奥鹏东师 《线性代数》练习题参考答案.doc
线代参考答案(完整版)
线性代数练习题 第一章 行 列 式系 专业 班 姓名 学号第一节 行列式的定义一.选择题1.若行列式x52231521- = 0,则=x [ C ] (A )2 (B )2- (C )3 (D )3- 2.线性方程组⎩⎨⎧=+=+473322121x x x x ,则方程组的解),(21x x = [ C ](A )(13,5) (B )(13-,5) (C )(13,5-) (D )(5,13--)3.方程093142112=x x根的个数是 [ C ] (A )0 (B )1 (C )2 (D )34.下列构成六阶行列式展开式的各项中,取“+”的有 [ A D ] (A )665144322315a a a a a a (B )655344322611a a a a a a (C )346542165321a a a a a a (D )266544133251a a a a a a 5.若55443211)541()1(a a a a a l k l k N -是五阶行列式ij a 的一项,则l k ,的值及该项的符号为[ B ](A )3,2==l k ,符号为正; (B )3,2==l k ,符号为负; (C )2,3==l k ,符号为正; (D )2,3==l k ,符号为负6.下列n (n >2)阶行列式的值必为零的是 [ B ] (A) 行列式主对角线上的元素全为零 (B) 三角形行列式主对角线上有一个元素为零 (C) 行列式零的元素的个数多于n 个 (D) 行列式非零元素的个数小于n 个 二、填空题 1.行列式1221--k k 0≠的充分必要条件是 3,1k k ≠≠-2.排列36715284的逆序数是 133.已知排列397461t s r 为奇排列,则r = 2,8,5 s = 5,2,8 ,t = 8,5,2 4.在六阶行列式ij a 中,623551461423a a a a a a 应取的符号为 负 。
东师《线性代数》18秋在线作业2(满分)
(单选题) 1: - A: -B: -C: -D: -正确答案: (单选题) 2: - A: -B: -C: -D: -正确答案: (单选题) 3: - A: -B: -C: -D: -正确答案: (单选题) 4: - A: -B: -C: -D: -正确答案: (单选题) 5: - A: -B: -C: -D: -正确答案: (单选题) 6: - A: -B: -C: -D: -正确答案: (单选题) 7: - A: -B: -C: -D: -正确答案: (单选题) 8: - A: -B: -C: -D: -正确答案: (单选题) 9: -正确答案: (单选题) 10: - A: -B: -C: -D: -正确答案: (多选题) 1: - A: -B: -C: -D: -正确答案: (多选题) 2: - A: -B: -C: -D: -正确答案: (多选题) 3: - A: -B: -C: -D: -正确答案: (多选题) 4: - A: -B: -C: -D: -正确答案: (多选题) 5: - A: -B: -C: -D: -正确答案: (多选题) 6: - A: -B: -C: -D: -正确答案: (多选题) 7: - A: -B: -C: -D: -正确答案:D: -正确答案: (多选题) 9: - A: -B: -C: -D: -正确答案: (多选题) 10: - A: -B: -C: -D: -正确答案: (判断题) 1: - A: 错误B: 正确正确答案: (判断题) 2: - A: 错误B: 正确正确答案: (判断题) 3: - A: 错误B: 正确正确答案: (判断题) 4: - A: 错误B: 正确正确答案: (判断题) 5: - A: 错误B: 正确正确答案: (判断题) 6: - A: 错误B: 正确正确答案: (判断题) 7: - A: 错误B: 正确正确答案: (判断题) 8: - A: 错误B: 正确正确答案: (判断题) 9: - A: 错误B: 正确正确答案: (判断题) 11: - A: 错误B: 正确正确答案: (判断题) 12: - A: 错误B: 正确正确答案: (判断题) 13: - A: 错误B: 正确正确答案: (判断题) 14: - A: 错误B: 正确正确答案: (判断题) 15: - A: 错误B: 正确正确答案: (判断题) 16: - A: 错误B: 正确正确答案: (判断题) 17: - A: 错误B: 正确正确答案: (判断题) 18: - A: 错误B: 正确正确答案: (判断题) 19: - A: 错误B: 正确正确答案: (判断题) 20: - A: 错误B: 正确正确答案: (单选题) 1: - A: -B: -C: -D: -正确答案: (单选题) 2: - A: -(单选题) 3: - A: -B: -C: -D: -正确答案: (单选题) 4: - A: -B: -C: -D: -正确答案: (单选题) 5: - A: -B: -C: -D: -正确答案: (单选题) 6: - A: -B: -C: -D: -正确答案: (单选题) 7: - A: -B: -C: -D: -正确答案: (单选题) 8: - A: -B: -C: -D: -正确答案: (单选题) 9: - A: -B: -C: -D: -正确答案: (单选题) 10: - A: -B: -C: -D: -正确答案: (多选题) 1: -正确答案: (多选题) 2: - A: -B: -C: -D: -正确答案: (多选题) 3: - A: -B: -C: -D: -正确答案: (多选题) 4: - A: -B: -C: -D: -正确答案: (多选题) 5: - A: -B: -C: -D: -正确答案: (多选题) 6: - A: -B: -C: -D: -正确答案: (多选题) 7: - A: -B: -C: -D: -正确答案: (多选题) 8: - A: -B: -C: -D: -正确答案: (多选题) 9: - A: -B: -C: -D: -正确答案:D: -正确答案: (判断题) 1: -。
(完整word版)线性代数试题及答案
线性代数习题和答案第一部分选择题(共28分)一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出的四个选项中只有一个是符合题目要求的,请将其代码填在题后的括号内。
错选或未选均无分。
1.设行列式a aa a11122122=m,a aa a13112321=n,则行列式a a aa a a111213212223++等于()A. m+nB. -(m+n)C. n-mD. m-n2.设矩阵A=100020003⎛⎝⎫⎭⎪⎪⎪,则A-1等于()A.130012001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪B.100120013⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪C.13000100012⎛⎝⎫⎭⎪⎪⎪⎪⎪D.120013001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪3.设矩阵A=312101214---⎛⎝⎫⎭⎪⎪⎪,A*是A的伴随矩阵,则A *中位于(1,2)的元素是()A. –6B. 6C. 2D. –24.设A是方阵,如有矩阵关系式AB=AC,则必有()A. A =0B. B≠C时A=0C. A≠0时B=CD. |A|≠0时B=C5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于()A. 1B. 2C. 3D. 46.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则()A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0B.有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0C.有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+λsαs=0和μ1β1+μ2β2+…+μsβs=07.设矩阵A的秩为r,则A中()A.所有r-1阶子式都不为0B.所有r-1阶子式全为0C.至少有一个r阶子式不等于0D.所有r阶子式都不为08.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是()A.η1+η2是Ax=0的一个解B.12η1+12η2是Ax=b的一个解C.η1-η2是Ax=0的一个解D.2η1-η2是Ax=b的一个解9.设n阶方阵A不可逆,则必有()A.秩(A)<nB.秩(A)=n-1C.A=0D.方程组Ax=0只有零解10.设A是一个n(≥3)阶方阵,下列陈述中正确的是()A.如存在数λ和向量α使Aα=λα,则α是A的属于特征值λ的特征向量B.如存在数λ和非零向量α,使(λE-A)α=0,则λ是A的特征值C.A的2个不同的特征值可以有同一个特征向量D.如λ1,λ2,λ3是A的3个互不相同的特征值,α1,α2,α3依次是A的属于λ1,λ2,λ3的特征向量,则α1,α2,α3有可能线性相关11.设λ0是矩阵A的特征方程的3重根,A的属于λ0的线性无关的特征向量的个数为k,则必有()A. k≤3B. k<3C. k=3D. k>312.设A是正交矩阵,则下列结论错误的是()A.|A|2必为1B.|A|必为1C.A-1=A TD.A的行(列)向量组是正交单位向量组13.设A是实对称矩阵,C是实可逆矩阵,B=C T AC.则()A.A与B相似B. A与B不等价C. A与B有相同的特征值D. A与B合同14.下列矩阵中是正定矩阵的为()A.2334⎛⎝⎫⎭⎪ B.3426⎛⎝⎫⎭⎪C.100023035--⎛⎝⎫⎭⎪⎪⎪D.111120102⎛⎝⎫⎭⎪⎪⎪第二部分非选择题(共72分)二、填空题(本大题共10小题,每小题2分,共20分)不写解答过程,将正确的答案写在每小题的空格内。
线性代数试题(附参考答案)
《 线性代数 》课程试题(附答案)一、 填空。
(3×8=24分)1.设A 为四阶方阵,且3=A ,则=-A 22.设⎪⎪⎪⎭⎫⎝⎛=003020100A ,则=-1A3.设⎪⎪⎭⎫⎝⎛=4321A ,则A 的伴随矩阵=*A 4.设CB A ,,为n 阶方阵,若0≠A ,且C AB =,则=B 5.矩阵A 可逆的充要条件为6.齐次线性方程组01=⨯⨯n n m X A 有非零解的充要条件为7.设n 维向量组321,,∂∂∂线性无关,则向量组32,∂∂ (填“线性相关”或“线性无关”)8.设n 元齐次线性方程组0=Ax ,且n r A r <=)(,则基础解系中含有 个解向量。
二、 计算行列式的值。
(10分)321103221033210=D三、 已知矩阵⎪⎪⎪⎭⎫ ⎝⎛---=145243121A ,求1-A 。
(10分)四、 设矩阵⎪⎪⎭⎫ ⎝⎛=1112A ,求矩阵X ,使E A AX 2+=。
(10分)五、 问K 取什么值时下列向量组线性相关(10分) T k )1,2,(1=α,T k )0,,2(2=α,T )1,1,1(3-=α。
六、 设A ,B 为n 阶矩阵且2B B =,E B A +=,证明A 可逆并求其逆(6分)七、 设矩阵⎪⎪⎪⎭⎫⎝⎛----=979634121121112A ,求矩阵A 的列向量组的秩及一个极大线性无关组,并把其余向量用极大线性无关组表示。
(15分)八、 求非齐次线性方程组⎪⎩⎪⎨⎧=--+=+--=--+0895443313432143214321x x x x x x x x x x x x 的通解。
(15分)《线性代数》课程试题参考答案一、 填空。
(3×8=24分)1.设A 为四阶方阵,且3=A ,则=-A 2482.设⎪⎪⎪⎭⎫ ⎝⎛=003020100A ,则=-1A ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛001021031003.设⎪⎪⎭⎫⎝⎛=4321A ,则A 的伴随矩阵=*A ⎪⎪⎭⎫ ⎝⎛--1324 4.设C B A ,,为n 阶方阵,若0≠A ,且C AB =,则=B C A 1- 5.矩阵A 可逆的充要条件为0≠A6.齐次线性方程组01=⨯⨯n n m X A 有非零解的充要条件为n A r <)(7.设n 维向量组321,,∂∂∂线性无关,则向量组32,∂∂线性无关(填“线性相关”或“线性无关”)8.设n 元齐次线性方程组0=Ax ,且n r A r <=)(,则基础解系中含有r n -个解向量。
《线性代数》综合练习题,附答案
《线性代数》综合练习题一、选择题1. 设A ,B 都是n 阶方阵,且AB=0,则必有( ).A.0=A 或0=BB.0=+B AC. 0||=A 或0||=BD. 0||||=+B A2. 设A ,B ,C 都是n 阶方阵,且ABC=E,其中E 为n 阶单位方阵,则必有( ).A. ACB=EB. BC A =EC. CBA=ED. BAC=E3. 设A ,B 都是n 阶方阵,且A 与B 等价,则( ).A. R(A)=R(B)B. )det()det(B A =C. )det()det(B E A E -=-λλD. 存在可逆矩阵P,使B AP P =-14. 设A 是n 阶可逆矩阵,*A 是A 的伴随矩阵,则=-1*)(A ( ). A.A A )det(1 B. 1)det(1-A A C.*)det(1A A D. A A *)det(1 5. 设方阵A 满足A 2-A -2E=0, 则必有( ).A.E A -=B. E A 2=C. A 可逆D. A 不可逆6. 设A 是n 阶可逆矩阵,*A 是A 的伴随矩阵,则=⋅|*|||A A ( ).A. 1B. n A ||C. 1||-n AD. 1||+n A7. 设A,B 为n 阶方阵,则必有( ).A. AB=BAB. │A+B│=│A│+│B│C. │A -B│=│A│-│B│D. │AB│=│A││B│8.设B A ,都是n 阶可逆矩阵,则下列结论不正确的是( ).A. B A +一定可逆B. AB 一定可逆C . 11--B A 一定可逆 D. TT B A 一定可逆.9.下列矩阵中,与矩阵⎪⎪⎭⎫ ⎝⎛1011可交换的是( ). A. ⎪⎪⎭⎫ ⎝⎛2011 B. ⎪⎪⎭⎫ ⎝⎛1111 C. ⎪⎪⎭⎫ ⎝⎛2032 D. ⎪⎪⎭⎫ ⎝⎛--121110.矩阵⎪⎪⎭⎫ ⎝⎛=d c b a A 为非奇异矩阵的充要条件是( ). A. 0=-bc ad B. 0=-cd abC. 0≠-bc adD. 0≠-cd ab11.设A 为n 阶方阵,k 为非零常数,则必有( ).A. ||||A kA =B. ||||A k kA =C. ||||1A k kA n -=D. ||||A k kA n =12.下列说法正确的是( ).A. 设A 为n 阶方阵,且A 2=A ,则A=E 或A=0.B. 设A,B,C 为n 阶方阵, AB=AC 且A≠0,则B=C.C. 设A ,B ,C 都是n 阶方阵,且AB=E ,CA=E ,则B=C.D. 设A 为n 阶方阵,且A 2=0,则A=0.13.矩阵⎪⎪⎭⎫ ⎝⎛5321的逆矩阵是( ). A. ⎪⎪⎭⎫ ⎝⎛--5321B. ⎪⎪⎭⎫ ⎝⎛--1325 C. ⎪⎪⎭⎫ ⎝⎛--5321 D. ⎪⎪⎭⎫ ⎝⎛--5231 14.设A 为3阶方阵,|A|=3,则|3A -1|= ( ).A. 1B. -1C. 9D. -915. 设C B A ,,都是n 阶可逆矩阵,则=-1)(ABC ( ). A. 111---C B A B. 111---A C BC. 111---B A CD. 111---A B C16. 设A 是一个3阶的反对称矩阵,则|A|= ( ).A. -1B. 0C. 1D. 无法确定17.设α⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=321a a a ,β],,[321b b b =,)3,2,1(0,0=≠≠i b a i i ,则方阵A=αβ的秩为( ).A. 0B. 1C. 2D. 318.如果向量组线性相关,那么( ).A. 这个向量组中至少有一个零向量.B. 这个向量组中至少有两个向量成比例.C. 这个向量组中至少有一个向量可以由其余向量线性表示.D. 这个向量组中所有向量都可以由其余向量线性表示.19.下列说法正确的是( ).A. 等价的向量组含有相同的向量个数.B. 如果向量组线性相关,那么这个向量组中至少有一个零向量.C. 如果向量组线性相关,那么这个向量组中至少有两个向量成比例.D. n 维单位向量组是线性无关的.20.设向量组α1],0,0,1[=α2],1,0,0[=则β=( )时,它是α1, α2的线性组合.A. ]2,1,0[B. ]0,2,1[C. ]2,0,1[D. ]0,1,2[21.向量组α1,α2,… ,αm 的秩不为0的充要条件是( ).A. 向量组α1,α2,… ,αm 中至少有一个非零向量.B. 向量组α1,α2,… ,αm 中至多有一个非零向量.C. 向量组α1,α2,… ,αm 中全部是非零向量.D. 向量组α1,α2,… ,αm 线性无关.22.设向量组α1,α2,… ,αm 的秩为)2(-≤m r r ,则下列说法错误的是( ).A. 向量组α1,α2,… ,αm 中至少有一个含r 个向量的部分组线性无关.B. 向量组α1,α2,… ,αm 中含r 个向量的部分组都线性无关.C. 向量组α1,α2,… ,αm 中含1+r 个向量的部分组都线性相关.D. 向量组α1,α2,… ,αm 中含2+r 个向量的部分组都线性相关.23.设α1,α2,α3为3阶方阵A 的列向量组,则α1,α2,α3线性无关的充要条件是( ).A. │A│0≠B. A 的秩3)(<A RC. 方阵A 不可逆D. 方阵A 是奇异的24. 下列说法错误的是( ).A.1+n 个n 维向量必相关.B. 等价的向量组有相同的秩.C. 任一n 维向量一定可由n 维单位向量组线性表示.D. 零向量不可以由n 维单位向量组线性表示.25. 若R (A )=2,则5元齐次线性方程组A x =0的基础解系中有( )个向量。
2020年奥鹏东北师范大学《线性代数(高起专)》(离线考核)参考答案
对于 ,解齐次线性方程组 ,其基础解系为 。
,满足 ,
离线考核
《线性代数(高起专)》
2020年奥鹏东北师大考核试题标准答案
试读1页答案在最后
参考答案如下
满分100分
一、计算及证明题(每小题20分,共100分。)
向量组 是线性无关的,且 , , ,证明:向量组 也是线性无关的。
答:
1.设向量组 是线性无关的,且
, ,
证明:向量组 也是线性无关的。
证明:设 ,则有
(3)将其余向量用极大无关组线性表示。
解: ,则向量组的秩为3, , , 为极大无关组, , 。
5. 给定矩阵 ,如果 能与对角矩阵相似,请求出相似对角矩阵 及可逆矩阵 。
5.给定矩阵 ,如果 能与对角矩阵相似,请求出相似对角矩阵 及可逆矩阵 。
解: ,所以 的全部特征值为
, ,
对于 ,解齐次线性方程组 ,其基础解系为 。
整理,得
因为 线性无关,所以
该齐次线性方程组只有零解,即 ,所以 线性无关。
2.对于任一矩阵 ,证明: 及 都是对称矩阵。
2.对于任一矩阵 ,证明: 及 都是对称矩阵。
证明:因为
所以 及 都是对称矩阵。
3. 用基础解系表示线性方程组 的全部解。
3.用基础解系表示线性方程组 的全部解。
解:对方程组的增广矩阵施以初等行变换,有
所以方程组有无穷多解,其一般解为
令 ,得特解 ,其导出组的一般解为
令 ,得 ,则原方程组的全部解为 , 为任意常数。
4. 给定向量组
, , , , ,
求:(1)向量组的秩;
(2)向量组的一个极大无关组;
线性代数习题册参考解答.docx
第一章行列式1、 求下列排列的逆序数,并确定它们的奇偶性。
(1) 1347265; (2) 〃(〃 —1)・・・321。
【解(1) r(1347265)=0 + 0 + 0 + 0 + 3 + l + 2 = 6,偶排列;(2) "〃(〃_1)...321] = 0 + ] + 2 + ... + (〃_1) = 〃(;1)。
当〃=4奴4女+ 1时,〃(〃;1)=2机4*—1),2机4* + 1)为偶数,即为偶排列;当〃 = 412,413时,丝* = (2*+1)(4*+ 1),(2*+1)(4*+ 3)为奇数,即为奇 排列。
■2、 用行列式定义计算2x x 1 21x1-1 f (X )=-- [3 2x1111%中『和r 的系数,并说明理由。
【解】由行列式定义可知:含b 有的项只能是主对角线元素乘积,故的系数为2; 含有尸的项只能是(1, 2), (2, 1), (3, 3), (4, 4)的元素乘积项,而7(2134) = 0 + 1 + 0 + 0 = 1,故/的系数为一1. ■2-512 --37-14 3、 求 =o45 -9 2 7 4-612【解】三角化法:2-5121-522 1-522 尸2+八1-12 0 6C[0 2-160 113D 4 =- _八3-211 1 0 3 0 113 0 2-16 r 4+r 211 0 60 1160 1161 -52 2 r3~2r 2 0 11 3r4~r 2 00 -3 00 0 31111 rk~r l0 10 0=120= 120o )l=2,3,40 0 100 0 0 1【解】箭形行列式(爪形行列式):利用对角线上元素将第一行(或列)中元素1化为零。
1 x 2q+C2 +•••+&n D"=(,-就1 x 2-mi=l1x21 0 0C k -X L C I 凡 q (»i) k=2,3,---,n1 —m ••- 01 0…-m【解】观察特点: 行和相等。
线性代数测试试卷及答案.docx
线性代数( A 卷)一﹑选择题 ( 每小题 3 分 , 共 15 分)1.设 A ﹑ B 是任意n阶方阵 , 那么下列等式必成立的是 ( )(A)AB BA (B)( AB)2A2 B2(C)( A B)2A2 2 AB B2(D) A B B A2.如果 n 元齐次线性方程组AX0 有基础解系并且基础解系含有s(s n) 个解向量,那么矩阵 A 的秩为 ()(A)n(B)s(C)n s(D)以上答案都不正确3. 如果三阶方阵A(a ij )33的特征值为 1,2,5 ,那么 a11a22a33及A分别等于()(A)10, 8(B)8, 10(C)10,8(D)10,84.设实二次型 f ( x1 , x2 )( x1 , x2 )22x1的矩阵为 A , 那么 ()41x2(A)23(B)22(C)A21(D)A10 A1A12101 345.若方阵 A 的行列式 A 0 ,则 ( )(A) A 的行向量组和列向量组均线性相关 (B)A 的行向量组线性相关 , 列向量组线性无关(C) A 的行向量组和列向量组均线性无关 (D)A 的列向量组线性相关 , 行向量组线性无关二﹑填空题 ( 每小题 3 分, 共 30 分 )1 如果行列式 D 有两列的元对应成比例 , 那么该行列式等于;1002.设 A210 ,A*是A的伴随矩阵,则 ( A* ) 1;3413.设 ,是非齐次线性方程组 AX b 的解 , 若也是它的解 ,那么;4.设向量(1,1,1)T与向量(2,5, t)T正交,则t;5.设 A 为正交矩阵 , 则 A;1116.设 a, b,c 是互不相同的三个数,则行列式 a b c;a2b2c27.要使向量组1(1, ,1)T , 2(1,2,3)T , 3(1,0,1)T线性相关,则;8. 三阶可逆矩阵 A 的特征值分别为 1, 2, 3 , 那么 A 1 的特征值分别为;9. 若二次型 f ( x 1, x 2 , x 3 ) x 2 1x 2 25x 2 3 2t x 1 x 2 - 2x 1x 3 4x 2 x 3 是正定的,则 t 的取值范围为;10. 设 A 为 n 阶 方 阵 , 且 满 足 A 22 A 4I 0 , 这 里 I 为 n 阶 单 位 矩 阵 , 那 么A 1.三﹑计算题(每小题 9 分,共 27 分)2 1 01 01. 已知 A1 2 1 , B 0 1 ,求矩阵 X 使之满足 AX X B .0 12 0 01 2 3 42.求行列式23 4 1的值 . 3 41 24 12 33 求向量组1(1,0,1,0), 2(2,1,3, 7), 3 (3, 1,0,3,), 4 (4, 3,1, 3,) 的一个最大无关组和秩 .四﹑ (10 分) 设有齐次线性方程组x 1 ( 1)x 2 x 3 0, (1)x 1 x 2x 3 0, x 1 x 2 (1)x 3 0.问当 取何值时 , 上述方程组 (1) 有唯一的零解﹔ (2) 有无穷多个解五﹑ (12 分) 求一个正交变换 X PY , 把下列二次型化成标准形 :, 并求出这些解.f ( x 1 , x 2 , x 3 )x 21x 22x 234x 1 x 24x 1x 3 4x 2 x 3 .六﹑ (6 分) 已知平面上三条不同直线的方程分别为l 1 : ax 2by 3c 0,l 2 : bx 2cy 3a 0, l 3 : cx 2ay 3b 0.试证:这三条直线交于一点的充分必要条件为a b c 0 .线性代数( A 卷)答案一﹑ 1. D 2. C 3. B 4. A5. A二﹑ 1. 0 2.( A * ) 1A3. 14. 35. 1或 -16. ( ca)( c b)( ba) 7. 0 8.1, 1,1 9. 4 t 010.1 A 1 I23542三﹑ 1. 解 由 AX X B 得 X ( A I ) 1 B . (2分)下面求 ( AI ) 1 . 由于1 1 0 A I1 1 1 (4分 )0 1 1而0 1 1( A I ) 11 1 1 .(7分 )11 0所以0 1 1 1 00 1X ( A I ) 1 B11 10 1 1 1 . (9 分 )110 0 0111 2 3 4 10 2 3 4 1 2 3 4 2. 解2 3 4 1 10 3 4 1 1 34 1 (4 分 )3 4 1 2 10 4 1 2 10 41 214 1 2310 1 2 3 1 1 2 31 2 3 40 11 3 分) 160 (9 分 ) .104 (80 40 043. 解 由于1 2 3 40 1 1 3r 3 r 1 1 3 0 1 uuuuur 07331 210 50 734 12 3 4 1 3 r 3 5r 2 01 1 3 33 r4 7r 2 0 0 2 12 uuuuuuur3 3 04241 2 3 4r 41 1 3 分 )2r 3 0 2 (6 uuuuuuur 0120 0故向量组的秩是3 , 1 , 2 ,3 是它的一个最大无关组。
线性代数考试练习题带答案大全(二)
线性代数考试练习题带答案一、单项选择题(每小题3分,共15分)1.设A 为m n ⨯矩阵,齐次线性方程组0AX =仅有零解的充分必要条件是A 的( A ). (A ) 列向量组线性无关, (B ) 列向量组线性相关, (C )行向量组线性无关, (D ) 行向量组线性相关. 2.向量,,αβγ线性无关,而,,αβδ线性相关,则( C )。
(A ) α必可由,,βγδ线性表出, (B )β必不可由,,αγδ线性表出, (C )δ必可由,,αβγ线性表出, (D )δ必不可由,,αβγ线性表出. 3. 二次型()222123123(,,)(1)1f x x x x x x λλλ=-+++,当满足( C )时,是正定二次型.(A )1λ>-; (B )0λ>; (C )1λ>; (D )1λ≥.4.初等矩阵(A );(A ) 都可以经过初等变换化为单位矩阵;(B ) 所对应的行列式的值都等于1; (C ) 相乘仍为初等矩阵; (D ) 相加仍为初等矩阵 5.已知12,,,n ααα线性无关,则(C )A. 12231,,,n n αααααα-+++必线性无关;B. 若n 为奇数,则必有122311,,,,n n n αααααααα-++++线性相关;C. 若n 为偶数,则必有122311,,,,n n n αααααααα-++++线性相关;D. 以上都不对。
二、填空题(每小题3分,共15分)6.实二次型()232221213214,,x x x x tx x x x f +++=秩为2,则=t7.设矩阵020003400A ⎛⎫⎪= ⎪ ⎪⎝⎭,则1A -=8.设A 是n 阶方阵,*A 是A 的伴随矩阵,已知5A =,则*AA 的特征值为 。
9.行列式111213212223313233a b a b a b a b a b a b a b a b a b =______ ____;10. 设A 是4×3矩阵,()2R A =,若102020003B ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则()R AB =_____________;三、计算题(每小题10分,共50分)11.求行列式111213212223313233a b a b a b D a b a b a b a b a b a b +++=++++++的值。
线性代数(含全部课后题详细答案)1第一章一元多项式习题及解答.docx
A 组1.判别Q (厉)二{0 +勿亦|0,处0}是否为数域?解是.2.设/(x) = x3 4-x2 4-x+l, g(兀)=兀2+3兀+ 2,求 /(兀)+ g(x),/(x)-g(x), f(x)g(x). 解/(x) + g (x) = x3 4- 2x2 + 4x + 3 ,/(兀)-g(x)"-2x-l,f(x)g(x) = x5 +4x4 +6兀'+6兀$ +5x + 2 .3.设/(%) = (5x-4),993(4x2 -2x-l),994 (8x3 -1 lx+2)'995,求 /(%)的展开式中各项系数的和.解由于/(兀)的各项系数的和等于/⑴,所以/(I) = (5-4严3(4-2- 1尸94(8-11 + 2)1995 =-1.4.求g(兀)除以/(兀)的商q(x)与余式心).(1)f (x) —— 3%2— x — 1, g(兀)=3F - 2兀+1 ;(2)/(x) = x4 -2x4-5, g(x) = x2 -x + 2 .解(1)用多项式除法得到x 73x~ — 2x +13_93X + 3—x —x-i3 37 ° 14 7-- 无_+ —x --3 9 926 2-- X ---9 9所以'恥)十岭心)W(2)用多项式除法得到x4— 2x + 5兀4 —”丫" + 2 兀2— 2x~ — 2 兀+5 jy?—兀~ + 2 兀-x2-4x4-5-兀? + X - 2—5x + 7所以,q(x) = x2 +x-l, r(x) = -5x + 7 .5.设是两个不相等的常数,证明多项式/(兀)除以(x-a)(x-b)所得余式为af(b)_bg)a-b a-h证明依题意可设/(x) = (x - a)(x - b)q(x) + cx+d,则”(a) = ca + d,[f(b) = cb + d.解得F=(/a) --,\d = (af(b)-bf(a))/(a-b).故所得余式为a-b a-b6.问m,p,q适合什么条件时,/(兀)能被g(x)整除?(1) /(x) = x3 + px + q , g(x) = x2 + nvc-1;(2) f(x) = x4 + px2 +q , g(兀)=x2 + mx+l.解(1)由整除的定义知,要求余式r(x) = 0 .所以先做多项式除法,3x2 + mx -1x-in“+ “X + q3 2x + mx^ - x-mx1 +(〃 + l)x + g2 2一 mx_ — m^x + m°(# +1 + 加〜)兀 + (g —m)要求厂(x) = (/? + l +加2)兀+ (§ —加)=0 ,所以(“ + 1 +加2) = 0, q-m = 0.即p = -l-m2, q - m时, 可以整除.(2)方法同上.先做多项式除法,所得余式为厂(兀)=加(2 — ”一nr )兀+ (1 + @ —卩一加〜),所以 m (2-p-/772) = 0, 1 + ^ - p - m 2= 0 ,即 m = 0, p = q + \ 或“二 2— 加[q = l 时,可以整除.7. 求/(兀)与gCr )的最大公因式:(1) f (x) — x 4 + — 3%2 — 4x — 1, g (x)=兀彳 + — x — 1 ; (2) f(x) = x 4— 4x 3+ 1, g(x) = x 3— 3x 2+1 ;(3) /(x) = x 4 -10x 2 +1, g(x) = x 4 -4A /2X 3 +6X 2 +4A /2X +1 .解(1)用辗转相除法得到用等式写出來,就是所以(/(x),g(x)) = x + l ・(2)同样地,<8 4 / 3 3= -X + — — -X-—(3 344-2x 2-3x-l1 1 --- X 4——2 -- 4 X 3+ X 2- X - 1 x 4 + x 3- 3x 2- 4x- 11 2 3 , -2x 2 — 3兀—12 21 2 3 1 -- X ----- X ---—2兀~ — 2兀2 4 433-- X ----X -144一丄 184—X H - 3 3 0心宀丄兀2 24 3 2牙+牙-X - Xf(x) = xg(x)^(-2x 2-3x-l),g(x) =所以(/⑴,g (兀)) = 1.⑶ 同样用辗转相除法,可得(/(x),g(x)) = F —2血兀一1.8.求 w(x),仄兀)使 w(x) f\x) + v(x)g(ji) = (/(x), g(%)):(1) f (x) = %4 4- 2x^ — %2 — 4x — 2, (x) = %4 + x — x~ — 2x — 2 : (2) /(x) = 4x 4-2x 3-16x 2+5x4-9, g(x) = 2兀3-x 2-5x+4:(3) /(x) = x A-x 3-4x 2 +4x + l, g (兀)=x 2 -x-l.解(1)利用辗转相除法,可以得到/(x) = g (A :) + (x 3-2x)'g (兀)=(x+l)(x 3 - 2x) + (x 2 -2),x — 2兀=x(^x~ — 2).因而,(/(x),g(x)) = x 2-2,并且(/(兀),g (兀))=/ 一 2 = g (兀)_ (兀+1)(疋 _ 2兀) =g (兀)一(X +1) (f(x) -g (兀))=(一兀 一 1)/(兀)+ (兀+2)g(x),所以 u(x) = -x-\, v(x) = x + 21 10 -- X H --- 3 9x 3 - 3x 2x-13 1 2 2X H —X X 3 3 10 2 2~~'- ---- X H 兀+ 13 -- 3 10 ° 10 20 X --- 兀 3 9 916~~1T —X ------ 9 927 441 --------- X ---------------16 256-3x 2+—x1649一一539 兀+ --- 27 256(2)利用辗转相除法,可以得到/(x) = 2xg(x)-(6x 2 +3兀-9),(\ 1Ag(x) = —(6x_ + 3兀一9) ——% + — — (% — 1), —(6x - + 3x — 9) = —(x —1)(6% + 9).因而,(/⑴,g(Q) = x-1,并且(1 1 …厶— —X + _ f (x) + _兀_—x~\ I 3 3丿 (3 3丿] 1 2 7 2fi/f 以 W (X )= X H —, V (X )= — --- X — \ •3 3 3 3(3) 利用辗转相除法,可以得到fM = X —3)g(x) + (x — 2),g(x) = (x+l)(x-2) + l ・因而( f(x), g(x)) = 1 ,并且(/(兀),g(x)) = 1 = g(x) - (x+1)(兀一 2)=g (兀)-(兀+1)(/(兀)-(x 2 一3)gCr))—(—兀―1) f (x) + (兀'+ 兀2 — 3兀—2)g(x),所以u (兀)= -x-l, v(x) = x 3 +x 2 -3x-2.9.设/(x) = %3+ (14-t)x 2+ 2x + 2w, g(x)二F+zx + u 的最大公因式是一个二次多项式,求/,凤的值.解利用辗转相除法,可以得到/(%) = g(x) + (l + /)兀2 +(2-/)兀 + « ,(/(x), g(x)) = x-l = -(6x 2+ 3x-9)+ | _g(x)I d J J(I ] \= (/(x)-2xg(x)) --x+- -g(x)\ 3丿 <2 o 2 d ,、 U 3 广—---- 兀+ (1 + r t-2(l +r)2(尸 + r—w)(i+r) + (t— 2)~u[(l + t)2 — (r —2)]由题意,/(x)与g(Q的最大公因式是一个二次多项式,所以(广 + / —w)(l + /) + (f— 2)~(T H?皿(l + r)2-(r-2)] A ;=0,(l + O2解得u = o^t = -4.10.设(x —I)[(A/+ B F+I),求A和B.由题意要求知解用(兀一1)2 去除f\x) = Ar4 + Bx2 +1 ,得余式”(x) = (4A + 2B)兀+1 -3人一B,斤(兀)=0,即4A + 2B = 0,1-3A-B = O,解得A = l,B = -2.11.证明:如果(/(x),g(x)) = l, (/(x),/z(x)) = l,那么(/(x), g(x)/z(x)) = l. 证明由条件可知,存在络(兀)和片⑴ 使得旳(兀)/(兀)+岭⑴g(x) = l,存在如(兀)和卩2(兀)使得u2(x)f(x) + v2(x)h(x) = 1.用/?(兀)乘以第一式得坷(x)f(x)h(x) + V, (x)g(x)h(x) = h(x),代入第二式得u2(x)f(x) + v2 (x) [u t (x)f(x)h(x) 4-Vj (x)g(x)/z(x)] = 1, 即[w2(兀)+ u\ (x)v2(x)h(x)]f(x) + [v, (x)v2(x)]g(x)h(x) = 1,所以(/(x),g(x)/z(x)) = l.12.证明:如果/(x)与g(x)不全为零,且/心)/(兀)+ 咻)g(兀)=(/(%), g(Q),证明由于w(x)/(x) + v(x)g(x) = (/(x),g(x)), /(X )与 g(x)不全为零,所以(/(x),g(x))HO.两 边同时除以(/(Hg(Q)HO,有所以(弘(兀),咻)) = 1 .13.证明:如果〃(兀)|/(兀),〃(兀)|g(x),且〃(兀)为/(兀)与g(x)的一个组合,那么〃(兀)是/G)与 g(x)的一个最大公因式.证明由题意知d(x)是/(X )与g(x)的公因式.再由条件设d(x) = w(x)/(x) + v(x)^(x) •又设h(x) 为/(x)与g(x)的任一公因式,即/z(x)|/(x), h(x)\g(x),则由上式有h(x)\d(x).故而”(兀)是/(兀)与 g(x)的一个最大公因式.14.证明:(.fO)/2(X ), gO)/2(X )) = (.f(X ), g(x))〃(x),其中力(兀)的首项系数为 1.证明显然(/(x), g(x))/?(x)是f{x)h{x)与g(x)h(x)的一个公因式.下面來证明它是最大公因式. 设 /心),v(x)满足 w(x)/(x) + v(x)g(x) = (/(x), g(X>),贝iJu(x)f(x)h(x) + v(x)g(x)h(x) = (/(x),g(x))/z(x).由上题结果知,(/(兀),g(X ))/7(X )是/(X )/?(X )与g(JC”7(X )的一个最大公因式,又首项系数为1,所以(/(x)A(x), ^(%)/?(%)) = (/(x), ^(x))/i(x)・/⑴ g (兀)、(/(兀),g (兀))’(f(x),g(x))丿证明设〃(兀)=(/(兀),g(x)),则存在多项式M (x), v(x),使d(x) = u(x)f(x) + v(x)g(x)・因为/(X )与g (尢)不全为零,所以d(x)HO.上式两边同时除以〃(兀),有故 /(兀) _____________ g (x)l (/(x),g(x))‘(/(x),g(x))‘u(x) /(X ) (/(%), g(x)) + v(x) g(x) (y (x ),^(x ))15.设多项式/(x)与gS)不全为零,证明1 = u(x)/(兀)(/(兀),g(x))+咻)g(x) (/(兀),g(x))=1成立.16. 分别在复数域、实数域和有理数域上分解兀4+ 1为不可约因式之积.在有理数域上兀°+1是不可约多项式.否则,若+ +1可约,有以下两种可能.(1) 兀4+1有一次因式,从而它有有理根,但/(±1)工0,所以卍+1无有理根.(2) x 4+ 1 无一次因式,设x 4+1 = (x 2+处 +方)(F +cx + d),其中 a,b y c,cl 为整数.于是a + c = O, b+ 〃 + ac = O, cut + be = 0 , bd = \,又分两种情况:① b = d = \,又 a = —c,从而由 b + 〃 + ac = O,得 a 2=2,矛盾; ② b = d = — \,则 a 2= —2 ,矛盾.综合以上情况,即证.17. 求下列多项式的有理根: (1) /(x) = x 3-6x 2+15兀一 14 ;(2) ^(X ) = 4X 4-7X 2-5X -1;(3) /z(x) = x 5+ %4— 6x^ — 14x~ — 1 lx — 3 ・解(1)由于/(x)是首项系数为1的整系数多项式,所以有理根必为整数根,且为-14的因数.-14的 因数有:±1, ±2, ±7, ±14,计算得到:/(D = -4, /(-1) = -36, /(2) = 0, /(-2) = -72,/(7) = 140, /(-7) = -756, /(14) = 1764, /(一 14) = —4144,故x = 2是/(兀)的有理根.再由多项式除法可知,x = 2是于(兀)的单根.⑵ 类似(1)的讨论可知,g(x)的可能的有理根为:故x = --是巩兀)的有理根.再由多项式除法可知,兀二-丄是/(劝的2重根.2 2⑶ 类似地,加兀)的可能的有理根为:±1,±3,计算得到解在实数域上的分解式为X4+ 1 = (X 2 + 1)2-2X 2 =(X 2+V2X + 1)(X 2-V2X +1).在复数域上的分解式为x + ----------1 2 2%4+ 1 = f亠迈亠近、X ---------- 12 2/±1, ±1 ±?计算得到g(l) = -9,g(-1) = 1, g(]、r 、171=-5, g —=0, g — 一 —‘ g —〔2< 264 ,4丿11A(l) = -28, /?(-l) = 0,(3) = 0,加一3) = -96.故x = -l, x = 3是//(兀)的有理根.再由多项式除法可知,x = -\是/z(x)的4重根,兀=3是//(兀)的单根.18.若实系数方程x34- px + q = 0有一根a + bi (a,b为实数,/?工0),则方程x3 + px-q = 0有实根2—证明设原方程有三个根不失一般性,令=a + bi,从而有a2 =a-bi,由根与系数的关系可知0 = $ + 冬 + 他=(° + 勿)+ (a - bi) + ,所以冬二-2d,即(-2a)‘ + /?(-2a) + g = 0,故(2a)' + p(2a)-q = 0.这说明x3 + /zr-g = 0有实根2a .19.证明:如果(%-i)|/(r),那么证明因为u-i)|/(z),所以/(r)= /(i)= 0.因此,令y(x)=(x-i)g(x),则有E =(*-i)g(;),即(伙-1)|/(疋).20.下列多项式在有理数域上是否可约?(1)土 (%) = F+1;(2)/;(X)= X4-8?+12X2+2;(3)人(x) = x" +『+1 ;(4)厶(无)=* + "; + 1,门为奇素数;(5)厶(兀)=兀°+4尬+ 1, A为整数.解(1) ./;(兀)的可能的有理根为:±1,而/(±1) = 2,所以它在有理数域上不可约.(2)由Eisenstein判别法,取素数p = 2,则2不能整除1,而2|(-8), 2|12, 2|2,但是2?不能整除2,所以该多项式在有理数域上不可约.(3)令x=y + l,代入厶(x) = P+x'+l有^(y) = ^(y + l) = / + 6/+15/+21/+18y24-9y4-3.取素数0 = 3,由Eisenstein判别法知,g(y)在有理数域上不可约,所以/(兀)在有理数域上不可约.(4)令兀= y_l,代入f4(x) = x p 4-px + 1,得g(y)=厶(y j) = -+ cy~2——C;-2y2 + (Cf* + p)y-p,取素数p,由Eisenstein判别法知,g(y)在有理数域上不可约,所以£(兀)在有理数域上不可约.(5)令x=y + l,代入农(兀)=兀4+4Ax+l,得g(.y)=厶(y +1) = y" + 4y‘ + 6y2 + (4k + 4)y + 4R + 2 ,収素数p = 2,由Eisenstein判别法知,g(y)在有理数域上不可约,所以点(兀)在有理数域上不可约.1•设/(X),g(X),加兀)是实数域上的多项式,(1)若/2U) = xg2(x) + x/z2(x),则/(x) = g(x) = h{x) = 0 .(2)在复数域上,上述命题是否成立?证明(1)当g(兀)=/2(兀)=0时,有严⑴=0,所以/(%) = 0 ,命题成立.如果g(x), /z(x)不全为零,不妨设g(x)H0・当h(x) = 0时,a(xg2(x) + x/i2U)) = l + 2a^(x)为奇数;当加兀)工0时,因为g(x),瓜兀)都是实系数多项式,所以Xg2(x)与兀胪(兀)都是首项系数为正实数的奇次多项式,于是也有d(xg2(x) + x/『(x))为奇数.而这时均有/2(x)^0 ,且df\x) = 2df(x)为偶数,矛盾.因此有g(兀)=力(兀) = 0,从而有f(x) = 0 .(2)在复数域上,上述命题不成立.例如,设f(x) = 0 , g(x) = x\ h(x) = ix,1,其中斤为自然数, 有/2 (x) = xg2 (x)xh2 (x),但g(x) / 0 ,力(兀)工0.2.设/(x), g(x)9 h(x)e P[x],满足(x2 4-l)h(x)4-(x-l)/(x) + (x+2)g(x) = 0,(x2 + l)/?(x) + (x+ l)/(x) + (x - 2)^(%) = 0.证明(X2+1)|(/U), g(X))・证明两式相加得到2(x2 + l)h(x) + 2x(/(x) + g(兀))=0.由(x2+l,兀)=1可知(x2 + l)|(/(x) + g(x)).两式相减得到-2f(x) + 4g(x) = 0, f(x) = 2g(x).故(x2 + l)|/(x), (x2+l)|g(x), BP(X2+1)|(/(X),g(x)).3・设gi(x)g2(x)\f{(x)f2(x),证明(1)若/(x)|g](x),/(X)H0,则g2(x)\f2(x);(2)若g2(x)|/;(x)/;(x),是否有g2(x)\f2(x)?解(1)因为gi(兀)g2(兀)庞(兀)£(兀),/O)|gi(X),故存在多项式h(x), h}(x)使得fl(x)f 2(x) = g](x)g 2(x)h(x\ g](兀)=Z (x)h }(x).于是/;(兀)£(兀)=/(兀)人(兀)g2(x)力(兀)•由于 土(兀)工0,故有 f 2(x) = h l (x)g 2(x)h(x),即g 2(x)\f 2(x).(2)否•例如取 g {(x) = x-2 , ^2(X ) = X 2-1 , (x) = (x-l)(x-2), (x) = (x + l)(x4-2).虽 然 gSx)g 2(x)\f^x)f 2(x)且 g 2(x)\f {(x)f 2(x),但 g 2(x)不能整除 f 2(x).4.当R 为何值时,/(x) = X 2 +伙+ 6)x + 4k + 2和g(x) = F+(£ + 2)x + 2R 的最大公因式是一次 的?并求出此吋的最大公因式.解 显然 g(x) = (x + £)(x+2).当(/(x),g(Q) = x + 2时'/(一2) = 4 — 2伙+ 6) + 4£ + 2 = 0‘ 则k = 3.当(于(兀),g(Q )=兀 + £ 时’/(一灯=k 2 - k(k + 6) + 4Z: + 2 = 0 ‘ 则 k = l.这时(/(x), g(x))=兀+1. 5.证明:对于任意正整数斤,都有(/(x),g(Q)"=(/"(x),g"(x))・证明 由题意可知/(%)与&(兀)不全为零.令(/(x), g(x)) = d(x),Z 、” g(x) 、d(x)丿/心)/"(兀)+ 咚)g"(兀)=d\x).又由 d(x)\f(x), d(x)|g(x),有 d n (x) f l \x), d"(x) g"(x),因此 d"(x)是厂(x)与 g"(x)的首项系数为1的最大公因式,从而有(广(x),g"(x))= 〃"(兀)=(/(x),g(x))" •6.设 / (x) = af(x) + bg(x), g[ (x) = c/(x) + dg(x),且 ad - be H 0 ,证明(/(x),g(x)) = (/](x), g](X ))・证明设(/(x), g(x)) = d(x),则 d(x)\f(x\d(x)\g(x).由于 “所以对任意正整如,有爲J 寫〕"卜 于是有u{x) +咻) 则〃(兀)工0,从而fi (兀)=妙(x) + bg(x) , g] (x) = (x) + dg (x),故d (x)| (x), d (x)|g t (x).又设h(x)\ (x), /z(x)|(x),由上式及ad-bc^O ,可得从而/?(x)|/(x), h(x)\g(x),于是h(x)\d(x),即〃(兀)也是/;(兀)和g|(x)的最大公因式,即(/(x), g(x)) = (/;(x),&(兀))・7.设 /(x) = t/(x)/(x), g(Q 二 dCr)g](x),且/O)与 gd)不全为零,证明〃(兀)是/O)与 gCO的一个最大公因式的充分必要条件是(/(劝,g|(x)) = 1.证明必要性.若〃(x)是/(兀)与g (兀)的一个最大公因式,则存在多项式w(x),v(x)使W (x)/(x) +v(x)g(x) = d(x),于是u(x)d(x)f t (x) + v(x)d(x)g l (x) = d(x).由/(力与g (兀)不全为零知如工0,因此有u(x)f l (x) + v(x)g l (x) = l f 即(土(兀),g©))i •充分性.若(f l (x),g l (x)) = l ,则存在多项式u(x),v(x),使 u(x)f l (x)+ v(x)g l (x) = l. 两边同吋乘〃(兀)有u(x)f(x) + v(x)g(x) = d(x)・由d(x)是/(x)与g(x)的一个公因式知,d(x)是f(x)与g(x)的一个最大公因式.8.设于(兀)和g(x)是两个多项式,证明(f(x), g(x)) = l 当且仅当(f(x)-l-g(x), f(x)g(x)) = l. 证明 必要性.设(f(x)9g(x)) = l,若f(x) + g(x)与/⑴g(x)不互素,则有不可约公因式p(x), 使p(x)lf(x)g(x)f所以 p(x)| /(X )或 0(x)|g(x).不妨设 p(x)\ /(x),由 P (x)|(/(x) + g (兀))可知 p(x)|g(x),因此 P (兀)是 /(兀)和g“)的公因式,与/(%), g (x)互素矛盾,故 蚀+g (兀)与蚀g (兀)互素.充分性.设(/(兀)+ gO) J(x)g (兀)) = 1,则存在w(x), v(x)使(/(兀)+ g (兀))心)+ /(x)g(x)v(x) = 1 , f(x)u(x) + g (兀)(臥兀)+d ad-be zw- h ad 一gi (兀), g(x) -c ad -be a ad -be g](x),/(x)v(x)) = 1, 上式说明(/(兀),g(兀)) = 1.9.如果(x2 +x + l)|/j(x3) + x/^(x3),那么(x-l)|/;(x), 0 — 1)|/;(兀)・T;®所以,^3=£23 = 1.证明X2+X + l的两个根为£\= 士护和£2=因为U2+x+l)|(/;(^3) + x/;(^3)),所以(兀一£|)(x - £2)|/;(X')+/(F),故有y 窗)+ £/(郃)=0,[爪哥)+ £2£(哥)=0,即解得/(l) = /;(l) = o,从而(兀—1)|久(兀),(x-1)|/;(%).10.若f(x)\f(x H),则/(x)的根只能是零或单位根.证明因为f(x)\f(x n),故存在多项式g(x),使/(x n) = /(x)^(x).设。
线性代数考试题库及答案(一)
线性代数考试题库及答案(一)1.下面是线性代数考试题库及答案的第一部分专项同步练第一章行列式的格式正确版本:一、单项选择题1.下列排列是5阶偶排列的是(A) (B) (C) (D) .2.如果n阶排列j1j2…jn的逆序数是k,则排列jn…j2j1的逆序数是(B) n-k。
3.n阶行列式的展开式中含a11a12的项共有(D) (n-1)。
项。
4.1/1 = (D) 2.5.1/(-1) = (B) -1.6.在函数f(x) = (2x-1)/(2-x^3)中x^3项的系数是(A) 0.7.若D = |a11 a12 a13| |a21 a22 a23| |1 a32 a33|,则D1 =2a11a33 - 4a13a31 - 2a12a32.8.若 |a11 a12| |a21 a22| = a,则 |a12 a11| |ka22 ka21| = (-k^2)a。
9.已知4阶行列式中第1行元依次是-4.0.1.3,第3行元的余子式依次为-2.5.1.x,则x = 3.10.若D = |4 3 1 5| |-1 3 4 1| |2 -1 6 3| |-2 1 3 4|,则D中第一行元的代数余子式的和为(B) -2.11.若D = |-1 5| |3 -2|,则D = (A) -1.12.k等于下列选项中哪个值时,齐次线性方程组x1 + kx2 + x3 = 0,kx1 + x2 + x3 = 0,x2 + x3 = 0有非零解。
(B) -2.二、填空题1.2n阶排列24…(2n)13…(2n-1)的逆序数是n(2n-1)。
2.在六阶行列式中项a32a41a25a13a56a64的符号为-。
改写后的文章:线性代数考试题库及答案第一部分专项同步练第一章行列式一、单项选择题1.下列排列是5阶偶排列的是(A) (B) (C) (D) .2.如果n阶排列j1j2…jn的逆序数是k,则排列jn…j2j1的逆序数是(B) n-k。
线性代数习题(带答案解析)
线性代数习题(带答案解析)第一部分专项同步练习第一章行列式一、单项选择题1.下列排列是5阶偶排列的是 ( ).(A) 24315 (B) 14325 (C) 41523 (D)243512.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( ). (A)k (B)k n - (C)k n -2! (D)k n n --2)1(3. n 阶行列式的展开式中含1211a a 的项共有( )项.(A) 0 (B)2-n (C) )!2(-n (D) )!1(-n4.=0001001001001000( ). (A) 0 (B)1- (C) 1 (D) 25.=0001100000100100( ). (A) 0 (B)1- (C) 1 (D) 26.在函数1323211112)(x x x x x f ----=中3x 项的系数是( ).(A) 0 (B)1- (C) 1 (D) 27. 若21333231232221131211==a a a a a a a a a D ,则=---=323133312221232112111311122222 2a a a a a a a a a a a a D ( ). (A) 4 (B) 4- (C) 2 (D) 2- 8.若a a a a a =22211211,则=21112212ka a ka a ( ).(A)ka (B)ka - (C)a k 2 (D)a k 2-9.已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为x ,1,5,2-, 则=x ( ).(A) 0 (B)3- (C) 3 (D) 210. 若5734111113263478----=D ,则D 中第一行元的代数余子式的和为( ). (A)1- (B)2- (C)3-(D)011. 若22351011110403--=D ,则D 中第四行元的余子式的和为( ).(A)1- (B)2- (C)3- (D)012. k 等于下列选项中哪个值时,齐次线性方程组=++=++=++000321321321x x kx x kx x kx x x 有非零解.( )(A)1- (B)2- (C)3- (D)0二、填空题1. n 2阶排列)12(13)2(24-n n 的逆序数是.2.在六阶行列式中项261365415432a a a a a a 所带的符号是.3.四阶行列式中包含4322a a 且带正号的项是. 4.若一个n 阶行列式中至少有12+-n n 个元素等于0, 则这个行列式的值等于.5. 行列式100111010100111.6.行列式=-000100002000010n n .7.行列式=--001)1(2211)1(111n n n n a a a a a a .8.如果M a a a a a a a a a D ==333231232221131211,则=---=323233312222232112121311133333 3a a a a a a a a a a a a D .9.已知某5阶行列式的值为5,将其第一行与第5行交换并转置,再用2乘所有元素,则所得的新行列式的值为.10.行列式--+---+---1111111111111111x x x x .11.n 阶行列式=+++λλλ111111111 .12.已知三阶行列式中第二列元素依次为1,2,3, 其对应的余子式依次为3,2,1,则该行列式的值为.13.设行列式5678123487654321=D ,j A 4)4,3,2,1(=j 为D 中第四行元的代数余子式,则=+++44434241234A A A A .14.已知db c a cc a b b a b c a c b a D =, D 中第四列元的代数余子式的和为.15.设行列式62211765144334321-==D ,j A 4为)4,3,2,1(4=j a j 的代数余子式,则=+4241A A ,=+4443A A .16.已知行列式nn D001030102112531-=,D 中第一行元的代数余子式的和为.17.齐次线性方程组=+-=+=++0020232121321x x x kx x x x kx 仅有零解的充要条件是. 18.若齐次线性方程组=+--=+=++0230520232132321kx x x x x x x x 有非零解,则k =.三、计算题1. cb a db a dc a dc bd c b a d c b a d c b a++++++++33332222; 2.yxyx x y x y y x y x +++;3.解方程0011011101110=x x xx ; 4.111111321321221221221----n n n n a a a a x a a a a x a a a a x a a a a x;5. na a a a 111111111111210(n j a j ,,1,0,1 =≠);6. bn b b ----)1(1111211111311117. n a b b b a a b b a a a b 321222 111111111; 8.xa a a a x a a a a x a a a a x n nn 321212121;9.2212221212121111nn n nnx x x x x x x x x x x x x x x +++ ; 10. 2 1000120000021001210001211.aa a aa a a a aD ---------=1101100011000110001.四、证明题1.设1=abcd ,证明:011111111111122222222=++++dddd c c c c b b b b a a a a . 2.3332221112333332222211111)1(c b a c b a c b a x c b x a x b a c b x a x b a c b x a xb a -=++++++.3.))()()()()()((111144442222d c b a c d b d b c a d a c a b d c b a d c b a d c b a +++------=.4.∏∑≤<≤=----=nj i i jni innn nn nn n nna aa a a a a a a a a a a a a 1121222212222121)(111.5.设c b a ,,两两不等,证明0111333=c b a c ba 的充要条件是0=++cb a .参考答案一.单项选择题A D A C C D ABCD B B 二.填空题1.n ;2.”“-;3.43312214a a a a ;4.0;5.0;6.!)1(1n n --;7.1)1(212)1()1(n n n n n a a a ---; 8.M 3-; 9.160-; 10.4x ; 11.1)(-+n n λλ;12.2-;13.0; 14.0; 15.9,12-; 16.)11(!1∑=-nk k n ; 17.3,2-≠k ; 18.7=k三.计算题1.))()()()()()((c d b d b c a d a c a b d c b a ------+++-;2. )(233y x +-;3. 1,0,2-=x ;4.∏-=-11)(n k kax5.)111()1(00∑∏==-+-nk knk k a a ; 6. ))2(()1)(2(b n b b ---+- ; 7. ∏=--n k k kna b1)()1(; 8. ∏∑==-+nk k nk k a x a x 11)()(;9. ∑=+nk k x 11; 10. 1+n ;11. )1)(1(42a a a ++-. 四. 证明题 (略)第二章矩阵一、单项选择题1. A 、B 为n 阶方阵,则下列各式中成立的是( )。
线性代数(高起专)-东北师范大学考试及答案
7. -
A. -
B. -
C. -
D. -
【答案】B
【解析】
8. -
A.错误
B.正确
【答案】B
【解析】
9. -
A.错误
B.正确
【答案】A
【解析】
10. -
A. -
B. -
C. -
D. -
【答案】D
【解析】
11. -
A. -
B. -
C. -
D. -
【答案】B
【解析】
12. -
A.错误
B.正确
【答案】A
【解析】
38. -
A. -
B. -
C. -
D. -
【答案】C, D
【解析】
39. -
A. -
B.
【解析】
40. -
A.错误
B.正确
【答案】B
【解析】
41. -
A.错误
B.正确
【答案】B
【解析】
42. -
A. -
B. -
C. -
D. -
【答案】B, D
【解析】
43. -
A. -
B. -
C. -
D. -
【答案】D
【解析】
19. -
A. -
B. -
C. -
D. -
【答案】A, B, D
【解析】
20. -
A. -
B. -
C. -
D. -
【答案】D
【解析】
21. -
A.错误
B.正确
【答案】B
【解析】
22. -
A. -
B. -
线性代数考试练习题带答案大全(二)
线性代数考试练习题带答案一、单项选择题(每小题3分,共15分)1.设A 为m n ⨯矩阵,齐次线性方程组0AX =仅有零解的充分必要条件是A 的( A ). (A ) 列向量组线性无关, (B ) 列向量组线性相关, (C )行向量组线性无关, (D ) 行向量组线性相关. 2.向量,,αβγ线性无关,而,,αβδ线性相关,则( C )。
(A ) α必可由,,βγδ线性表出, (B )β必不可由,,αγδ线性表出, (C )δ必可由,,αβγ线性表出, (D )δ必不可由,,αβγ线性表出. 3. 二次型()222123123(,,)(1)1f x x x x x x λλλ=-+++,当满足( C )时,是正定二次型.(A )1λ>-; (B )0λ>; (C )1λ>; (D )1λ≥.4.初等矩阵(A );(A ) 都可以经过初等变换化为单位矩阵;(B ) 所对应的行列式的值都等于1; (C ) 相乘仍为初等矩阵; (D ) 相加仍为初等矩阵 5.已知12,,,n ααα线性无关,则(C )A. 12231,,,n n αααααα-+++必线性无关;B. 若n 为奇数,则必有122311,,,,n n n αααααααα-++++线性相关;C. 若n 为偶数,则必有122311,,,,n n n αααααααα-++++线性相关;D. 以上都不对。
二、填空题(每小题3分,共15分)6.实二次型()232221213214,,x x x x tx x x x f +++=秩为2,则=t7.设矩阵020003400A ⎛⎫⎪= ⎪ ⎪⎝⎭,则1A -=8.设A 是n 阶方阵,*A 是A 的伴随矩阵,已知5A =,则*AA 的特征值为 。
9.行列式111213212223313233a b a b a b a b a b a b a b a b a b =______ ____;10. 设A 是4×3矩阵,()2R A =,若102020003B ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则()R AB =_____________;三、计算题(每小题10分,共50分)11.求行列式111213212223313233a b a b a b D a b a b a b a b a b a b +++=++++++的值。
线性代数 课后作业及参考答案
《线性代数》作业及参考答案一.单项选择题1.设行列式a aa a11122122=m,a aa a13112321=n,则行列式a a aa a a111213212223++等于()A. m+nB. -(m+n)C. n-mD. m-n2.设矩阵A=100020003⎛⎝⎫⎭⎪⎪⎪,则A-1等于()A.130012001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪B.100120013⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪C.13000100012⎛⎝⎫⎭⎪⎪⎪⎪⎪D.120013001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪3.设矩阵A=312101214---⎛⎝⎫⎭⎪⎪⎪,A*是A的伴随矩阵,则A *中位于(1,2)的元素是()A. –6B. 6C. 2D. –24.设A是方阵,如有矩阵关系式AB=AC,则必有()A. A =0B. B≠C时A=0C. A≠0时B=CD. |A|≠0时B=C5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于()A. 1B. 2C. 3D. 46.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则()A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λs βs=0B.有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0C.有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+λsαs=0和μ1β1+μ2β2+…+μsβs=07.设矩阵A的秩为r,则A中()A.所有r-1阶子式都不为0B.所有r-1阶子式全为0C.至少有一个r阶子式不等于0D.所有r阶子式都不为08.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是()A.η1+η2是Ax=0的一个解B.12η1+12η2是Ax=b的一个解C.η1-η2是Ax=0的一个解D.2η1-η2是Ax=b的一个解9.设n阶方阵A不可逆,则必有()A.秩(A)<nB.秩(A)=n-1C.A=0D.方程组Ax=0只有零解10.设A是一个n(≥3)阶方阵,下列陈述中正确的是()A.如存在数λ和向量α使Aα=λα,则α是A的属于特征值λ的特征向量B.如存在数λ和非零向量α,使(λE-A)α=0,则λ是A的特征值C.A的2个不同的特征值可以有同一个特征向量D.如λ1,λ2,λ3是A的3个互不相同的特征值,α1,α2,α3依次是A的属于λ1,λ2,λ3的特征向量,则α1,α2,α3有可能线性相关11.设λ0是矩阵A的特征方程的3重根,A的属于λ0的线性无关的特征向量的个数为k,则必有()A. k≤3B. k<3C. k=3D. k>312.设A是正交矩阵,则下列结论错误的是()A.|A|2必为1B.|A|必为1C.A-1=A TD.A的行(列)向量组是正交单位向量组13.设A是实对称矩阵,C是实可逆矩阵,B=C T AC.则()A.A与B相似B. A与B不等价C. A与B有相同的特征值D. A与B合同15.设有矩阵Am×n,Bm×s,Cs×m,则下列运算有意义的是()。
(精选)线性代数课后作业及参考答案
(精选)线性代数课后作业及参考答案《线性代数》作业及参考答案一.单项选择题1.设行列式a aa a11122122=m,a aa a13112321=n,则行列式a a aa a a111213212223++等于()A. m+nB. -(m+n)C. n-mD. m-n2.设矩阵A=100020003,则A-1等于()A.130012001B.100120013C. 1 3 00 010 00 1 2D. 1 2 00 10013.设矩阵A=312101214---,A*是A的伴随矩阵,则A *中位于(1,2)的元素是()A. –6B. 6C. 24.设A是方阵,如有矩阵关系式AB=AC,则必有()A. A =0B. B≠C时A=0C. A≠0时B=CD. |A|≠0时B=C5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于()A. 1B. 2C. 3D. 46.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则()A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0B.有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0C.有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+λsαs=0和μ1β1+μ2β2+…+μsβs=07.设矩阵A的秩为r,则A中()A.所有r-1阶子式都不为0B.所有r-1阶子式全为0C.至少有一个r阶子式不等于0D.所有r阶子式都不为08.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是()A.η1+η2是Ax=0的一个解2η1+12η2是Ax=b的一个解C.η1-η2是Ax=0的一个解D.2η1-η2是Ax=b的一个解9.设n阶方阵A不可逆,则必有()A.秩(A)<n< bdsfid="226" p=""></n<>B.秩(A)=n-1C.A=0D.方程组Ax=0只有零解10.设A是一个n(≥3)阶方阵,下列陈述中正确的是()A.如存在数λ和向量α使Aα=λα,则α是A的属于特征值λ的特征向量B.如存在数λ和非零向量α,使(λE-A)α=0,则λ是A的特征值C.A的2个不同的特征值可以有同一个特征向量D.如λ1,λ2,λ3是A的3个互不相同的特征值,α1,α2,α3依次是A的属于λ1,λ2,λ3的特征向量,则α1,α2,α3有可能线性相关11.设λ0是矩阵A的特征方程的3重根,A的属于λ0的线性无关的特征向量的个数为k,则必有()A. k≤3B. k<3C. k=3D. k>312.设A是正交矩阵,则下列结论错误的是()A.|A|2必为1B.|A|必为1C.A-1=A TD.A的行(列)向量组是正交单位向量组13.设A是实对称矩阵,C是实可逆矩阵,B=C T AC.则()A.A与B相似B. A与B不等价C. A与B有相同的特征值D. A与B合同15.设有矩阵Am×n,Bm×s,Cs×m,则下列运算有意义的是()。
《线性代数》习题集(含答案)
《线性代数》习题集(含答案)第一章【1】填空题 (1) 二阶行列式2a ab bb=___________。
(2) 二阶行列式cos sin sin cos αααα-=___________。
(3) 二阶行列式2a bi b aa bi+-=___________。
(4) 三阶行列式xy zzx y yzx =___________。
(5) 三阶行列式a bc c a b c a bbc a+++=___________。
答案:1.ab(a-b);2.1;3.()2a b -;4.3333x y z xyz ++-;5.4abc 。
【2】选择题(1)若行列式12513225x-=0,则x=()。
A -3;B -2;C 2;D 3。
(2)若行列式1111011x x x=,则x=()。
A -1, B 0, C 1, D 2,(3)三阶行列式231503201298523-=()。
A -70;B -63;C 70;D 82。
(4)行列式00000000a ba b b a ba=()。
A 44a b -;B ()222a b-;C 44b a -;D 44a b 。
(5)n 阶行列式0100002000100n n -=()。
A 0;B n !;C (-1)·n !;D ()11!n n +-•。
答案:1.D ;2.C ;3.A ;4.B ;5.D 。
【3】证明33()by az bz ax bx ay x y z bx ay by az bz ax a b zx y bz ax bx ay by azyzx++++++=++++ 答案:提示利用行列式性质将左边行列式“拆项”成八个三阶行列式之和,即得结果。
【4】计算下列9级排列的逆序数,从而确定他们的奇偶性: (1)134782695;(2)217986354;(3)987654321。
答案:(1)τ(134782695)=10,此排列为偶排列。
东大奥鹏《线性代数》在线作业1参考资料
《线性代数》在线作业
参考答案
试读一页
20春学期《线性代数》在线作业1-0001
试卷总分:100
一、单选题(共20道试题,共100分)
1.
A.A
B.B
C.C
D.D
正确答案:C
2.
A.A
B.B
C.C
D.D
正确答案:D
3.
A.A
B.B
C.C
D.D
正确答案:D
4.
A.A
B.B
C.C
D.D
正确答案:C
C.C
D.D
正确答案:D
13.
A.A
B.B
C.C
D.D
正确答案:C
14.
A.A
B.B
D.D
正确答案:D
15.
A.A
B.B
C.C
D.D
正确答案:D
16.
A.A
B.B
C.C
D.D
正确答案:C
17.
A.A
B.B
C.C
D.D
正确答案:D
18.
A.A
B.B
C.C
D.D
正确答案:C
19.
A.A
B.B
C.C
5.
A.A
B.B
C.C
D.D
正确答案:C
6.
A.A
B.B
C.C
D.D
正确答案:B
7.
A.A
B.B
C.C
D.D
正确答案:B
8.
A.A
B.B
C.C
D.D
正确答案:C
9.
A.A
B.B
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《线性代数》练习题一 参考答案练习题第1套参考答案一、单项选择题1. C2. C3. B4. B5. A6. D7. C8. A 二、填空题 1.213531ββα+-= 2. 0 3. ()()B r A r ≤ 4. 8 5. 相关 6. () 1 , 17 , 2- - 7. ()()A r b A r = 三、计算及证明题1.给定向量组:() 3 , 1 , 1 , 1 1---=α,() 1 , 3 , 1 , 1- 2--=α,() 1 , 1 , 3 , 1- 3--=α,() 1 , 1- , 1 , 3- 4-=α,求:(1) 向量组4321 , , , αααα的秩;(2) 该向量组的一个极大无关组,并将其余向量用极大无关组线性表示。
解:对⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------------1113113113113111进行初等行变换,得⎪⎪⎪⎪⎪⎭⎫⎝⎛-0000110010101001,则(1) 向量组4321 , , , αααα的秩为3;(2) 该向量组的一个极大无关组为 , , 321ααα,且3214αααα++-=2.如果向量组n ααα , , , 21Λ线性无关,证明:向量组 , , , 211Λααα+n ααα+++Λ21 线性无关。
证明:设 ()()02121211=+++++++b n k k k ααααααΛΛ 整理得 ()()0232121=+++++++++n n n n k k k k k k k αααΛΛΛ 由于向量组n ααα , , , 21Λ是线性无关的,所以有:⎪⎪⎩⎪⎪⎨⎧==+++=+++0003221n nn k k k k k k k ΛΛΛΛΛΛ 解得⎪⎪⎩⎪⎪⎨⎧===00021n k k k ΛΛ 所以向量组 , , , 211Λααα+n ααα+++Λ21 是线性无关的。
3. 设X B AX =+,其中⎪⎪⎪⎭⎫ ⎝⎛---=101111010A ,⎪⎪⎪⎭⎫⎝⎛--=350211B ,求X 。
解:由X B AX =+得()B X A I =-,而⎪⎪⎪⎭⎫⎝⎛--=-201101011A I 且是可逆矩阵,所以()B A I X 1--=,而()⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--=--3131031321313201A I ,所以⎪⎪⎪⎭⎫⎝⎛--=110213X 。
4. 设⎪⎪⎪⎭⎫ ⎝⎛--=310130002A ,求可逆矩阵P ,使得Λ=-AP P 1,其中Λ为对角矩阵。
解:解特征方程:()()042311300022=--=---=-λλλλλλA I从而得矩阵A 的全部特征值:4 2321===λλλ,对于 221==λλ,解齐次线性方程组()01=-x A I λ,得其全部特征向量为⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛10001121c c (21 c c ,不全为零)。
对于43=λ,解齐次线性方程组()03=-x A I λ,得其全部特征向量为⎪⎪⎪⎭⎫ ⎝⎛-110c (c 不为零)。
令⎪⎪⎪⎭⎫ ⎝⎛-=110101001P ,⎪⎪⎪⎭⎫ ⎝⎛=Λ400020002,则有Λ=-AP P 1。
练习题第2套参考答案一、单项选择题1. A2. B3. B4. C5. D 二、填空题1. ⎪⎪⎪⎭⎫ ⎝⎛-----174538202 2. 8134= 3. 2-=λ或1=λ 4. 1 5. 1-n三、证明题1. 设向量组321 , , ααα是线性无关的,且3211αααβ++=,32122αααβ++=,321332αααβ++=证明:向量组321 , , βββ也是线性无关的。
证明:设o k k k =++332211βββ,则有()()()o k k k =++++++++321332123211322ααααααααα整理,得()()()o k k k k k k k k k =++++++++332123211321322ααα因为321 , , ααα线性无关,所以⎪⎩⎪⎨⎧=++=++=++032020321321321k k k k k k k k k 该齐次线性方程组只有零解,即0321===k k k ,所以321 , , βββ线性无关。
2. 对于任一矩阵A ,证明:TAA 及A A T都是对称矩阵。
证明:因为()()T T TT TT AA A A AA ==()()A A A A A A T TTT TT==所以T AA 及A A T 都是对称矩阵。
四、计算题1. 用基础解系表示线性方程组⎪⎪⎩⎪⎪⎨⎧=-+=++-=-+-=-+-337713343424313214314321x x x x x x x x x x x x x 的全部解。
解:对方程组的增广矩阵施以初等行变换,有()⎪⎪⎪⎪⎪⎭⎫⎝⎛--→⎪⎪⎪⎪⎪⎭⎫⎝⎛------=0000061000802103010133707101133110143412b A所以方程组有无穷多解,其一般解为⎪⎩⎪⎨⎧=+-=-=628343231x x x x x 令03=x ,得特解()Tu 6 , 0 , 8 , 3-=,其导出组的一般解为⎪⎩⎪⎨⎧==-=0243231x x x x x 令13=x ,得()Tv 0 , 1 , 2 , 1-=,则原方程组的全部解为cv u +,c 为任意常数。
2. 给定向量组⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=00111α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=11212α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=11103α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=12314α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=14625α求:(1)向量组的秩;(2)向量组的一个极大无关组; (3)将其余向量用极大无关组线性表示。
解:⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎪⎪⎭⎫⎝⎛-----000023211002523010212100111110421106312121011,则向量组的秩为3,1α,2α,3α为极大无关组,3214212321αααα++=,3215232521αααα++=。
3. 给定矩阵=A ⎪⎪⎪⎭⎫ ⎝⎛201021113,如果A 能与对角矩阵相似,请求出相似对角矩阵Λ及可逆矩阵P 。
解:()()()042121021113=---=-------=-λλλλλλλA I ,所以A 的全部特征值为11=λ,22=λ,43=λ对于11=λ,解齐次线性方程组()o x A I =-,其基础解系为()T1 , 1 , 11-=ξ。
对于22=λ,解齐次线性方程组()o x A I =-2,其基础解系为()T1 , 1 , 02-=ξ。
对于43=λ,解齐次线性方程组()o x A I =-,其基础解系为()T1 , 1 , 23=ξ。
()⎪⎪⎪⎭⎫ ⎝⎛--==111111201 , , 321ξξξP ,满足⎪⎪⎪⎭⎫⎝⎛=-4000200011AP P ,《线性代数》练习题二 参考答案练习题第3套参考答案一、填空题1. 822. 1-=a3. ⎪⎪⎪⎭⎫ ⎝⎛-10001001a 4. 1=a 5. 12二、单项选择题1. C2. D3. A4. D5. A三、证明题1. 证明:将()T2 , 0 , 1 , 11-=η,()T4 , 1 , 1 , 22-=η,()T11 , 3 , 5 , 43-=η代入b Ax =中,解得0321===b b b ,11-=c ,22=c ,51=a ,52=a ,211d d +=,2331d a +=则方程组b Ax =为()()⎪⎩⎪⎨⎧=++++=++-=++1311253152322212321321x d x d x d x x x x x x 其系数矩阵A 的秩为2,于是其导出组o Ax =的基础解系中所含向量个数为224=-。
显然()T2 , 1 , 2 , 112-=-ηη,()T9 , 3 , 6 , 313-=-ηη是o Ax =的解,且是线性无关的,因此,1312 , ηηηη--是o Ax =的基础解系,所以o Ax =的通解为()()132121ηηηη-+-k k其中21 , k k 是任意常数。
2. 证明:显然,若O A =,则有O A =2。
若O A =2,设()nn ij a A ⨯=,因为A 为对称矩阵,则有ji ij a a =()n j i , , 2 , 1,Λ=,于是矩阵2A 中第i 行第i 列的元素等于0222212211=+++=+++in i i ni in i i i i a a a a a a a a a ΛΛ其中n i , , 2 , 1Λ=。
所以021====in i i a a a Λ从而O A =。
四、计算题1. 解:由行列式的性质,有()()()32133213321 , , , 2 , , , 22 , 2 , 2 , αααβαααααααβα+=+=+B A()()403288=+⨯=+=B A2. 解:(1) 因为432 , , ααα线性无关,所以32 , αα也是线性无关的,又321 , , ααα线性相关,故1α可由32 , αα线性表示。
(2) 假设4α可由321 , , ααα线性表示,设为3322114ααααk k k ++=由(1) 知,1α可由32 , αα线性表示,设为33221αααl l +=,将其代入上式中,得()()333122214αααk l k k l k +++=则432 , , ααα是线性无关的,由题设矛盾,所以4α不能由321 , , ααα线性表示。
3. 解:A 的特征方程为()()02121340112=--=----+=-λλλλλλA I则A 的全部特征值为121==λλ,23=λ。
对于121==λλ,解齐次线性方程组()o x A I =-,得基础解系()T1 ,2 , 11-=ξ,则属于特征值121==λλ的全部特征向量为11ξk ,其中1k 是不为零的常数。
对于23=λ,解齐次线性方程组()o x A I =-2,得基础解系()T1 , 0 , 02=ξ,则属于特征值23=λ的全部特征向量为22ξk ,其中2k 是不为零的常数。
4. 解:对方程组的增广矩阵施以初等行变换,有⎪⎪⎪⎭⎫ ⎝⎛----→⎪⎪⎪⎭⎫ ⎝⎛--1220022210112313302111011231a a a a 则当2=a 时,方程组无解;当2≠a 时,方程组有无穷多组解,此时,有→⎪⎪⎪⎭⎫ ⎝⎛--3302111011231a a ⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------+21110022200102473001a a a 可得原方程组的特解为=u Ta a a ⎪⎭⎫ ⎝⎛-----+21 , 222 , 247,其导出组的基础解系为()T 1 , 1 , 0 , 3-=ξ,所以原方程组的通解为ξk u +,其中k 为任意常数。