必修3算法初步

合集下载

人教A版高中数学必修3《第一章 算法初步 1.2 基本算法语句 1.2.1 输入语句、输出语句和赋值语句》_9

人教A版高中数学必修3《第一章 算法初步 1.2 基本算法语句 1.2.1 输入语句、输出语句和赋值语句》_9

1.2.1输入语句、输出语句和赋值语句
一、教学目标:
1、知识与技能:掌握输入语句、输出语句和赋值语句
2、过程与方法:通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程;学会灵活、正确地写出输入语句、输出语句和赋值语句。

3、情感态度与价值观:通过本节的学习,使我们基本算法语句有一个基本的了解;掌握算法语言的三种基本逻辑结构,明确程序框图的基本要求;认识到学习程序框图和算法语句是我们学习计算机的一个基本步骤,也是我们学习计算机语言的必经之路。

二、重点与难点:重点是3种算法语句,难点是能综合运用这些知识正确地画出程序框图和写出算法语句。

三、学法与教学用具:
学法:自主探究,合作交流
教学用具:电脑
四、教学内容:
基本概念:
算法的三种基本逻辑结构:顺序结构,条件结构和循环结构。

各种程序语言都包含了下列基本的算法语句:
计算机运行程序语句的基本顺序:
小结:
2、巩固练习:。

高中必修三数学第一章算法初步

高中必修三数学第一章算法初步

第一章 算法初步一、选择题1.如果输入3n ,那么执行右图中算法的结果是( ). A .输出3 B .输出4 C .输出5D .程序出错,输不出任何结果 2.算法:此算法的功能是( ). A .输出a ,b ,c 中的最大值 B .输出a ,b ,c 中的最小值 C .将a ,b ,c 由小到大排序D .将a ,b ,c 由大到小排序3.右图执行的程序的功能是( ). A .求两个正整数的最大公约数B .求两个正整数的最大值C .求两个正整数的最小值D .求圆周率的不足近似值 4.下列程序: INPUT “A =”;1 A =A *2 A =A *3 A =A *4 A =A *5 PRINT A(第1题)(第2题)(第3题)END输出的结果A 是( ). A .5B .6C .15D .1205.下面程序输出结果是( ).A .1,1B .2,1C .1,2D .2,26.把88化为五进制数是( ). A .324(5)B .323(5)C .233(5)D .332(5)7.已知某程序框图如图所示,则执行该程序后输出的结果是( ). A .1- B .1C .2D .12(第5题)(第7题)8.阅读下面的两个程序:甲 乙对甲乙两程序和输出结果判断正确的是( ).A .程序不同,结果不同B .程序不同,结果相同C .程序相同,结果不同D .程序相同,结果相同9.执行右图中的程序,如果输出的结果是4,那么输入的 只可能是( ).A .-4B .2C .2 或者-4D .2或者-410.按照程序框图(如右图)执行,第3个输出的数是( ). A .3 B .4 C .5 D .6二、填空题(第8题)(第9题)11.960与1 632的最大公约数为 .12.如图是某个函数求值的程序框图,则满足该程序的函数解析式为 _________.13.执行下图所示的程序,输出的结果为48,则判断框中应填入的条件为 .(第13题)14.下列所画流程图是已知直角三角形两条直角边a ,b 求斜边的算法,其中正确的是 .(写出正确的序号)(第12题)15.流程图中的判断框,有1个入口和 个出口. 16.给出以下问题:①求面积为1的正三角形的周长; ②求键盘所输入的三个数的算术平均数; ③求键盘所输入的两个数的最小数;④求函数⎩⎨⎧=22)(x x x f 当自变量取x 0时的函数值.其中不需要用条件语句来描述算法的问题有 . 三、解答题17.编写一个程序,计算函数f (x )=x 2-3x +5当x =1,2,3,…,20时的函数值.,x ≥3,x <318.编写程序,使得任意输入的3个整数按从大到小的顺序输出.19.编写一个程序,交换两个变量A和B的值,并输出交换前后的值.20.编写一个程序,计算两个非零实数的加、减、乘、除运算的结果(要求输入两个非零实数,输出运算结果).参考答案一、选择题1.C解析:本题通过写出一个算法执行后的结果这样的形式,来考查对算法的理解及对赋值语句的掌握.2.B解析:此算法为求出a,b,c中的最小值.3.A解析:本题通过理解程序语言的功能,考查求两个正整数最大公约数的算法.4.D解析:A=1×2×3×4×5=120.5.B解析:T=1,A=2,B=T=1.6.B解析:∵88=3×52+2×5+3,∴88为323(5).7.A解析:本题以框图为载体,对周期数列进行考查.数列以3项为周期,2 010除以3余数为0,所以它与序号3对应相同的数.8.B解析:结果均为 1+2+3+…+1 000,程序不同.9.B解析:如x≥0,则x2=4,得x=2;如x<0,则由y=x,不能输出正值,所以无解.10.C解析:第一个输出的数是1;第二个输出的数是3;第三个输出的数是5.二、填空题11.96.解析:(1 632,960)→(672,960)→(672,288)→(384,288)→(96,288)→(96,192)→(96,96).12.f (x )=⎩⎨⎧0 ,4- 50<,32x x x x -解析:根据程序框图可以知道这是一个分段函数. 13.答案:i ≥4?. 解析:根据程序框图分析:可知答案为i ≥4?. 14.①.解析:③、④选项中的有些框图形状选用不正确;②图中的输入变量的值应在公式给出之前完成.15.2.解析:判断框的两个出口分别对应“是”(Y)或“否”(N). 16.①②.解析:③④需用条件语句. 三、解答题 17.程序:(如图)18.第一步,输入3个整数a ,b ,c .第二步,将a 与b 比较,并把小者赋给b ,大者赋给a .第三步,将a 与c 比较.并把小者赋给c ,大者赋给a ,此时a 已是三者中最大的.≥ (第17题)第四步,将b 与c 比较,并把小者赋给c ,大者赋给b ,此时a ,b ,c 已按从大到小的顺序排列好.第五步,按顺序输出a ,b ,c . 程序:(如下图所示)19.程序:20.程序:。

最新人教版高中数学必修3第一章《第一章算法初步》本章概要

最新人教版高中数学必修3第一章《第一章算法初步》本章概要

第一章算法初步本章综述随着计算机技术的飞速发展,计算机已经普及到千家万户.你肯定玩过一些好玩的游戏,惊奇于它的灵活与机智,为什么它也会有智能?大家可能运行过一些方便的程序,它们简化了我们的繁杂的操作,让我们从简单,乏味、重复的操作中解脱出来,是什么在它们后面支持和控制着它们呢?其实,不是计算机本身,而是我们的算法.你想学习如何控制它们吗?那就跟我们来吧,进入算法精彩的世界.算法初步是高中阶段传统的数学基础知识以外的新增内容.在数学发展的历程中,寻求对一类问题的算法一直是数学发展的一个重要特点.我国古代数学发展的主导思想,就是构造“算法”来解决实际问题.在现代,算法已是数学及其应用科学中的重要组成部分,并成为计算机科学的重要基础.随着现代信息技术的飞速发展,算法在科学技术和社会发展中发挥着越来越大的作用,并日益融入社会生活的许多方面.算法思想也逐渐成为每一个现代人应具有的数学素养.算法是一个全新的课题,但我们并不陌生,数学必修一中我们学习过求函数零点的二分算法;数学必修二的解析几何初步中,我们把利用公式计算的几何问题进行分步求解,形成算法;又如解方程的算法、解不等式的算法等,这些算法都是对解决一类问题有效的通法,其过程称为“数学机械化”,即大量重复、循环、复杂的逻辑推理运算由计算机完成.我们在第一部分主要学习一下算法的概念以及它的特点和主要用处,研究一下算法的思想,算法的几种常见的结构,即三种结构:顺序结构、条件结构、循环结构以及用程序框图来简洁清晰地表示算法.体验一下用简单清晰的图形表示我们的思想,会发现数学简单中的美丽,你会发现算法实质上就是我们的思维过程.第二部分主要开始学习一些编程的基本语句,你可以尝试着自己来做一个算法程序,以解决一些繁杂的问题.这可是非常令人自豪的事情.第三部分主要介绍中国古代数学中的三个算法案例:辗转相除法与更相减损术、秦九韶算法、进位制.本章的重点是算法的概念和算法的三种基本逻辑结构及对应的基本算法语句.正确理解算法的概念是我们以后设计算法的基础.顺序结构、条件结构和循环结构这三种基本逻辑结构的重要性在于:理论上已经证明了,用它们可以表示一个算法.本章的难点是循环语句.对于我们来说,应用循环结构来实现反复执行的计算是一种新的思想和方法,刚开始时不容易掌握,学习时有一定的困难.本章是以知识应用为主的一章,在以前面各章知识为平台的基础上,详细地讨论各种问题的算法,是对以前的知识的抽象概括和进一步理解.本章所研究的算法是计算机科学的最主要的基础学科之一,是数学在计算机应用中的体现.由于计算机已经渗透到各个学科,算法作为大家以后学习的基础占有重要的位置.随着计算机的进一步普及,计算机技术会在我们的生活中起到不可取代的作用,而算法思想也成为我们每个现代人都应该具有的素质.。

高二数学必修3第一章算法初步知识点:辗转相除法与更相减损术

高二数学必修3第一章算法初步知识点:辗转相除法与更相减损术

高二数学必修3第一章算法初步知识点:辗转相除法与更相减损术
高二数学必修3第一章算法初步知识点:辗转相
除法与更相减损术
高二数学对于知识点的掌握的要求是比较高的。

小编准备了高二数学必修3第一章算法初步知识点,希望能帮助到大家。

1.3.1辗转相除法与更相减损术
1、辗转相除法。

也叫欧几里德算法,用辗转相除法求最大公约数的步骤如下:(1):用较大的数m除以较小的数n 得到一个商
S和一个余数
R;(2):若
R=0,则n为m,n的最大公约数;若
R0,
则用除数n除以余数0
R得到一个商
1
S和一个余数
1
R;(3):若
1
R=0,则
1
减小数。

继续这个操作,直到所得的数相等为止,则这个数(等数)就是所求的最大公约数。

例2 用更相减损术求98与63的最大公约数. 分析:(略)3、辗转相除法与更相减损术的区别:
(1)都是求最大公约数的方法,计算上辗转相除法以除法为主,更相减损术以减法为主,计算次数上辗转相除法计算次数相对较少,特别当两个数字大小区别较大时计算次数的区别较明显。

(2)从结果体现形式来看,辗转相除法体现结果是以相除余数为0则得到,而更相减损术则以减数与差相等而得到以上是高二数学必修3第一章算法初步知识点的全部内容,更多精彩内容请同学们持续关注查字典数学网。

高中数学第一章算法初步111算法的概念课件新人教A版必修3

高中数学第一章算法初步111算法的概念课件新人教A版必修3
功的信念比成功本身更重要,相信人生有挫折没 有失败,相信生命的质量来自决不妥协的信念,
考试加油。
3.甲、乙、丙、丁四个人过一座简易木桥,这四个人 过桥所用的时间分别是2分钟,4分钟,6分钟,8分钟,由于木 桥质量原因,桥上同时最多只能有两个人.请你设计一个方 案,使这4个人在最快的时间过桥,写清步骤,最后算出所需 时间.
【解析】第一步,甲乙先上桥. 第二步,2分钟后甲过了桥同时丁上桥. 第三步,再过2分钟后乙过了桥同时丙上桥. 第四步,再过6分钟后丙、丁同时过了桥. ∴所需时间是2+2+6=10(分钟).
(4)不唯一性:求解某一个问题的解法不一定是唯一 的,对于一个问题可以有不同的算法.
(5)普遍性:很多具体的问题,都可以设计合理的算法 去解决.
2.算法与数学问题解法的区别与联系 (1)联系 算法与解法是一般与特殊的关系,也是抽象与具体的关 系. (2)区别 算法是解决某一类问题所需要的程序和步骤的统称,也 可理解为数学中的“通法通解”;而解法是解决某一个具体问 题的过程和步骤,是具体的解题过程.
数值性问题的算法
【例2】 写出求1+2+3+4+5+6的一个算法. 【解题探究】(1)可以按逐一相加的程序进行. (2)也可以利用公式 1+2+…+n=nn+ 2 1进行. (3)可以根据加法运算律简化运算过程.
【解析】算法一 第一步,计算1+2得到3. 第二步,将第一步中的运算结果3与3相加得到6. 第三步,将第二步中的运算结果6与4相加得到10. 第四步,将第三步中的运算结果10与5相加得到15. 第五步,将第四步中的运算结果15与6相加得到21. 第六步,输出运算结果.
【答案】A 【解析】由算法的概念可知:求解某一类问题的算法不 是唯一的,故A正确;算法可以看成按照要求设计好的有限的 确切的计算序列,并且这样的步骤或序列能解决一类问题,故 B不正确;算法有有限步,结果明确,C是不正确的;算法的 每一步操作必须是明确的,不能有歧义,故D不正确.故选 A.

高一数学必修3第一章《算法初步》

高一数学必修3第一章《算法初步》

v2 v1x an2
v3
v2
x
an3
vn vn1x a0
用秦九韶算法求 n 次多项式仅需要 n 次乘法运算, n 次加法运算 实质:把 n 次多项式的求值问题转化成了求 n 个一次多项式的值的问题
秦九韶算法求一般多项式 f ( x) an xn an 1 xn 1
a1 x a0 的值
v1 an x an1
一共做了 4 乘法运算,4 次加法运算
秦九韶算法适用于一般的多项式:
f ( x) an xn an 1 xn 1
a1 x a0 的求值问题吗?
第 1 步:不断提取 x,将多项式变形
f (x) (((an x an1)x an2 )x a1)x a0
第 2 步:由内向外逐层计算
v1 an x an1
一共做了 4 乘法运算,4 次加法运算
西方称为: 霍纳算法
秦九韶:我国南宋时期数学家(男,公元1202-1261) 划时代巨著 ———《数书九章》
怎样求多项式 f ( x) 2x4 4x3 3x2 6x 7 当 x 5 时的值?
第 1 步:不断提取 x,将多项式变形
f (x) 2x4 4x3 3x2
高一数学必修3第一章《算法初步》
怎样求多项式 f ( x) 2x4 4x3 3x2 6x 7 当 x 5 时的值?
算法 1:常规方法
f (x) 2 (5 5 5 5) 4 (5 5 5) 3 (5 5) 6 5 7
一共做了 10 次乘法运算,4 次加法运算
算法 2:提高效率
f (x) 2 x3 x 4 x2 x 3 x x 6 x 7
2x3 4x2 3x
6x 7 6x 7

2x2 4x 3 x 6 x 7

人教版高中数学必修三课件:1.3 算法案例(共55张PPT)

人教版高中数学必修三课件:1.3 算法案例(共55张PPT)

解:用辗转相除法求最大公约数:612=468×1+144,468=144×3+36,144=36×4,即612
和468的最大公约数是36. 用更相减损术检验:612和468均为偶数,两次用2约简得153和117,153-117=36,11736=81,81-36=45,45-36=9,36-9=27,27-9=18,18-9=9,所以612和468的最大公约数为
转化为求n个一次多项式的值.
预习探究
知识点二 进位制
1.进位制:进位制是为了计数和运算方便而约定的记数系统,约定“满k进一”就 是 k进制 ,k进制的基数(大于1的整数)就是 k . 2.将k进制数化为十进制数的方法:先把k进制数写成各位上的数字与k的幂的乘积之和 的形式,再按照十进制数的运算规则计算出结果. 3.将十进制数化为k进制数的方法是 除k取余法 .即用k连续去除十进制数所得 的 商 ,直到商为零为止,然后把各步得到的余数 倒序 写出.所得到的就是相应的k 进制数. 4.k进制数之间的转化:首先转化为十进制数,再转化为 k进制数.
第一章 算法初步
1.3 算法案例 第2课时 秦九韶算法与进位制
预习探究
知识点一 秦九韶算法
1.秦九韶算法是我国南宋数学家秦九韶在他的著作《数书九章》中提出的一 个用于计算多项式值的方法. 2.秦九韶算法的方法: 把一个n次多项式f(x)=anxn+an-1xn-1+…+a1x+a0 改写成下列的形式: f(x)=(anxn-1+an-1xn-2+…+a1)x+a0= ((anxn-2+an-1xn-3+…+a2)x+a1)x+a0 =…=

北师大版高中高二数学必修3《算法初步》教案及教学反思

北师大版高中高二数学必修3《算法初步》教案及教学反思

北师大版高中高二数学必修3《算法初步》教案及教学反思一、教学内容概述本节课的教学内容为《算法初步》,是高中高二数学必修3的一部分。

主要包括算法的概念、常见算法的分类、算法的思路以及问题的解法。

学生需要掌握算法的基本概念,理解常见的算法分类,学会利用具体的案例来解决问题。

在本课的教学过程中,着重培养学生的算法思维能力和实际解决问题的能力。

二、教学目标1.掌握算法的基本概念和常见的算法分类。

2.了解算法在实际问题中的应用。

3.培养学生的算法思维能力。

4.提高学生的实际运用算法进行问题解决的能力。

三、教学过程1. 导入环节我首先通过一个简单的小问题导入本节课的内容:假设你要在电脑里存储一些数据,如何更好地进行数据管理?通过这个问题引导学生思考如何应用算法来进行数据管理。

然后我向学生介绍了本节课的教学内容:算法初步。

我解释了什么是算法以及算法的重要性。

在此基础上,我向学生介绍了常见的算法分类以及算法的思路。

2. 讲解及演示我通过PPT讲解了各种算法分类的特点、应用以及实现方法,并结合具体的案例进行演示。

在演示过程中,我让学生自己动手模拟数据来实践演算法。

通过实践操作,学生可以更深刻地理解算法的思路和应用。

同时,我也让学生分享自己对于算法的理解和应用经验,鼓励他们在实际操作中不断地思考和总结。

3. 练习及测试在演示和讲解完毕之后,我设置了一些练习题来巩固学生掌握的知识,并通过一些测试题来检验学生的学习成果。

测试题设置了多种不同难度的问题,包括选择题、填空题和解答题等,帮助学生更全面地掌握算法的基本概念和使用方法。

4. 总结最后,我通过一些问题来总结本节课所学的内容,以便学生回顾整个学习过程并让他们更加深刻地理解算法的重要性和应用。

同时,我还向学生介绍了如何在日常生活中进行算法思维的应用,鼓励他们发挥创造力、勇于努力,将所学应用到生活中去。

四、教学反思通过本节课的教学,我发现学生在算法的理解和应用方面存在一些困难。

高中数学必修3(人教A版)第一章算法初步1.1知识点总结含同步练习及答案

高中数学必修3(人教A版)第一章算法初步1.1知识点总结含同步练习及答案

描述:例题:高中数学必修3(人教A版)知识点总结含同步练习题及答案第一章 算法初步 1.1 算法与程序框图一、学习任务1. 了解算法的含义,了解算法的基本思想,能用自然语言描述解决具体问题的算法.2. 了解设计程序框图表达解决问题的过程,了解算法和程序语言的区别;了解程序框图的三种基本逻辑结构,会用程序框图表示简单的常见问题的算法.二、知识清单算法 程序框图三、知识讲解1.算法算法(algorithm)是指按照一定规则解决某一类问题的明确和有限的步骤 .可以理解为由基本运算及规定的运算顺序所构成的完整的解题步骤,或者看成按照要求设计好的有限的确切的计算序列,并且这样的步骤或序列能够解决一类问题.描述算法可以有不同的方式.例如,可以用自然语言和数学语言加以描述,也可以借助形式语言(算法语言)给出精确的说明,也可以用框图直观地显示算法的全貌.算法的要求:(1)写出的算法,必须能解决一类问题,并且能重复使用;(2)算法过程要能一步一步执行,每一步执行的操作必须确切,不能含混不清,而且经过有限步后能得到结果.下列对算法的理解不正确的是( )A.一个算法应包含有限的步骤,而不能是无限的B.算法中的每一个步骤都应当是确定的,而不应当是含糊的、模棱两可的C.算法中的每一个步骤都应当是有效地执行,并得到确定的结果D.一个问题只能设计出一种算法解:D算法的有限性是指包含的步骤是有限的,故 A 正确;算法的确定性是指每一步都是确定的,故 B正确;算法的每一步都是确定的,且每一步都应有确定的结果,故 C 正确;对于同一个问题可以有不同的算法,故 D 错误.下列叙述能称为算法的的个数为( )描述:2.程序框图程序框图简称框图,是一种用程序框、流程线及文字说明来表示算法的图形.其中,起、止框是任何流程不可少的,表明程序的开始和结束.输入和输出框可用在算法中任何需要输入、输出的位置.算法中间要处理数据或计算,可分别写在不同的处理框内.一个算法步骤到另一个算法步骤用流程线连接.如果一个框图需要分开来画,要在断开处画上连接点,并标出连接的号码.①植树需要运苗、挖坑、栽苗、浇水这些步骤;②依次进行下列运算:,,,,;③从枣庄乘火车到徐州,从徐州乘飞机到广州;④ ;⑤求所有能被 整除的正整数,即 .A. B. C. D.解:B①、②、③为算法.1+1=22+1=33+1=4⋯99+1=1003x >x +133,6,9,12,⋯2345写出解方程组的一个算法.解:方法一:代入消元法. 第一步,由 得 ;第二步,将 代入 ,得 ,解得 ;第三步,将 代入方程 ,得 ;第四步,得到方程组的解为 .方法二:加减消元法.第一步,方程 两边同乘以 ,得 ;第二步,将第一步所得的方程与方程 作差,消去 ,得 ,解得 ;第三步,将 代入方程 ,得 ,解得 ;第四步,得到方程组的解为 .{2x +y =74x +5y =112x +y =7y =7−2x y =7−2x 4x +5y =114x +5(7−2x )=11x =4x =4y =7−2x y =−1{x =4y =−12x +y =7510x +5y =354x +5y =11y 6x =24x =4x =42x +y =72×4+y =7y =−1{x =4y =−1例题:画程序框图的规则(1)使用标准的图形符号.(2)框图一般按从上到下、从左到右的方向画.(3)除判断框外,大多数流程图符号只有一个进入点和一个退出点.判断框是具有超过一个退出点的惟一符号.(4)判断框分两大类,一类判断框是“是”与“否”两分支的判断,而且有且仅有两个结果;另一类是多分支判断,有几种不同的结果.(5)在图形符号内描述的语言要非常简练清楚.算法的三种基本逻辑结构顺序结构:语句与语句之间,框与框之间按从上到下的顺序进行.条件分支结构:在一个算法中,经常会遇到一些条件的判断,算法的流程条件是否成立有不同的流向,条件结构就是处理这种过程的结构.循环结构:在一些算法中,经常会出现从某处开始,按照一定的条件反复执行某些步骤的情况,这就是循环结构.下列程序框图分别是解决什么问题的算法.解:(1)已知圆的半径,求圆的面积的算法.(2)求两个实数加法的算法.执行如图的程序框图,输出的 ______ .解:T =30四、课后作业 (查看更多本章节同步练习题,请到快乐学)某程序框图如图所示,若输出的 ,则判断框内为( )A. B. C. D.解:AS =57k >4?k >5?k >6?k >7?已知函数 ,对每次输入的一个值,都得到相应的函数值,画出程序框图.解:f (x )={2x +3,3−x ,x 2x ⩾0x <0x答案:1. 关于算法的说法中,正确的是 A .算法就是某个问题的解题过程B .算法执行后可以产生不确定的结果C .解决某类问题的算法不是唯一的D .算法可以无限地操作下去不停止C()答案:解析:2. 下列运算不属于我们所讨论算法范畴的是 A .已知圆的半径求圆的面积B .随意抽 张扑克牌算到二十四点的可能性C .已知坐标平面内两点求直线方程D .加减乘除法运算法则B注意算法需按照一定的顺序进行.()4答案:解析:3. 执行如图所示的程序框图,如果输入的 ,则输出的 属于 .A .B .C .D .D取 ,得输出的 ,即可判断.t ∈[−2,2]S ()[−6,−2][−5,−1][−4,5][−3,6]t =−2S =64. 某批发商按客户订单数额的大小分别给予不同的优惠折扣.计算客户应付货款的算法步骤如下: :输入订单数额 (单位:件);输入单价 (单位:元);:若 ,则折扣率 ;若 ,则折扣率 ;若 ,则折扣率 ;若 ,则折扣率 ;:计算应付货款 (单位:元);:输出应付货款 .S 1x A S 2x <250d =0250⩽x <500d =0.05500⩽x <1000d =0.10x ⩾1000d =0.15S 3T =Ax (1−d )S 4T。

必修三集体备课材料——算法初步

必修三集体备课材料——算法初步

山东省实验中学高一数学组集体备课材料(必修三)第一章算法初步参与编辑:山东省实验中学本校高一数学组潘洪艳、刘建宇、林宝磊、郭红星、张永花、吴建广徐萍、盛喜鑫、周明君、宋中华、王虎、胡志明算法初步知识学习§1.1.1 算法的概念一、引入:二、概念形成及深化 1、算法的定义:算法可以理解为有基本运算及规定的运算顺序所构成的完整的解题步骤。

或者看成按照要求设计好的有限的确切的计算序列,并且这样的步骤和序列可以解决一类问题。

例1、下列四种叙述可称为算法的是( )A 、在家里一般是妈妈做饭B 、做米饭需要刷锅、淘米、添水、加热这些步骤C 、在野外做饭叫野炊D 、做饭必须要有米2、算法的五个特征①有穷性:步骤是有限的,它应在有限步操作之后停止,而不能是无限地执行下去。

②确定性:每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当是模棱两可的。

③逻辑性:从初始步骤开始,分为若干个明确的步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题。

④不唯一性:求解某一个问题的算法不一定只有唯一的一个,可以有不同的算法。

⑤普遍性:很多具体的问题,都可以设计合理的算法去解决。

注:其他还有输入性、输出性等特征,结论不固定. 例2、下列说法正确的是( )A 、算法就是某个问题的解决过程B 、解决某类问题的算法不是唯一的C 、一个算法可以无止境的进行下去D 、完成一件事情的算法有且只有一种 例3、算法的有穷性是指( )A 、算法的最后必须包含输出B 、算法的步骤必须有限C 、算法的每个操作步骤都是可执行的D 、以上说法都不对 3、算法的表述形式:⑴自然语言/数学语言⑵程序框图语言(简称框图)。

⑶程序语言。

三、典型例题 例1、《孙子算经》:今有鸡兔同笼,上有一十七头,下有四十八足,问鸡兔各几何?思考:将题目改为“上有M 头,下有N 足”则(1)M 、N 满足什么关系?(2)问鸡兔各几何? 例2、写出解二元一次方程组⎩⎨⎧=+=+22221211212111 b x a x a b x a x a 的一个算法:(高斯消去法)例3、写出一个求有限整数序列中的最大值的算法。

必修3第一章《算法初步》训练题(含答案)

必修3第一章《算法初步》训练题(含答案)

必修③第一章《算法初步》练习题一、选择题:1.下面对算法描述正确的一项是:( )A .算法只能用自然语言来描述B .算法只能用图形方式来表示C .同一问题可以有不同的算法D .同一问题的算法不同,结果必然不同 2. 算法的三种基本结构是 ( )A. 顺序结构、模块结构、条件结构B. 顺序结构、循环结构、模块结构C. 顺序结构、条件结构、循环结构D. 模块结构、条件结构、循环结构 3.用二分法求方程022=-x 的近似根的算法中要用哪种算法结构( ) A .顺序结构 B .条件结构 C .循环结构 D .以上都用 4.对赋值语句的描述正确的是 ( )①可以给变量提供初值 ②将表达式的值赋给变量 ③可以给一个变量重复赋值 ④不能给同一变量重复赋值 A .①②③ B .①② C .②③④ D .①②④5. 将两个数a=8,b=17交换,使a=17,b=8,下面语句正确一组是 ( ) A. B. C. D.6、下列程序语句不正确...的是( ) A 、INPUT “MATH=”;a+b+c B 、PRINT “MATH=”;a+b+c C 、c b a += D 、1a =c b - 7.下列给变量赋值的语句正确的是( )A. 5=aB.a +2=aC. a =b =4D. a =2*a8. 给出以下四个问题,①输入一个数x ,输出它的相反数.②求面积为6的正方形的周长.③求三个数a,b,c 中的最大数. ④求函数1,0()2,0x x f x x x -≥⎧=⎨+<⎩的函数值.其中不需要用条件语句来描述其算法的有 ( )A. 1个B. 2个C. 3个D. 4个 9.给出以下四个问题: ①解不等式32-x a>23-x a(0>a 且1≠a ) .②求边长为6的正三角形的面积.③求函数21,0()43,0x x f x x x -≥⎧=⎨+<⎩的函数值 ④若集合}1,1{-=A ,}1|{==mx x B ,且A B A =⋃,求m 的值。

高中数学必修3第一章算法初步课

高中数学必修3第一章算法初步课

赋值、计算.
思考3:已知函数 y=x3+3x2-24x+30, 求自变量x对应的函数值的算法步骤 如何设计? 第一步,输入一个自变量x的值. 第二步,计算y=x3+3x2-24x+30. 第三步,输出y.
开始
输入x y=x3+3x2-24x+30
思考4:该算法是什么逻辑结构? 其程序框图如何?
输出y 结束
程序:
INPUT a,b,c
(1)
y=(a+b+c)/3 PRINT y END
(2)
INPUT “Chinese,Maths,English=”;a,b,c y=(a+b+c)/3 PRINT “The average=”;y END
INPUT a INPUT b
(3)
INPUT c PRINT “The average=”;(a+b+c)/3 END INPUT “Chinese=”;a INPUT “Maths=”;b INPUT “English=”;c PRINT “The average=”;(a+b+c)/3 END
PRINT END A ,B
例3、写出计算一个学生语文、数学、英语 三门课的平均成绩的算法、程序框图和程序. 算法分析:
第一步,输入该学生数学、 语文、英语三门课的成绩. a + b+ c 第二步,计算 y = 3 第三步,输出y. 程序框图:
开始
输入a,b,c
a + b+ c y= 3
输出y 结束
1.2 基本算法语句
第一课时 输入语句、输出语句和赋值语句
思考1:在算法的程序框图中,输入框与输 出框是两个必要的程序框,我们用什么图 形表示这个程序框?其功能作用如何?

北师大版高中高二数学必修3《算法初步》评课稿

北师大版高中高二数学必修3《算法初步》评课稿

北师大版高中高二数学必修3《算法初步》评课稿1. 引言本文是对北师大版高中高二数学必修3教材中的《算法初步》一课进行评课的文档。

通过对该课进行细致的分析和评价,旨在评估该课程的教学质量和有效性,为教师在今后的教学过程中提供参考。

2. 教学目标本节课的教学目标主要包括以下几个方面:•掌握算法初步的基本概念和基本性质;•知晓算法的分类及其在日常生活中的应用;•能够灵活运用算法解决实际问题;•培养学生分析问题、探索问题、解决问题的能力。

3. 教学内容本节课主要包含以下几个内容:•算法的定义和特点;•常见的算法分类;•算法在计算机科学中的应用;•实例分析和实例训练。

4. 教学分析4.1 教学方法本节课采用了多种教学方法,包括讲授、实例分析和实例训练。

通过讲解算法的定义和特点,引导学生了解算法的基本概念;通过实例分析和实例训练,帮助学生运用算法解决实际问题。

4.2 教学手段本节课采用了多媒体教学手段,辅助教师进行知识讲解和实例演示。

教师运用投影仪呈现教学内容,结合思维导图、流程图等可视化工具,增强学生对算法的理解和掌握。

4.3 学情分析本课程主要针对高中生,他们的数学基础相对较好,对于概念的理解和抽象能力有一定的积累。

然而,算法作为一门非常抽象和理论化的学科,对学生的逻辑思维和综合运用能力提出了更高的要求。

因此,本节课需要教师针对学生的学情,选择合适的教学方法和手段,帮助学生更好地理解和掌握算法的相关知识。

5. 教学过程本节课的教学过程分为以下几个步骤:5.1 导入环节通过提问和小组讨论的方式,激发学生对算法的兴趣和思考。

引导学生思考以下问题:什么是算法?我们日常生活中有哪些常见的算法?5.2 基础知识讲解教师对算法的定义、特点和常见分类进行讲解,并通过示例引导学生理解算法的思想与过程。

5.3 实例分析教师选择一到两个实例,通过具体问题讲述算法的应用过程。

通过思维导图或流程图的形式,帮助学生理清思路和步骤。

2019-2020年高中数学必修三:第一章 算法初步第三、四课时 秦九韶算法与排序 教案

2019-2020年高中数学必修三:第一章 算法初步第三、四课时 秦九韶算法与排序 教案

2019-2020年高中数学必修三:第一章 算法初步第三、四课时 秦九韶算法与排序 教案(1)教学目标(a )知识与技能1.了解秦九韶算法的计算过程,并理解利用秦九韶算法可以减少计算次数提高计算效率的实质。

2.掌握数据排序的原理能使用直接排序法与冒泡排序法给一组数据排序,进而能设计冒泡排序法的程序框图及程序,理解数学算法与计算机算法的区别,理解计算机对数学的辅助作用。

(b )过程与方法模仿秦九韶计算方法,体会古人计算构思的巧妙。

能根据排序法中的直接插入排序法与冒泡排序法的步骤,了解数学计算转换为计算机计算的途径,从而探究计算机算法与数学算法的区别,体会计算机对数学学习的辅助作用。

(c )情态与价值通过对秦九韶算法的学习,了解中国古代数学家对数学的贡献,充分认识到我国文化历史的悠久。

通过对排序法的学习,领会数学计算与计算机计算的区别,充分认识信息技术对数学的促进。

(2)教学重难点重点:1.秦九韶算法的特点2.两种排序法的排序步骤及计算机程序设计难点:1.秦九韶算法的先进性理解2.排序法的计算机程序设计(3)教学设想(一)创设情景,揭示课题我们已经学过了多项式的计算,下面我们计算一下多项式1)(2345+++++=x x x x x x f 当5=x 时的值,并统计所做的计算的种类及计算次数。

根据我们的计算统计可以得出我们共需要10次乘法运算,5次加法运算。

我们把多项式变形为:1)))1(1(1()(2+++++=x x x x x x f 再统计一下计算当5=x 时的值时需要的计算次数,可以得出仅需4次乘法和5次加法运算即可得出结果。

显然少了6次乘法运算。

这种算法就叫秦九韶算法。

(二)研探新知1.秦九韶计算多项式的方法1210123120132211012211)))((())(()()(a a x a x a x a a x a x a x a x a a x a x a x a x a a x a x a x a x a x f n n n n n n n n n n n n n n n n n n n +++++==+++++=+++++=+++++=--------------例1 已知一个5次多项式为8.07.16.25.325)(2345-+-++=x x x x x x f用秦九韶算法求这个多项式当5=x 时的值。

高中数学必修三:知识点

高中数学必修三:知识点

必修3:知识点一:算法初步 1:算法的概念(1)算法概念:通常是指可以用计算机来解决的某一类问题是程序或步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成. (2)算法的特点:①有限性:一个算法的步骤序列是有限的,必须在有限操作之后停止,不能是无限的. ②确定性:算法中的每一步应该是确定的并且能有效地执行且得到确定的结果。

③顺序性与正确性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后继步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题. ④不唯一性:求解某一个问题的解法不一定是唯一的,但是答案是唯一的。

⑤普遍性:很多具体的问题,都可以设计合理的算法去解决。

2: 程序框图(1)程序框图基本概念:①程序构图的概念:程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形。

一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明。

学习这部分知识的时候,要掌握各个图形的形状、作用及使用规则,画程序框图的规则如下:1、使用标准的图形符号。

2、框图一般按从上到下、从左到右的方向画。

3、除判断框外,大多数流程图符号只有一个进入点和一个退出点。

判断框具有超过一个退出点的唯一符号。

4、判断框分两大类,一类判断框“是”与“否”两分支的判断,而且有且仅有两个结果;另一类是多分支判断,5、在图形符号内描述的语言要非常简练清楚。

3:算法的三种基本逻辑结构:顺序结构、条件结构、循环结构。

(1)顺序结构:顺序结构在程序框图中的体现就是用流程线将程序框自上而下地连接起来, 按顺序执行算法步骤。

如在示意图中,A 框和B 框是依次执行的,只有在 执行完A 框指定的操作后,才能接着执行B 框所指定的操作。

(2)条件结构:条件结构是指在算法中通过对条件的判断根据条件是否成立而选择不同流向的 算法结构。

高中数学必修三第一章

高中数学必修三第一章

高中数学必修三第一章高中数学必修三第一章 1第一章算法初步1.1.1 算法的概念1、算法概念:在数学上,现代意义上的“算法”通常是指可以用计算机来解决的某一类问题是程序或步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成.2. 算法的特点:(1)有限性:一个算法的步骤序列是有限的,必须在有限操作之后停止,不能是无限的.(2)确定性:算法中的每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当是模棱两可.(3)顺序性与正确性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后继步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题.(4)不唯一性:求解某一个问题的解法不一定是唯一的,对于一个问题可以有不同的算法.(5)普遍性:很多具体的问题,都可以设计合理的算法去解决,如心算、计算器计算都要经过有限、事先设计好的步骤加以解决.1.1.2 程序框图1、程序框图基本概念:(一)程序构图的概念:程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形。

一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明。

(二)构成程序框的图形符号及其作用程序框名称功能起止框表示一个算法的开始和结束,对于任何流程图都是不可缺少的。

输入输出框表示算法的输入输出信息,可以用在算法中任何需要输入输出的位置。

处理框赋值、计算,算法中处理数据需要的算式、公式等分别写在不同的用以处理数据的处理框内。

判断框判断某一条件是否成立,成立时在出口处标明“是”或“Y”;不成立时明“否”或“N”。

学习这部分知识的时候,要掌握各个图形的形状、作用及使用规则,画程序框图的规则如下:1、使用标准的图形符号。

2.框图一般是从上到下,从左到右画的。

3、除判断框外,大多数流程图符号只有一个进入点和一个退出点。

判断框具有超过一个退出点的唯一符号。

人教版高中必修3(B版)第一章算法初步教学设计

人教版高中必修3(B版)第一章算法初步教学设计

人教版高中必修3(B版)第一章算法初步教学设计教学背景本设计是为人教版高中必修3(B版)第一章——算法初步编写的,旨在让学生在学习计算机基本概念的同时,掌握算法的概念、基本算法及计算复杂度分析。

教学目标•了解算法的概念及其在计算机上的应用;•掌握算法的一些基本的思想方法和算法模板;•能够分析算法的时间、空间复杂度。

教学内容知识点1.算法基本概念2.时间、空间复杂度分析3.基本算法——贪心、分治和动态规划教学方式本课程主要采用授课法和案例演示法相结合的方式进行教学。

教学步骤第一步:算法基本概念1.讲解算法的定义、特性、应用等内容。

2.通过一些简单的例子,让学生理解什么是算法。

第二步:时间、空间复杂度分析1.介绍时间复杂度和空间复杂度的概念及分析方法。

2.通过一些实例演示,让学生能够对算法的复杂度进行分析。

第三步:基本算法——贪心1.介绍贪心算法的思想。

2.通过一些案例,让学生了解贪心算法的应用场景。

3.给学生一些练习题,巩固对贪心算法思路的掌握。

第四步:基本算法——分治1.介绍分治算法的思想。

2.通过一些案例,让学生了解分治算法的应用场景。

3.给学生一些练习题,巩固对分治算法思路的掌握。

第五步:基本算法——动态规划1.介绍动态规划算法的思想。

2.通过一些案例,让学生了解动态规划算法的应用场景。

3.给学生一些练习题,巩固对动态规划算法思路的掌握。

第六步:课堂小结1.小结本节课所学内容。

2.引导学生思考如何对不同场景下的问题选择合适的算法,扩展学生的算法思维。

教学评估1.每个章节结束后进行小测试,测试学生掌握的知识点。

2.每个章节最后留出时间给学生提问和互动交流。

3.在完成练习题后,对学生提交的答案进行点评和改进。

结束语本教学设计注重启发学生思考能力,通过案例演示和举例分析的方式,激发学生对算法和计算机的兴趣,提高对算法的理解和能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2007级高一年数学测试卷
必修3 第一章 算法初步
班级 姓名 座号 成绩
试卷I 选择填空题部分
一、选择题:
1.登上一个四级的台阶,可以选择的方式共有( )种。

A. 3
B. 4
C. 5 D 6
2.用二分法求方程的近似根,精确度为e ,则当型循环结构的终止条件是( )
A.12||x x e ->
B.12x x e ==
C.12x e x <<
D.12||x x e -<
3.执行下列程序后,输出的i 的值是( )
i=1
WHILE i<=10
i=i+5
WEND
PRINT i
END
A. 5
B. 6
C. 10
D. 11
4.把38化成二进制数为( )
A. 100110
B.101010
C.110100
D.110010
5.如图,汉诺塔问题是指有3根杆子A,B,C 。

B 杆上有若干碟子,把所有碟子从B 杆移到A 杆上,每次只能移动一个碟子,大的碟子不能叠在小的碟子上面,把B 杆上的4个碟子全部移到A 杆上,最少需要移动( )次
A B C
A. 12
B. 15
C. 17
D. 19
二、填空题
6.用秦九韶算法计算多项式5432
()54321f x x x x x x =+++++当x =5的值时,乘法运算的次数为 ;加法运算的次数为 。

7.阅读下列程序,并指出当3,5a b ==-时的计算结果:a = b = INPUT a, b
a=a+b
b=a-b a=(a+b)/2
b=(a-b)/2
PRINT a, b
END
三、解答题
8.设{n F }是斐波那契数列,则121F F ==,12n n n F F F --=+,画出程序框图,表示输出斐波那契数列的前20项的算法。

9.编写程序,输入3个数,输出其中最大的数。

相关文档
最新文档