 解得 a = 1 , b = -5 , c = 5 . ⎪a + b + c = 1. ⎪ ⎩∴二次函数解析式为: y = x 2 - 5x + 5 ;(2)作 AM ⊥ x 轴, BN ⊥ x 轴,垂足分别为 M , N ,MQ 3 = = . FB QN 4∵ MQ = 39 , 11) , 2 2 4⎪ k + m = , 4 ⎧ 1 k = , t122∵x>,∴x=3,∴G(3,-1).∵△AMP∽△PNB,∴AM∵k>0,∴k=-6+46同理,yBC =-1x+5.2∵S△BCD =S△BCG,∴①DG∥BC(G在BC下方),yDG=-1x+212,∴-1x+213=x2-5x+5,即2x2-9x+9=0,∴x=,x=3.1252②G在BC上方时,直线G G与DG关于BC对称.231∴yG G121=-x+2192119,∴-x+=x2-5x+5,∴2x2-9x-9=0.22∵x>5,∴x=29+3179+31767-317,∴G(,).448综上所述,点G坐标为G(3,-1);G(129+31767-317,).44(3)由题意可得:k+m=1.∴m=1-k,∴y=kx+1-k,∴kx+1-k=x2-5x+5,即x2-(k+5)x+k+4=0.1∴x=1,x=k+4,∴B(k+4,k2+3k+1).12设AB的中点为O',∵P点有且只有一个,∴以AB为直径的圆与x轴只有一个交点,且P为切点.∴OP⊥x轴,∴P为MN的中点,∴P(k+52,0).PN=PM BN,∴AM BN=PN PM,∴1⨯(k2+3k+1)=(k+4-k+5k+5)(-1),即3k2+6k-5=0,∆=96>0. 2226=-1+63【考点】二次函数的图象及其性质.。

2018年四川省成都市中考数学试卷及答案

2018年四川省成都市中考数学试卷及答案

2018年四川省成都市中考数学试卷一、选择题(每小题3分,共30分)1.(3分)实数a,b,c,d在数轴上上对应的点的位置如图所示,这四个数中最大的是()A.a B.b C.c D.d2.(3分)2018年5月2l日,西昌卫星发射中心成功发射探月工程嫦娥四号任务“鹊桥号”中继星,卫星进入近地点高度为200公里、远地点高度为40万公里的预定轨道.将数据40万用科学记数法表示为()A.4×104B.4×105C.4×106D.0.4×1063.(3分)如图所示的正六棱柱的主视图是()A.B.C.D.4.(3分)在平面直角坐标系中,点P(﹣3,﹣5)关于原点对称的点的坐标是()A.(3,﹣5)B.(﹣3,5)C.(3,5) D.(﹣3,﹣5)5.(3分)下列计算正确的是()A.x2+x2=x4B.(x﹣y)2=x2﹣y2C.(x2y)3=x6y D.(﹣x)2•x3=x56.(3分)如图,已知∠ABC=∠DCB,添加以下条件,不能判定△ABC≌△DCB 的是()A.∠A=∠D B.∠ACB=∠DBC C.AC=DB D.AB=DC7.(3分)如图是成都市某周内最高气温的折线统计图,关于这7天的日最高气温的说法正确的是()A.极差是8℃B.众数是28℃ C.中位数是24℃D.平均数是26℃8.(3分)分式方程=1的解是()A.x=1 B.x=﹣1 C.x=3 D.x=﹣39.(3分)如图,在▱ABCD中,∠B=60°,⊙C的半径为3,则图中阴影部分的面积是()A.πB.2πC.3πD.6π10.(3分)关于二次函数y=2x2+4x﹣1,下列说法正确的是()A.图象与y轴的交点坐标为(0,1)B.图象的对称轴在y轴的右侧C.当x<0时,y的值随x值的增大而减小D.y的最小值为﹣3二、填空题(每小题4分,共16分)11.(4分)等腰三角形的一个底角为50°,则它的顶角的度数为.12.(4分)在一个不透明的盒子中,装有除颜色外完全相同的乒乓球共16个,从中随机摸出一个乒乓球,若摸到黄色乒乓球的概率为,则该盒子中装有黄色乒乓球的个数是.13.(4分)已知==,且a+b﹣2c=6,则a的值为.14.(4分)如图,在矩形ABCD中,按以下步骤作图:①分别以点A和C为圆心,以大于AC的长为半径作弧,两弧相交于点M和N;②作直线MN交CD 于点E.若DE=2,CE=3,则矩形的对角线AC的长为.三、解答题(本大题共6个小题,共54分)15.(12分)(1)22+﹣2sin60°+|﹣|(2)化简:(1﹣)÷16.(6分)若关于x的一元二次方程x2﹣(2a+1)x+a2=0有两个不相等的实数根,求a的取值范围.17.(8分)为了给游客提供更好的服务,某景区随机对部分游客进行了关于“景区服务工作满意度”的调查,并根据调查结果绘制成如下不完整的统计图表.满意度学生数(名)百分比非常满意1210%满意54m比较满意n40%不满意65%根据图表信息,解答下列问题:(1)本次调查的总人数为,表中m的值;(2)请补全条形统计图;(3)据统计,该景区平均每天接待游客约3600人,若将“非常满意”和“满意”作为游客对景区服务工作的肯定,请你估计该景区服务工作平均每天得到多少名游客的肯定.18.(8分)由我国完全自主设计、自主建造的首艘国产航母于2018年5月成功完成第一次海上实验任务.如图,航母由西向东航行,到达A处时,测得小岛C 位于它的北偏东70°方向,且与航母相距80海里,再航行一段时间后到达B处,测得小岛C位于它的北偏东37°方向.如果航母继续航行至小岛C的正南方向的D处,求还需航行的距离BD的长.(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2,75,sin37°≈0.6,cos37°≈0.80,tan37°≈0.75)19.(10分)如图,在平面直角坐标系xOy中,一次函数y=x+b的图象经过点A (﹣2,0),与反比例函数y=(x>0)的图象交于B(a,4).(1)求一次函数和反比例函数的表达式;(2)设M是直线AB上一点,过M作MN∥x轴,交反比例函数y=(x>0)的图象于点N,若A,O,M,N为顶点的四边形为平行四边形,求点M的坐标.20.(10分)如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,O为AB上一点,经过点A,D的⊙O分别交AB,AC于点E,F,连接OF交AD于点G.(1)求证:BC是⊙O的切线;(2)设AB=x,AF=y,试用含x,y的代数式表示线段AD的长;(3)若BE=8,sinB=,求DG的长,一、填空题(每小题4分,共20分)21.(4分)已知x+y=0.2,x+3y=1,则代数式x2+4xy+4y2的值为.22.(4分)汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝.如图所示的弦图中,四个直角三角形都是全等的,它们的两直角边之比均为2:3.现随机向该图形内掷一枚小针,则针尖落在阴影区域的概率为.23.(4分)已知a>0,S1=,S2=﹣S1﹣1,S3=,S4=﹣S3﹣1,S5=,…(即当n为大于1的奇数时,S n=;当n为大于1的偶数时,S n=﹣S n﹣1﹣1),按此规律,S2018=.24.(4分)如图,在菱形ABCD中,tanA=,M,N分别在边AD,BC上,将四边形AMNB沿MN翻折,使AB的对应线段EF经过顶点D,当EF⊥AD时,的值为.25.(4分)设双曲线y=(k>0)与直线y=x交于A,B两点(点A在第三象限),将双曲线在第一象限的一支沿射线BA的方向平移,使其经过点A,将双曲线在第三象限的一支沿射线AB的方向平移,使其经过点B,平移后的两条曲线相交于P,Q两点,此时我们称平移后的两条曲线所围部分(如图中阴影部分)为双曲线的“眸”,PQ为双曲线的“眸径“,当双曲线y=(k>0)的眸径为6时,k的值为.二、解答题(本大题共3小题,共30分)26.(8分)为了美化环境,建设宜居成都,我市准备在一个广场上种植甲、乙两种花卉,经市场调查,甲种花卉的种植费用y(元)与种植面积x(m2)之间的函数关系如图所示,乙种花卉的种植费用为每平方米100元.(1)直接写出当0≤x≤300和x>300时,y与x的函数关系式;(2)广场上甲、乙两种花卉的种植面积共1200m2,若甲种花卉的种植面积不少于200m2,且不超过乙种花卉种植面积的2倍,那么应该怎样分配甲、乙两种花卉的种植面积才能使种植总费用最少?最少总费用为多少元?27.(10分)在Rt△ABC中,∠ACB=90°,AB=,AC=2,过点B作直线m∥AC,将△ABC绕点C顺时针旋转得到△A′B′C′(点A,B的对应点分别为A',B′),射线CA′,CB′分別交直线m于点P,Q.(1)如图1,当P与A′重合时,求∠ACA′的度数;(2)如图2,设A′B′与BC的交点为M,当M为A′B′的中点时,求线段PQ的长;(3)在旋转过程中,当点P,Q分别在CA′,CB′的延长线上时,试探究四边形PA'B′Q的面积是否存在最小值.若存在,求出四边形PA′B′Q的最小面积;若不存在,请说明理由.28.(12分)如图,在平面直角坐标系xOy中,以直线x=对称轴的抛物线y=ax2+bx+c与直线l:y=kx+m(k>0)交于A(1,1),B两点,与y轴交于C(0,5),直线与y轴交于点D.(1)求抛物线的函数表达式;(2)设直线l与抛物线的对称轴的交点为F,G是抛物线上位于对称轴右侧的一点,若=,且△BCG与△BCD面积相等,求点G的坐标;(3)若在x轴上有且仅有一点P,使∠APB=90°,求k的值.2018年四川省成都市中考数学试卷参考答案一、选择题(每小题3分,共30分)1.D;2.B;3.A;4.C;5.D;6.C;7.B;8.A;9.C;10.D;二、填空题(每小题4分,共16分)11.80°;12.6;13.12;14.;三、解答题(本大题共6个小题,共54分)15.;16.;17.120;45%;18.;19.;20.;一、填空题(每小题4分,共20分)21.0.36;22.;23.﹣;24.;25.;二、解答题(本大题共3小题,共30分)26.;27.;28.;。

2018年成都市中考数学试题及答案详解

2018年成都市中考数学试题及答案详解

四川省成都市2018年中考数学试卷(解析版)一、选择题(A卷)1.实数在数轴上对应的点的位置如图所示,这四个数中最大的是()A. B. C. D.【答案】D【考点】数轴及有理数在数轴上的表示,有理数大小比较【解析】【解答】解:根据数轴可知a<b<0<c<d∴这四个数中最大的数是d故答案为:D【分析】根据数轴上右边的数总比左边的数大,即可得出结果。

2.2018年5月21日,西昌卫星发射中心成功发射探月工程嫦娥四号任务“鹊桥号”中继星,卫星进入近地点高度为200公里、远地点高度为40万公里的预定轨道.将数据40万用科学记数法表示为()A. B. C. D.【答案】B【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:40万=4×105故答案为:B【分析】根据科学计数法的表示形式为:a×10n。

其中1≤|a|<10,此题是绝对值较大的数,因此n=整数数位-1,即可求解。

3.如图所示的正六棱柱的主视图是()A. B.C. D.【答案】A【考点】简单几何体的三视图【解析】【解答】解:∵从正面看是左右相邻的3个矩形,中间的矩形面积较大,两边的矩形面积相同,∴答案A符合题意故答案为:A【分析】根据主视图是从正面看到的平面图形,即可求解。

4.在平面直角坐标系中,点关于原点对称的点的坐标是()A.B.C.D.【答案】C【考点】关于原点对称的坐标特征【解析】【解答】解:点关于原点对称的点的坐标为(3,5)故答案为:C【分析】根据关于原点对称点的坐标特点是横纵坐标都互为相反数,就可得出答案。

5.下列计算正确的是()A. B. C. D.【答案】D【考点】同底数幂的乘法,完全平方公式及运用,合并同类项法则及应用,积的乘方【解析】【解答】解:A、x2+x2=2x2,因此A不符合题意;B、(x-y)2=x2-2xy+y2,因此B不符合题意;C、(x2y)3=x6y3,因此C不符合题意;D、,因此D符合题意;故答案为:D【分析】根据合并同类项的法则,可对A作出判断;根据完全平方公式,可对B作出判断;根据积的乘方运算法则及同底数幂的乘法,可对C、D作出判断;即可得出答案。

2018年四川省成都市中考数学全真模拟试卷有答案

2018年四川省成都市中考数学全真模拟试卷有答案

2018年四川省成都市中考数学全真模拟试卷一.选择题(共10小题,满分27分)1.|﹣3|的值是()A.3 B.C.﹣3 D.﹣2.(3分)某几何体的三视图分别如图所示,那么这个几何体可能是()A.长方体B.圆柱C.圆锥D.球3.(3分)据悉,超级磁力风力发电机可以大幅度提升风力发电效率,但其造价高昂,每座磁力风力发电机,其建造花费估计要5 300万美元,“5 300万”用科学记数法可表示为()A.5.3×103B.5.3×104C.5.3×107D.5.3×1084.(3分)下列运算中正确的是()A.(ab3)2=ab6B.﹣(a﹣b)=﹣a+b C.(a+b)2=a2+b2D.x12÷x6=x25.(3分)如图,已知直线AB、CD被直线AC所截,AB∥CD,E是平面内任意一点(点E不在直线AB、CD、AC上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC的度数可能是()A.①②③B.①②④C.①③④D.①②③④6.(3分)从图中的四张图案中任取一张,取出图案是中心对称图形的概率是()A.B.C.D.17.(3分)小刚用41元钱买了甲、乙两种笔记本,甲种笔记本每本5元,乙种笔记本每本8元,且甲种笔记本比乙种笔记本多买了3本,求甲、乙两种笔记本各买了多少本?设小刚买了甲种笔记本x本,乙种笔记本y本,则可列方程组为()A.B.C.D.8.(3分)下表是某校“河南省汉子听写大赛初赛”冠军组成员的年龄分布)A.平均数、中位数 B.平均数、方差C.众数、中位数D.中位数、方差9.(3分)如图,AB是半圆O的直径,E是弧BC的中点,OE交弦BC于点D,过点C作⊙O 切线交OE的延长线于点F,已知BC=8,DE=2,则⊙O的半径为()A.8 B.5 C.2.5 D.610.(3分)如图,抛物线y1=ax2+bx+c(a≠0)的顶点坐标A(﹣1,3),与x轴的一个交点B (﹣4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①2a﹣b=0;②abc<0;③抛物线与x轴的另一个交点坐标是(3,0);④方程ax2+bx+c﹣3=0有两个相等的实数根;⑤当﹣4<x<﹣1时,则y2<y1.其中正确的是()A.①②③B.①③⑤C.①④⑤D.②③④二.填空题(共4小题,满分16分,每小题4分)11.(4分)比较大小:4(填“>”、“<”或“=”)12.(4分)如图,已知△ABC的周长为1,连接△ABC三边的中点构成第二个三角形,再连接第二个三角形三边的中点构成第三个三角形,…,依此类推,则第10个三角形的周长为.13.(4分)若关于x的三个方程x2+4mx+4m2+2m+3=0,x2+(2m+1)x+m2=0,(m﹣1)x2+2mx+m ﹣1=0中至少有一个方程有实根,则m的取值范围是.14.(4分)如图,正方形ABCD中,已知AB=3,点E,F分别在BC、CD上,且∠BAE=30°,∠DAF=15°,则△AEF的面积为.三.填空题(共5小题,满分20分,每小题4分)15.(4分)意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,…,请根据这组数的规律写出第10个数是.16.(4分)若关于x的方程=3的解是非负数,则b的取值范围是.17.(4分)从﹣1、1、2三个数中任取一个数作为一次函数y=kx+3中的k值,则所得一次函数中y随x增大而减小的概率是.18.(4分)如图,反比例函数在第一象限内的图象经过菱形OABC的顶点A和C.若菱形OABC的面积为10,∠AOC=30°,则k的值为.19.(4分)如图,在矩形ABCD中,AB=2,BC=4,⊙D的半径为1.现将一个直角三角板的直角顶点与矩形的对称中心O重合,绕着O点转动三角板,使它的一条直角边与⊙D切于点H,此时两直角边与AD交于E,F两点,则tan∠EFO的值为.四.解答题(共6小题,满分54分)20.(6分)(1)计算:()﹣1+4cos60°﹣(3.14﹣π)0(2)解不等式组:,并将其解集表示在数轴上.21.(6分)先化简,再求值:÷(﹣x+1),其中x满足x2+7x=0.22.(10分)如图,为了测量某建筑物CD的高度,先在地面上用测角仪自A处测得建筑物顶部的仰角是α,然后在水平地面上向建筑物前进了m米,此时自B处测得建筑物顶部的仰角是β.已知测角仪的高度是n米,请你计算出该建筑物的高度.23.(12分)在大课间活动中,体育老师随机抽取了九年级甲、乙两班部分女学生进行仰卧起坐的测试,并对成绩进行统计分析,绘制了频数分布表和统计图,请你根据图表中的信息完成下列问题:(1)频数分布表中a=,b=,并将统计图补充完整;(2)如果该校七年级共有女生200人,估计仰卧起坐能够一分钟完成30或30次以上的女学生有多少人?(3)已知第一组中只有一个甲班学生,第四组中只有一个乙班学生,老师随机从这两个组中各选一名学生谈心得体会,请你用列表或树状图的方法,求所选两人正好都是甲班学生的概率.24.(10分)如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象与反比例函数y=的图象相交于点A(m,3)、B(﹣6,n),与x轴交于点C.(1)求一次函数y=kx+b的关系式;(2)结合图象,直接写出满足kx+b>的x的取值范围;=,求点P的坐标.(3)若点P在x轴上,且S△ACP25.(10分)已知AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB的延长线于F,切点为G,连接AG交CD于K.(1)如图1,求证:KE=GE;(2)如图2,连接CABG,若∠FGB=∠ACH,求证:CA∥FE;(3)如图3,在(2)的条件下,连接CG交AB于点N,若sinE=,AK=,求CN的长.五.解答题(共3小题,满分30分)26.(8分)某商场同时购进甲、乙两种商品共200件,其进价和售价如表,200件商品的总利润为y元.(1)求y与x的函数关系式;(2)该商品计划最多投入18000元用于购买这两种商品,则至少要购进多少件甲商品?若售完这些商品,则商场可获得的最大利润是多少元?(3)在(2)的基础上,实际进货时,生产厂家对甲种商品的出厂价下调a元(50<a<70)出售,且限定商场最多购进120件,若商场保持同种商品的售价不变,请你根据以上信息及(2)中的条件,设计出使该商场获得最大利润的进货方案.27.(10分)在矩形ABCD中,AD=3,CD=4,点E在CD上,且DE=1.(1)感知:如图①,连接AE,过点E作EF丄AE,交BC于点F,连接AE,易证:△ADE≌△ECF(不需要证明);(2)探究:如图②,点P在矩形ABCD的边AD上(点P不与点A、D重合),连接PE,过点E作EF⊥PE,交BC于点F,连接PF.求证:△PDE和△ECF相似;(3)应用:如图③,若EF交AB于点F,EF丄PE,其他条件不变,且△PEF的面积是6,则AP的长为.28.(12分)已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a <b.(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.2018年四川省成都市中考数学全真模拟试卷参考答案与试题解析一.选择题(共10小题,满分27分)1.【解答】解:|﹣3|=3,故选:A.2.【解答】解:根据主视图和左视图为矩形是柱体,根据俯视图是圆可判断出这个几何体应该是圆柱.故选:B.3.【解答】解:5 300万=5 300×103万美元=5.3×107美元.故选C.4.【解答】解:A、(ab3)2=a2b6,故原题计算错误;B、﹣(a﹣b)=﹣a+b,故原题计算正确;C、(a+b)2=a2+2ab+b2,故原题计算错误;D、x12÷x6=x6,故原题计算错误;故选:B.5.【解答】解:(1)如图,由AB∥CD,可得∠AOC=∠DCE1=β,∵∠AOC=∠BAE1+∠AE1C,∴∠AE1C=β﹣α.(2)如图,过E2作AB平行线,则由AB∥CD,可得∠1=∠BAE2=α,∠2=∠DCE2=β,∴∠AE2C=α+β.(3)如图,由AB∥CD,可得∠BOE3=∠DCE3=β,∵∠BAE3=∠BOE3+∠AE3C,∴∠AE3C=α﹣β.(4)如图,由AB∥CD,可得∠BAE4+∠AE4C+∠DCE4=360°,∴∠AE4C=360°﹣α﹣β.∴∠AEC的度数可能为β﹣α,α+β,α﹣β,360°﹣α﹣β.(5)(6)当点E在CD的下方时,同理可得,∠AEC=α﹣β或β﹣α.故选:D.6.【解答】解:在这四个图片中中心对称图形的有第1、2、3幅图片,因此是中心对称称图形的卡片的概率是,故选:C.7.【解答】解:由题意可得,,故选:B.8.【解答】解:由表可知,年龄为14岁与年龄为15岁的频数和为:x+12﹣x=12,则总人数为:5+15+12=32,故该组数据的众数为13岁,中位数为:=13岁,即对于不同的x,关于年龄的统计量不会发生改变的是众数和中位数.故选:C.9.【解答】解:设⊙O的半径为x,∵E点是的中点,O点是圆心,∴OD⊥BC,DC==4,在Rt△ODC中,OD=x﹣2,∴OD2+DC2=OC2∴(x﹣2)2+42=x2∴x=5,即⊙O的半径为5;故选:B.10.【解答】解:∵抛物线的顶点坐标A(﹣1,3),∴抛物线的对称轴为直线x=﹣=﹣1,∴2a﹣b=0,所以①正确;∵抛物线开口向下,∴a<0,∴b=2a<0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc>0,所以②错误;∵抛物线与x轴的一个交点为(﹣4,0)而抛物线的对称轴为直线x=﹣1,∴抛物线与x轴的另一个交点为(2,0),所以③错误;∵抛物线的顶点坐标A(﹣1,3),∴x=﹣1时,二次函数有最大值,∴方程ax2+bx+c=3有两个相等的实数根,所以④正确;∵抛物线y1=ax2+bx+c与直线y2=mx+n(m≠0)交于A(﹣1,3),B点(﹣4,0)∴当﹣4<x<﹣1时,y2<y1,所以⑤正确.故选:C.二.填空题(共4小题,满分16分,每小题4分)11.【解答】解:∵4=,又∵>,∴4>.故答案为:>.12.【解答】△ABC周长为1,因为每条中位线均为其对应边的长度的,所以:第2个三角形对应周长为;第3个三角形对应的周长为;第4个三角形对应的周长为;以此类推,第N个三角形对应的周长为;所以第10个三角形对应的周长为.故答案为:.13.【解答】解:设关于x的三个方程都没有实根.对于方程x2+4mx+4m2+2m+3=0,则有△1<0,即△1=16m2﹣4(4m2+2m+3)<0,解得m>﹣;对于方程x2+(2m+1)x+m2=0,则有△2<0,即△2=(2m+1)2﹣4m2=4m+1<0,解得m<﹣;对于方程(m﹣1)x2+2mx+m﹣1=0,当m=1时,方程变为2x=0,方程有解,所以m≠1,则有△3<0,即△3=4m2﹣4(m﹣1)2=8m+4<0,解得m<.综合所得:当﹣<m<﹣,且m≠1时,关于x的三个方程都没有实根.所以若关于x的三个方程x2+4mx+4m2+2m+3=0,x2+(2m+1)x+m2=0,(m﹣1)x2+2mx+m﹣1=0中至少有一个方程有实根,则m的取值范围是m≤﹣或m≥﹣.故答案为:m≤﹣或m≥﹣.14.【解答】解:如图,把△ADF绕点A逆时针旋转90°得到△ABM.则AM=AF,∠FAD=∠MAB=15°∵四边形ABCD是正方形,∴AB=AD=BC=CD,∠D=∠ABC=∠ABM=90°,∵∠BAE=30°,∠DAF=15°,∴∠EAF=45°,∠MAE=∠MAB+∠BAE=45°=∠EAF,在△EAF和△EAM中,,∴△EAF≌EAM,∴ME=EF,∵ME=BM+BE=BE+DF,设FE=a,在Rt△ABE中,∵∠ABE=90°,AB=3,∠BAE=30°,∴BE=,DF=a﹣,CF=3﹣(a﹣),∵EF2=EC2+CF2,∴a2=(3﹣)2+[3﹣(a﹣)]2,∴a=6﹣2,=S△AME=•EM•AB=•(6﹣2)×3=9﹣3.∴S△AEF故答案为9﹣3.三.填空题(共5小题,满分20分,每小题4分)15.【解答】解:3=2+1;5=3+2;8=5+3;13=8+5;…可以发现:从第三个数起,每一个数都等于它前面两个数的和.则第8个数为13+8=21;第9个数为21+13=34;第10个数为34+21=55.故答案为55.16.【解答】解:去分母得,2x﹣b=3x﹣3∴x=3﹣b∵x≥0∴3﹣b≥0解得,b≤3又∵x﹣1≠0∴x≠1即3﹣b≠1,b≠2则b的取值范围是b≤3且b≠2.17.【解答】解:一次函数中y随x增大而减小,则k为负数,则P=;故答案为.18.【解答】解:如图,过点A作AD⊥x轴于D,∵四边形OABC是菱形,∴OA=OC,∵双曲线的对称轴为直线y=x,∴OA、OC关于y=x对称,∵∠AOC=30°,∴∠AOD=(90°﹣30°)=30°,设菱形的边长为x,则菱形的面积=x•x=10,解得x=2,∴OA=2,AD=OA=×2=,由勾股定理得,OD===,∴点A的坐标为(,),代入y=得,=,解得k=5.故答案为:5.19.【解答】解:连接DH.∵在矩形ABCD中,AB=2,BC=4,∴BD==2.∵O是对称中心,∴OD=BD=.∵OH是⊙D的切线,∴DH⊥OH.∵DH=1,∴OH=2.∴tan∠ADB=tan∠HOD=.∵∠ADB=∠HOD,∴OE=ED.设EH为X,则ED=OE=OH﹣EH=2﹣X.∴12+X2=(2﹣X)2解得X=.即EH=又∵∠FOE=∠DHO=90°∴FO∥DH∴∠EFO=∠HDE∴tan∠EFO=tan∠HDE==.四.解答题(共6小题,满分54分)20.【解答】解:(1)原式==6;(2)由①得:x≥﹣1;由②得:x<2;∴原不等式组的解集为:﹣1≤x<2,解集表示在数轴上为:21.【解答】解:原式=÷(﹣)==×=﹣∵x2+7x=0x(x+7)=0∴x1=0,x2=﹣7当x=0时,除式(﹣x+1)=0,所以x不能为0,所以x=﹣7.当x=﹣7时,原式=﹣=﹣=22.【解答】解:由题意得:BE=,AE=,∵AE﹣BE=AB=m米,∴﹣=m(米),∴CE=(米),∵DE=n米,∴CD=+n(米).∴该建筑物的高度为:(+n)米.23.【解答】解:(1)a=1﹣0.15﹣0.35﹣0.20=0.3;∵总人数为:3÷0.15=20(人),∴b=20×0.20=4(人);故答案为:0.3,4;补全统计图得:(2)估计仰卧起坐能够一分钟完成30或30次以上的女学生有:180×(0.35+0.20)=99(人);(3)画树状图得:∵共有12种等可能的结果,所选两人正好都是甲班学生的有3种情况,∴所选两人正好都是甲班学生的概率是:=.24.【解答】解:(1)将A(m,3)代入反比例解析式得:m=2,则A(2,3),将B(﹣6,n)代入反比例解析式得:n=﹣1,则B(﹣6,﹣1),将A与B的坐标代入y=kx+b得:,解得:,则一次函数解析式为y=x+2;(2)由图象得:x+2>的x的取值范围是:﹣6<x<0或x>2;(3)∵y=x+2中,y=0时,x+2=0,解得x=﹣4,则C(﹣4,0),OC=4∴△BOC的面积=×4×1=2,==×2=3.∴S△ACP=CP×3=CP,∵S△ACP∴CP=3,∴CP=2,∵C(﹣4,0),∴点P的坐标为(﹣2,0)或(﹣6,0).25.【解答】(1)证明:连接OG.∵EF切⊙O于G,∴OG⊥EF,∴∠AGO+∠AGE=90°,∵CD⊥AB于H,∴∠AHD=90°,∴∠OAG=∠AKH=90°,∵OA=OG,∴∠AGO=∠OAG,∴∠AGE=∠AKH,∵∠EKG=∠AKH,∴KE=GE.(2)设∠FGB=α,∵AB是直径,∴∠AGB=90°,∴∠AGE=∠EKG=90°﹣α,∴∠E=180°﹣∠AGE﹣∠EKG=2α,∵∠FGB=∠ACH,∴∠ACH=2α,∴∠ACH=∠E,∴CA∥FE.(3)作NP⊥AC于P.∵∠ACH=∠E,∴sin∠E=sin∠ACH==,设AH=3a,AC=5a,则CH==4a,tan∠CAH==,∵CA∥FE,∴∠CAK=∠AGE,∵∠AGE=∠AKH,∴∠CAK=∠AKH,∴AC=CK=5a,HK=CK﹣CH=4a,tan∠AKH==3,AK==a,∵AK=,∴a=,∴a=1.AC=5,∵∠BHD=∠AGB=90°,∴∠BHD+∠AGB=180°,在四边形BGKH中,∠BHD+∠HKG+∠AGB+∠ABG=360°,∴∠ABG+∠HKG=180°,∵∠AKH+∠HKG=180°,∴∠AKH=∠ABG,∴∠AKH=∠ACN,∴tan∠AKH=tan∠ACN=3,∵NP⊥AC于P,∴∠APN=∠CPN=90°,在Rt△APN中,tan∠CAH==,设PN=12b,则AP=9b,在Rt△CPN中,tan∠ACN==3,∴CP=4b,∴AC=AP+CP=13b,∵AC=5,∴13b=5,∴b=,∴CN==4b=.五.解答题(共3小题,满分30分)26.【解答】解:(1)根据题意得:y=(160﹣80)x+(240﹣100)(200﹣x),=﹣60x+28000,则y与x的函数关系式为:y=﹣60x+28000;(2)80x+100(200﹣x)≤18000,解得:x≥100,∴至少要购进100件甲商品,y=﹣60x+28000,∵﹣60<0,∴y随x的增大而减小,∴当x=100时,y有最大值,y大=﹣60×100+28000=22000,∴若售完这些商品,则商场可获得的最大利润是22000元;(3)y=(160﹣80+a)x+(240﹣100)(200﹣x)(100≤x≤120),y=(a﹣60)x+28000,①当50<a<60时,a﹣60<0,y随x的增大而减小,∴当x=100时,y有最大利润,即商场应购进甲商品100件,乙商品100件,获利最大,②当a=60时,a﹣60=0,y=28000,即商场应购进甲商品的数量满足100≤x≤120的整数件时,获利最大,③当60<a<70时,a﹣60>0,y随x的增大而增大,∴当x=120时,y有最大利润,即商场应购进甲商品120件,乙商品80件,获利最大.27.【解答】证明:感知:如图①,∵四边形ABCD为矩形,∴∠D=∠C=90°,∴∠DAE+∠DEA=90°,∵EF⊥AE,∴∠AEF=90°,∴∠DEA+∠FEC=90°,∴∠DAE=∠FEC,∵DE=1,CD=4,∴CE=3,∵AD=3,∴AD=CE,∴△ADE≌△ECF(ASA);探究:如图②,∵四边形ABCD为矩形,∴∠D=∠C=90°,∴∠DPE+∠DEP=90°,∵EF⊥PE,∴∠PEF=90°,∴∠DEP+∠FEC=90°,∴∠DPE=∠FEC,∴△PDE∽△ECF;应用:如图③,过F作FG⊥DC于G,∵四边形ABCD为矩形,∴AB∥CD,∴FG=BC=3,∵PE⊥EF,=PE•EF=6,∴S△PEF∴PE•EF=12,同理得:△PDE∽△EGF,∴=,∴=,∴EF=3PE,∴3PE2=12,∴PE=±2,∵PE>0,∴PE=2,在Rt△PDE中,由勾股定理得:PD==,∴AP=AD﹣PD=3﹣,故答案为:3﹣.28.【解答】解:(1)∵抛物线y=ax2+ax+b有一个公共点M(1,0),∴a+a+b=0,即b=﹣2a,∴y=ax2+ax+b=ax2+ax﹣2a=a(x+)2﹣,∴抛物线顶点D的坐标为(﹣,﹣);(2)∵直线y=2x+m经过点M(1,0),∴0=2×1+m,解得m=﹣2,∴y=2x﹣2,则,得ax2+(a﹣2)x﹣2a+2=0,∴(x﹣1)(ax+2a﹣2)=0,解得x=1或x=﹣2,∴N点坐标为(﹣2,﹣6),∵a<b,即a<﹣2a,∴a<0,如图1,设抛物线对称轴交直线于点E,∵抛物线对称轴为x=﹣=﹣,∴E(﹣,﹣3),∵M(1,0),N(﹣2,﹣6),设△DMN的面积为S,∴S=S △DEN +S △DEM =|(﹣2)﹣1|•|﹣﹣(﹣3)|=,(3)当a=﹣1时,抛物线的解析式为:y=﹣x 2﹣x +2=﹣(x ﹣)2+,有,﹣x 2﹣x +2=﹣2x ,解得:x 1=2,x 2=﹣1,∴G (﹣1,2),∵点G 、H 关于原点对称,∴H (1,﹣2),设直线GH 平移后的解析式为:y=﹣2x +t ,﹣x 2﹣x +2=﹣2x +t ,x 2﹣x ﹣2+t=0,△=1﹣4(t ﹣2)=0,t=,当点H 平移后落在抛物线上时,坐标为(1,0),把(1,0)代入y=﹣2x +t ,t=2,∴当线段GH 与抛物线有两个不同的公共点,t 的取值范围是2≤t <.。

2018年四川省成都市中考数学试卷及答案

2018年四川省成都市中考数学试卷及答案

2018年四川省成都市中考数学试卷及答案一、选择题(每小题3分,共30分)1.(3分)实数a,b,c,d在数轴上上对应的点的位置如图所示,这四个数中最大的是()A.a B.b C.c D.d2.(3分)2018年5月2l日,西昌卫星发射中心成功发射探月工程嫦娥四号任务“鹊桥号”中继星,卫星进入近地点高度为200公里、远地点高度为40万公里的预定轨道.将数据40万用科学记数法表示为()A.4×104B.4×105C.4×106D.0.4×1063.(3分)如图所示的正六棱柱的主视图是()A.B.C.D.4.(3分)在平面直角坐标系中,点P(﹣3,﹣5)关于原点对称的点的坐标是()A.(3,﹣5)B.(﹣3,5)C.(3,5) D.(﹣3,﹣5)5.(3分)下列计算正确的是()A.x2+x2=x4B.(x﹣y)2=x2﹣y2C.(x2y)3=x6y D.(﹣x)2•x3=x56.(3分)如图,已知∠ABC=∠DCB,添加以下条件,不能判定△ABC≌△DCB 的是()A.∠A=∠D B.∠ACB=∠DBC C.AC=DB D.AB=DC7.(3分)如图是成都市某周内最高气温的折线统计图,关于这7天的日最高气温的说法正确的是()A.极差是8℃B.众数是28℃ C.中位数是24℃D.平均数是26℃8.(3分)分式方程=1的解是()A.x=1 B.x=﹣1 C.x=3 D.x=﹣39.(3分)如图,在▱ABCD中,∠B=60°,⊙C的半径为3,则图中阴影部分的面积是()A.πB.2πC.3πD.6π10.(3分)关于二次函数y=2x2+4x﹣1,下列说法正确的是()A.图象与y轴的交点坐标为(0,1)B.图象的对称轴在y轴的右侧C.当x<0时,y的值随x值的增大而减小D.y的最小值为﹣3二、填空题(每小题4分,共16分)11.(4分)等腰三角形的一个底角为50°,则它的顶角的度数为.12.(4分)在一个不透明的盒子中,装有除颜色外完全个相同的乒乓球共16个,从中随机摸出一个乒乓球,若摸到黄色乒乓球的概率为,则该盒子中装有黄色乒乓球的个数是.13.(4分)已知==,且a+b﹣2c=6,则a的值为.14.(4分)如图,在矩形ABCD中,按以下步骤作图:①分别以点A和C为圆心,以大于AC的长为半径作弧,两弧相交于点M和N;②作直线MN交CD 于点E.若DE=2,CE=3,则矩形的对角线AC的长为.三、解答题(本大题共6个小题,共54分)15.(12分)(1)22+﹣2sin60°+|﹣|(2)化简:(1﹣)÷16.(6分)若关于x的一元二次方程x2﹣(2a+1)x+a2=0有两个不相等的实数根,求a的取值范围.17.(8分)为了给游客提供更好的服务,某景区随机对部分游客进行了关于“景区服务工作满意度”的调查,并根据调查结果绘制成如下不完整的统计图表.根据图表信息,解答下列问题:(1)本次调查的总人数为,表中m的值;(2)请补全条形统计图;(3)据统计,该景区平均每天接待游客约3600人,若将“非常满意”和“满意”作为游客对景区服务工作的肯定,请你估计该景区服务工作平均每天得到多少名游客的肯定.18.(8分)由我国完全自主设计、自主建造的首艘国产航母于2018年5月成功完成第一次海上实验任务.如图,航母由西向东航行,到达A处时,测得小岛C 位于它的北偏东70°方向,且与航母相距80海里,再航行一段时间后到达B处,测得小岛C位于它的北偏东37°方向.如果航母继续航行至小岛C的正南方向的D处,求还需航行的距离BD的长.(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2,75,sin37°≈0.6,cos37°≈0.80,tan37°≈0.75)19.(10分)如图,在平面直角坐标系xOy中,一次函数y=x+b的图象经过点A (﹣2,0),与反比例函数y=(x>0)的图象交于B(a,4).(1)求一次函数和反比例函数的表达式;(2)设M是直线AB上一点,过M作MN∥x轴,交反比例函数y=(x>0)的图象于点N,若A,O,M,N为顶点的四边形为平行四边形,求点M的坐标.20.(10分)如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,O为AB上一点,经过点A,D的⊙O分别交AB,AC于点E,F,连接OF交AD于点G.(1)求证:BC是⊙O的切线;(2)设AB=x,AF=y,试用含x,y的代数式表示线段AD的长;(3)若BE=8,sinB=,求DG的长,一、填空题(每小题4分,共20分)21.(4分)已知x+y=0.2,x+3y=1,则代数式x2+4xy+4y2的值为.22.(4分)汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝.如图所示的弦图中,四个直角三角形都是全等的,它们的两直角边之比均为2:3.现随机向该图形内掷一枚小针,则针尖落在阴影区域的概率为.23.(4分)已知a>0,S1=,S2=﹣S1﹣1,S3=,S4=﹣S3﹣1,S5=,…(即当n为大于1的奇数时,S n=;当n为大于1的偶数时,S n=﹣S n﹣1﹣1),按此规律,S2018=.24.(4分)如图,在菱形ABCD中,tanA=,M,N分别在边AD,BC上,将四边形AMNB沿MN翻折,使AB的对应线段EF经过顶点D,当EF⊥AD时,的值为.25.(4分)设双曲线y=(k>0)与直线y=x交于A,B两点(点A在第三象限),将双曲线在第一象限的一支沿射线BA的方向平移,使其经过点A,将双曲线在第三象限的一支沿射线AB的方向平移,使其经过点B,平移后的两条曲线相交于P,Q两点,此时我们称平移后的两条曲线所围部分(如图中阴影部分)为双曲线的“眸”,PQ为双曲线的“眸径“,当双曲线y=(k>0)的眸径为6时,k的值为.二、解答题(本大题共3小题,共30分)26.(8分)为了美化环境,建设宜居成都,我市准备在一个广场上种植甲、乙两种花卉,经市场调查,甲种花卉的种植费用y(元)与种植面积x(m2)之间的函数关系如图所示,乙种花卉的种植费用为每平方米100元.(1)直接写出当0≤x≤300和x>300时,y与x的函数关系式;(2)广场上甲、乙两种花卉的种植面积共1200m2,若甲种花卉的种植面积不少于200m2,且不超过乙种花卉种植面积的2倍,那么应该怎样分配甲、乙两种花卉的种植面积才能使种植总费用最少?最少总费用为多少元?27.(10分)在Rt△ABC中,∠ABC=90°,AB=,AC=2,过点B作直线m∥AC,将△ABC绕点C顺时针旋转得到△A′B′C′(点A,B的对应点分别为A',B′),射线CA′,CB′分別交直线m于点P,Q.(1)如图1,当P与A′重合时,求∠ACA′的度数;(2)如图2,设A′B′与BC的交点为M,当M为A′B′的中点时,求线段PQ的长;(3)在旋转过程中,当点P,Q分别在CA′,CB′的延长线上时,试探究四边形PA'B′Q的面积是否存在最小值.若存在,求出四边形PA′B′Q的最小面积;若不存在,请说明理由.28.(12分)如图,在平面直角坐标系xOy中,以直线x=对称轴的抛物线y=ax2+bx+c与直线l:y=kx+m(k>0)交于A(1,1),B两点,与y轴交于C(0,5),直线与y轴交于点D.(1)求抛物线的函数表达式;(2)设直线l与抛物线的对称轴的交点为F,G是抛物线上位于对称轴右侧的一点,若=,且△BCG与△BCD面积相等,求点G的坐标;(3)若在x轴上有且仅有一点P,使∠APB=90°,求k的值.2018年四川省成都市中考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.【解答】解:由数轴可得:a<b<c<d,故选:D.2.【解答】解:40万=4×105,故选:B.3.【解答】解:从正面看是左右相邻的3个矩形,中间的矩形的面积较大,两边相同.故选:A.4.【解答】解:点P(﹣3,﹣5)关于原点对称的点的坐标是(3,5),故选:C.5.【解答】解:x2+x2=2x2,A错误;(x﹣y)2=x2﹣2xy+y2,B错误;(x2y)3=x6y3,C错误;(﹣x)2•x3=x2•x3=x5,D正确;故选:D.6.【解答】解:A、∠A=∠D,∠ABC=∠DCB,BC=BC,符合AAS定理,即能推出△ABC≌△DCB,故本选项错误;B、∠ABC=∠DCB,BC=CB,∠ACB=∠DBC,符合ASA定理,即能推出△ABC≌△DCB,故本选项错误;C、∠ABC=∠DCB,AC=BD,BC=BC,不符合全等三角形的判定定理,即不能推出△ABC≌△DCB,故本选项正确;D、AB=DC,∠ABC=∠DCB,BC=BC,符合SAS定理,即能推出△ABC≌△DCB,故本选项错误;故选:C.7.【解答】解:由图可得,极差是:30﹣20=10℃,故选项A错误,众数是28℃,故选项B正确,这组数按照从小到大排列是:20、22、24、26、28、28、30,故中位数是26℃,故选项C错误,平均数是:=℃,故选项D错误,故选:B.8.【解答】解:=1,去分母,方程两边同时乘以x(x﹣2)得:(x+1)(x﹣2)+x=x(x﹣2),x2﹣x﹣2+x=x2﹣2x,x=1,经检验,x=1是原分式方程的解,故选:A.9.【解答】解:∵在▱ABCD中,∠B=60°,⊙C的半径为3,∴∠C=120°,∴图中阴影部分的面积是:=3π,故选:C.10.【解答】解:∵y=2x2+4x﹣1=2(x+1)2﹣3,∴当x=0时,y=﹣1,故选项A错误,该函数的对称轴是直线x=﹣1,故选项B错误,当x<﹣1时,y随x的增大而减小,故选项C错误,当x=﹣1时,y取得最小值,此时y=﹣3,故选项D正确,故选:D.二、填空题(每小题4分,共16分)11.【解答】解:∵等腰三角形底角相等,∴180°﹣50°×2=80°,∴顶角为80°.故填80.12.【解答】解:∵装有除颜色外完全个相同的乒乓球共16个,从中随机摸出一个乒乓球,若摸到黄色乒乓球的概率为,∴该盒子中装有黄色乒乓球的个数是:16×=6.故答案为:6.13.【解答】解:∵==,∴设a=6x,b=5x,c=4x,∵a+b﹣2c=6,∴6x+5x﹣8x=6,解得:x=2,故a=12.故答案为:12.14.【解答】解:连接AE,如图,由作法得MN垂直平分AC,∴EA=EC=3,在Rt△ADE中,AD==,在Rt△ADC中,AC==.故答案为.三、解答题(本大题共6个小题,共54分) 15.【解答】解:(1)原式=4+2﹣2×+=6(2)原式=×=×=x﹣116.【解答】解:∵关于x的一元二次方程x2﹣(2a+1)x+a2=0有两个不相等的实数根,∴△=[﹣(2a+1)]2﹣4a2=4a+1>0,解得:a>﹣.17.【解答】解:(1)12÷10%=120,故m=120,n=120×40%=48,m==45%.故答案为120.45%.(2)根据n=48,画出条形图:(3)3600××100%=1980(人),答:估计该景区服务工作平均每天得到1980人游客的肯定.18.【解答】解:由题意得:∠ACD=70°,∠BCD=37°,AC=80海里,在直角三角形ACD中,CD=AC•cos∠ACD=27.2海里,在直角三角形BCD中,BD=CD•tan∠BCD=20.4海里.答:还需航行的距离BD的长为20.4海里.19.【解答】解:(1)∵一次函数y=x+b的图象经过点A(﹣2,0),∴0=﹣2+b,得b=2,∴一次函数的解析式为y=x+2,∵一次函数的解析式为y=x+2与反比例函数y=(x>0)的图象交于B(a,4),∴4=a+2,得a=2,∴4=,得k=8,即反比例函数解析式为:y=(x>0);(2)∵点A(﹣2,0),∴OA=2,设点M(m﹣2,m),点N(,m),当MN∥AO且MN=AO时,四边形AOMN是平行四边形,||=2,解得,m=2或m=+2,∴点M的坐标为(﹣2,)或(,2+2).20.【解答】(1)证明:如图,连接OD,∵AD为∠BAC的角平分线,∴∠BAD=∠CAD,∵OA=OD,∴∠ODA=∠OAD,∴∠ODA=∠CAD,∴OD∥AC,∵∠C=90°,∴∠ODC=90°,∴OD⊥BC,∴BC为圆O的切线;(2)解:连接DF,由(1)知BC为圆O的切线,∴∠FDC=∠DAF,∴∠CDA=∠CFD,∴∠AFD=∠ADB,∵∠BAD=∠DAF,∴△ABD∽△ADF,∴=,即AD2=AB•AF=xy,则AD=;(3)解:连接EF,在Rt△BOD中,sinB==,设圆的半径为r,可得=,解得:r=5,∴AE=10,AB=18,∵AE是直径,∴∠AFE=∠C=90°,∴EF∥BC,∴∠AEF=∠B,∴sin∠AEF==,∴AF=AE•sin∠AEF=10×=,∵AF∥OD,∴===,即DG=AD,∴AD===,则DG=×=.一、填空题(每小题4分,共20分)21.【解答】解:∵x+y=0.2,x+3y=1,∴2x+4y=1.2,即x+2y=0.6,则原式=(x+2y)2=0.36.故答案为:0.3622.【解答】解:设两直角边分别是2x,3x,则斜边即大正方形的边长为x,小正方形边长为x,所以S大正方形=13x2,S小正方形=x2,S阴影=12x2,则针尖落在阴影区域的概率为=.故答案为:.23.【解答】解:S1=,S2=﹣S1﹣1=﹣﹣1=﹣,S3==﹣,S4=﹣S3﹣1=﹣1=﹣,S5==﹣(a+1),S6=﹣S5﹣1=(a+1)﹣1=a,S7==,…,∴S n的值每6个一循环.∵2018=336×6+2,∴S2018=S2=﹣.故答案为:﹣.24.【解答】解:延长NF与DC交于点H,∵∠ADF=90°,∴∠A+∠FDH=90°,∵∠DFN+∠DFH=180°,∠A+∠B=180°,∠B=∠DFN,∴∠A=∠DFH,∴∠FDH+∠DFH=90°,∴NH⊥DC,设DM=4k,DE=3k,EM=5k,∴AD=9k=DC,DF=6k,∵tanA=tan∠DFH=,则sin∠DFH=,∴DH=DF=k,∴CH=9k﹣k=k,∵cosC=cosA==,∴CN=CH=7k,∴BN=2k,∴=.25.【解答】解:以PQ为边,作矩形PQQ′P′交双曲线于点P′、Q′,如图所示.联立直线AB及双曲线解析式成方程组,,解得:,,∴点A的坐标为(﹣,﹣),点B的坐标为(,).∵PQ=6,∴OP=3,点P的坐标为(﹣,).根据图形的对称性可知:AB=OO′=PP′,∴点P′的坐标为(﹣+2,+2).又∵点P′在双曲线y=上,∴(﹣+2)•(+2)=k,解得:k=.故答案为:.二、解答题(本大题共3小题,共30分)26.【解答】解:(1)y=(2)设甲种花卉种植为 a m2,则乙种花卉种植(12000﹣a)m2.∴,∴200≤a≤800当200≤a<300时,W1=130a+100(1200﹣a)=30a+12000.当a=200 时.W min=126000 元当300≤a≤800时,W2=80a+15000+100(1200﹣a)=135000﹣20a.当a=800时,W min=119000 元∵119000<126000∴当a=800时,总费用最少,最少总费用为119000元.此时乙种花卉种植面积为1200﹣800=400m2.答:应该分配甲、乙两种花卉的种植面积分别是800m2和400m2,才能使种植总费用最少,最少总费用为119000元.27.【解答】解:(1)由旋转可得:AC=A'C=2,∵∠ACB=90°,AB=,AC=2,∴BC=,∵∠ACB=90°,m∥AC,∴∠A'BC=90°,∴cos∠A'CB==,∴∠A'CB=30°,∴∠ACA'=60°;(2)∵M为A'B'的中点,∴∠A'CM=∠MA'C,由旋转可得,∠MA'C=∠A,∴∠A=∠A'CM,∴tan∠PCB=tan∠A=,∴PB=BC=,∵tan∠Q=tan∠A=,∴BQ=BC×=2,∴PQ=PB+BQ=;(3)∵S四边形PA'B′Q=S△PCQ﹣S△A'CB'=S△PCQ﹣,∴S四边形PA'B′Q 最小,即S△PCQ最小,∴S△PCQ=PQ×BC=PQ,法一:(几何法)取PQ的中点G,则∠PCQ=90°,∴CG=PQ,即PQ=2CG,当CG最小时,PQ最小,∴CG⊥PQ,即CG与CB重合时,CG最小,∴CG min=,PQ min=2,∴S△PCQ 的最小值=3,S四边形PA'B′Q=3﹣;法二(代数法)设PB=x,BQ=y,由射影定理得:xy=3,∴当PQ最小时,x+y最小,∴(x+y)2=x2+2xy+y2=x2+6+y2≥2xy+6=12,当x=y=时,“=”成立,∴PQ=+=2,∴S△PCQ 的最小值=3,S四边形PA'B′Q=3﹣.28.【解答】解:(1)由题意可得,,解得,a=1,b=﹣5,c=5;∴二次函数的解析式为:y=x2﹣5x+5,(2)作AM⊥x轴,BN⊥x轴,垂足分别为M,N,则,∵MQ=,∴NQ=2,B(,);∴,解得,,∴,D(0,),同理可求,,∵S=S△BCG,△BCD∴①DG∥BC(G在BC下方),,∴=x2﹣5x+5,解得,,x2=3,∵x>,∴x=3,∴G(3,﹣1).②G在BC上方时,直线G2G3与DG1关于BC对称,∴=,∴=x2﹣5x+5,解得,,,∵x>,∴x=,∴G(,),综上所述点G的坐标为G(3,﹣1),G(,).(3)由题意可知:k+m=1,∴m=1﹣k,∴y l=kx+1﹣k,∴kx+1﹣k=x2﹣5x+5,解得,x1=1,x2=k+4,∴B(k+4,k2+3k+1),设AB中点为O′,∵P点有且只有一个,∴以AB为直径的圆与x轴只有一个交点,且P为切点,∴O′P⊥x轴,∴P为MN的中点,∴P(,0),∵△AMP∽△PNB,∴,∴AM•BN=PN•PM,∴1×(k2+3k+1)=(k+4﹣)(),∵k>0,∴k==﹣1+.。

2018年成都市中考数学试题及答案(版-含详解)(最新整理)

2018年成都市中考数学试题及答案(版-含详解)(最新整理)
数 量 关 系 : 发 现 当 n 3 时 , p b c .请 继 续 探 究
b, c, p 三者的数量关系: 当 n 4 时, p _______;当 n 12 时, p _______. (参考数据: sin15o cos 75o 6 2 ,
4 cos15o sin 75o 6 2 )
A , B 两点,且 A 点在 y 轴左侧, P 点的坐标为 (0, 4) ,连接 PA, PB .有以下说法:
○1 PO2 PA PB ;○2 当 k 0 时, (PA AO)(PB BO) 的值随 k 的增大而增大;
○3 当 k 3 时, BP2 BO BA ;○4 PAB 面积的最小值为 4 6 . 3
(C) 23 =6
(D) (2013)0 =0
6.参加成都市今年初三毕业会考的学生约有 13 万人,将 13 万用科学计数法表 示应为( )
(A)1.3×105
(B)13× 10 4
(C)0.13×105
(D)0.13×106
7.如图,将矩形 ABCD 沿对角线 BD 折叠,使点 C 和点 C' 重合,若 AB=2,则 C' D
(1)表中的 x 的值为_______, y 的值为________
(2)将本次参赛作品获得 A 等级的学生一次用 A1 , A2 , A3 ,…表示,现该校 决定从本次参赛作品中获得 A 等级学生中,随机抽取两名学生谈谈他们的参赛体 会,请用树状图或列表法求恰好抽到学生 A1 和 A2 的概率.
19.(本小题满分 10 分)
······4 分
(2)由图可知, AC 2 ,
第 9 页 共 17 页
∴线段 AC 在旋转过程中所扫过的扇形的面积为:
S 90 22 . 360

成都2018年中考数学真题(20+B卷)打印版

成都2018年中考数学真题(20+B卷)打印版

20、如图,在Rt △ABC 中,∠C =90°,AD 平分∠BAC 交BC 于点D ,O 为AB 上一点,经过点A 、D 的⊙O 分别交AB 、AC 于点E 、F ,连接OF 交AD 于点G .(1)求证:BC 为⊙O 的切线;(2)设AB =x ,AF =y ,试用含x 、y 的代数式表示线段AD 的长;(3)若BE =8,sinB=135,求DG 的长.B 卷(50分)21、已知1320=+=+y x y x ,.,则代数式2244y xy x ++的值为___________22、汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝.如图所示的弦图中,四个直角三角形都是全等的,它们的两直角边之比均为2:3,现随机向该图形内部掷一枚小针,则针尖落在阴影区域的概率为____________23、已知a >0,...,,,,,45342312111111S S S S S S S S a S =--==--==(即当n 为大于1的奇数时,11-=n n S S ,当n 为大于1的偶数时,11--=-n n S S ),按此规律,2018S =________.(用含a 的代数式表示)24、如图,在菱形ABCD 中,tanA =34,M 、N 分别在边AD 、BC 上,将四边形AMNB 沿MN 翻折,使AB 的对应线段EF 经过顶点D ,当EF ⊥AD 时,BN 的值为__________。

第2425AB 的)(0>=k xk y 26、(8(1(22002m ,27、(10分)在Rt △ABC 中,∠ACB =90°,AB ,AC =2,过点B 作直线m //AC ,将△ABC绕点C 顺时针旋转得到△''A B C (点A 、B 的对应点分别为''、A B ),射线'CA 、'CB 分别交直线m 于点P 、Q .(1)如图1,当P 与'A 重合时,求∠'ACA 的度数;(2)如图2,设''A B 与BC 的交点为M ,当M 为''A B 的中点时,求线段PQ 的长;(3)在旋转过程中,低昂P 、Q 分别在'CA 、'CB 的延长线上时,试探究四边形''PA B Q 的面积是否存在最小值.若存在,求出四边形''PA B Q 的直最小面积;若不存在,请说明理由.28、(12分)如图,在平面直角坐标xOy中,以直线x=52为对称轴的抛物线()20 y ax bx c a=++≠于直线l:()0y kx m k=+>交于A(1,1),B两点,与y轴交于点C(0,5),直线l与y轴交于点D.(1)求抛物线的函数表达式;(2)设直线l与抛物线的对称轴的交点为F,G是抛物线上位于对称轴右侧的一点,若34 AFBF=,且△BCG与△BCD的面积相等,求点G的坐标;(3)若在x轴上有且只有一点P,使∠APB=90°,求k的值.。

2018年四川省成都市中考数学试题含答案解析

2018年四川省成都市中考数学试题含答案解析

2018年中考四川省成都市中考数学试题A 卷(共100分)第Ⅰ卷(共30分)一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.实数,,,a b c d 在数轴上对应的点的位置如图所示,这四个数中最大的是( )A .aB .bC .cD .d年5月21日,西昌卫星发射中心成功发射探月工程嫦娥四号任务“鹊桥号”中继星,卫星进入近地点高度为200公里、远地点高度为40万公里的预定轨道.将数据40万用科学记数法表示为( )A .60.410⨯B .5410⨯C .6410⨯D .60.410⨯3.如图所示的正六棱柱的主视图是( )A .B .C .D .4.在平面直角坐标系中,点()3,5P --关于原点对称的点的坐标是( )A .()3,5-B .()3,5- C.()3,5 D .()3,5--5.下列计算正确的是( )A .224x x x +=B .()222x y x y -=- C.()326x y x y = D .()235x x x -•=6.如图,已知ABC DCB ∠=∠,添加以下条件,不能判定ABC DCB ∆∆≌的是( )A .A D ∠=∠B .ACB DBC ∠=∠ C.AC DB =D .AB DC =7.如图是成都市某周内日最高气温的折线统计图,关于这7天的日最高气温的说法正确的是( )A .极差是8℃B .众数是28℃ C.中位数是24℃ D .平均数是26℃8.分式方程1112x x x ++=-的解是( ) A .y B .1x =- C.3x = D .3x =-9.如图,在ABCD Y 中,60B ∠=︒,C ⊙的半径为3,则图中阴影部分的面积是( )A .πB .2π C.3π D .6π10.关于二次函数2241y x x =+-,下列说法正确的是( )A .图像与y 轴的交点坐标为()0,1B .图像的对称轴在y 轴的右侧 C.当0x <时,y 的值随x 值的增大而减小 D .y 的最小值为-3第Ⅱ卷(共70分)二、填空题(每题4分,满分16分,将答案填在答题纸上)11.等腰三角形的一个底角为50︒,则它的顶角的度数为 .12.在一个不透明的盒子中,装有除颜色外完全相同的乒乓球共16个,从中随机摸出一个乒乓球,若摸到黄色乒乓球的概率为38,则该盒子中装有黄色兵乓球的个数是 . 13.已知54a b c b ==,且26a b c +-=,则a 的值为 .14.如图,在矩形ABCD 中,按以下步骤作图:①分别以点A 和C 为圆心,以大于12AC 的长为半径作弧,两弧相交于点M 和N ;②作直线MN 交CD 于点E .若2DE =,3CE =,则矩形的对角线AC 的长为 .三、解答题 (本大题共6小题,共54分.解答应写出文字说明、证明过程或演算步骤.)15. (1)222sin 60︒+. (2)化简21111x x x ⎛⎫-÷ ⎪+-⎝⎭.16. 若关于x 的一元二次方程()22210x a x a -++=有两个不相等的实数根,求a 的取值范围.17.为了给游客提供更好的服务,某景区随机对部分游客进行了关于“景区服务工作满意度”的调查,并根据调查结果绘制成如下不完整的统计图表.根据图标信息,解答下列问题:(1)本次调查的总人数为 ,表中m 的值 ;(2)请补全条形统计图;(3)据统计,该景区平均每天接待游客约3600人,若将“非常满意”和“满意”作为游客对景区服务工作的肯定,请你估计该景区服务工作平均每天得到多少名游客的肯定.18. 由我国完全自主设计、自主建造的首舰国产航母于2018年5月成功完成第一次海上试验任务.如图,航母由西向东航行,到达A 处时,测得小岛C 位于它的北偏东70︒方向,且于航母相距80海里,再航行一段时间后到达处,测得小岛C 位于它的北偏东37︒方向.如果航母继续航行至小岛C 的正南方向的D 处,求还需航行的距离BD 的长.(参考数据:sin700.94︒≈,cos700.34︒≈,tan70 2.75︒≈,sin370.6︒≈,cos370.80︒≈,tan370.75︒≈)19. 如图,在平面直角坐标系xOy 中,一次函数y x b =+的图象经过点()2,0A -,与反比例函数()0k y x x=>的图象交于(),4B a . (1)求一次函数和反比例函数的表达式;(2)设M 是直线AB 上一点,过M 作//MN x 轴,交反比例函数()0k y x x=>的图象于点N ,若,,,A O M N 为顶点的四边形为平行四边形,求点M 的坐标.20.如图,在Rt ABC ∆中,90C ∠=︒,AD 平分BAC ∠交BC 于点D ,O 为AB 上一点,经过点A ,D 的O ⊙分别交AB ,AC 于点E ,F ,连接OF 交于点G .(1)求证:BC 是O ⊙的切线;(2)设AB x =,AF y =,试用含,x y 的代数式表示线段AD 的长;(3)若8BE =,5sin 13B =,求DG 的长.B 卷(共50分)一、填空题(每题4分,满分20分,将答案填在答题纸上)21.已知0.2x y +=,31x y +=,则代数式2244x xy y ++的值为 .22.汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝.如图所示的弦图中,四个直角三角形都是全等的,它们的两直角边之比均为2:3,现随机向该图形内掷一枚小针,则针尖落在阴影区域的概率为 .23.已知0a >,11S a=,211S S =--,321S S =,431S S =--,541S S =,…(即当n 为大于1的奇数时,11n n S S -=;当n 为大于1的偶数时,11n n S S -=--),按此规律,2018S = .24.如图,在菱形ABCD 中,4tan 3A =,,M N 分别在边,AD BC 上,将四边形AMNB 沿MN 翻折,使AB 的对应线段EF 经过顶点D ,当EF AD ⊥时,BN CN的值为 .25.设双曲线()0k y k x=>与直线y x =交于A ,B 两点(点A 在第三象限),将双曲线在第一象限的一支沿射线BA 的方向平移,使其经过点A ,将双曲线在第三象限的一支沿射线AB 的方向平移,使其经过点B ,平移后的两条曲线相交于点P ,Q 两点,此时我称平移后的两条曲线所围部分(如图中阴影部分)为双曲线的“眸”,PQ 为双曲线的“眸径”当双曲线()0k y k x=>的眸径为6时,k 的值为 . 二、解答题 (本大题共3小题,共30分.解答应写出文字说明、证明过程或演算步骤.)26.为了美化环境,建设宜居成都,我市准备在一个广场上种植甲、乙两种花卉.经市场调查,甲种花卉的种植费用y (元)与种植面积()2x m 之间的函数关系如图所示,乙种花卉的种植费用为每平方米100元.(1)直接写出当0300x ≤≤和300x >时,y 与x 的函数关系式; (2)广场上甲、乙两种花卉的种植面积共21200m ,若甲种花卉的种植面积不少于2200m ,且不超过乙种花卉种植面积的2倍,那么应该怎忙分配甲、乙两种花卉的种植面积才能使种植费用最少最少总费用为多少元27.在Rt ABC ∆中,90ABC ∠=︒,AB =,2AC =,过点B 作直线//m AC ,将ABC ∆绕点C 顺时针得到A B C ∆′′(点A ,B 的对应点分别为A ′,B ′)射线CA ′,CB ′分别交直线m 于点P ,Q .(1)如图1,当P 与A ′重合时,求ACA ∠′的度数; (2)如图2,设A B ′′与BC 的交点为M ,当M 为A B ′′的中点时,求线段PQ 的长; (3)在旋转过程时,当点,P Q 分别在CA ′,CB ′的延长线上时,试探究四边形PA B Q ′′的面积是否存在最小值.若存在,求出四边形PA B Q ′′的最小面积;若不存在,请说明理由.28.如图,在平面直角坐标系xOy 中,以直线512x =为对称轴的抛物线2y ax bx c =++与直线():0l y kx m k =+>交于()1,1A ,B 两点,与y 轴交于()0,5C ,直线l 与y 轴交于D 点.(1)求抛物线的函数表达式;(2)设直线l 与抛物线的对称轴的交点为F 、G 是抛物线上位于对称轴右侧的一点,若34AF FB =,且BCG ∆与BCD ∆面积相等,求点G 的坐标; (3)若在x 轴上有且仅有一点P ,使90APB ∠=︒,求k 的值.试卷答案A卷一、选择题1-5:DBACD 6-10:CBACD二、填空题11.80︒三、解答题15.(1)解:原式12242=+-⨯+124=+94(2)解:原式()()11111x xxx x+-+-=⨯+()()111x xxx x+-=⨯+1x=-16.解:由题知:()2222214441441a a a a a a ∆=+-=++-=+. Q 原方程有两个不相等的实数根,410a +>∴,14a >-∴. 17.解:(1)120,45%;(2)比较满意;12040%=48⨯(人)图略;(3)12+543600=1980120⨯(人). 答:该景区服务工作平均每天得到1980人的肯定.18.解:由题知:70ACD ∠=︒,37BCD ∠=︒,80AC =.在Rt ACD ∆中,cos CD ACD AC ∠=,0.3480CD =∴,27.2CD =∴(海里). 在Rt BCD ∆中,tan BD BCD CD ∠=,0.7527.2BD =∴,20.4BD =∴(海里). 答:还需要航行的距离BD 的长为海里.19.解:(1)Q 一次函数的图象经过点()2,0A -,20b -+=∴,2b =∴,1y x =+∴. Q 一次函数与反比例函数()0k y x x=>交于(),4B a . 24a +=∴,2a =∴,()2,4B ∴,()80y x x =>∴. (2)设()2,M m m -,8,N m m ⎛⎫⎪⎝⎭. 当//MN AO 且MN AO =时,四边形AOMN 是平行四边形.即:()822m m--=且0m >,解得:m =2m =,M ∴的坐标为(2,或()2.20.B 卷 22.1213 23.1a a +- 24.27 25.3226.解:(1)()()130,03008015000.300x x y x x ≤≤⎧⎪=⎨+>⎪⎩(2)设甲种花卉种植为2am ,则乙种花卉种植()21200a m -. ()200,21200a a a ≥⎧⎪⎨≤-⎪⎩∴200800a ≤≤∴. 当200300a ≤<时,()1130100120030120000W a a a =+-=+.当200a =时,min 126000W =元.当300800a ≤≤时,()2801500010020013500020W a a a =++-=-.当800a =时,min 119000W =元.119000126000<Q ,∴当800a =时,总费用最低,最低为119000元.此时乙种花卉种植面积为21200800400m -=. 答:应分配甲种花卉种植面积为2800m ,乙种花卉种植面积为2400m ,才能使种植总费用最少,最少总费用为119000元.27.解:(1)由旋转的性质得:'2AC A C ==.90ACB ∠=︒Q ,//m AC ,'90A BC ∠=︒∴,cos ''2BC A CB A C ∠==∴'30A CB ∠=︒∴,'60ACA ∠=︒∴.(2)M Q 为''A B 的中点,''A CM MA C ∠=∴.由旋转的性质得:'MA C A ∠=∠,'A A CM ∠=∠∴.tan tan 2PCB A ∠=∠=∴,322PB BC ==∴.tan tanQ PCA ∠=∠=Q 2BQ BC ===∴,72PQ PB BQ =+=∴.(3)''''PA B Q PCQ A CB PCQ S S S S ∆∆∆=-=Q ''PA B Q S ∴最小,PCQ S ∆即最小,12PCQ S PQ BC PQ ∆=⨯=∴. 法一:(几何法)取PQ 中点G ,则90PCQ ∠=︒.12CG PQ =∴. 当CG 最小时,PQ 最小,CG PQ ⊥∴,即CG 与CB 重合时,CG 最小.min CG =∴min PQ =,()min 3PCQ S ∆=∴,''3PA B Q S =. 法二:(代数法)设PB x =,BQ y =.由射影定理得:3xy =,∴当PQ 最小,即x y +最小,()22222262612x y x y xy x y xy +=++=++≥+=∴.当x y ==“=”成立,PQ ==∴28.解:(1)由题可得:5,225, 1.b a c a b c ⎧-=⎪⎪=⎨⎪++=⎪⎩解得1a =,5b =-,5c =.∴二次函数解析式为:255y x x =-+.(2)作AM x ⊥轴,BN x ⊥轴,垂足分别为,M N ,则34AF MQ FB QN ==. 32MQ =Q ,2NQ =∴,911,24B ⎛⎫ ⎪⎝⎭, 1,91,24k m k m +=⎧⎪⎨+=⎪⎩∴,解得1,21,2k m ⎧=⎪⎪⎨⎪=⎪⎩,1122t y x =+∴,102D ⎛⎫ ⎪⎝⎭,. 同理,152BC y x =-+. BCD BCG S S ∆∆=Q , ∴①//DG BC (G 在BC 下方),1122DG y x =-+, 2115522x x x -+=-+∴,即22990x x -+=,123,32x x ==∴. 52x >Q ,3x =∴,()3,1G -∴. ②G 在BC 上方时,直线23G G 与1DG 关于BC 对称.1211922G G y x =-+∴,21195522x x x -+=-+∴,22990x x --=∴. 52x >Q,94x +=∴,G ⎝⎭∴. 综上所述,点G 坐标为()13,1G -;2G ⎝⎭.(3)由题意可得:1k m +=.1m k =-∴,11y kx k =+-∴,2155kx k x x +-=-+∴,即()2540x k x k -+++=. 11x =∴,24x k =+,()24,31B k k k +++∴.设AB 的中点为'O , P Q 点有且只有一个,∴以AB 为直径的圆与x 轴只有一个交点,且P 为切点.OP x ⊥∴轴,P ∴为MN 的中点,5,02k P +⎛⎫ ⎪⎝⎭∴. AMP PNB ∆∆Q ∽,AM PN PM BN=∴,AM BN PN PM •=•∴, ()255314122k k k k k ++⎛⎫⎛⎫⨯++=+-- ⎪⎪⎝⎭⎝⎭∴1,即23650k k +-=,960∆=>.0k >Q ,1k ==-∴.。

四川省成都市2018年中考数学试题(含答案)[1]

四川省成都市2018年中考数学试题(含答案)[1]

四川省成都市2018年中考数学试题(含答案)(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(四川省成都市2018年中考数学试题(含答案)(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为四川省成都市2018年中考数学试题(含答案)(word版可编辑修改)的全部内容。

成都市2018年中考数学试题及答案A 卷(共100分)第Ⅰ卷(共30分)一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的。

1.实数,,,a b c d 在数轴上对应的点的位置如图所示,这四个数中最大的是( )A .aB .bC .cD .d2。

2018年5月21日,西昌卫星发射中心成功发射探月工程嫦娥四号任务“鹊桥号”中继星,卫星进入近地点高度为200公里、远地点高度为40万公里的预定轨道.将数据40万用科学记数法表示为( )A .60.410⨯B .5410⨯C .6410⨯D .60.410⨯3.如图所示的正六棱柱的主视图是( )A .B .C .D .4。

在平面直角坐标系中,点()3,5P --关于原点对称的点的坐标是( )A .()3,5-B .()3,5- C.()3,5 D .()3,5--5。

下列计算正确的是( )A .224x x x +=B .()222x y x y -=-C 。

()326x y x y = D .()235x x x -•= 6.如图,已知ABC DCB ∠=∠,添加以下条件,不能判定ABC DCB ∆∆≌的是( )A .A D ∠=∠B .ACB DBC ∠=∠ C 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档