电力系统调度自动化,DOC
电力系统调度自动化
电力系统调度自动化标题:电力系统调度自动化引言概述:随着社会的不断发展,电力系统的规模和复杂度不断增加,传统的手工调度方式已经无法满足现代电力系统的需求。
因此,电力系统调度自动化成为电力行业的重要发展方向。
本文将就电力系统调度自动化的概念、技术特点、应用领域、优势和发展趋势进行详细介绍。
一、概念:1.1 电力系统调度自动化是指利用先进的信息技术和智能算法,实现对电力系统的实时监控、运行控制和故障处理等功能的自动化系统。
1.2 通过电力系统调度自动化,可以实现电力系统的高效运行、实时响应和智能管理,提高电力系统的安全性、稳定性和经济性。
1.3 电力系统调度自动化系统通常包括监控子系统、控制子系统、故障处理子系统和数据分析子系统等模块,实现对电力系统的全面管理。
二、技术特点:2.1 实时性:电力系统调度自动化系统能够实时监测电力系统的运行状态,及时响应并处理异常情况,保障电力系统的稳定运行。
2.2 智能化:通过智能算法和模型预测技术,电力系统调度自动化系统能够优化电力系统的运行方案,提高电力系统的运行效率。
2.3 集成化:电力系统调度自动化系统能够集成各种监测设备、控制设备和信息系统,实现对电力系统的全面管理和控制。
三、应用领域:3.1 电网调度:电力系统调度自动化系统可以实现对电网负荷、电压、频率等参数的实时监测和调度,保障电网的安全运行。
3.2 新能源接入:随着新能源的不断发展,电力系统调度自动化系统可以实现对新能源的集中管理和调度,提高新能源的利用率。
3.3 能效管理:电力系统调度自动化系统可以实现对电力系统的运行数据进行分析和优化,提高电力系统的能效和经济性。
四、优势:4.1 提高运行效率:电力系统调度自动化系统能够实现对电力系统的智能调度和优化,提高电力系统的运行效率。
4.2 提升安全性:电力系统调度自动化系统能够实时监测电力系统的运行状态,及时响应异常情况,提升电力系统的安全性。
4.3 降低成本:通过电力系统调度自动化系统的优化调度和管理,可以降低电力系统的运行成本,提高电力系统的经济性。
电力系统调度自动化
电力系统调度自动化电力系统调度自动化是指利用先进的信息技术和自动控制技术,对电力系统运行过程中的各种数据进行采集、处理和分析,实现对电力系统的调度操作自动化。
通过电力系统调度自动化,可以提高电力系统的运行效率和稳定性,减少人为操作的风险,提高电力系统的安全性和可靠性。
一、电力系统调度自动化的基本原理和功能1. 基本原理电力系统调度自动化的基本原理是通过对电力系统运行过程中的各种数据进行实时采集,利用先进的计算机技术和通信技术对数据进行处理和分析,然后根据系统运行状态和调度要求,自动产生调度命令,实现对电力系统的自动调度操作。
2. 主要功能(1)数据采集功能:通过自动化设备对电力系统的各种数据进行实时采集,包括电压、电流、功率、频率等参数的采集,以及设备状态、告警信息等数据的采集。
(2)数据处理功能:对采集到的数据进行处理和分析,包括数据的计算、校验、筛选等,以及数据的存储和备份。
(3)系统监控功能:通过对电力系统运行状态的监测和分析,实时显示电力系统的运行情况,包括设备状态、负荷状况、电压、频率等参数的监测和显示。
(4)调度命令生成功能:根据电力系统的运行状态和调度要求,自动生成相应的调度命令,包括设备操作命令、负荷调度命令等。
(5)调度命令执行功能:将生成的调度命令发送给相应的设备,实现对电力系统的自动调度操作。
二、电力系统调度自动化的优势和应用1. 优势(1)提高效率:电力系统调度自动化可以实现对电力系统的实时监测和分析,快速生成调度命令,减少人为操作的时间和成本,提高调度效率。
(2)提高稳定性:通过对电力系统运行状态的实时监测和分析,可以及时发现和处理异常情况,保证电力系统的稳定运行。
(3)降低风险:电力系统调度自动化可以减少人为操作的风险,避免操作失误导致的事故和故障,提高电力系统的安全性。
(4)提高可靠性:通过自动化设备对电力系统数据的实时采集和处理,可以准确获取电力系统的运行状态,提高电力系统的可靠性。
电力系统调度自动化
电力系统调度自动化电力系统调度自动化是指利用先进的信息技术和自动控制技术,对电力系统的运行状态进行实时监测、分析和调度,以实现电力系统的安全、稳定、经济运行。
本文将从以下几个方面详细介绍电力系统调度自动化的相关内容。
一、电力系统调度自动化的概述电力系统调度自动化是电力系统运行管理的核心技术之一,通过自动化系统对电力系统运行状态进行监测、分析和调度,实现对电力系统的全面控制和管理。
电力系统调度自动化系统包括监测、分析、调度和控制四个主要功能模块,通过实时数据采集、数据处理和决策支持等手段,提高电力系统的运行效率和可靠性。
二、电力系统调度自动化的主要功能1. 监测功能:通过监测系统实时采集电力系统的运行数据,包括电压、电流、功率、频率等参数,以及设备状态、故障信息等。
监测系统能够实时显示电力系统的运行状态,并对异常情况进行报警和记录。
2. 分析功能:通过对监测数据进行分析和处理,提取电力系统的特征参数,如负荷、电压、频率等,对电力系统的运行状态进行评估和预测。
分析系统能够对电力系统的稳定性、可靠性、经济性等进行综合分析,并提供决策支持。
3. 调度功能:根据分析结果和运行要求,制定电力系统的调度计划,包括负荷分配、发机电组的启停、输电路线的开关控制等。
调度系统能够自动实现调度计划的执行,并根据实际情况进行动态调整。
4. 控制功能:通过控制系统对电力系统的设备进行控制,包括发机电组的调速、负荷的调节、变压器的调整等。
控制系统能够实现对电力系统的实时控制和调节,确保电力系统的安全、稳定运行。
三、电力系统调度自动化的关键技术1. 数据采集技术:包括传感器、测量仪器等设备,用于采集电力系统的运行数据。
数据采集技术需要具备高精度、高稳定性和高可靠性,能够实时采集大量的数据。
2. 数据处理技术:包括数据传输、数据存储、数据清洗、数据压缩等处理方法,用于对采集到的数据进行处理和管理。
数据处理技术需要具备高效、可靠的特点,能够满足大规模数据处理的需求。
电力系统调度自动化
电力系统调度自动化引言概述:电力系统调度自动化是指利用先进的计算机技术和通信技术对电力系统进行实时监测、控制和调度的一种技术手段。
随着电力系统规模的不断扩大和电力负荷的快速增长,传统的手工调度已经无法满足电力系统的需求。
因此,电力系统调度自动化成为电力行业的重要发展方向。
本文将从五个大点阐述电力系统调度自动化的重要性和优势。
正文内容:1. 提高电力系统的运行效率1.1 实时监测和数据采集:电力系统调度自动化通过实时监测电力系统的运行状态和数据采集,能够及时获取各个节点的电力负荷、电压、电流等数据,为系统运行提供准确的数据支持。
1.2 快速响应和调度:电力系统调度自动化能够实现对电力系统的快速响应和调度,通过自动化的算法和模型,能够快速准确地进行负荷预测和电力调度,提高电力系统的运行效率。
2. 提高电力系统的安全性2.1 实时监测和故障检测:电力系统调度自动化能够实时监测电力系统的运行状态,及时发现电力系统中的故障和异常情况。
通过自动化的故障检测算法,能够快速准确地定位故障点,提高电力系统的安全性。
2.2 自动化控制和保护:电力系统调度自动化能够实现对电力系统的自动化控制和保护。
通过自动化的控制算法和设备,能够实现对电力系统的自动调节和保护,避免电力系统因故障而导致的电力中断和损失。
3. 提高电力系统的稳定性3.1 预测和调度:电力系统调度自动化能够通过自动化的预测和调度算法,对电力系统的负荷和电力供应进行预测和调度,提高电力系统的稳定性。
3.2 调度优化和协调:电力系统调度自动化能够通过自动化的调度优化算法,对电力系统中的各个节点进行协调和优化调度,提高电力系统的稳定性和运行效率。
4. 提高电力系统的经济性4.1 负荷预测和优化:电力系统调度自动化能够通过自动化的负荷预测和优化算法,对电力系统的负荷进行预测和优化,降低电力系统的运行成本。
4.2 能源调度和节能减排:电力系统调度自动化能够通过自动化的能源调度算法,对电力系统中的各个能源进行合理调度和利用,降低能源消耗和减少排放。
电力系统调度自动化
六、数字信号的调制与解调
1 调制与解调的意义
基带数字信号谐波成分多,占用频带很宽
传统信道多为模拟信号设计
直接进行传输波形畸变较大,容易失真
调制器(Modulator)
解调器(Demodulator)
2 调制方法
数字调幅 数字调频 数字调相
绝对 相对
七、局域网及其应用
令牌环 以太网
七、局域网及其应用
➢ 问答式通信规约(有问必答,无问不答) 多台RTU共用一个通道 提高数据传送速度 通道适应性强
十、通信信道
电力载波通信 光纤通信 微波中继通信
1 电力载波通信
➢ 可靠性高 ➢ 经济性好,无需单独架设和维护线路 ➢ 电力系统基本通信方式
2 光纤通信
➢ 形式上为有线通信方式 ➢ 优越的通信性能
3 微波中继通信
令牌环 以太网
八、现场总线
RS-422/RS485
实时性差;主从控制 现场总线
双向串行的多节点数字通信系统
九、通信规约
1 基本问题 (1)概念 (2)内容
语言;操作步骤;查错及其应对方法
(3)组成
代码;控制字符;格式;应答方式;通信方式…
2、种类
➢ 循环式通信规约(按约定的次序循环发送) 占用通道多
2 串行数据的发送和接收 3 串行传输的格式
(1)异步传输 存在起始位和终止位,有效信息比低,传输效率低
(2)同步传输 无起始位和终止位,有效信息长,传输效率高
二、数据通信中的传输速率和误码率
码元:每个信号脉冲为一个码元 (1,0)或(+1,-1)
数码率:每秒传送码元数,Bd 信息速率:系统每秒传送的信息量,bit 误码率:数据传输后错误码元数与总码元数之比,
电力系统调度自动化
电力系统调度自动化电力系统调度自动化是指利用先进的信息技术手段和自动化设备,对电力系统进行实时监测、运行控制和优化调度的过程。
通过电力系统调度自动化,可以提高电力系统的运行效率,减少能源浪费,保障电力系统的安全稳定运行。
一、电力系统调度自动化的基本原理和流程电力系统调度自动化的基本原理是通过采集电力系统的实时数据,进行数据处理和分析,然后根据系统运行状态和需求,自动进行控制和调度。
其基本流程如下:1. 数据采集:通过安装在电力系统各个关键节点的传感器和监测设备,实时采集电力系统的各项参数数据,如电压、电流、频率、功率等。
2. 数据处理和分析:将采集到的数据传输到调度中心,经过处理和分析,得到电力系统的运行状态和负荷需求等信息。
3. 控制和调度:根据系统运行状态和需求,自动进行控制和调度,包括发机电组的启停控制、负荷的调节、输电路线的开关控制等。
4. 运行监测:对电力系统的运行状态进行实时监测,及时发现和处理异常情况,保障系统的安全稳定运行。
5. 优化调度:基于电力系统的实时数据和需求,进行优化调度,提高系统的运行效率和经济性。
二、电力系统调度自动化的主要功能和应用电力系统调度自动化具有以下主要功能和应用:1. 实时监测和运行控制:通过实时采集和处理电力系统的数据,对系统的运行状态进行实时监测和控制,及时发现和处理异常情况,保障系统的安全稳定运行。
2. 负荷预测和调节:通过对历史数据和实时数据的分析,预测未来的负荷需求,对发机电组进行启停控制和负荷的调节,保持系统的供需平衡。
3. 输电路线的开关控制:根据系统的负荷需求和故障情况,自动进行输电路线的开关控制,保障系统的供电可靠性。
4. 发机电组的优化调度:根据电力市场的需求和电力系统的运行状态,对发机电组进行优化调度,提高发电效率和经济性。
5. 能源管理和节能减排:通过对电力系统的监测和控制,实现对能源的有效管理和优化利用,减少能源浪费,降低排放量,实现可持续发展。
电力系统调度自动化
对调度自动化的认识及其基本框架的设计一、调度自动化系统的作用:随着微电子技术、计算机技术和通信技术的发展,综合自动化技术也得到迅速发展;近几年来,综合自动化已成为热门话题,引起了电力工业各部门的注意和重视,并成为当前我国电力工业推行技术进步的重点之一;之所以如此,是因为:1、随着我国电力工业和电力系统的发展,对变电站的安全、经济运行要求越来越高,实现变电站综合自动化,可提高电网的安全、经济运行水平,减少基建投资,并为推广变电站无人值班提供了手段;2、随着电网复杂程度的增加,各级调度中心要求更多的信息,以便及时掌握电网及变电站的运行情况;3、为提高变电站的可控性,要求采用更多的远方集中控制、集中操作和反事故措施等;4、利用现代计算机技术、通讯技术等,提供先进的技术装备,可改变传统的二次设备模式,实现信息共享,简化系统,减少电缆,减少占地面积;5、对变电站进行全面的技术改造;变电站综合自动化系统完全可以满足以上要求,因此,近几年得到了迅速的发展;那么,电网调度自动化系统与综合自动化系统的关系是什么呢综合自动化是相对于整个变电站的二次设备来说的,包括各种微机继电保护装置、自动重合闸装置、低频自动减负荷装置、备用电源自投装置、以及远动装置等,它们利用先进的计算机技术、现代电子技术、通信技术和信号处理技术,实现对全变电站的主要设备和输、配电线路的自动监视、测量、自动控制和微机保护,以及与调度通信等综合性的自动化系统,它集保护、测量、控制、调节、通信、调度于一体;相对而言,电网调度自动化是综合自动化的一部分,它只包括远动装置和调度主站系统,是用来监控整个电网运行状态的;为使调度人员统观全局,运筹全网,有效地指挥电网安全、稳定和经济运行,实现电网调度自动化已成为调度现代电网的重要手段,其作用主要有以下三个方面:1、对电网安全运行状态实现监控电网正常运行时,通过调度人员监视和控制电网的周波、电压、潮流、负荷与出力;主设备的位置状况及水、热能等方面的工况指标,使之符合规定,保证电能质量和用户计划用电、用水和用汽的要求;2、对电网运行实现经济调度在对电网实现安全监控的基础上,通过调度自动化的手段实现电网的经济调度,以达到降低损耗、节省能源,多发电、多供电的目的;3、对电网运行实现安全分析和事故处理导致电网发生故障或异常运行的因素非常复杂,且过程十分迅速,如不能及时预测、判断或处理不当,不但可能危及人身和设备安全,甚至会使电网瓦解崩溃,造成大面积停电,给国民经济带来严重损失;为此,必须增强调度自动化手段,实现电网运行的安全分析,提供事故处理对策和相应的监控手段,防止事故发生以便及时处理事故,避免或减少事故造成的重大损失;二、调度自动化的基本内容:现代电网调度自动化所设计的内容范围很广,其基本内容如下:1、运行监视调度中心为了掌握电网正常运行工况、异常及事故状态,为了安全、经济调度和控制提供依据,必须对电网实现以保证安全运行为中心的运行监视,所以称为安全监视;按部颁有关法规、规程的要求和调度的需求,主要内容为:网调、省调要监视电网的频率、电压、潮流、发电与负荷容量、电量、水情河水位等参数;监视断路器、隔离开关、带负荷调压变压器调压分接头以及发电机组等设备的自动调节装置的工作位置状态,主要保护河岸全自动装置的动作状态等信息;地、县调和集控站运行监视的内容相对少一些,但对于大型的地调,所需的信息量仍然较多;运行监视的内容通过屏幕显示、动态调度模拟屏、打印、拷贝、记录及绘图等多种手段完成;2、经济调度电网经济调度的任务是在满足运行安全和供电质量要求的条件下,尽可能提高电网运行的经济性,合理地利用现有能源和设备,以最少的燃料消耗或费用、成本,保证安全发供电;因此,网调和省调要在按规定保证电网的频率和电压质量的前提下,使发电煤耗、水耗及网损最小,即发电成本最低,同时又能保证一定的备用容量,因而网调和省调要进行负荷预测,实现经济负荷与最佳负荷分配,制定发电机华语负荷曲线提供依据;实现水库经济调度与最优潮流分配,为在最佳水能水量综合利用的条件下,使水耗与网损最小;对于地调,则以实现负荷管理及其经济分配为基本内容,还要定时进行电压水平和无功功率分配的优化运算,用以提高电压质量、降低网损,在尖峰负荷时要平衡馈线负荷以降低线损,在有条件的地区电网内,还要实现降压变压器的经济运行,以实现小型梯级水电厂的经济运行等内容;经济调度的各种内容,需要同运行监视、自动控制、安全分析密切结合才能付诸实施;3、安全分析进行安全分析是对电网在正常和异常运行的状态进行分析及对事故发生前的状态预测和事故发生后的状态分析,是保证电网安全稳定运行的重要内容;当电网发生事故后,在实现事故顺序记录、事故追忆等功能的基础上,通过分析,跟踪事故的发展、参数的变化,保护和自动装置及断路器的动作情况,从而提出事故处理的对策,以达到缩短事故处理时间,防止事故扩大的目的;在地区电网发生事故时,还可以通过对配电网的故障分析和实现在线预操作,及时处理事故,改善地区电网的安全运行水平;此外,通过调度员的培训模拟,进行事故预想与事故演习,有效地提高调度人员运用调度自动化系统处理事故的临战能力;4、自动控制电网调度自动控制是在运行监视的基础上,对电网的安全与经济运行实施调节或控制;控制信号自上而下发送给厂、所或下级调度;这类控制范围很广,但主要是对断路器及其它发送发变电设备,例如,发电机、调相机、带负荷调压变压器、电力补偿设备等,通过调度人员实现遥控、遥调或自动实现相应的闭环控制或调节;上述电网调度自动化基本内容是紧密相关的,不论哪一级调度中心都必须以实现电网的全面运行监视为前提,根据各自的特点和需要,积极充实完善,以达到实现电网调度自动化的目的;三、电网调度自动化的基本功能:1、数据采集与安全监控SCADA它主要包括:通过远动系统实现数据采集;通过计算机系统实现数据处理与存储;通过人机联系系统中的屏幕显示CRT与动态调度模拟屏,对电网的运行工况实现在线监视,并具有打印制表、越限报警、模拟量记录、事件顺序记录、事故追忆、画面拷贝、系统自检及远动通道质量监测功能;在实现监视的基础上,通过计算机、远动与人机联系系统,对断路器、发电机组与调相机组、带负荷调压变压器、补偿设施等实现遥控与遥调,以及发送时钟等指令;2、自动发电控制AGC和经济调度控制EDC它们是对电网安全经济运行实现闭环控制的重要功能;在对电网频率调整的同时,实现经济调度控制,直接控制到各调频电厂,并计入线损修正,实现对互联电网联络线净功率频率偏移控制;对于非调频厂,则按日负荷曲线运行;对于有条件的电厂还应实现自动电压和无功功率控制AVC;3、安全分析与对策SA在实现网络结构分析和状态估计的条件下进行的实时潮流计算和安全状态分析;四、电网调度自动化系统的基本组成电网调度自动化系统由调度主站调度中心、厂站端、通信三大部分组成,但按其功能可分为:1、数据与信息的采集系统:前置机、远动终端、调制解调器、变送器;2、数据与信息的处理系统:主控计算机、外存储器、输入输出设备、计算机信道接口;3、数据与信息的传输系统:主站与厂站通信:有线、载波、光纤、短波、微波及卫星地面站;主站与主站通信:有线、光纤、微波及卫星地面站;4、人机联系系统:彩色屏幕显示器、打印机、拷贝机、记录仪表、绘图机、调度模拟屏、调度台;5、监控对象的相关系统:发电机组的成组自动操作与功率自动调节装置、机炉协调控制器、带负荷调压变压器分接头、电压与电流互感器、断路器的控制与信号回路、继电保护与按全自动装置的出口信号回路;6、不停电电源系统:交—直流整流器、直—交流逆变器、配套的直流蓄电池组;7、安全环保系统:防雷与接地、防火与灭火、防电磁干扰与防静电干扰、防噪声与防震、空调与净化、防盗与防鼠;五、调度自动化系统结构及组成:1. 主/备前置通讯机通讯前置机负责数据采集、规约解释、数据处理以及接收并处理系统的控制命令;2. 主/备服务器服务器存放整个系统的实时数据、历史数据及应用数据,为主/备前置通讯机、调度员工作站、后台工作站提供数据库服务,充当应用服务器;服务器另外对各工作站的工作状态进行监控,管理计算机网络设备和SCADA系统终端设备如打印机、显示器、投影仪等,监控系统的任务进程,提供事件/事故报警,监视网络通讯等;3. WEB浏览服务器本系统中配置WEB服务器提供WEB主页实时画面公布;这种方式使得网上的工作站无需任何专用程序支持,使用Windows内置的IE浏览器即可浏览实时数据;4. 系统时钟同步GPS接收全球定位系统GPS的时间作为系统的标准时间和系统频率,完成系统的时钟统一;网络系统内时钟同步:GPS时钟通过主备数采机接入SCADA系统;系统以数采机时钟为标准时钟,采用系统提供的校时功能完成网络各节点间的时钟同步;数采机支持识别GPS 时钟故障,防止误接收,并能产生报警;与RTU时钟同步:通过数采机与RTU通讯的方式校时,完成主站系统与RTU时钟同步;5. Nport通讯服务器Nport Server又称多串口网络通讯服务器,支持TCP/IP协议,可直接挂接在网络上,相当于网络组中的一员,便于主/备前置机的切换;它完全替代了以往的通道控制板和串行通道板;并且,该设备支持多种编程语言,操作及其简便;基本框架(1)网络形式多种多样,如EtherNet、FDDI 或ATM 等都可使用; 2单网、双网、低速网、高速网可以任意方式进行组合;系统支持灵活的网络配置,可以是单低速网、单高速网,可以是低速和高速双网混用,也可以是双高速网; 3采取网络冗余热备份;系统正常运行时,两个网络上都传输有用数据,并且两个网络上的数据流量保持动态平衡;当一个网络工作不正常时,系统将自动地通过另一网络传输所有数据;当故障网络恢复正常时,双网络将自动恢复到流量的动态平衡状态;从严格意义上来说,此系统的网络切换实际上是网络传输功能的弹性伸缩,网络本身对系统是透明的,双网络并无主、备之分; 4支持标准的网络接口,可以方便地与其它系统如MIS 等进行互联; 5易于与上级或下级调度组成广域网,进行网络数据交换,支持远程调试;在数据库连接技术方面,SCADA 系统也采取相关措施,主要体现在如下四个方面: 1支持组态地将系统实时数据库按用户指定的周期或事件产生触发刷新用户指定的外部实时数据库; 2支持直接读写指定数据库记录的字段数据,并具备将该数据与该系统组态定义的变量对应连接的能力,这使得该系统可以通过数据库与其它任何支持数据访问的应用程序实时交换信息; 3通过标准SQL 语句完成外部数据库的一般维护操作,如建表、删除表、插入、修改和删除记录; 4通过后台 API 的方式,将电力自动化系统中的常用的数据库查询工作打包,用户无需编写有关SQL 语句,只要简单地提供符合常规应用习惯的参数即可完成复杂的历史数据库查询和浏览工作;4. 系统性能指标提升措施 1系统采取冗余容错结构:双网络、双服务器、双前置机及双通道的冗余容错模型系统实现双网络容错是真正的热备用,双网络正常运行时,主、备网络同时都传送有用系统数据,双网络上的数据流量保持动态的平衡; 系统采取双服务器方式,当系统配置了主备服务器后,每个客户端同时与两个服务器连接,并向两个服务器发送信息,服务器控制程序自动检测客户端与服务器的连接模式,以确保唯一的数据转发,或将有关信息转发到感兴趣的客户端;同时客户端也自动检测服务器的状态; 系统采取双前置机方式:①基于485 总线方式的双机切换;②基于NportServer 的双机切换;③用户自定义方式的双机切换; 系统采取双通道方式:①系统采取以通道的方式与RTU 等采集设备进行连接;②系统支持自动主备通道切换,不支持手动切换,并且是采用冷备用原理;当主通道在传输数据时,备用通道不采集数据;当系统检测到主通道连接出现故障或者误码率过高,则自动启动备用通道采集数据,并将停止主通道的采集,此时主通道的地位转变为备用通道,原备用通道变为主通道不能重新接管数据的采集工作,除非当前的主通道出现故障; 2系统采取的网络通讯结构①采用点对点通讯模型主动传输系统改变的实时数据;网络环境下,实时数据库数据项的改变有以下三种可能:从通道采集数据改变实时数据库;运行后台语言实时数据库;从网络其它节点传递来改变实时数据库; ②采用客户/服务器查询方式,在网络中传递历史数据和进行实时数据库状态恢复; 系统对历史数据采用客户/服务器方式,在实际应用中,如对SOE 的查询、对历史曲线的查询等操作中,一般是用户提交查询条件,由系统将有关查询条件变为连接的历史数据库能够接受的标准或非标准SQL 语句,提交给数据库服务器,从历史数据库中查询得到满足有关条件的查询结果集,数据库服务器将该结果集通过网络传递给查询的计算机,计算机运行系统根据接收到的查询结果,将它转变为用户容易理解的方式,如曲线、报表等显示出来; 系统利用网络协议实现方便的容错系统模型,在该模型中,运行系统采用总线方式或通过专门的切换装置与连接的RTU 或其它智能数据采集设备连接,当主系统出现故障或通道出现故障时,备用系统将自动或手动获得控制权,保证系统正常运行;如下图所示: 3实现网络构架的有效扩充①架设远程工作站正常情况下所有计算机都是通过各自所配置的10—100M 网卡连至集线器上,传输媒质选择的是8 芯双绞线,这样的组网如果在两座比较分散的建筑物之间线距 1.5km 以上,则信号的抗干扰能力、准确度、保密能力都会大为下降,对准确度、实时性要求较高的工作站来讲,也就是说必须架设能满足的远程工作站,以解决距离服务器较远部门和系统的连网问题; ②架设移动工作站移动工作站的性质和远程工作有相似之处,而且有可移动性,其架设更有必要性;系统的原始数据、通道及远端接口都进行定期测试,传统的测试方法是部分人员在现场测量数据、计算结果,后台人员电话核对显示值和测试值,这样在准确性、及时性方面会受到很大影响,如果携带移动工作站至现场,在测试时由移动站向后台服务器请求数据与所测数据核对,准确度可得到较好的保障,其灵活性、实时性也非人眼可比;从移动站直接观测后台数据的同时,可以通过RTU 的RS—232 接口观察输出数据,并能直接进行遥控、遥测实验; 管理人员外出时,如果携带移动工作站,只要拨号和中心站连接,就可以方便的查看电网信息,了解系统情况; ③实现远程维护在传统情况下,当客户的软硬件系统出现故障时,通常需要厂家技术人员到现场维护,这种维护方式实时性差、效率低,还会造成用户停机过长,可能造成很大损失;计算机远程维护系统通过传输媒质和中心站连接,技术人员从自己的维护工作站对自动化系统的故障点进行分析判断,实现异地在线调试、修改和升级;同时还能进行目录查看、文件图像传输、实时语言对话;电力系统调度自动化大作业电子信息学院电气01班马芳芳。
电力系统调度自动化
电力系统调度自动化一、概述电力系统调度自动化是指利用计算机技术和自动化控制技术,对电力系统进行实时监测、运行控制、故障处理和数据分析等操作的过程。
通过自动化技术的应用,可以提高电力系统的运行效率、可靠性和安全性,实现对电力系统的智能化管理。
二、系统架构1. 数据采集电力系统调度自动化系统通过各种传感器和监测设备,对电力系统的各项指标进行实时采集。
这些指标包括电压、电流、功率、频率等参数,以及设备状态、故障信息等。
采集到的数据通过通信网络传输到调度中心。
2. 数据传输数据传输是电力系统调度自动化系统的核心环节。
采集到的数据通过通信网络传输到调度中心。
常见的通信方式包括有线通信(如光纤、电缆)、无线通信(如微波、卫星)等。
为了保证数据的安全性和可靠性,通信网络需要具备高速、低时延、抗干扰等特点。
3. 数据处理与分析调度中心接收到传输过来的数据后,对数据进行处理和分析。
通过数据处理算法和模型,对电力系统的运行状态进行评估和预测。
同时,还可以通过数据分析,提取出电力系统的潜在问题和优化方案,为运行决策提供参考。
4. 运行控制根据数据处理和分析的结果,调度中心可以下发控制指令,对电力系统进行运行控制。
例如,调整发电机的输出功率、调节变压器的变比、切换线路的供电方案等。
这些控制指令可以通过自动化装置实现,也可以通过人工干预实现。
5. 故障处理电力系统调度自动化系统还具备故障处理的功能。
当电力系统出现故障时,系统能够及时检测到故障信号,并进行故障定位和隔离。
同时,还能够根据故障类型和位置,自动调整电力系统的运行状态,保证电力系统的安全运行。
三、功能特点1. 实时监测:电力系统调度自动化系统能够实时监测电力系统的各项指标和设备状态,及时发现异常情况。
2. 运行控制:通过数据分析和运行评估,系统可以下发运行控制指令,对电力系统进行智能化运行控制。
3. 故障处理:系统能够及时检测到电力系统的故障信号,并进行故障定位和隔离,保证电力系统的可靠性和安全性。
第二章电力系统调度自动化
23.07.2021
4
2 保证供电优良的质量
(1)电能质量要求 电压U=UN, 频率 f=fN,波形
(2)措施 ∑Pg= ∑Pload ∑Qg= ∑Qload
23.07.2021
5
3 保证系统运行经济性
(1)规划是系统运行经济性的前提 电厂选址、输电线路的长度与电压等级 计及新能源?
(2)在确定的网络结构下,系统运行经济性取决 于调度方案
23.07.2021
13
三、电力系统调度自动化的结构
数
据 采 集
信 息
与
传
命 令
输
执
子
行
子
系
系 统
统
信
息
人
收 集
机
、 处
联
理
系
、 控
子
制
系
子 系
统
统
调度自动化系统的总体结构
23.07.2021
14
三、电力系统调度自动化的结构
上传
1. 数据采集与命令执行子系统
• 远动终端: Remote Terminal Unit,简称RTU
备用通信信道及切换功能
23.07.2021
20
1. 数据采集及命令执行子系统
主CPU
地址总线:选通
分CPU
23.07.2021
RTU的结构
21
1. 数据采集及命令执行子系统
模拟量采集系统原理结构框图
23.07.2021
22
1. 数据采集及命令执行子系统
数字量输入系统原理结构框图
23.07.2021
23
三、电力系统调度自动化的结构
2. 信息传输子系统
电力系统调度自动化
电力系统调度自动化电力系统调度自动化是指通过使用先进的信息技术和自动化设备,对电力系统的运行状态进行实时监测、分析和控制,以提高电力系统的可靠性、安全性和经济性。
本文将详细介绍电力系统调度自动化的概念、原理、应用以及其带来的优势。
一、概念电力系统调度自动化是指利用计算机技术、通信技术和自动化控制技术,对电力系统的运行状态进行实时监测、分析和控制的一种技术手段。
通过自动化设备和软件系统,实现电力系统的远程监控、故障诊断、运行调度等功能,提高电力系统的运行效率和可靠性。
二、原理电力系统调度自动化主要包括以下几个方面的技术原理:1. 实时监测:通过安装传感器和监测设备,对电力系统的关键参数进行实时监测,如电压、电流、频率等。
监测数据通过通信网络传输到调度中心,实现对电力系统运行状态的实时监控。
2. 数据采集与处理:调度中心通过数据采集装置,对监测到的数据进行采集和处理,包括数据的存储、分析和计算。
通过对数据的处理,可以得到电力系统的运行状态和趋势,为调度决策提供依据。
3. 远程控制:调度中心通过控制命令,远程控制电力系统的各种设备,如发机电、变压器、开关等。
通过远程控制,可以实现对电力系统的运行状态进行调整和优化,以提高电力系统的可靠性和经济性。
4. 故障诊断与恢复:通过对电力系统的监测数据进行分析,可以实时诊断电力系统的故障,并采取相应的措施进行恢复。
故障诊断与恢复的自动化处理,可以大大缩短故障处理的时间,提高电力系统的可靠性和安全性。
三、应用电力系统调度自动化广泛应用于电力系统的运行和管理中,主要包括以下几个方面:1. 运行监测与调度:通过实时监测电力系统的运行状态,包括电压、电流、频率等参数,以及设备的工作状态,如发机电、变压器、开关等。
调度员可以通过调度自动化系统,实时了解电力系统的运行情况,并进行运行调度和优化。
2. 故障诊断与恢复:电力系统调度自动化系统可以实时诊断电力系统的故障,并采取相应的措施进行恢复。
电力系统调度自动化
电力系统调度自动化概述:电力系统调度自动化是指通过计算机技术和自动化控制技术,对电力系统运行状态进行实时监测、分析和控制的一种技术手段。
它能够提高电力系统的安全性、可靠性和经济性,实现电力系统的自动化运行和优化调度。
一、电力系统调度自动化的基本原理和架构电力系统调度自动化的基本原理是通过数据采集、传输、处理和控制等环节实现对电力系统运行状态的实时监测和控制。
其基本架构包括以下几个部分:1. 数据采集系统:通过安装在电力系统各个关键节点的传感器、监测设备等,实时采集电力系统的运行数据,包括电压、电流、频率、功率等参数。
2. 数据传输系统:将采集到的数据通过通信网络传输到调度中心,确保数据的及时性和准确性。
3. 数据处理系统:调度中心通过数据处理系统对采集到的数据进行分析和处理,生成电力系统的运行状态图、负荷曲线、功率流分布图等。
4. 控制系统:根据数据处理系统的分析结果,调度中心可以通过控制系统对电力系统进行远程控制,包括调整发电机出力、调整负荷分配、切换电源等。
二、电力系统调度自动化的主要功能和作用电力系统调度自动化具有以下主要功能和作用:1. 实时监测和预警:通过对电力系统运行数据的实时采集和处理,调度中心可以及时监测电力系统的运行状态,并对异常情况进行预警,以便及时采取措施避免事故的发生。
2. 运行优化:通过对电力系统运行数据的分析和处理,调度中心可以实现电力系统的优化调度,包括合理调整发电机出力、负荷分配、电网结构等,以提高电力系统的经济性和可靠性。
3. 故障诊断和恢复:电力系统调度自动化可以对电力系统的故障进行快速诊断,并通过控制系统进行故障恢复,以减少故障对电力系统的影响。
4. 负荷管理:调度中心可以通过电力系统调度自动化对负荷进行管理,包括负荷预测、负荷分配、负荷调整等,以保证电力系统的稳定供电。
5. 能源管理:电力系统调度自动化可以对电力系统的能源进行管理,包括能源调度、能源优化利用等,以提高能源利用效率。
电力系统调度自动化
电力系统调度自动化电力系统调度自动化是指利用先进的信息技术和自动控制技术,对电力系统的运行状态进行实时监测、分析和调度,以提高电力系统的可靠性、经济性和安全性。
该技术的应用可以有效地提高电力系统的运行效率,减少能源浪费,降低电力系统的运行成本。
一、电力系统调度自动化的基本原理和流程电力系统调度自动化的基本原理是通过对电力系统各个环节的监测和控制,实现对电力系统运行状态的实时感知和调度决策的自动化。
其基本流程如下:1. 数据采集和传输:通过安装在电力系统各个关键节点的传感器和测量设备,实时采集电力系统的运行数据,包括电压、电流、功率等参数,并通过通信网络将数据传输给调度中心。
2. 数据处理和分析:调度中心接收到电力系统的实时数据后,通过数据处理和分析算法,对电力系统的运行状态进行实时监测和分析,包括负荷预测、故障诊断、安全评估等。
3. 调度决策和优化:根据电力系统的实时运行状态和需求,调度中心通过调度决策算法,制定出最优的调度策略,包括电源调度、负荷调度、线路控制等,以实现电力系统的稳定运行和最大效益。
4. 控制执行和监控:调度中心将制定的调度策略传输给电力系统的执行单元,包括发电厂、变电站、输电线路等,实现对电力系统的实时监控和控制,确保调度策略的有效执行。
5. 故障处理和应急响应:当电力系统发生故障或突发事件时,调度中心能够及时感知并进行故障诊断,制定应急响应措施,保障电力系统的安全稳定运行。
二、电力系统调度自动化的主要功能和优势1. 实时监测和控制:通过电力系统调度自动化系统,调度中心可以实时监测电力系统的运行状态,包括负荷、电压、频率等参数,并能够远程控制电力设备的运行状态,实现对电力系统的精细化调度和控制。
2. 负荷预测和优化调度:电力系统调度自动化系统可以通过对历史数据和实时数据的分析,进行负荷预测,准确预测未来一段时间内的负荷需求,并根据负荷预测结果,制定出最优的负荷调度策略,以实现电力系统的经济运行。
电力系统调度自动化
电力系统调度自动化电力系统调度自动化是指利用先进的信息技术手段和自动控制方法,对电力系统的运行状态进行实时监测、分析和调度,以实现电力系统的安全、经济、可靠运行的一种技术手段。
本文将从以下几个方面详细介绍电力系统调度自动化的标准格式内容。
一、电力系统调度自动化的概述1. 电力系统调度自动化的定义和目的2. 电力系统调度自动化的发展历程和现状3. 电力系统调度自动化的重要性和优势二、电力系统调度自动化的关键技术1. 实时监测与数据采集技术a. 监测设备的种类和功能b. 数据采集的方式和频率c. 数据传输和存储技术2. 电力系统状态估计与分析技术a. 状态估计的原理和方法b. 数据处理和模型建立技术c. 状态分析与异常检测技术3. 调度决策与优化技术a. 电力系统调度决策的流程和要求b. 调度优化的方法和模型c. 调度策略与控制技术4. 人机界面与操作技术a. 调度自动化系统的界面设计原则b. 操作界面的布局和功能要求c. 人机交互的技术手段和方法三、电力系统调度自动化的应用案例1. 基于电力系统调度自动化的电网安全监测与预警系统a. 系统的功能和特点b. 实时监测和预警的方法和技术c. 应用案例和效果评估2. 基于电力系统调度自动化的电网运行优化系统a. 系统的目标和优化指标b. 优化算法和模型c. 应用案例和效果评估3. 基于电力系统调度自动化的电力市场交易系统a. 系统的功能和流程b. 交易规则和市场机制c. 应用案例和效果评估四、电力系统调度自动化的挑战与展望1. 挑战a. 数据安全和隐私保护问题b. 大数据处理和分析能力的提升c. 跨区域调度与协调的技术难题2. 展望a. 人工智能技术在电力系统调度自动化中的应用b. 新能源和分布式能源接入的调度自动化技术c. 智能化调度决策和控制方法的发展通过以上内容的详细介绍,可以清晰了解电力系统调度自动化的概念、关键技术、应用案例以及未来的挑战与发展方向。
电力系统调度自动化
电力系统调度自动化引言概述:电力系统调度自动化是指利用先进的信息技术和自动化控制技术,对电力系统的调度运行进行智能化、自动化的管理和控制。
随着电力系统的规模不断扩大和复杂性的增加,传统的人工调度已经无法满足电力系统的运行要求。
因此,电力系统调度自动化成为了电力行业的重要发展方向。
一、提高电力系统运行效率1.1 实时监测和数据采集:电力系统调度自动化系统通过安装传感器和监测设备,实时监测电力系统的运行状态,采集各种关键数据,包括电流、电压、频率等,为系统运行提供准确的数据支持。
1.2 智能化调度决策:电力系统调度自动化系统通过建立复杂的数学模型和算法,对电力系统进行分析和优化,实现智能化调度决策。
系统可以根据电力负荷、电源情况和网络拓扑等因素,自动调整发机电组的出力和输电路线的负荷分配,以提高电力系统的运行效率。
1.3 故障自动隔离和恢复:电力系统调度自动化系统可以实时监测电力系统中的故障情况,并自动进行故障隔离和恢复。
系统可以通过自动切换备用电源、调整电网拓扑结构等方式,快速恢复电力系统的正常运行,减少停电时间和影响范围。
二、提高电力系统安全性2.1 风险预警和安全评估:电力系统调度自动化系统可以通过实时监测电力系统的运行状态和数据,进行风险预警和安全评估。
系统可以根据电力系统的负荷情况、设备运行状态和天气等因素,预测潜在的安全隐患,并及时采取措施进行处理,以保障电力系统的安全运行。
2.2 快速故障定位和修复:电力系统调度自动化系统可以通过故障诊断和定位技术,快速确定电力系统故障的位置和原因。
系统可以自动发出告警信号,并提供故障的具体信息,匡助维修人员迅速定位故障点,缩短故障修复时间,提高电力系统的可靠性和安全性。
2.3 安全控制和保护策略:电力系统调度自动化系统可以实现对电力系统的安全控制和保护策略的自动化管理。
系统可以根据电力系统的运行状态和负荷情况,自动调整保护装置的参数和动作逻辑,确保电力系统在故障情况下能够及时切除故障部份,保护设备和人员的安全。
电力系统调度自动化
电力系统调度自动化概述:电力系统调度自动化是指利用先进的信息技术手段和自动化控制技术,对电力系统进行实时监测、运行控制、故障处理和调度决策的过程。
其目的是提高电力系统的可靠性、经济性和安全性,实现电力系统的高效运行。
一、电力系统调度自动化的基本原理和架构1. 基本原理:电力系统调度自动化基于实时数据采集、通信传输、数据处理和决策支持等技术,通过对电力系统各个环节的监测和控制,实现对电力系统运行状态的全面把握,并根据实时数据进行决策分析,提供最优的运行策略。
2. 架构:电力系统调度自动化普通包括以下几个主要组成部份:- 数据采集系统:负责采集电力系统各个环节的实时数据,包括发机电组、变电站、输电路线等。
- 通信传输系统:负责将采集到的实时数据传输到调度中心,通信方式包括有线通信和无线通信。
- 数据处理系统:负责对采集到的实时数据进行处理和分析,生成电力系统的运行状态和趋势分析报告。
- 调度决策支持系统:基于数据处理系统的分析结果,提供决策支持和运行策略优化,匡助调度员做出准确的决策。
二、电力系统调度自动化的主要功能和特点1. 主要功能:- 实时监测:对电力系统各个环节的实时数据进行监测,包括电压、电流、功率等参数。
- 运行控制:根据实时监测数据,对电力系统进行运行控制,如发机电组的启停、变压器的调节等。
- 故障处理:对电力系统的故障进行快速定位和处理,减少对系统的影响。
- 调度决策:根据实时数据和分析结果,做出最优的调度决策,提高电力系统的经济性和可靠性。
2. 特点:- 实时性:能够实时采集和处理电力系统的数据,及时反馈系统的运行状态。
- 自动化:通过自动化控制技术,实现对电力系统的自动监测和控制,减少人为干预。
- 高可靠性:通过故障处理和决策支持系统,提高电力系统的可靠性和安全性。
- 高效性:通过优化调度决策,提高电力系统的经济性和运行效率。
三、电力系统调度自动化的应用案例1. 案例一:某省电力系统调度自动化项目该项目采用先进的调度自动化系统,实现对该省电力系统的全面监测和控制。
电力系统调度自动化
电力系统调度自动化电力系统调度自动化是指利用先进的信息技术,对电力系统进行实时监测、运行控制和调度管理的自动化系统。
该系统通过采集、传输、处理和分析电力系统的各种数据,实现对电力系统运行状态的全面监测和分析,以及对电力设备的远程控制和调度管理。
一、电力系统调度自动化的背景和意义电力系统是现代工业社会的重要基础设施,对经济社会发展起着至关重要的作用。
传统的电力系统调度管理方式主要依靠人工操作和经验判断,存在着信息获取不及时、运行控制不精确、调度决策不科学等问题。
而电力系统调度自动化的引入,可以提高电力系统的运行效率和安全性,减少人为差错,提升调度决策的科学性和准确性,实现电力系统的智能化管理。
二、电力系统调度自动化的主要功能和特点1. 实时监测功能:通过自动化系统对电力系统的各个环节进行实时监测,包括电力设备的运行状态、电力负荷的变化、电力市场的需求等。
监测数据可以通过图形化界面展示,方便操作人员进行直观的观察和分析。
2. 运行控制功能:自动化系统可以对电力设备进行远程控制,包括开关的合闸和分闸、发机电的启动和停机、负荷的调整等。
操作人员可以通过自动化系统进行远程操作,实现对电力设备的精确控制。
3. 调度管理功能:自动化系统可以对电力系统的运行情况进行全面的分析和评估,为调度决策提供科学依据。
系统可以根据电力负荷的变化和电力市场的需求,自动调整电力设备的运行模式,实现电力资源的优化配置。
4. 数据分析功能:自动化系统可以对电力系统的各种数据进行采集和分析,包括电力负荷数据、电力设备运行数据、电力市场数据等。
通过对数据的分析,可以发现电力系统中存在的问题和潜在风险,并提出相应的解决方案。
5. 系统可靠性和安全性:电力系统调度自动化系统具有高度的可靠性和安全性,能够在各种异常情况下保证系统的稳定运行。
系统采用多重备份和冗余设计,可以快速恢复故障,确保电力系统的连续供电。
三、电力系统调度自动化的应用案例1. 智能电网建设:电力系统调度自动化是智能电网建设的重要组成部份。
电力系统调度自动化
电力系统调度自动化1. 简介电力系统调度自动化是指利用先进的信息技术手段,对电力系统进行实时监控、运行管理和调度控制的自动化系统。
该系统通过数据采集、处理和分析,实现对电力系统的智能化监控、优化调度和故障处理,提高电力系统的安全性、稳定性和经济性。
2. 功能和特点2.1 实时监控电力系统调度自动化系统可以实时采集和显示电力系统的运行状态和参数,包括电压、电流、功率、频率等。
通过图形化界面,运行人员可以清晰地了解电力系统的实时运行情况,及时发现异常情况并采取措施。
2.2 运行管理该系统可以对电力系统进行运行管理,包括计划编制、调度指令下达和运行记录等。
运行人员可以根据电力系统的负荷情况和电力市场需求,制定合理的运行计划,并通过系统下达调度指令,实现对电力系统的灵便调度和优化运行。
2.3 调度控制电力系统调度自动化系统可以实现对电力系统的调度控制,包括发机电组的启停控制、变压器的切换控制和路线的开关控制等。
通过系统的自动化控制,可以快速、准确地响应电力系统的调度需求,提高调度效率和准确性。
2.4 故障处理该系统可以实时监测电力系统的故障情况,并提供故障诊断和处理建议。
运行人员可以通过系统的故障处理功能,快速定位故障原因,并采取相应的措施进行处理,以减少故障对电力系统的影响。
3. 数据采集与处理电力系统调度自动化系统通过数据采集装置,对电力系统的各个节点进行数据采集,包括发机电组、变电站、路线等。
采集到的数据通过通信网络传输到调度中心,并经过处理和分析,生成相应的运行状态和参数,供运行人员参考和决策。
4. 优势和效益4.1 提高电力系统安全性通过实时监控和故障处理功能,电力系统调度自动化系统可以及时发现和处理电力系统的异常情况和故障,保障电力系统的安全运行,减少事故的发生。
4.2 提高电力系统稳定性该系统可以通过优化调度和灵便控制,实现电力系统的稳定运行。
通过合理调度发机电组和变压器,平衡负荷和供需关系,提高电力系统的稳定性和可靠性。
电力系统调度自动化
电力系统调度自动化引言概述:电力系统调度自动化是指利用先进的信息技术和智能算法,实现对电力系统运行状态的监控、控制和调度的自动化过程。
随着电力系统规模的不断扩大和复杂度的增加,传统的人工调度方式已经无法满足对电力系统运行的要求,因此电力系统调度自动化成为必然的趋势。
本文将从多个方面介绍电力系统调度自动化的重要性和实现方式。
一、提高调度效率1.1 自动化系统可以实时监测电力系统运行状态,及时发现潜在问题,减少人工干预的时间和成本。
1.2 自动化系统可以根据电力系统的实时数据和负荷需求,自动进行优化调度,提高电力系统的运行效率。
1.3 自动化系统可以通过智能算法对电力系统进行预测分析,提前做好调度准备,降低运行风险。
二、提高电力系统安全性2.1 自动化系统可以实现对电力系统的全面监控,及时发现异常情况并采取措施,保障电力系统的安全运行。
2.2 自动化系统可以通过智能算法对电力系统进行风险评估和预测,提前发现潜在安全隐患,减少事故发生的可能性。
2.3 自动化系统可以实现对电力系统的远程控制,及时应对突发事件,保障电力系统的稳定性和可靠性。
三、提高电力系统灵活性3.1 自动化系统可以实现对电力系统的实时调度和控制,根据不同负荷需求和能源情况,灵活调整电力系统的运行方式。
3.2 自动化系统可以通过智能算法对电力系统进行优化调度,提高电力系统的灵活性和适应性。
3.3 自动化系统可以实现对电力系统的智能化管理,提高电力系统的响应速度和灵活性。
四、降低运行成本4.1 自动化系统可以减少人工干预的时间和成本,提高电力系统运行的效率和经济性。
4.2 自动化系统可以通过智能算法对电力系统进行优化调度,降低电力系统的运行成本。
4.3 自动化系统可以实现对电力系统的智能化管理,提高电力系统的资源利用效率,降低运行成本。
五、推动电力系统智能化发展5.1 自动化系统是电力系统智能化发展的重要组成部分,可以提高电力系统的智能化水平和竞争力。
电力系统调度自动化
电力系统调度自动化电力系统调度自动化是指利用先进的信息技术和自动化技术,对电力系统的运行状态进行实时监测、分析和控制,以实现电力系统的高效、安全、稳定运行的一种技术手段。
电力系统调度自动化的目标是提高电力系统的可靠性、经济性和安全性,减少人为操作的风险,提高调度决策的准确性和响应速度。
一、电力系统调度自动化的基本原理和架构电力系统调度自动化的基本原理是通过各种传感器、监测设备和控制装置,实时采集电力系统的运行数据,经过数据处理和分析,生成电力系统的运行状态信息,然后根据设定的调度策略和规则,通过自动控制装置对电力系统进行控制和调度。
电力系统调度自动化的架构包括以下几个主要组成部分:1. 数据采集和监测系统:通过各种传感器和监测设备,实时采集电力系统的运行数据,包括电压、电流、频率、功率等参数,以及设备的状态信息。
2. 数据处理和分析系统:对采集到的数据进行处理和分析,生成电力系统的运行状态信息,包括负荷状态、设备健康状况、故障诊断等。
3. 调度决策系统:根据电力系统的运行状态信息,结合调度策略和规则,进行调度决策,包括负荷调度、设备控制、故障处理等。
4. 自动控制装置:根据调度决策系统生成的指令,对电力系统进行自动控制和调度,包括开关操作、发电机调整、负荷分配等。
5. 监控和人机界面系统:实时监控电力系统的运行状态,提供人机界面,方便调度员进行操作和监测,包括显示设备、报警系统等。
二、电力系统调度自动化的主要功能和应用电力系统调度自动化具有以下主要功能和应用:1. 实时监测和分析:通过采集和处理电力系统的运行数据,实时监测电力系统的运行状态,分析负荷特性、设备健康状况等,提供准确的运行状态信息。
2. 调度决策支持:根据电力系统的运行状态信息,结合调度策略和规则,提供调度决策的支持,包括负荷调度、设备控制、故障处理等。
3. 自动控制和调度:根据调度决策系统生成的指令,对电力系统进行自动控制和调度,实现负荷平衡、设备优化运行等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对调度自动化的认识及其基本框架的设计
一、调度自动化系统的作用:
随着微电子技术、计算机技术和通信技术的发展,综合自动化技术也得到迅速发展。
近几年来,综合自动化已成为热门话题,引起了电力
那么,电网调度自动化系统与综合自动化系统的关系是什么呢?
综合自动化是相对于整个变电站的二次设备来说的,包括各种微机继电保护装置、自动重合闸装置、低频自动减负荷装置、备用电源自投装置、以及远动装置等,它们利用先进的计算机技术、现代电子技术、通信技术和信号处理技术,实现对全变电站的主要设备和输、配电线
路的自动监视、测量、自动控制和微机保护,以及与调度通信等综合性的自动化系统,它集保护、测量、控制、调节、通信、调度于一体。
相对而言,电网调度自动化是综合自动化的一部分,它只包括远动装置和调度主站系统,是用来监控整个电网运行状态的。
为使调度人员统观全局,运筹全网,有效地指挥电网安全、稳定和经济运行,实现
至会使电网瓦解崩溃,造成大面积停电,给国民经济带来严重损失。
为此,必须增强调度自动化手段,实现电网运行的安全分析,提供事故处理对策和相应的监控手段,防止事故发生以便及时处理事故,避免或减少事故造成的重大损失。
二、调度自动化的基本内容:
现代电网调度自动化所设计的内容范围很广,其基本内容如下:1、运行监视
调度中心为了掌握电网正常运行工况、异常及事故状态,为了安全、经济调度和控制提供依据,必须对电网实现以保证安全运行为中心的运行监视,所以称为安全监视。
按部颁有关法规、规程的要求和调度
燃料消耗(或费用、成本),保证安全发供电。
因此,网调和省调要在按规定保证电网的频率和电压质量的前提下,使发电煤耗、水耗及网损最小,即发电成本最低,同时又能保证一定的备用容量,因而网调和省调要进行负荷预测,实现经济负荷与最佳负荷分配,制定发电机华语负荷曲线提供依据;实现水库经济调度与
最优潮流分配,为在最佳水能水量综合利用的条件下,使水耗与网损最小。
对于地调,则以实现负荷管理及其经济分配为基本内容,还要定时进行电压水平和无功功率分配的优化运算,用以提高电压质量、降低网损,在尖峰负荷时要平衡馈线负荷以降低线损,在有条件的地区电网
在地区电网发生事故时,还可以通过对配电网的故障分析和实现在线预操作,及时处理事故,改善地区电网的安全运行水平。
此外,通过调度员的培训模拟,进行事故预想与事故演习,有效地提高调度人员运用调度自动化系统处理事故的临战能力。
4、自动控制
电网调度自动控制是在运行监视的基础上,对电网的安全与经济运行实施调节或控制。
控制信号自上而下发送给厂、所或下级调度。
这类控制范围很广,但主要是对断路器及其它发送发变电设备,例如,发电机、调相机、带负荷调压变压器、电力补偿设备等,通过调度人员实现遥控、遥调或
偿设施等实现遥控与遥调,以及发送时钟等指令。
2、自动发电控制(AGC)和经济调度控制(EDC)
它们是对电网安全经济运行实现闭环控制的重要功能。
在对电网频率调整的同时,实现经济调度控制,直接控制到各调频电厂,并计入线损修正,实现对互联电网联络线净功率频率偏移控制;对于非调频厂,
则按日负荷曲线运行;对于有条件的电厂还应实现自动电压和无功功率控制(AVC)。
3、安全分析与对策(SA)
在实现网络结构分析和状态估计的条件下进行的实时潮流计算和安全状态分析。
调度台。
5、监控对象的相关系统:
发电机组的成组自动操作与功率自动调节装置、机炉协调控制器、带负荷调压变压器分接头、电压与电流互感器、断路器的控制与信号回路、继电保护与按全自动装置的出口信号回路。
6、不停电电源系统:
交—直流整流器、直—交流逆变器、配套的直流蓄电池组。
7、安全环保系统:
防雷与接地、防火与灭火、防电磁干扰与防静电干扰、防噪声与防震、空调与净化、防盗与防鼠。
得网上的工作站无需任何专用程序支持,使用Windows内置的IE 浏览器即可浏览实时数据。
4.系统时钟同步(GPS)
接收全球定位系统(GPS)的时间作为系统的标准时间和系统频率,完成系统的时钟统一。
网络系统内时钟同步:
GPS时钟通过主备数采机接入SCADA系统。
系统以数采机时钟为标准时钟,采用系统提供的校时功能完成网络各节点间的时钟同步。
数采机支持识别GPS时钟故障,防止误接收,并能产生报警。
与RTU时钟同步:
据流量保持动态平衡。
当一个网络工作不正常时,系统将自动地通过另一网络传输所有数据。
当故障网络恢复正常时,双网络将自动恢复到流量的动态平衡状态。
从严格意义上来说,此系统的网络切换实际上是网络传输功能的弹性伸缩,网络本身对系统是透明的,双网络并无主、备之分。
(4)支持标准的网络接口,可以
方便地与其它系统如MIS等进行互联。
(5)易于与上级或下级调度组成广域网,进行网络数据交换,支持远程调试。
在数据库连接技术方面,SCADA系统也采取相关措施,主要体现在如下四个方面:(1)支持组态地将系统实时数据库按用户指定的周期或事件产生触发刷新用户指定的外部实时数据库。
(2)支持直接
向两个服务器发送信息,服务器控制程序自动检测客户端与服务器的连接模式,以确保唯一的数据转发,或将有关信息转发到感兴趣的客户端。
同时客户端也自动检测服务器的状态。
系统采取双前置机方式:①基于485总线方式的双机切换;②基于NportServer的双机切换;
③用户自定义方式的双机切换。
系统采取双通道方式:①系统采取以
通道的方式与RTU等采集设备进行连接。
②系统支持自动主备通道切换,不支持手动切换,并且是采用冷备用原理。
当主通道在传输数据时,备用通道不采集数据。
当系统检测到主通道连接出现故障或者误码率过高,则自动启动备用通道采集数据,并将停止主通道的采集,此时主通道的地位转变为备用通道,原备用通道变为主通道不能重新
表等显示出来。
系统利用网络协议实现方便的容错系统模型,在该模型中,运行系统采用总线方式或通过专门的切换装置与连接的RTU 或其它智能数据采集设备连接,当主系统出现故障或通道出现故障时,备用系统将自动或手动获得控制权,保证系统正常运行。
如下图所示:(3)实现网络构架的有效扩充①架设远程工作站正常情况下所
有计算机都是通过各自所配置的10—100M网卡连至集线器上,传输媒质选择的是8芯双绞线,这样的组网如果在两座比较分散的建筑物之间(线距1.5km以上),则信号的抗干扰能力、准确度、保密能力都会大为下降,对准确度、实时性要求较高的工作站来讲,也就是说必须架设能满足的远程工作站,以解决距离服务器较远部门和系统的
会造成用户停机过长,可能造成很大损失。
计算机远程维护系统通过传输媒质和中心站连接,技术人员从自己的维护工作站对自动化系统的故障点进行分析判断,实现异地在线调试、修改和升级;同时还能进行目录查看、文件图像传输、实时语言对话。
电
力系统调度。