初四中考数学模拟试题12
初四数学中考模拟题
C
16.用正三角形和正六边形按如图所示的规律拼图案,即从第二个 第一个图案 图案开始,每个图案都比上一个图案多一个正六边形和两个正 第二个图案 三角形,则第 n 个图案中正三角形的个数为 (用含 n 的代数式表示) . 第三个图案 17.菱形边长为 6,一个内角为 60°,顺次连接这个菱形各边中 点 所得的四边形周长为
8
)
9
B.8³10
8
C.80³10
D.8³10
9
3.右边的几何体是由五个大小相同的正方体组成的,它的主视图为(
)
A.
B. )
C.
D.
(第 3 题)
4.4 的平方根是( A.2
B.-2
C.±2
D.± 2
5.下列图形中,既是轴对称图形又是中心对称图形的是( ) A.等边三角形 B.菱形 C.平行四边形 D.等腰梯形 6.下列运算正确的是( ) 3 2 5 3 2 3 2 3 2 6 A.x +x =x B.x -x =x C.x ÷x =x D.x ²x =x 7.小许在班级内提议收集废弃的饮料瓶,变卖所得作为班级的活动经费.他注意观察了一 周,5 天里每天收集的废弃饮料瓶(单位:个)分别是:40,40,35,30,35,根据这些数 据,他估计一个月(以 20 天计算)可以收集到的饮料瓶个数约是( ) A.800 B.720 C.700 D.600 8.将点 A(2 3,0)绕着原点顺时针方向旋转 60°得到点 B,则点 B 的坐标是( ) A. ( 3,-3) B. ( 3,3) C. (3,- 3) D. (3, 3) 二、填空题(本大题共 10 小题,每小题 2 分,共计 20 分.不需写出解答 C 过程,请把答案直接填写在答题卡相应位置 上) ....... 9.分解因式 ab -ab= . A E B 10.如图,直线 AB、CD 相交于点 E,DF∥AB.若∠AEC = 100°则 D 等 于 °. D F 11.若 a-b=-1,ab=2,则(a+1)(b-1)= . (第 10 题) B 1 12.解方程 =2 得 . 1-x 13.在一个不透明的袋子中有 2 个黑球、1 个白球,它们除颜色外其他均 A (第 14 题) 相同.充分摇匀后,先摸出 1 个球不放回,再摸出 1 个球,那么两个 球都是黑球的概率为 . 14.如图,直角△ABC 中,∠C =90°,AB=13,BC=5,那么 sin B= . 2 15.小许踢足球,经过 x 秒后足球的高度为 y 米,且时间与高度关系为 y=ax bx.若此足 球在 5 秒后落地,那么足球在飞行过程中,当 x=,□ABCD 的对角线 AC、BD 相交于点 O,△ OAB 是等边三角形,DE∥AC,AE∥BD. 求证: (1)四边形 ABCD 是矩形; (2)四边形 AODE 是菱形.
中考数学第四次模拟试卷(含答案)
中考数学第四次模拟考试试卷全卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.全卷满分120分,考试时间共120分钟.答题前,请考生务必正确填涂自己的姓名、考号和考试科目,并将试卷密封线内的项目填写清楚;考试结束,将试卷一并交回.第Ⅰ卷(选择题 共36分)一、选择题:(本大题共12个小题,每小题3分,共36分.) 在每小题给出的四个选项中,只有一个选项符合题意要求.1.下列空间图形中是圆柱的为( )(A ) (B ) (C ) (D ) 2.如图所示的两圆位置关系是( )(A )相离 (B )外切 (C )相交 (D ) 内切 3.函数3222-+-=x x y 是( )(A )一次函数 (B )二次函数 (C )正比例函数(D )反比例函数4.一只小狗正在平面镜前欣赏自己的全身像(如图所示),此时,它所看到的全身像是( )5.如图,半径为1的圆中,圆心角为120°的扇形面积为 ( )(A )31(B )21 (C ) (D ) π216.下列关于x 的一元二次方程中,有两个不.相等的实数根的方程是( ) (A )012=+x (B )0122=++x x (C )0322=++x x(D )0322=-+x x7.阻值为1R 和2R 的两个电阻,其两端电压U 关于电流强度I 的函数图象如图,则阻值( )第2题图第5题图(A )1R >2R (B )1R <2R (C )1R =2R (D )以上均有可能 8.不等式组⎩⎨⎧≤-->75342x x 的解集在数轴上可以表示为( )(A ) (B ) (C ) (D )9.若1x 、2x 是一元二次方程0572=+-x x的两根,则2111x x +的值是( ) (A )57 (B )57- (C )75 (D )75- 10.某超市进了一批商品,每件进价为a 元,若要获利25%,则每件商品的零售价应定为( )(A )a %25 (B )()a %251- (C )()a %251+ (D )%251+a11.如图,已知:正方形ABCD 边长为1,E 、F 、G 、H 分别为各边上的点, 且AE=BF=CG=DH, 设小正方形EFGH 的面积为s ,AE 为x ,则s 关于x 的函数图象大致是( )(A ) (B ) (C ) (D )12.如图,PA 、PB 是⊙O 的切线,A 、 B 为切点,OP 交AB 于点D ,交⊙O 于点C , 在线段AB 、PA 、PB 、PC 、CD 中,已知其中两条线段的长,但还无法..计算出⊙O 直径的两条线段是( )(A )AB 、CD (B )PA 、PC (C )PA 、AB (D )PA 、PB第7题图第11题图第12题图(D)第Ⅱ卷(非选择题)注意事项:本卷试题用蓝色圆珠笔或钢笔直接答在试卷上。
海南省2021-2022学年中考四模数学试题含解析
2021-2022中考数学模拟试卷注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图所示是由几个完全相同的小正方体组成的几何体的三视图.若小正方体的体积是1,则这个几何体的体积为()A.2 B.3 C.4 D.52.如图,下列各数中,数轴上点A表示的可能是()A.4的算术平方根B.4的立方根C.8的算术平方根D.8的立方根3.将一把直尺和一块含30°和60°角的三角板ABC按如图所示的位置放置,如果∠CDE=40°,那么∠BAF的大小为()A.10°B.15°C.20°D.25°4.如图,已知△ABC中,∠ABC=45°,F是高AD和BE的交点,CD=4,则线段DF的长度为( )A.22B.4 C.32D.425.一次函数y=kx+k (k≠0)和反比例函数()0ky k x=≠在同一直角坐标系中的图象大致是( ) A . B . C . D .6.在Rt △ABC 中,∠C=90°,AC=1,BC=3,则∠A 的正切值为( ) A .3B .13C .1010D .310107.某小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如图的折线图,则符合这一结果的实验最有可能的是( )A .在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B .掷一枚质地均匀的正六面体骰子,向上一面的点数是4C .一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌,抽中红桃D .抛掷一枚均匀的硬币,前2次都正面朝上,第3次正面仍朝上8.如图,四边形ABCD 内接于⊙O ,AD ∥BC ,BD 平分∠ABC ,∠A =130°,则∠BDC 的度数为( )A .100°B .105°C .110°D .115°9.如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字-1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针恰好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为( )A.B.C.D.10.若正六边形的边长为6,则其外接圆半径为()A.3 B.32C.33D.611.一次函数y1=kx+1﹣2k(k≠0)的图象记作G1,一次函数y2=2x+3(﹣1<x<2)的图象记作G2,对于这两个图象,有以下几种说法:①当G1与G2有公共点时,y1随x增大而减小;②当G1与G2没有公共点时,y1随x增大而增大;③当k=2时,G1与G2平行,且平行线之间的距离为.下列选项中,描述准确的是()A.①②正确,③错误B.①③正确,②错误C.②③正确,①错误D.①②③都正确12.下面的几何体中,主(正)视图为三角形的是()A.B.C.D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在梯形ABCD中,AD∥BC,∠A=90°,点E在边AB上,AD=BE,AE=BC,由此可以知道△ADE旋转后能与△BEC重合,那么旋转中心是_____.14.一个不透明口袋里装有形状、大小都相同的2个红球和4个黑球,从中任意摸出一个球恰好是红球的概率是____.15.抛物线y=mx 2+2mx+5的对称轴是直线_____. 16.二次函数y=x 2-2x+1的对称轴方程是x=_______.17.5月份,甲、乙两个工厂用水量共为200吨.进入夏季用水高峰期后,两工厂积极响应国家号召,采取节水措施.6月份,甲工厂用水量比5月份减少了15%,乙工厂用水量比5月份减少了10%,两个工厂6月份用水量共为174吨,求两个工厂5月份的用水量各是多少.设甲工厂5月份用水量为x 吨,乙工厂5月份用水量为y 吨,根据题意列关于x ,y 的方程组为__.18.1017年11月7日,山西省人民政府批准发布的《山西省第一次全国地理国情普查公报》显示,山西省国土面积约为156700km 1,该数据用科学记数法表示为__________km 1.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在平面直角坐标系xOy 中,函数my x=(0x <)的图象经过点(4,)A n -,AB ⊥x 轴于点B ,点C 与点A 关于原点O 对称, CD ⊥x 轴于点D ,△ABD 的面积为8. (1)求m ,n 的值;(2)若直线y kx b =+(k ≠0)经过点C ,且与x 轴,y 轴的交点分别为点E ,F ,当2CF CE =时,求点F 的坐标.20.(6分)如图,在每个小正方形的边长均为1的方格纸中,有线段AB 和线段CD ,点A 、B 、C 、D 均在小正方形的顶点上.(1)在方格纸中画出以AB 为斜边的等腰直角三角形ABE ,点E 在小正方形的顶点上;(2)在方格纸中画出以CD 为对角线的矩形CMDN (顶点字母按逆时针顺序),且面积为10,点M 、N 均在小正方形的顶点上;(3)连接ME,并直接写出EM的长.21.(6分)如图,对称轴为直线x=72的抛物线经过点A(6,0)和B(0,4).(1)求抛物线解析式及顶点坐标;(2)设点E(x,y)是抛物线上一动点,且位于第四象限,四边形OEAF是以OA为对角线的平行四边形,求四边形OEAF的面积S与x之间的函数关系式,并写出自变量x的取值范围;(3)①当四边形OEAF的面积为24时,请判断OEAF是否为菱形?②是否存在点E,使四边形OEAF为正方形?若存在,求出点E的坐标;若不存在,请说明理由.22.(8分)如图平行四边形ABCD中,对角线AC,BD交于点O,EF过点O,并与AD,BC分别交于点E,F,已知AE=3,BF=5(1)求BC的长;(2)如果两条对角线长的和是20,求三角形△AOD的周长.23.(8分)如图,在□ABCD中,对角线AC、BD相交于点O,点E在BD的延长线上,且△EAC是等边三角形.(1)求证:四边形ABCD是菱形.(2)若AC=8,AB=5,求ED 的长.24.(10分)如图,CD 是一高为4米的平台,AB 是与CD 底部相平的一棵树,在平台顶C 点测得树顶A 点的仰角30α=︒,从平台底部向树的方向水平前进3米到达点E ,在点E 处测得树顶A 点的仰角60β=︒,求树高AB (结果保留根号).25.(10分)如图1,在正方形ABCD 中,E 是边BC 的中点,F 是CD 上一点,已知∠AEF =90°. (1)求证:23EC DF =; (2)平行四边形ABCD 中,E 是边BC 上一点,F 是边CD 上一点,∠AFE =∠ADC ,∠AEF =90°. ①如图2,若∠AFE =45°,求ECDF的值; ②如图3,若AB =BC ,EC =3CF ,直接写出cos ∠AFE 的值.26.(12分)AB 为⊙O 直径,C 为⊙O 上的一点,过点C 的切线与AB 的延长线相交于点D ,CA =CD . (1)连接BC ,求证:BC =OB ;(2)E 是AB 中点,连接CE ,BE ,若BE =2,求CE 的长.27.(12分)如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C 作CE⊥AB交AB的延长线于点E,连接OE.求证:四边形ABCD是菱形;若AB5BD=2,求OE的长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、C【解析】根据左视图发现最右上角共有2个小立方体,综合以上,可以发现一共有4个立方体,主视图和左视图都是上下两行,所以这个几何体共由上下两层小正方体组成,俯视图有3个小正方形,所以下面一层共有3个小正方体,结合主视图和左视图的形状可知上面一层只有最左边有个小正方体,故这个几何体由4个小正方体组成,其体积是4.故选C.【点睛】错因分析容易题,失分原因:未掌握通过三视图还原几何体的方法.2、C【解析】解:由题意可知4的算术平方根是2,43434<2, 8的算术平方根是222<2,8的立方根是2,故根据数轴可知,故选C3、A【解析】先根据∠CDE=40°,得出∠CED=50°,再根据DE∥AF,即可得到∠CAF=50°,最后根据∠BAC=60°,即可得出∠BAF 的大小.【详解】由图可得,∠CDE=40°,∠C=90°,∴∠CED=50°,又∵DE∥AF,∴∠CAF=50°,∵∠BAC=60°,∴∠BAF=60°−50°=10°,故选A.【点睛】本题考查了平行线的性质,熟练掌握这一点是解题的关键.4、B【解析】求出AD=BD,根据∠FBD+∠C=90°,∠CAD+∠C=90°,推出∠FBD=∠CAD,根据ASA证△FBD≌△CAD,推出CD=DF即可.【详解】解:∵AD⊥BC,BE⊥AC,∴∠ADB=∠AEB=∠ADC=90°,∴∠EAF+∠AFE=90°,∠FBD+∠BFD=90°,∵∠AFE=∠BFD,∴∠EAF=∠FBD,∵∠ADB=90°,∠ABC=45°,∴∠BAD=45°=∠ABC,∴AD=BD,在△ADC和△BDF中CAD DBF AD BDFDB ADC∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ADC≌△BDF,∴DF=CD=4,故选:B.【点睛】此题主要考查了全等三角形的判定,关键是找出能使三角形全等的条件.5、C【解析】A、由反比例函数的图象在一、三象限可知k>0,由一次函数的图象过二、四象限可知k<0,两结论相矛盾,故选项错误;B、由反比例函数的图象在二、四象限可知k<0,由一次函数的图象与y轴交点在y轴的正半轴可知k>0,两结论相矛盾,故选项错误;C、由反比例函数的图象在二、四象限可知k<0,由一次函数的图象过二、三、四象限可知k<0,两结论一致,故选项正确;D、由反比例函数的图象在一、三象限可知k>0,由一次函数的图象与y轴交点在y轴的负半轴可知k<0,两结论相矛盾,故选项错误,故选C.6、A【解析】【分析】根据锐角三角函数的定义求出即可.【详解】∵在Rt△ABC中,∠C=90°,AC=1,BC=3,∴∠A的正切值为31BCAC=3,故选A.【点睛】本题考查了锐角三角函数的定义,能熟记锐角三角函数的定义的内容是解此题的关键.7、B【解析】根据统计图可知,试验结果在0.17附近波动,即其概率P≈0.17,计算四个选项的概率,约为0.17者即为正确答案.【详解】解:在“石头、剪刀、布”的游戏中,小明随机出剪刀的概率是13,故A选项错误,掷一枚质地均匀的正六面体骰子,向上一面的点数是4的概率是16≈0.17,故B选项正确,一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌,抽中红桃得概率是14,故C选项错误,抛掷一枚均匀的硬币,前2次都正面朝上,第3次正面仍朝上的概率是18,故D选项错误,故选B.【点睛】此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.频率=所求情况数与总情况数之比.熟练掌握概率公式是解题关键.8、B【解析】根据圆内接四边形的性质得出∠C的度数,进而利用平行线的性质得出∠ABC的度数,利用角平分线的定义和三角形内角和解答即可.【详解】∵四边形ABCD内接于⊙O,∠A=130°,∴∠C=180°-130°=50°,∵AD∥BC,∴∠ABC=180°-∠A=50°,∵BD平分∠ABC,∴∠DBC=25°,∴∠BDC=180°-25°-50°=105°,故选:B.【点睛】本题考查了圆内接四边形的性质,关键是根据圆内接四边形的性质得出∠C的度数.9、C【解析】列表得,-1 (-1,1)(-1,2)(-1,0)(-1,-1)由表格可知,总共有16种结果,两个数都为正数的结果有4种,所以两个数都为正数的概率为41=164,故选C.考点:用列表法(或树形图法)求概率.10、D【解析】连接正六边形的中心和各顶点,得到六个全等的正三角形,于是可知正六边形的边长等于正三角形的边长,为正六边形的外接圆半径.【详解】如图为正六边形的外接圆,ABCDEF是正六边形,∴∠AOF=10°, ∵OA=OF, ∴△AOF是等边三角形,∴OA=AF=1.所以正六边形的外接圆半径等于边长,即其外接圆半径为1.故选D.【点睛】本题考查了正六边形的外接圆的知识,解题的关键是画出图形,找出线段之间的关系.11、D【解析】画图,找出G2的临界点,以及G1的临界直线,分析出G1过定点,根据k的正负与函数增减变化的关系,结合函数图象逐个选项分析即可解答.【详解】解:一次函数y2=2x+3(﹣1<x<2)的函数值随x的增大而增大,如图所示,N(﹣1,2),Q(2,7)为G2的两个临界点,易知一次函数y1=kx+1﹣2k(k≠0)的图象过定点M(2,1),直线MN与直线MQ为G1与G2有公共点的两条临界直线,从而当G1与G2有公共点时,y1随x增大而减小;故①正确;当G1与G2没有公共点时,分三种情况:一是直线MN,但此时k=0,不符合要求;二是直线MQ,但此时k不存在,与一次函数定义不符,故MQ不符合题意;三是当k>0时,此时y1随x增大而增大,符合题意,故②正确;当k=2时,G1与G2平行正确,过点M作MP⊥NQ,则MN=3,由y2=2x+3,且MN∥x轴,可知,tan∠PNM=2,∴PM=2PN,由勾股定理得:PN2+PM2=MN2∴(2PN)2+(PN)2=9,∴PN=,∴PM=.故③正确.综上,故选:D.【点睛】本题是一次函数中两条直线相交或平行的综合问题,需要数形结合,结合一次函数的性质逐条分析解答,难度较大.12、C【解析】解:圆柱的主视图是矩形,正方体的主视图是正方形,圆锥的主视图是三角形,三棱柱的主视图是宽相等两个相连的矩形.故选C.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、CD的中点【解析】根据旋转的性质,其中对应点到旋转中心的距离相等,于是得到结论.【详解】∵△ADE旋转后能与△BEC重合,∴△ADE≌△BEC,∴∠AED=∠BCE,∠B=∠A=90°,∠ADE=∠BEC,DE=EC,∴∠AED+∠BEC=90°,∴∠DEC=90°,∴△DEC是等腰直角三角形,∴D与E,E与C是对应顶点,∵CD的中点到D,E,C三点的距离相等,∴旋转中心是CD的中点,故答案为:CD的中点.【点睛】本题考查了旋转的性质,等腰直角三角形的性质,关键是明确旋转中心的概念.14、1 3 .【解析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小.【详解】∵一个不透明口袋里装有形状、大小都相同的2个红球和4个黑球,∴从中任意摸出一个球恰好是红球的概率为:21 243=+,故答案为13.【点睛】本题考查了概率公式的应用.注意概率=所求情况数与总情况数之比.15、x=﹣1【解析】根据抛物线的对称轴公式可直接得出.【详解】解:这里a=m ,b=2m∴对称轴x=2122b m a m-=-=- 故答案为:x=-1.【点睛】解答本题关键是识记抛物线的对称轴公式x=2b a -. 16、1【解析】利用公式法可求二次函数y=x 2-2x+1的对称轴.也可用配方法.【详解】∵-2b a =-22-=1, ∴x=1.故答案为:1【点睛】本题考查二次函数基本性质中的对称轴公式;也可用配方法解决.17、【解析】甲工厂5月份用水量为x 吨,乙工厂5月份用水量为y 吨,根据甲、乙两厂5月份用水量与6月份用水量列出关于x 、y 的方程组即可.【详解】甲工厂5月份用水量为x 吨,乙工厂5月份用水量为y 吨,根据题意得:, 故答案为:.【点睛】 本题考查了二元一次方程组的应用,弄清题意,找准等量关系是解题的关键.18、1.267×102 【解析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值是易错点,由于126700有6位,所以可以确定n=6﹣1=2.【详解】解:126 700=1.267×102. 故答案为1.267×102. 【点睛】此题考查科学记数法表示较大的数的方法,准确确定a 与n 值是关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)m=8,n=-2;(2) 点F 的坐标为1(0,6)F ,2(0,2)F -【解析】分析:(1)利用三角形的面积公式构建方程求出n ,再利用 待定系数法求出m 的的值即可;(2)分两种情形分别求解如①图,当k<0时,设直线y=kx+b 与x 轴,y 轴的交点分别为1E ,1F . ②图中,当k>0时,设直线y=kx+b 与x 轴,y 轴的交点分别为点2E ,2F .详解:(1)如图②∵ 点A 的坐标为()4,A n -,点C 与点A 关于原点O 对称,∴ 点C 的坐标为()4,C n -.∵ AB ⊥x 轴于点B ,CD ⊥x 轴于点D ,∴ B ,D 两点的坐标分别为()4,0B -,()4,0D .∵ △ABD 的面积为8,()118422ABD SAB BD n n =⨯=⨯-⨯=-, ∴ 48n -=.解得 2n =-. ∵ 函数m y x=(0x <)的图象经过点()4,A n -, ∴ 48m n =-=.(2)由(1)得点C 的坐标为()4,2C .① 如图,当0k <时,设直线y kx b =+与x 轴,y 轴的交点分别为点1E ,1F .由 CD ⊥x 轴于点D 可得CD ∥1OF .∴ △1E CD ∽△1E 1F O .∴ 1111E C DC OF E F =. ∵ 112CF CE =,∴ 113DC OF =. ∴ 136OF DC ==.∴ 点1F 的坐标为()10,6F .②如图,当0k >时,设直线y kx b =+与x 轴,y 轴的交点分别为点2E ,2F .同理可得CD ∥2OF ,2222E C DC OF E F =.∵ 222CF CE =,∴ 2E 为线段2CF 的中点,222E C E F =.∴ 22OF DC ==.∴ 点2F 的坐标为()20,2F -.综上所述,点F 的坐标为()10,6F ,()20,2F -.点睛:本题考查了反比例函数综合题、一次函数的应用、三角形的面积公式等知识,解题的关键是会用方程的思想思考问题,会用分类讨论的思想思考问题,属于中考压轴题.20、(1)画图见解析;(2)画图见解析;(3)5.【解析】(1)直接利用直角三角形的性质结合勾股定理得出符合题意的图形;(2)根据矩形的性质画出符合题意的图形;(3)根据题意利用勾股定理得出结论.【详解】(1)如图所示;(2)如图所示;(3)如图所示,在直角三角形中,根据勾股定理得5【点睛】本题考查了勾股定理与作图,解题的关键是熟练的掌握直角三角形的性质与勾股定理.21、(1)抛物线解析式为22725()326y x =--,顶点为;(2)274()252S x =--+,1<x <1;(3)①四边形OEAF 是菱形;②不存在,理由见解析【解析】(1)已知了抛物线的对称轴解析式,可用顶点式二次函数通式来设抛物线,然后将A 、B 两点坐标代入求解即可. (2)平行四边形的面积为三角形OEA 面积的2倍,因此可根据E 点的横坐标,用抛物线的解析式求出E 点的纵坐标,那么E 点纵坐标的绝对值即为△OAE 的高,由此可根据三角形的面积公式得出△AOE 的面积与x 的函数关系式进而可得出S 与x 的函数关系式.(3)①将S=24代入S ,x 的函数关系式中求出x 的值,即可得出E 点的坐标和OE ,OA 的长;如果平行四边形OEAF 是菱形,则需满足平行四边形相邻两边的长相等,据此可判断出四边形OEAF 是否为菱形.②如果四边形OEAF 是正方形,那么三角形OEA 应该是等腰直角三角形,即E 点的坐标为(3,﹣3)将其代入抛物线的解析式中即可判断出是否存在符合条件的E 点.【详解】(1)由抛物线的对称轴是72x =,可设解析式为27()2y a x k =-+. 把A 、B 两点坐标代入上式,得227(6)0,2{7(0) 4.2a k a k -+=-+=解之,得225,.36a k ==- 故抛物线解析式为22725()326y x =--,顶点为725(,).26- (2)∵点(,)E x y 在抛物线上,位于第四象限,且坐标适合22725()326y x =--, ∴y<0,即-y>0,-y 表示点E 到OA 的距离.∵OA 是OEAF 的对角线, ∴2172264()2522OAE S SOA y y x ==⨯⨯⋅=-=--+. 因为抛物线与x 轴的两个交点是(1,0)的(1,0),所以,自变量x 的 取值范围是1<x <1.(3)①根据题意,当S = 24时,即274()25242x --+=. 化简,得271().24x -=解之,得123, 4.x x == 故所求的点E 有两个,分别为E 1(3,-4),E 2(4,-4).点E 1(3,-4)满足OE = AE ,所以OEAF 是菱形;点E 2(4,-4)不满足OE = AE ,所以OEAF 不是菱形.②当OA ⊥EF ,且OA = EF 时,OEAF 是正方形,此时点E 的坐标只能是(3,-3).而坐标为(3,-3)的点不在抛物线上,故不存在这样的点E ,使OEAF 为正方形.22、 (1)8;(2)1.【解析】(1)由平行四边形的性质和已知条件易证△AOE ≌△COF ,所以可得AE=CF=3,进而可求出BC 的长; (2)由平行四边形的性质:对角线互相平分可求出AO+OD 的长,进而可求出三角形△AOD 的周长.【详解】(1)∵四边形ABCD 是平行四边形,∴AD ∥BC ,AO=CO ,∴∠EAO=∠FCO ,在△AOE 和△COF 中EAO FCO AO COAOE COF ∠∠⎧⎪⎨⎪∠∠⎩===, ∴△AOE ≌△COF ,∴AE=CF=3,∴BC=BF+CF=5+3=8;(2)∵四边形ABCD 是平行四边形,∴AO=CO ,BO=DO ,AD=BC=8,∵AC+BD=20,∴AO+BO=10,∴△AOD 的周长=AO+BO+AD=1.【点睛】本题考查了平行四边形的性质和全等三角形的判定以及全等三角形的性质,能够根据平行四边形的性质证明三角形全等,再根据全等三角形的性质将所求的线段转化为已知的线段是解题的关键.23、(1)证明见解析(2)-3【解析】试题分析:(1)根据等边三角形的性质,可得EO ⊥AC ,即BD ⊥AC ,根据平行四边形的对角线互相垂直可证菱形,(2) 根据平行四边形的对角线互相平分可得AO =CO ,BO =DO ,再根据△EAC 是等边三角形可以判定EO ⊥AC ,并求出EA 的长度,然后在Rt △ABO 中,利用勾股定理列式求出BO 的长度,即DO 的长度,在Rt △AOE 中,根据勾股定理列式求出EO 的长度,再根据ED =EO -DO 计算即可得解.试题解析:(1) ∵四边形ABCD 是平行四边形,∴AO =CO ,DO =BO ,∵△EAC 是等边三角形, EO 是AC 边上中线,∴EO ⊥AC ,即BD ⊥AC,∴平行四边形ABCD 是是菱形.(2) ∵平行四边形ABCD 是是菱形,∴AO =CO =12AC =4,DO =BO , ∵△EAC 是等边三角形,∴EA =AC =8,EO ⊥AC ,在Rt △ABO 中,由勾股定理可得:BO =3,∴DO =B O=3,在Rt △EAO 中,由勾股定理可得:EO =43∴ED =EO -DO =43-3.24、6+332【解析】如下图,过点C 作CF ⊥AB 于点F ,设AB 长为x ,则易得AF=x-4,在Rt △ACF 中利用∠α的正切函数可由AF 把CF 表达出来,在Rt △ABE 中,利用∠β的正切函数可由AB 把BE 表达出来,这样结合BD=CF ,DE=BD-BE 即可列出关于x 的方程,解方程求得x 的值即可得到AB 的长.【详解】解:如图,过点C 作CF ⊥AB ,垂足为F ,设AB =x ,则AF =x -4,∵在Rt △ACF 中,tan ∠α=AF CF , ∴CF =4tan30x -︒=BD , 同理,Rt △ABE 中,BE =tan60x ︒, ∵BD -BE =DE ,∴4tan30x -︒-tan60x ︒=3,解得x答:树高AB 为( . 【点睛】作出如图所示的辅助线,利用三角函数把CF 和BE 分别用含x 的式子表达出来是解答本题的关键.25、(1)见解析;(2)①23EC DF =;②cos ∠AFE =25 【解析】(1)用特殊值法,设2BE EC ==,则4AB BC ==,证ABE ECF ∆∆∽,可求出CF ,DF 的长,即可求出结论; (2)①如图2,过F 作FG FD ⊥交AD 于点G ,证FGD ∆和AEF ∆是等腰直角三角形,证FCE AGF ∆∆∽,求出:CE GF 的值,即可写出:EC DF 的值;②如图3,作FT FD =交AD 于点T ,作FH AD ⊥于H ,证FCE ATF ∆∆∽,设CF =2,则CE =6,可设AT =x ,则TF =3x ,32AD CD x +==,112DH DT x +==,分别用含x 的代数式表示出∠AFE 和∠D 的余弦值,列出方程,求出x 的值,即可求出结论.【详解】(1)设BE =EC =2,则AB =BC =4,∵90AEF ∠︒=,∴90AEB FEC ∠+∠︒=,∵90AEB EAB ∠+∠︒=,∴∠FEC =∠EAB ,又∴90B C ∠∠︒==,∴ABE ECF ∆∆∽, ∴BE AB CF EC=, 即242CF =, ∴CF =1,则3DF DC CF -==, ∴23EC DF =; (2)①如图2,过F 作FG FD ⊥交AD 于点G ,∵45AFE ADC ∠∠︒==,∴FGD ∆和AEF ∆是等腰直角三角形,∴180135AGF DGF ∠︒-∠︒==,180135C D ∠︒-∠︒==,∴∠AGF =∠C ,又∵GAF D CFE AFE ∠+∠∠+∠=,∴∠GAF =∠CFE ,∴FCE AGF ∆∆∽, ∴2=2CE FE GF AF =, 又∵GF =DF ,∴22EC DF =;②如图3,作FT FD =交AD 于点T ,作FHAD ⊥于H ,则FTD FDT ∠∠=,∴180180FTD D ︒-∠︒-∠=,∴∠ATF =∠C , 又∵TAF D AFE CFE ∠+∠∠+∠=,且∠D =∠AFE ,∴∠TAF =∠CFE ,∴FCE ATF ∆∆∽,∴FE FC CE AF AT TF==, 设CF =2,则CE =6,可设AT =x ,则TF =3x ,32AD CD x +==, ∴112DH DT x +==,且2FE FC AF AT x==, 由cos =cos AFE D ∠,得213x x x +=, 解得x =5,∴2cos 5EF AFE AF ∠==.【点睛】本题主要考查了三角形相似的判定及性质的综合应用,熟练掌握三角形相似的判定及性质是解决本题的关键.26、(2)见解析;(2)2+3.【解析】(2)连接OC,根据圆周角定理、切线的性质得到∠ACO=∠DCB,根据CA=CD得到∠CAD=∠D,证明∠COB=∠CBO,根据等角对等边证明;(2)连接AE,过点B作BF⊥CE于点F,根据勾股定理计算即可.【详解】(2)证明:连接OC,∵AB为⊙O直径,∴∠ACB=90°,∵CD为⊙O切线∴∠OCD=90°,∴∠ACO=∠DCB=90°﹣∠OCB,∵CA=CD,∴∠CAD=∠D.∴∠COB=∠CBO.∴OC=BC.∴OB=BC;(2)连接AE,过点B作BF⊥CE于点F,∵E是AB中点,∴AE BE=,∴AE=BE=2.∵AB为⊙O直径,∴∠AEB=90°.∴∠ECB=∠BAE=45°,22AB=,∴122CB AB==.∴CF=BF=2.∴3EF=∴13CE=+【点睛】本题考查的是切线的性质、圆周角定理、勾股定理,掌握圆的切线垂直于经过切点的半径是解题的关键.27、(1)见解析;(1)OE=1.【解析】(1)先判断出∠OAB=∠DCA,进而判断出∠DAC=∠DAC,得出CD=AD=AB,即可得出结论;(1)先判断出OE=OA=OC,再求出OB=1,利用勾股定理求出OA,即可得出结论.【详解】解:(1)∵AB∥CD,∴∠OAB=∠DCA,∵AC为∠DAB的平分线,∴∠OAB=∠DAC,∴∠DCA=∠DAC,∴CD=AD=AB,∵AB∥CD,∴四边形ABCD是平行四边形,∵AD=AB,∴▱ABCD是菱形;(1)∵四边形ABCD是菱形,∴OA=OC,BD⊥AC,∵CE⊥AB,∴OE=OA=OC,∵BD=1,∴OB=12BD=1,在Rt△AOB中,AB OB=1,∴OA1,∴OE=OA=1.【点睛】此题主要考查了菱形的判定和性质,平行四边形的判定和性质,角平分线的定义,勾股定理,判断出CD=AD=AB是解本题的关键。
2024年中考数学模拟考试试卷(含有答案)
解不等式①得:
解不等式②得:
∴原不等式组的解集为:
∵不等式组的解集是
∴
∴
∴
故选:B.
【点睛】本题考查了根据一元一次不等式组的解集求参数,准确熟练地进行计算是解题的关键.
7.象棋起源于中国,中国象棋文化历史悠久.如图所示是某次对弈的残图,如果建立平面直角坐标系,使棋子“帅”位于点 的位置,则在同一坐标系下,经过棋子“帅”和“马”所在的点的一次函数解析式为( )
3.中华鲟是地球上最古老的脊椎动物之一,距今约有140000000年的历史,是国家一级保护动物和长江珍稀特有鱼类保护的旗舰型物种,3月28日是中华鲟保护日,有关部门进行放流活动,实现鱼类物种的延续并对野生资源形成持续补充.将140000000用科学记数法表示应为( )
A. B. C. D.
【答案】B
8.如图,在 中 , 和 ,点 为 的中点,以 为圆心, 长为半径作半圆,交 于点 ,则图中阴影部分的面积是( )
A. B. C. D.
【答案】C
【解析】
【分析】连接 ,BD,作 交 于点 ,首先根据勾股定理求出 的长度,然后利用解直角三角形求出 、 的长度,进而得到 是等边三角形 ,然后根据 角直角三角形的性质求出 的长度,最后根据 进行计算即可.
【详解】解:如图所示,连接 ,BD,作 交 于点
∵在 中 ,AB=4
∴
∵点 为 的中点,以 为圆心, 长为半径作半圆
∴ 是半圆的直径
∴
∵
∴
又∵
∴
∴பைடு நூலகம்是等边三角形
∴
∵
∴
∴ .
故选:C.
【点睛】本题考查了 角直角三角形的性质,解直角三角形,等边三角形的性质和判定,扇形面积,勾股定理等知识,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.
2021年中考第4次模拟考试数学试卷(含答案)
初三第四次模拟考试数学试卷一、 选择题(本大题共16小题,1~10小题每题3分;11~16小题每题2分,共42分。
在每小题给出的四个选项中,只有一项是符合题目要求的) 1. 在﹣4,0,﹣1,3这四个数中,最大的数是()A. ﹣4B. 0C.﹣1D. 3 2. 函数1-=x y 中,自变量x 的取值范围是() A. 1>x B.1≥x C.1<x D. 1≤x3. 下列计算中,不正确的是()A. x x x =+-32B.y xy xy 3262=÷C.36326)2(y x y x -=-D. 2222)(2y x x xy -=-⋅4. 在平面直角坐标系中,已知点A (m ,3)与点B (4,n )关于y 轴对称,那么2015)(n m +的值为() A. ﹣1B. 1C.20157-D. 201575. 下列四个点中,有三个点在同一反比例函数xky =的图象上,则不在这个函数图象上的点是()A. (5,1)B. (﹣1,5) C . (35,3) D. (﹣3,35-)6. 如图,在平面直角坐标系中,菱形OACB 的顶点O 在原点,点C 的坐标为(4,0),点B 的纵坐标是﹣1,则顶点A 的坐标是() A. (2,﹣1) B. (1,﹣2) C. (1,2) D. (2,1)7. 用一个平面去截一个几何体,不能截得三角形截面的几何体是() A. 圆柱 B. 圆锥 C. 三棱柱 D. 正方体8. 如图二次函数),,,0(2为常数c b a a c bx ax y ≠++=的图象,m c bx ax =++2有实数根的条件是()A. 2-≥mB.5≥mC.0≥mD. 4>m9. 如图,一只蚂蚁从O 出发,沿着扇形OAB 的边缘匀速爬行一周,当蚂蚁运动的时间为t 时,蚂蚁与O 点的距离为s ,则s 与t 的函数图象大致是()A. B. C. D.10. 某校九(3)班的全体同学喜欢的球类运动用如图所示的统计图来表示,下面说法正确的是()A. 从图中可以直接看出喜欢各种球类的具体人数B. 从图中可以直接看出全班的总人数C. 从图中可以直接看出全班同学初中三年来喜欢各种球类的变化情况D. 从图中可以直接看出全班同学现在喜欢各种球类的人数的大小关系11. 如图,四边形ABCD ,AEFG 都是正方形,点E ,G 分别在AB ,AD 上,连接FC ,过点E 作EH ∥FC 交BC 于点H 。
2022学年山东省济宁市中考四模数学试题(含答案解析)
2022学年山东省济宁市中考四模数学测试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.﹣2的绝对值是()A.2 B.12C.12-D.2-2.如图,将△ABC 绕点C顺时针旋转,使点B落在AB边上点B′处,此时,点A的对应点A′恰好落在BC 边的延长线上,下列结论错误的是()A.∠BCB′=∠ACA′B.∠ACB=2∠BC.∠B′CA=∠B′AC D.B′C 平分∠BB′A′3.如图,在正方形ABCD中,AB=9,点E在CD边上,且DE=2CE,点P是对角线AC上的一个动点,则PE+PD 的最小值是()A.10B.103C.9 D.24.已知点A(0,﹣4),B(8,0)和C(a,﹣a),若过点C的圆的圆心是线段AB的中点,则这个圆的半径的最小值是()A.22B2C3D.25.如图,下列条件不能判定△ADB∽△ABC的是()A .∠ABD=∠ACBB .∠ADB=∠ABC C .AB 2=AD•ACD . AD AB AB BC = 6.下列二次根式,最简二次根式是( )A .8B .12C .13D .0.17.计算tan30°的值等于( )A .B .C .D .8.在平面直角坐标系中,将点P (4,﹣3)绕原点旋转90°得到P 1,则P 1的坐标为( )A .(﹣3,﹣4)或(3,4)B .(﹣4,﹣3)C .(﹣4,﹣3)或(4,3)D .(﹣3,﹣4)9.已知点1(,3)A x 、2(,6)B x 都在反比例函数3y x =-的图象上,则下列关系式一定正确的是( ) A .120x x <<B .120x x <<C .210x x <<D .210x x << 10.若a+b=3,,则ab 等于( ) A .2 B .1 C .﹣2 D .﹣111.如图,AB ∥CD ,点E 在CA 的延长线上.若∠BAE=40°,则∠ACD 的大小为( )A .150°B .140°C .130°D .120°12.一个不透明的布袋里装有5个红球,2个白球,3个黄球,它们除颜色外其余都相同,从袋中任意摸出1个球,是黄球的概率为( )A .310B .15C .12D .710二、填空题:(本大题共6个小题,每小题4分,共24分.)13.关于x 的一元二次方程x 2﹣2kx+k 2﹣k=0的两个实数根分别是x 1、x 2,且x 12+x 22=4,则x 12﹣x 1x 2+x 22的值是_____.14.如图是一个几何体的三视图(图中尺寸单位:cm ),根据图中数据计算,这个几何体的表面积为__________2cm .15.A、B两地之间为直线距离且相距600千米,甲开车从A地出发前往B地,乙骑自行车从B地出发前往A地,已知乙比甲晚出发1小时,两车均匀速行驶,当甲到达B地后立即原路原速返回,在返回途中再次与乙相遇后两车都停止,如图是甲、乙两人之间的距离s(千类)与甲出发的时间t(小时)之间的图象,则当甲第二次与乙相遇时,乙离B地的距离为_____千米.16.计算5个数据的方差时,得s2=15[(5﹣x)2+(8﹣x)2+(7﹣x)2+(4﹣x)2+(6﹣x)2],则x的值为_____.17.如图,在▱ABCD中,E在AB上,CE、BD交于F,若AE:BE=4:3,且BF=2,则DF=_____18.今年我市初中毕业暨升学统一考试的考生约有35300人,该数据用科学记数法表示为________人.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,已知BD是△ABC的角平分线,点E、F分别在边AB、BC上,ED∥BC,EF∥AC.求证:BE=CF.20.(6分)在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动.(1)如图1,当点E在边DC上自D向C移动,同时点F在边CB上自C向B移动时,连接AE和DF交于点P,请你写出AE与DF的数量关系和位置关系,并说明理由;(2)如图2,当E,F分别在边CD,BC的延长线上移动时,连接AE,DF,(1)中的结论还成立吗?(请你直接回答“是”或“否”,不需证明);连接AC,请你直接写出△ACE为等腰三角形时CE:CD的值;(3)如图3,当E,F分别在直线DC,CB上移动时,连接AE和DF交于点P,由于点E,F的移动,使得点P也随之运动,请你画出点P运动路径的草图.若AD=2,试求出线段CP的最大值.21.(6分)先化简,再求值:221121()1a aa a a a-+-÷++,其中a=3+1.22.(8分)某学校要开展校园文化艺术节活动,为了合理编排节目,对学生最喜爱的歌曲、舞蹈、小品、相声四类节目进行了一次随机抽样调查(每名学生必须选择且只能选择一类),并将调查结果绘制成如下不完整的统计图.请你根据图中信息,回答下列问题:(1)求本次调查的学生人数,并补全条形统计图;(2)在扇形统计图中,求“歌曲”所在扇形的圆心角的度数;(3)九年一班和九年二班各有2名学生擅长舞蹈,学校准备从这4名学生中随机抽取2名学生参加舞蹈节目的编排,那么抽取的2名学生恰好来自同一个班级的概率是多少?23.(8分)在Rt△ABC中,∠C=90°,∠B=30°,AB=10,点D是射线CB上的一个动点,△ADE是等边三角形,点F是AB的中点,连接EF.(1)如图,点D在线段CB上时,①求证:△AEF≌△ADC;②连接BE,设线段CD=x,BE=y,求y2﹣x2的值;(2)当∠DAB=15°时,求△ADE的面积.24.(10分)如图,四边形ABCD的外接圆为⊙O,AD是⊙O的直径,过点B作⊙O的切线,交DA的延长线于点E,连接BD,且∠E=∠DBC.(1)求证:DB平分∠ADC;(2)若EB=10,CD=9,tan∠ABE=12,求⊙O的半径.25.(10分)某市扶贫办在精准扶贫工作中,组织30辆汽车装运花椒、核桃、甘蓝向外地销售.按计划30辆车都要装运,每辆汽车只能装运同一种产品,且必须装满,根据下表提供的信息,解答以下问题:产品名称核桃花椒甘蓝每辆汽车运载量(吨)10 6 4每吨土特产利润(万元)0.7 0.8 0.5若装运核桃的汽车为x辆,装运甘蓝的车辆数是装运核桃车辆数的2倍多1,假设30辆车装运的三种产品的总利润为y万元.求y与x之间的函数关系式;若装花椒的汽车不超过8辆,求总利润最大时,装运各种产品的车辆数及总利润最大值.26.(12分)如图,在自动向西的公路l上有一检查站A,在观测点B的南偏西53°方向,检查站一工作人员家住在与观测点B的距离为7132km,位于点B南偏西76°方向的点C处,求工作人员家到检查站的距离AC.(参考数据:sin76°≈2425,cos76°≈625,tan 76°≈4,sin53°≈35,tan53°≈43)27.(12分)如图,在Rt△ABC的顶点A、B在x轴上,点C在y轴上正半轴上,且A(-1,0),B(4,0),∠ACB=90°.(1)求过A、B、C三点的抛物线解析式;(2)设抛物线的对称轴l与BC边交于点D,若P是对称轴l上的点,且满足以P、C、D为顶点的三角形与△AOC相似,求P点的坐标;(3)在对称轴l和抛物线上是否分别存在点M、N,使得以A、O、M、N为顶点的四边形是平行四边形,若存在请直接写出点M、点N的坐标;若不存在,请说明理由.图1 备用图2022学年模拟测试卷参考答案(含详细解析)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、A【答案解析】分析:根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点﹣2到原点的距离是2,所以﹣2的绝对值是2,故选A.2、C【答案解析】根据旋转的性质求解即可.【题目详解】解:根据旋转的性质,A:∠'BCB 与∠ACA '均为旋转角,故∠'BCB =∠ACA ',故A 正确;B:CB CB =',B BB C ∴∠=∠', 又A CB B BB C ∠=∠+∠'''2A CB B ''∴∠=∠,ACB A CB ∠=∠''2ACB B ∴∠=∠,故B 正确;D:A BC B ''∠=∠,A B C BB C ∴∠=∠'''∴B′C 平分∠BB′A′,故D 正确.无法得出C 中结论,故答案:C.【答案点睛】本题主要考查三角形旋转后具有的性质,注意灵活运用各条件3、A【答案解析】解:如图,连接BE ,设BE 与AC 交于点P ′,∵四边形ABCD 是正方形,∴点B 与D 关于AC 对称,∴P ′D =P ′B ,∴P ′D +P ′E =P ′B +P ′E =BE 最小.即P 在AC 与BE 的交点上时,PD +PE 最小,为BE 的长度.∵直角△CBE 中,∠BCE =90°,BC =9,CE =13CD =3,∴BE =2293+=310.故选A .点睛:此题考查了轴对称﹣﹣最短路线问题,正方形的性质,要灵活运用对称性解决此类问题.找出P 点位置是解题的关键.4、B【答案解析】首先求得AB 的中点D 的坐标,然后求得经过点D 且垂直于直线y=-x 的直线的解析式,然后求得与y=-x 的交点坐标,再求得交点与D 之间的距离即可.【题目详解】AB 的中点D 的坐标是(4,-2),∵C (a ,-a )在一次函数y=-x 上,∴设过D且与直线y=-x垂直的直线的解析式是y=x+b,把(4,-2)代入解析式得:4+b=-2,解得:b=-1,则函数解析式是y=x-1.根据题意得:6 {y xy x--==,解得:3{3 xy==-,则交点的坐标是(3,-3).故选:B【答案点睛】本题考查了待定系数法求函数的解析式,以及两直线垂直的条件,正确理解C(a,-a),一定在直线y=-x上,是关键.5、D【答案解析】根据有两个角对应相等的三角形相似,以及根据两边对应成比例且夹角相等的两个三角形相似,分别判断得出即可.【题目详解】解:A、∵∠ABD=∠ACB,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;B、∵∠ADB=∠ABC,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;C、∵AB2=AD•AC,∴AC ABAB AD=,∠A=∠A,△ABC∽△ADB,故此选项不合题意;D、ADAB=ABBC不能判定△ADB∽△ABC,故此选项符合题意.故选D.【答案点睛】点评:本题考查了相似三角形的判定,利用了有两个角对应相等的三角形相似,两边对应成比例且夹角相等的两个三角形相似.6、C【答案解析】根据最简二次根式的定义逐个判断即可.【题目详解】A.822=,不是最简二次根式,故本选项不符合题意;B.1222=,不是最简二次根式,故本选项不符合题意;C.13是最简二次根式,故本选项符合题意;D.100.110=,不是最简二次根式,故本选项不符合题意.故选C.【答案点睛】本题考查了最简二次根式的定义,能熟记最简二次根式的定义是解答此题的关键.7、C【答案解析】tan30°=.故选C.8、A【答案解析】分顺时针旋转,逆时针旋转两种情形求解即可.【题目详解】解:如图,分两种情形旋转可得P′(3,4),P″(−3,−4),故选A.【答案点睛】本题考查坐标与图形变换——旋转,解题的关键是利用空间想象能力.9、A【答案解析】分析:根据反比例函数的性质,可得答案.详解:由题意,得k=-3,图象位于第二象限,或第四象限,在每一象限内,y随x的增大而增大,∵3<6,∴x1<x2<0,故选A.点睛:本题考查了反比例函数,利用反比例函数的性质是解题关键.10、B【答案解析】∵a+b=3,∴(a+b)2=9∴a2+2ab+b2=9∵a2+b2=7∴7+2ab=9,7+2ab=9∴ab=1.故选B.考点:完全平方公式;整体代入.11、B【答案解析】测试卷分析:如图,延长DC到F,则∵AB∥CD,∠BAE=40°,∴∠ECF=∠BAE=40°.∴∠ACD=180°-∠ECF=140°.故选B.考点:1.平行线的性质;2.平角性质.12、A【答案解析】让黄球的个数除以球的总个数即为所求的概率.【题目详解】解:因为一共10个球,其中3个黄球,所以从袋中任意摸出1个球是黄球的概率是3 10.故选:A.【答案点睛】本题考查概率的基本计算,用到的知识点为:概率等于所求情况数与总情况数之比.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、1【答案解析】【分析】根据根与系数的关系结合x1+x2=x1•x2可得出关于k的一元二次方程,解之即可得出k的值,再根据方程有实数根结合根的判别式即可得出关于k的一元二次不等式,解之即可得出k的取值范围,从而可确定k的值.【题目详解】∵x2﹣2kx+k2﹣k=0的两个实数根分别是x1、x2,∴x1+x2=2k,x1•x2=k2﹣k,∵x12+x22=1,∴(x1+x2)2-2x1x2=1,(2k)2﹣2(k2﹣k)=1,2k2+2k﹣1=0,k2+k﹣2=0,k=﹣2或1,∵△=(﹣2k)2﹣1×1×(k2﹣k)≥0,k≥0,∴k=1,∴x1•x2=k2﹣k=0,∴x12﹣x1x2+x22=1﹣0=1,故答案为:1.【答案点睛】本题考查了根的判别式以及根与系数的关系,熟练掌握“当一元二次方程有实数根时,根的判别式△≥0”是解题的关键.14、16【答案解析】分析:由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状,确定圆锥的母线长和底面半径,从而确定其表面积.详解:由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥;根据三视图知:该圆锥的母线长为6cm ,底面半径为2cm ,故表面积=πrl+πr 2=π×2×6+π×22=16π(cm 2).故答案为:16π.点睛:考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.15、5003【答案解析】根据题意和函数图象可以分别求得甲乙的速度,从而可以得到当甲第二次与乙相遇时,乙离B 地的距离.【题目详解】设甲的速度为akm/h ,乙的速度为bkm/h ,(51)()600{(65)(51)a a b a b+-+=-=- , 解得,100{25a b ==, 设第二次甲追上乙的时间为m 小时,100m ﹣25(m ﹣1)=600,解得,m=233, ∴当甲第二次与乙相遇时,乙离B 地的距离为:25×(233-1)=5003千米, 故答案为5003. 【答案点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.16、1【答案解析】根据平均数的定义计算即可.【题目详解】解: 5874665x ++++== 故答案为1.【答案点睛】本题主要考查平均数的求法,掌握平均数的公式是解题的关键.17、143.【答案解析】解:令AE=4x,BE=3x,∴AB=7x.∵四边形ABCD为平行四边形,∴CD=AB=7x,CD∥AB,∴△BEF∽△DCF.∴3377 BF BE xDF CD x===,∴DF=14 3【答案点睛】本题考查平行四边形的性质及相似三角形的判定与性质,掌握定理正确推理论证是本题的解题关键.18、3.53×104【答案解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数,35300=3.53×104,故答案为:3.53×104.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、证明见解析.【答案解析】测试卷分析:先利用平行四边形性质证明DE=CF,再证明EB=ED,即可解决问题.测试卷解析:∵ED∥BC,EF∥AC,∴四边形EFCD是平行四边形,∴DE=CF,∵BD平分∠ABC,∴∠EBD=∠DBC,∵DE∥BC,∴∠EDB=∠DBC,∴∠EBD=∠EDB,∴EB=ED,∴EB=CF.考点:平行四边形的判定与性质.20、(1)AE=DF,AE⊥DF,理由见解析;(2)成立,或2;(3)1【答案解析】测试卷分析:(1)根据正方形的性质,由SAS先证得△ADE≌△DCF.由全等三角形的性质得AE=DF,∠DAE=∠CDF,再由等角的余角相等可得AE ⊥DF ;(2)有两种情况:①当AC=CE 时,设正方形ABCD 的边长为a ,由勾股定理求出AC=CE=2a 即可;②当AE=AC 时,设正方形的边长为a ,由勾股定理求出AC=AE=2a ,根据正方形的性质知∠ADC=90°,然后根据等腰三角形的性质得出DE=CD=a 即可;(3)由(1)(2)知:点P 的路径是一段以AD 为直径的圆,设AD 的中点为Q ,连接QC 交弧于点P ,此时CP 的长度最大,再由勾股定理可得QC 的长,再求CP 即可.测试卷解析:(1)AE=DF ,AE ⊥DF ,理由是:∵四边形ABCD 是正方形,∴AD=DC ,∠ADE=∠DCF=90°,∵动点E ,F 分别从D ,C 两点同时出发,以相同的速度在直线DC ,CB 上移动,∴DE=CF ,在△ADE 和△DCF 中AD DC ADE DCF DE CF =⎧⎪∠=∠⎨⎪=⎩,∴ADE DCF ∆≅∆,∴AE=DF ,∠DAE=∠FDC ,∵∠ADE=90°,∴∠ADP+∠CDF=90°,∴∠ADP+∠DAE=90°,∴∠APD=180°-90°=90°,∴AE ⊥DF ;(2)(1)中的结论还成立,有两种情况:①如图1,当AC=CE 时,设正方形ABCD 的边长为a ,由勾股定理得,222AC CE a a a ==+=, 则:2:2CE CD a a ==;②如图2,当AE=AC 时,设正方形ABCD 的边长为a ,由勾股定理得:222AC AE a a a ==+=,∵四边形ABCD 是正方形,∴∠ADC=90°,即AD ⊥CE ,∴DE=CD=a ,∴CE:CD=2a:a=2;即2或2;(3)∵点P 在运动中保持∠APD=90°,∴点P 的路径是以AD 为直径的圆,如图3,设AD 的中点为Q ,连接CQ 并延长交圆弧于点P ,此时CP 的长度最大,∵在Rt △QDC 中,2222215QC CD QD =+=+=∴51CP QC QP =+=,即线段CP 51.点睛:此题主要考查了正方形的性质,勾股定理,圆周角定理,全等三角形的性质与判定,等腰三角形的性质,三角形的内角和定理,能综合运用性质进行推挤是解此题的关键,用了分类讨论思想,难度偏大.21、13 【答案解析】 原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把a 的值代入计算即可求出值.【题目详解】原式=()()()211·11a a a a a a a ++-+- =()211a -,当a=3+1时,原式=13. 【答案点睛】 本题考查了分式的化简求值,熟练掌握分式混合运算的运算顺序以及运算法则是解题的关键.22、(1)共调查了50名学生;统计图见解析;(2)72°;(3).【答案解析】(1)用最喜爱相声类的人数除以它所占的百分比即可得到调查的总人数,先计算出最喜欢舞蹈类的人数,然后补全条形统计图;(2)用360°乘以最喜爱歌曲类人数所占的百分比得到“歌曲”所在扇形的圆心角的度数;(3)画树状图展示所有12种等可能的结果数,再找出抽取的2名学生恰好来自同一个班级的结果数,然后根据概率公式求解.【题目详解】解:(1)14÷28%=50, ∴本次共调查了50名学生.补全条形统计图如下.(2)在扇形统计图中,“歌曲”所在扇形的圆心角的度数为360°×=72°.(3)设一班2名学生为数字“1”,“1”,二班2名学生为数字“2”,“2”,画树状图如下.共有12种等可能的结果,其中抽取的2名学生恰好来自同一个班级的结果有4种,∴抽取的2名学生恰好来自同一个班级的概率P==.【答案点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.23、(1)①证明见解析;②25;(2)为2532或503+1.【答案解析】(1)①在直角三角形ABC中,由30°所对的直角边等于斜边的一半求出AC的长,再由F为AB中点,得到AC=AF=5,确定出三角形ADE为等边三角形,利用等式的性质得到一对角相等,再由AD=AE,利用SAS即可得证;②由全等三角形对应角相等得到∠AEF为直角,EF=CD=x,在三角形AEF中,利用勾股定理即可列出y关于x的函数解析式;(2)分两种情况考虑:①当点在线段CB上时;②当点在线段CB的延长线上时,分别求出三角形ADE面积即可.【题目详解】(1)、①证明:在Rt△ABC中,∵∠B=30°,AB=10,∴∠CAB=60°,AC=12AB=5,∵点F是AB的中点,∴AF=12AB=5,∴AC=AF,∵△ADE是等边三角形,∴AD=AE ,∠EAD=60°,∵∠CAB=∠EAD ,即∠CAD+∠DAB=∠FAE+∠DAB ,∴∠CAD=∠FAE ,∴△AEF ≌△ADC (SAS );②∵△AEF ≌△ADC ,∴∠AEF=∠C=90°,EF=CD=x ,又∵点F 是AB 的中点,∴AE=BE=y ,在Rt △AEF 中,勾股定理可得:y 2=25+x 2,∴y 2﹣x 2=25.(2)①当点在线段CB 上时, 由∠DAB=15°,可得∠CAD=45°,△ADC 是等腰直角三角形,∴AD 2=50,△ADE 的面积为21253sin 6022ADE S AD ∆=⋅⋅︒=; ②当点在线段CB 的延长线上时, 由∠DAB=15°,可得∠ADB=15°,BD=BA=10,∴在Rt △ACD 中,勾股定理可得AD 23, 21sin 60503752ADE S AD ∆=⋅⋅︒= 综上所述,△ADE 的面积为32或50375. 【答案点睛】 此题考查了勾股定理,全等三角形的判定与性质,以及等边三角形的性质,熟练掌握勾股定理是解本题的关键.24、(1)详见解析;(2)OA =152. 【答案解析】(1)连接OB,证明∠ABE=∠ADB,可得∠ABE=∠BDC,则∠ADB=∠BDC;(2)证明△AEB∽△CBD,AB=x,则BD=2x,可求出AB,则答案可求出.【题目详解】(1)证明:连接OB,∵BE为⊙O的切线,∴OB⊥BE,∴∠OBE=90°,∴∠ABE+∠OBA=90°,∵OA=OB,∴∠OBA=∠OAB,∴∠ABE+∠OAB=90°,∵AD是⊙O的直径,∴∠OAB+∠ADB=90°,∴∠ABE=∠ADB,∵四边形ABCD的外接圆为⊙O,∴∠EAB=∠C,∵∠E=∠DBC,∴∠ABE=∠BDC,∴∠ADB=∠BDC,即DB平分∠ADC;(2)解:∵tan∠ABE=12,∴设AB=x,则BD=2x,∴225AD AB BD x=+=,∵∠BAE=∠C,∠ABE=∠BDC,∴△AEB ∽△CBD , ∴BE AB BD CD=, ∴1029x x =,解得x =∴AB =15,∴OA =152. 【答案点睛】本题考查切线的性质、解直角三角形、勾股定理等知识,解题的关键是学会添加常用辅助线解决问题.25、 (1)y=﹣3.4x+141.1;(1)当装运核桃的汽车为2辆、装运甘蓝的汽车为12辆、装运花椒的汽车为1辆时,总利润最大,最大利润为117.4万元.【答案解析】(1)根据题意可以得装运甘蓝的汽车为(1x+1)辆,装运花椒的汽车为30﹣x ﹣(1x+1)=(12﹣3x )辆,从而可以得到y 与x 的函数关系式;(1)根据装花椒的汽车不超过8辆,可以求得x 的取值范围,从而可以得到y 的最大值,从而可以得到总利润最大时,装运各种产品的车辆数.【题目详解】(1)若装运核桃的汽车为x 辆,则装运甘蓝的汽车为(1x+1)辆,装运花椒的汽车为30﹣x ﹣(1x+1)=(12﹣3x )辆,根据题意得:y=10×0.7x+4×0.5(1x+1)+6×0.8(12﹣3x )=﹣3.4x+141.1. (1)根据题意得:()29382130x x x -≤⎧⎨++≤⎩, 解得:7≤x≤293, ∵x 为整数,∴7≤x≤2.∵10.6>0,∴y 随x 增大而减小,∴当x=7时,y 取最大值,最大值=﹣3.4×7+141.1=117.4,此时:1x+1=12,12﹣3x=1.答:当装运核桃的汽车为2辆、装运甘蓝的汽车为12辆、装运花椒的汽车为1辆时,总利润最大,最大利润为117.4万元.【答案点睛】本题考查了一次函数的应用,解题的关键是熟练的掌握一次函数的应用.26、工作人员家到检查站的距离AC 的长约为92km . 【答案解析】分析:过点B 作BH ⊥l 交l 于点H ,解Rt △BCH ,得出CH=BC•sin ∠CBH=274,BH=BC•cos ∠CBH=2716.再解Rt △BAH 中,求出AH=BH•tan ∠ABH=94,那么根据AC=CH-AH 计算即可. 详解:如图,过点B 作BH ⊥l 交l 于点H ,∵在Rt △BCH 中,∠BHC=90°,∠CBH=76°,BC=7132km , ∴CH=BC•sin ∠CBH≈225242732254⨯=, BH=BC•cos ∠CBH≈225627322516⨯=. ∵在Rt △BAH 中,∠BHA=90°,∠ABH=53°,BH=2716, ∴AH=BH•tan ∠ABH≈27491634⨯=, ∴AC=CH ﹣AH=2799442-=(km ). 答:工作人员家到检查站的距离AC 的长约为92km . 点睛:本题考查的是解直角三角形的应用-方向角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.27、见解析【答案解析】分析:(1)根据OAC OCB ∽求出点C 的坐标,用待定系数法即可求出抛物线的解析式.(2)分两种情况进行讨论即可.(3)存在. 假设直线l 上存在点M ,抛物线上存在点N ,使得以A 、O 、M 、N 为顶点的四边形为平行四边形.分当平行四边形AOMN '是平行四边形时,当平行四边形AONM 是平行四边形时,当四边形AMON 为平行四边形时,三种情况进行讨论.详解:(1)易证OAC OCB ∽,得OA OC OC OB=,2· 4.OC OAOB == ∴OC =2,∴C (0,2),∵抛物线过点A (-1,0),B (4,0)因此可设抛物线的解析式为(1)(4),y a x x =+-将C 点(0,2)代入得:42a -=,即1,2a =- ∴抛物线的解析式为213 2.22y x x =-++ (2)如图2,当1CDP CAO ∽时,1CP l ⊥,则P 1(32,2), 当2P DC CAO ∽ 时,2P ACO ,∠=∠ ∴OC ∥l,∴225OC OA P H AH ==, ∴P 2H =52·OC =5, ∴P 2 (32,5) 因此P 点的坐标为(32,2)或(32,5). (3)存在.假设直线l 上存在点M ,抛物线上存在点N ,使得以A 、O 、M 、N 为顶点的四边形为平行四边形.如图3,当平行四边形AOMN'是平行四边形时,M(32,218),N'(12,218),当平行四边形AONM是平行四边形时,M(32,218),N(52,218),如图4,当四边形AMON为平行四边形时,MN与OA互相平分,此时可设M(32,m),则5(,)2N m--,∵点N在抛物线1(1)(4)2y x x=-+-上,∴-m=-12·(-52+1)( -52-4)=-398,∴m=39 8,此时M(32,398),N(-52,-398).综上所述,M(32,218),N(12,218)或M(32,218),N(52,218) 或M(32,398),N(-52,-398).点睛:属于二次函数综合题,考查相似三角形的判定与性质,待定系数法求二次函数解析式等,注意分类讨论的思想方法在数学中的应用.。
2024届陕西省西安市中考四模数学试题含解析
2024届陕西省西安市中考四模数学试题注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,将△ABE 向右平移2cm 得到△DCF ,如果△ABE 的周长是16cm ,那么四边形ABFD 的周长是( )A .16cmB .18cmC .20cmD .21cm2.下列计算正确的是( )A .2223x x x +=B .623x x x ÷=C .235(2)2x x x =D .222(3)6x x =3.下列因式分解正确的是( )A .x 2+9=(x+3)2B .a 2+2a+4=(a+2)2C .a 3-4a 2=a 2(a-4)D .1-4x 2=(1+4x )(1-4x )4.如图,已知AB ∥CD ,AD =CD ,∠1=40°,则∠2的度数为( )A .60°B .65°C .70°D .75°5.如图,某地修建高速公路,要从A 地向B 地修一条隧道(点A 、B 在同一水平面上).为了测量A 、B 两地之间的距离,一架直升飞机从A 地出发,垂直上升800米到达C 处,在C 处观察B 地的俯角为α,则A 、B 两地之间的距离为( )A .800sinα米B .800tanα米C .800sin α米D .800tan α米 6.如图,在下列条件中,不能判定直线a 与b 平行的是( )A.∠1=∠2 B.∠2=∠3 C.∠3=∠5 D.∠3+∠4=180°7.一、单选题如图中的小正方形边长都相等,若△MNP≌△MEQ,则点Q可能是图中的()A.点A B.点B C.点C D.点D8.已知一个正n边形的每个内角为120°,则这个多边形的对角线有()A.5条B.6条C.8条D.9条9.4的平方根是( )A.2 B.2C.±2 D.±210.关于x的一元二次方程x2﹣2x+k+2=0有实数根,则k的取值范围在数轴上表示正确的是( ) A.B.C.D.二、填空题(共7小题,每小题3分,满分21分)11.在Rt△ABC内有边长分别为2,x,3的三个正方形如图摆放,则中间的正方形的边长x的值为_____.12.已知反比例函数21kyx+=的图像经过点(2,1)-,那么k的值是__.13.如图,已知平行四边形ABCD,E是边BC的中点,联结DE并延长,与AB的延长线交于点F.设DA=a,DC=b,那么向量DF用向量a、b表示为_____.14.如图,在△ABC中,BA=BC=4,∠A=30°,D是AC上一动点,AC的长=_____;BD+12DC的最小值是_____.15.写出经过点(0,0),(﹣2,0)的一个二次函数的解析式_____(写一个即可).16.《九章算术》是中国传统数学最重要的著作,在“勾股”章中有这样一个问题:“今有邑方二百步,各中开门,出东门十五步有木,问:出南门几步而见木?”用今天的话说,大意是:如图,DEFG是一座边长为200步(“步”是古代的长度单位)的正方形小城,东门H位于GD 的中点,南门K位于ED的中点,出东门15步的A处有一树木,求出南门多少步恰好看到位于A处的树木(即点D在直线AC上)?请你计算KC的长为__________步.17.已知36,则x2y+xy2的值为____.三、解答题(共7小题,满分69分)18.(10分)(问题发现)(1)如图(1)四边形ABCD中,若AB=AD,CB=CD,则线段BD,AC的位置关系为;(拓展探究)(2)如图(2)在Rt△ABC中,点F为斜边BC的中点,分别以AB,AC为底边,在Rt△ABC外部作等腰三角形ABD和等腰三角形ACE,连接FD,FE,分别交AB,AC于点M,N.试猜想四边形FMAN的形状,并说明理由;(解决问题)(3)如图(3)在正方形ABCD中,AB2,以点A为旋转中心将正方形ABCD旋转60°,得到正方形AB'C'D',请直接写出BD'平方的值.19.(5分)如图,AB是⊙O的直径,∠BAC=90°,四边形EBOC是平行四边形,EB交⊙O于点D,连接CD并延长交AB的延长线于点F.(1)求证:CF是⊙O的切线;(2)若∠F=30°,EB=6,求图中阴影部分的面积.(结果保留根号和π)20.(8分)雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10 000元,第三天收到捐款12 100元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长速度,第四天该单位能收到多少捐款?21.(10分)某通讯公司推出①,②两种通讯收费方式供用户选择,其中一种有月租费,另一种无月租费,且两种收费方式的通讯时间x(分)与费用y(元)之间的函数关系如图所示.有月租的收费方式是________(填“①”或“②”),月租费是________元;分别求出①,②两种收费方式中y与自变量x之间的函数表达式;请你根据用户通讯时间的多少,给出经济实惠的选择建议.22.(1018(2166÷31323.(12分)如图所示,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,EC的延长线交BD 于点P.(1)把△ABC 绕点A 旋转到图1,BD ,CE 的关系是 (选填“相等”或“不相等”);简要说明理由; (2)若AB=3,AD=5,把△ABC 绕点A 旋转,当∠EAC=90°时,在图2中作出旋转后的图形,PD= ,简要说明计算过程;(3)在(2)的条件下写出旋转过程中线段PD 的最小值为 ,最大值为 .24.(14分)春节期间,收发微信红包已经成为各类人群进行交流联系、增强感情的一部分,小王在年春节共收到红包元,年春节共收到红包元,求小王在这两年春节收到红包的年平均增长率.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解题分析】试题分析:已知,△ABE 向右平移2cm 得到△DCF ,根据平移的性质得到EF=AD=2cm ,AE=DF ,又因△ABE 的周长为16cm ,所以AB+BC+AC=16cm ,则四边形ABFD 的周长=AB+BC+CF+DF+AD=16cm+2cm+2cm=20cm .故答案选C .考点:平移的性质.2、C【解题分析】根据同类项的定义、同底数幂的除法、单项式乘单项式法则和积的乘方逐一判断即可.【题目详解】A 、2x 与2x 不是同类项,不能合并,此选项错误;B 、66422x x x x -÷==,此选项错误;C 、235(2)2x x x =,此选项正确;D 、224(3)9x x =,此选项错误.故选:C .【题目点拨】此题考查的是整式的运算,掌握同类项的定义、同底数幂的除法、单项式乘单项式法则和积的乘方是解决此题的关键.3、C【解题分析】试题分析:A 、B 无法进行因式分解;C 正确;D 、原式=(1+2x )(1-2x )故选C ,考点:因式分解【题目详解】请在此输入详解!4、C【解题分析】由等腰三角形的性质可求∠ACD =70°,由平行线的性质可求解.【题目详解】∵AD =CD ,∠1=40°,∴∠ACD =70°,∵AB ∥CD ,∴∠2=∠ACD =70°,故选:C .【题目点拨】本题考查了等腰三角形的性质,平行线的性质,是基础题.5、D【解题分析】【分析】在Rt △ABC 中,∠CAB=90°,∠B=α,AC=800米,根据tanα=AC AB,即可解决问题. 【题目详解】在Rt △ABC 中,∵∠CAB=90°,∠B=α,AC=800米, ∴tanα=AC AB, ∴AB=800tan tan AC αα=, 故选D .【题目点拨】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是熟练掌握基本知识,属于中考常考题型. 6、C【解题分析】解:A.∵∠1与∠2是直线a,b被c所截的一组同位角,∴∠1=∠2,可以得到a∥b,∴不符合题意B.∵∠2与∠3是直线a,b被c所截的一组内错角,∴∠2=∠3,可以得到a∥b,∴不符合题意,C.∵∠3与∠5既不是直线a,b被任何一条直线所截的一组同位角,内错角,∴∠3=∠5,不能得到a∥b,∴符合题意,D.∵∠3与∠4是直线a,b被c所截的一组同旁内角,∴∠3+∠4=180°,可以得到a∥b,∴不符合题意,故选C.【题目点拨】本题考查平行线的判定,难度不大.7、D【解题分析】根据全等三角形的性质和已知图形得出即可.【题目详解】解:∵△MNP≌△MEQ,∴点Q应是图中的D点,如图,故选:D.【题目点拨】本题考查了全等三角形的性质,能熟记全等三角形的性质的内容是解此题的关键,注意:全等三角形的对应角相等,对应边相等.8、D【解题分析】多边形的每一个内角都等于120°,则每个外角是60°,而任何多边形的外角是360°,则求得多边形的边数;再根据多边形一个顶点出发的对角线=n﹣3,即可求得对角线的条数.【题目详解】解:∵多边形的每一个内角都等于120°,∴每个外角是60度,则多边形的边数为360°÷60°=6,则该多边形有6个顶点,则此多边形从一个顶点出发的对角线共有6﹣3=3条.∴这个多边形的对角线有12(6×3)=9条,故选:D.【题目点拨】本题主要考查多边形内角和与外角和及多边形对角线,掌握求多边形边数的方法是解本题的关键.9、D【解题分析】先化简4,然后再根据平方根的定义求解即可.【题目详解】∵4=2,2的平方根是±2,∴4的平方根是±2.故选D.【题目点拨】本题考查了平方根的定义以及算术平方根,先把4正确化简是解题的关键,本题比较容易出错.10、C【解题分析】由一元二次方程有实数根可知△≥0,即可得出关于k的一元一次不等式,解之即可得出k的取值范围.【题目详解】∵关于x的一元二次方程x2−2x+k+2=0有实数根,∴△=(−2)2−4(k+2)⩾0,解得:k⩽−1,在数轴上表示为:故选C.【题目点拨】本题考查了一元二次方程根的判别式.根据一元二次方程根的情况利用根的判别式列出不等式是解题的关键.二、填空题(共7小题,每小题3分,满分21分)11、1【解题分析】解:如图.∵在Rt△ABC中(∠C=90°),放置边长分别2,3,x的三个正方形,∴△CEF∽△OME∽△PFN,∴OE:PN=OM:PF.∵EF=x,MO=2,PN=3,∴OE=x﹣2,PF=x﹣3,∴(x﹣2):3=2:(x﹣3),∴x=0(不符合题意,舍去),x=1.故答案为1.点睛:本题主要考查相似三角形的判定和性质、正方形的性质,解题的关键在于找到相似三角形,用x的表达式表示出对应边是解题的关键.12、32 k=-【解题分析】将点的坐标代入,可以得到-1=212k+,然后解方程,便可以得到k的值.【题目详解】∵反比例函数y=21kx+的图象经过点(2,-1),∴-1=21 2 k+∴k=−32;故答案为k=−32.【题目点拨】本题主要考查函数图像上的点满足其解析式,可以结合代入法进行解答13、a+2b【解题分析】根据平行四边形的判定与性质得到四边形DBFC是平行四边形,则DC=BF,故AF=2AB=2DC,结合三角形法则进行解答.【题目详解】如图,连接BD,FC,∵四边形ABCD是平行四边形,∴DC∥AB,DC=AB.∴△DCE∽△FBE.又E是边BC的中点,∴11 DE ECEF EB==,∴EC=BE,即点E是DF的中点,∴四边形DBFC是平行四边形,∴DC=BF,故AF=2AB=2DC,∴DF=DA+AF=DA+2DC=a+2b.故答案是:a+2b.【题目点拨】此题考查了平面向量的知识、相似三角形的判定与性质以及平行四边形的性质.注意掌握三角形法则的应用是关键.14、(Ⅰ)AC=3(Ⅱ)3,3【解题分析】(Ⅰ)如图,过B作BE⊥AC于E,根据等腰三角形的性质和解直角三角形即可得到结论;(Ⅱ)如图,作BC的垂直平分线交AC于D,则BD=CD,此时BD+12DC的值最小,解直角三角形即可得到结论.【题目详解】解:(Ⅰ)如图,过B作BE⊥AC于E,∵BA=BC=4,∴AE=CE,∵∠A=30°,∴AE=32AB=3∴AC=2AE=3(Ⅱ)如图,作BC的垂直平分线交AC于D,则BD=CD,此时BD+12DC的值最小,∵BF=CF=2,∴BD=CD=230COS=433,∴BD+12DC的最小值=23,故答案为:43,23.【题目点拨】本题考查了等腰三角形的性质,线段垂直平分线的性质,解直角三角形,正确的作出辅助线是解题的关键.15、y=x2+2x(答案不唯一).【解题分析】设此二次函数的解析式为y=ax(x+2),令a=1即可.【题目详解】∵抛物线过点(0,0),(﹣2,0),∴可设此二次函数的解析式为y=ax(x+2),把a=1代入,得y=x2+2x.故答案为y=x2+2x(答案不唯一).【题目点拨】本题考查的是待定系数法求二次函数解析式,此题属开放性题目,答案不唯一.16、2000 3【解题分析】分析:由正方形的性质得到∠EDG=90°,从而∠KDC+∠HDA=90°,再由∠C+∠KDC=90°,得到∠C=∠HDA,即有△CKD∽△DHA,由相似三角形的性质得到CK:KD=HD:HA,求解即可得到结论.详解:∵DEFG是正方形,∴∠EDG=90°,∴∠KDC+∠HDA=90°.∵∠C+∠KDC=90°,∴∠C=∠HDA.∵∠CKD=∠DHA=90°,∴△CKD∽△DHA,∴CK:KD=HD:HA,∴CK:100=100:15,解得:CK=20003.故答案为:20003.点睛:本题考查了相似三角形的应用.解题的关键是证明△CKD∽△DHA.17、【解题分析】分析:因式分解,把已知整体代入求解.详解:x2y+xy2=xy(x+y)==.点睛:因式分解的方法:(1)提取公因式法.ma+mb+mc=m(a+b+c).(2)公式法:完全平方公式,平方差公式.(3)十字相乘法.因式分解的时候,要注意整体换元法的灵活应用,训练将一个式子看做一个整体,利用上述方法因式分解的能力.三、解答题(共7小题,满分69分)18、(1)AC垂直平分BD;(2)四边形FMAN是矩形,理由见解析;(3)16﹣【解题分析】(1)依据点A在线段BD的垂直平分线上,点C在线段BD的垂直平分线上,即可得出AC垂直平分BD;(2)根据Rt△ABC中,点F为斜边BC的中点,可得AF=CF=BF,再根据等腰三角形ABD 和等腰三角形ACE,即可得到AD=DB,AE=CE,进而得出∠AMF=∠MAN=∠ANF=90°,即可判定四边形AMFN是矩形;(3)分两种情况:①以点A为旋转中心将正方形ABCD逆时针旋转60°,②以点A为旋转中心将正方形ABCD顺时针旋转60°,分别依据旋转的性质以及勾股定理,即可得到结论.【题目详解】(1)∵AB=AD,CB=CD,∴点A在线段BD的垂直平分线上,点C在线段BD的垂直平分线上,∴AC垂直平分BD,故答案为AC垂直平分BD;(2)四边形FMAN是矩形.理由:如图2,连接AF,∵Rt△ABC中,点F为斜边BC的中点,∴AF=CF=BF,又∵等腰三角形ABD和等腰三角形ACE,∴AD=DB,AE=CE,∴由(1)可得,DF⊥AB,EF⊥AC,又∵∠BAC=90°,∴∠AMF=∠MAN=∠ANF=90°,∴四边形AMFN是矩形;(3)BD′的平方为16+83或16﹣83.分两种情况:①以点A为旋转中心将正方形ABCD逆时针旋转60°,如图所示:过D'作D'E⊥AB,交BA的延长线于E,由旋转可得,∠DAD'=60°,∴∠EAD'=30°,∵AB2=AD',∴D'E=12AD2,AE6,∴BE26,∴Rt△BD'E中,BD'2=D'E2+BE2=2)2+(26)23②以点A为旋转中心将正方形ABCD顺时针旋转60°,如图所示:过B作BF⊥AD'于F,旋转可得,∠DAD'=60°,∴∠BAD'=30°,∵AB=22=AD',∴BF=12AB=2,AF=6,∴D'F=22﹣6,∴Rt△BD'F中,BD'2=BF2+D'F2=(2)2+(22-6)2=16﹣83综上所述,BD′平方的长度为16+83或16﹣83.【题目点拨】本题属于四边形综合题,主要考查了正方形的性质,矩形的判定,旋转的性质,线段垂直平分线的性质以及勾股定理的综合运用,解决问题的关键是作辅助线构造直角三角形,依据勾股定理进行计算求解.解题时注意:有三个角是直角的四边形是矩形.19、(1)证明见解析;(2)9﹣3π【解题分析】试题分析:(1)、连接OD,根据平行四边形的性质得出∠AOC=∠OBE,∠COD=∠ODB,结合OB=OD得出∠DOC=∠AOC,从而证明出△COD和△COA全等,从而的得出答案;(2)、首先根据题意得出△OBD为等边三角形,根据等边三角形的性质得出EC=ED=BO=DB,根据Rt△AOC的勾股定理得出AC的长度,然后根据阴影部分的面积等于两个△AOC的面积减去扇形OAD的面积得出答案.试题解析:(1)如图连接OD.∵四边形OBEC是平行四边形,∴OC∥BE,∴∠AOC=∠OBE,∠COD=∠ODB,∵OB=OD,∴∠OBD=∠ODB,∴∠DOC=∠AOC,在△COD和△COA中,,∴△COD≌△COA,∴∠CDO=∠CAO=90°,∴CF⊥OD,∴CF是⊙O的切线.(2)∵∠F=30°,∠ODF=90°,∴∠DOF=∠AOC=∠COD=60°,∵OD=OB,∴△OBD是等边三角形,∴∠4=60°,∵∠4=∠F+∠1,∴∠1=∠2=30°,∵EC∥OB,∴∠E=180°﹣∠4=120°,∴∠3=180°﹣∠E﹣∠2=30°,∴EC=ED=BO=DB,∵EB=6,∴OB=OD═OA=3,在Rt△AOC中,∵∠OAC=90°,OA=3,∠AOC=60°,∴AC=OA•tan60°=3,∴S阴=2•S△AOC﹣S扇形OAD=2××3×3﹣=9﹣3π.20、(1)捐款增长率为10%.(2)第四天该单位能收到13310元捐款.【解题分析】(1)根据“第一天收到捐款钱数×(1+每次降价的百分率)2=第三天收到捐款钱数”,设出未知数,列方程解答即可. (2)第三天收到捐款钱数×(1+每次降价的百分率)=第四天收到捐款钱数,依此列式子解答即可.【题目详解】(1)设捐款增长率为x,根据题意列方程得:()2⨯-=,100001x12100解得x1=0.1,x2=-1.9(不合题意,舍去).答:捐款增长率为10%.(2)12100×(1+10%)=13310元.答:第四天该单位能收到13310元捐款.21、(1)①30;(2)y1=0.1x+30,y2=0.2x;(3)当通话时间少于300分钟时,选择通话方式②实惠;当通话时间超过300分钟时,选择通话方式①实惠;当通话时间为300分钟时,选择通话方式①,②花费一样.【解题分析】试题分析:(1)根据当通讯时间为零的时候的函数值可以得到哪种方式有月租,哪种方式没有,有多少;(2)根据图象经过的点的坐标设出函数的解析式,用待定系数法求函数的解析式即可;(3)求出当两种收费方式费用相同的时候自变量的值,以此值为界说明消费方式即可.解:(1)①;30;(2)设y1=k1x+30,y2=k2x,由题意得:将(500,80),(500,100)分别代入即可:500k1+30=80,∴k1=0.1,500k2=100,∴k2=0.2故所求的解析式为y1=0.1x+30;y2=0.2x;(3)当通讯时间相同时y1=y2,得0.2x=0.1x+30,解得x=300;当x=300时,y=1.故由图可知当通话时间在300分钟内,选择通话方式②实惠;当通话时间超过300分钟时,选择通话方式①实惠;当通话时间在300分钟时,选择通话方式①、②一样实惠.22、【解题分析】分析:先化简各二次根式,再根据混合运算顺序依次计算可得.详解:原式×(+3点睛:本题考查了二次根式的混合运算,熟练掌握混合运算的法则是解题的关键.23、(1)BD,CE的关系是相等;(2(3)1,1【解题分析】分析:(1)依据△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,即可BA=CA,∠BAD=∠CAE,DA=EA,进而得到△ABD≌△ACE,可得出BD=CE;(2)分两种情况:依据∠PDA=∠AEC,∠PCD=∠ACE,可得△PCD∽△ACE,即可得到PDAE=CDCE,进而得到;依据∠ABD=∠PBE,∠BAD=∠BPE=90°,可得△BAD∽△BPE,即可得到PB BEAB BD,进而得出,(3)以A为圆心,AC长为半径画圆,当CE在⊙A下方与⊙A相切时,PD的值最小;当CE在在⊙A右上方与⊙A 相切时,PD的值最大.在Rt△PED中,PD=DE•sin∠PED,因此锐角∠PED的大小直接决定了PD的大小.分两种情况进行讨论,即可得到旋转过程中线段PD的最小值以及最大值.详解:(1)BD,CE的关系是相等.理由:∵△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,∴BA=CA,∠BAD=∠CAE,DA=EA,∴△ABD≌△ACE,∴BD=CE;故答案为相等.(2)作出旋转后的图形,若点C在AD上,如图2所示:∵∠EAC=90°,∴CE=2234AC AE+=,∵∠PDA=∠AEC,∠PCD=∠ACE,∴△PCD∽△ACE,∴PD CD AE CE=,∴PD=534 17;若点B在AE上,如图2所示:∵∠BAD=90°,∴Rt△ABD中,2234AD AB+=BE=AE﹣AB=2,∵∠ABD=∠PBE,∠BAD=∠BPE=90°,∴△BAD∽△BPE,∴PB BEAB BD=,即2334PB=,解得PB=634 34,∴PD=BD+PB=34+63434=203417,故答案为53417或203417;(3)如图3所示,以A为圆心,AC长为半径画圆,当CE在⊙A下方与⊙A相切时,PD的值最小;当CE在在⊙A 右上方与⊙A相切时,PD的值最大.如图3所示,分两种情况讨论:在Rt△PED中,P D=DE•sin∠PED,因此锐角∠PED的大小直接决定了PD的大小.①当小三角形旋转到图中△ACB的位置时,在Rt△ACE中,2253-,在Rt△DAE中,225552+=∵四边形ACPB是正方形,∴PC=AB=3,∴PE=3+4=1,在Rt△PDE中,2250491DE PE-=-=,即旋转过程中线段PD的最小值为1;②当小三角形旋转到图中△AB'C'时,可得DP'为最大值,此时,DP'=4+3=1,即旋转过程中线段PD的最大值为1.故答案为1,1.点睛:本题属于几何变换综合题,主要考查了等腰直角三角形的性质、旋转变换、全等三角形的判定和性质、相似三角形的判定和性质、圆的有关知识,解题的关键是灵活运用这些知识解决问题,学会分类讨论的思想思考问题,学会利用图形的特殊位置解决最值问题.24、小王在这两年春节收到的年平均增长率是【解题分析】增长后的量=增长前的量×(1+增长率),2018年收到微信红包金额400(1+x)元,在2018年的基础上再增长x,就是2019年收到微信红包金额400(1+x)(1+x)元,由此可列出方程400(1+x)2=484,求解即可.【题目详解】解:设小王在这两年春节收到的红包的年平均增长率是.依题意得:解得(舍去).答:小王在这两年春节收到的年平均增长率是【题目点拨】本题考查了一元二次方程的应用.对于增长率问题,增长前的量×(1+年平均增长率)年数=增长后的量.。
初四数学模拟试题及答案
N MD CBA初四数学模拟试题(全卷共五个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试卷上直接作答.2.作答前认真阅读答题卡上的注意事项.参考公式:抛物线y=ax 2+bx+c (a ≠0)的顶点坐标为(2b a -,244ac b a-),对称轴公式为2b x a =-.一、选择题(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的.请将答题卡...上对应题目的正确答案标号涂黑. 1. 下列各数中,既不是正数也不是负数的数是( )新- 课 -标- 第 -一- 网A .-1B .0C .1D 2. 下列运算正确的是( )A .23a a a += B .23a a a ⋅= C .22a a ÷= D .2(2)4a a =3. 如图,直线a b c 、、,//a b ,150∠=°,则2∠为( )A .130°B .150°C .75°D .25°4. 下列四个几何体中,三视图(主视图、左视图、俯视图)相同的几何体是()A .B .C .D .5. 2014年4月13日,某中学初三650名学生参加了中考体育测试,为了了解这些学生的体考成绩,现从中抽取了50名学生的体考成绩进行了分析,以下说法正确的是( ) A .这50名学生是总体的一个样本 B .每位学生的体考成绩是个体 C .50名学生是样本容量D .650名学生是总体6. 已知x y -=7,xy =2,则22x y +的值为( ) A .53 B .45 C .47D .517. 二元一次方程组233x y x y ⎧⎨⎩+=-=的解为( ) A .21x y ⎧⎨⎩==B .21x y ⎧⎨⎩==-C .21x y ⎧⎨⎩=-=-D .21x y ⎧⎨⎩=-=(第8题图) (第9题图)21cba (第3题图)8. 如图,P 是⊙O 外一点,P A 是⊙O 的切线,A 为切点,PO 与⊙O 相交于 B 点,已知∠P =28°,C 为⊙O 上一点,连接CA ,CB ,则∠C 的值为( ) A .28°B .62°C .31°D .56°9. 如图,四边形ABCD 是平行四边形,点N 是AB 上一点,且BN = 2AN ,AC 、DN 相交于点M ,则ADM CMNB S S ∆四边形∶的值为( ) A .3∶11 B .1∶3C .1∶9D .3∶1010. 如图,某同学在沙滩上用石子摆小房子,观察图形的变化规律,写出第⑨个小房子用的石子总数为( )① ② ③ ④A .155B .147C .145D .14611. 3月20日,小彬全家开车前往铜梁看油菜花,车刚离开家时,由于车流量大,行进非常缓慢,十几分钟后,汽车终于行驶在高速公路上,大约三十分钟后,汽车顺利到达铜梁收费站,停车交费后,汽车驶入通畅的城市道路,二十多分钟后顺利到达了油菜花基地,在以上描述中,汽车行驶的路程s (千米)与所经历的时间t (分钟)之间的大致函数图像是( )12. 如图,四边形ABCD 是平行四边形,顶点A 、B 的坐标分别是A (1,0),B (0,﹣2),顶点C 、D 在双曲线(0)ky k x=≠上,边AD 与y 轴相交于点E ,5ABE BEDC S S =△四边形=10,则k 的值是( )A .-16B .-9C .-8D .-12(第12题图)二、填空题(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13. 2013年,全重庆市参加中考的考生有36.4万人,则36.4万人用科学计数法表示为____人. 14. 使函数y =有意义的x 的取值范围是____________. 15. 离中考还有20天,为了响应“还时间给学生”的号召,学校领导在全年级随机的调查了20名tt学生每天作业完成时间,绘制了如下表格:则这20个学生每天作业完成的时间的中位数为____________. 16. 如图,△ABC 是边长为2的等边三角形,D 为AB 边的中点,以CD 为直径画圆,则图中影阴部分的面积为____________(结果保留π). 17. 有5张正面分别写有数字1-,14-,0,1,3的卡片,它们除数字不同外全部相同.将它们背面朝上,洗匀后从中随机的抽取一张,记卡片上的数字为a ,则使以x 为自变量的反比例函数37a y x -=经过二、四象限,且关于x 的方程2221111a x x x +=-+-有实数解的概率是_____________.18. 如图,以Rt ABC △的斜边AB 为一边在ABC ∆同侧作正方形ABEF .点O 为AE与BF 的交点,连接CO ,若CA = 2,CO =,那么CB 的长为______________.三、解答题(本大题共2个小题,每小题7分,共14分) 19.()()12014141tan 602π-⎛⎫---+---- ⎪⎝⎭°20. 如图,在Rt ABC △中,已知90C ∠=°,4sin 5B =,AC = 8,D 为线段BC 上一点,并且CD = 2.(1) 求BD 的值; (2) 求cos DAC ∠的值.四、解答题(本大题4个小题,每小题10分,共40分)(第16题图)OFECBA(第18题图)D BC A (第20题图)CB DA图(2)图(1)项目21. 先化简,再求值:22151()939x x x x x x --÷----,其中x 是不等式组35157332x x x x -≤+⎧⎪⎨+≤+⎪⎩的整数解.22. 西大附中的“周末远道生管理”是学校的一大特色,为了增强远道生的体质,丰富远道生的周末生活,学校决定开设以下体育活动项目:A .篮球 B .乒乓球C .羽毛球 D .足球.为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1) 这次被调查的学生共有 人; (2) 请你将条形统计图 (2) 补充完整;(3) 在平时的乒乓球活动项目中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答).23. 直辖市之一的重庆,发展的速度是不容置疑的.很多人把重庆作为旅游的首选之地.“不览夜景,(第22题图)NM FEDCBA未到重庆”.乘游船夜游两江,犹如在星河中畅游,是一个近距离认识重庆的最佳窗口.“两江号”游轮经过核算,每位游客的接待成本为30元.根据市场调查,同一时间段里,票价为40元时,每晚将售出船票600张,而票价每涨1元,就会少售出10张船票. (1) 若该游轮每晚获得10000元利润,则票价应定为多少元?(2) 端午节期间,工商管理部门规定游轮船票单价不能低于42元,同时该游轮为提高市场占有率,决定每晚售出船票数量不少于560张,则票价应定为多少元,才能使每晚获得的利润最大?最大利润是多少?24. 如图,在等腰三角形ABC 中,CA = CB ,∠ACB = 90°,点D 、E 是直线BC 上两点且CD = BE ,过点C 作CM ⊥AE 交AE 于点M ,交AB 于点F ,连接DF 并延长交AE 于点N . (1) 若AC = 2,CD = 1,求CM 的值; (2) 求证:∠D =∠E .五、解答题:(本大题2个小题,每小题12分,共24分)25. 如图,抛物线2y ax bx =+-2与x 轴交于A 、B 两点,与y 轴交于点C ,已知A (–1,0),且tan∠ABC = 12,作垂直于x 轴的直线x m =,与抛物线交于点F ,与线段BC 交于点E .(1) 求抛物线的解析式和直线BC 的解析式; (2) 若△CEF 为等腰三角形,求m 的值;(3) 点P 为y 轴左侧抛物线上的一点,过点P 作PM BC ⊥BPM ABC ∠=∠,求P 点的坐标.(第24题图)26. 如图,在矩形ABCD 中,AB=,BC = 8,M 是BC 的中点,P 、Q 两点同时从M 点出发,其中点P 以每秒1个单位的速度向B 运动,到达点B 后立即按原来的速度反向向M 点运动,到达M 点后停止,点Q 以每秒1个单位的速度沿射线MC 运动,当点P 停止时点Q 也随之停止.以PQ 为边长向上作等边三角形PQE .(1) 求点E 落在线段AD 上时,P 、Q 两点的运动时间;(2) 设运动时间为t 秒,矩形ABCD 与PQE △重叠的面积为S ,求出S 与t 之间的函数关系式,并写出t 的取值范围;(3) 在矩形ABCD 中,点N 是线段BC 上一点,并且CN = 2,在直线CD 上找一点H (H 点在D 点的上方)连接HN ,DN ,将HDN △绕点N 逆时针旋转90°,得到''H D N △,连接'HH ,得到四边形''HH D N ,四边形''HH D N的面积能否是312HD 的长;若不能,请说明理由.(第26题图)B DCBADCBA图(2)项目第二次第一次丁丁丁丙丙丙乙乙乙甲甲甲丁丙乙甲开始数学试题参考答案一、选择题(本大题12个小题,每小题4分,共48分) 1—5 BBADB 6—10 ABCAC 11—12 AD二、填空题(本大题6个小题,每小题4分,共24分)13.53.6410⨯14.22x x ≥-≠且15.2.75 164π17.2518.三、解答题:(本大题共2个小题,每小题7分,共14分)19.解:原式112=---5分=4- .............................................................................................................. 7分 20.(1) Rt ABC 在△中,4sin 8105AC B AC AB AB ====∴,, 6BC =2BD BC CD CD =-=又,624BD =-=∴ ....................................................................................................... 4分 (2) Rt ACD 在△中AD cos AC DAC AD ∠=== ............................................................................. 7分 四、解答题(本大题4个小题,每小题 10分,共40分) 21.解:原式1(3)(51)=3)(3)(3)(3)x x x x x x x x -+--÷+-+-(2121=3)(3)(3)(3)x x x x x x x --+÷+-+-(213)(3)=3)(3)(1)x x x x x x -+-⋅+--(( 11x =- ........................................................................................................... 6分 解得不等式组35157332x x x x -≤+⎧⎪⎨+≤+⎪⎩的解集为13x ≤≤123x x =∴又为整数,,, 13x x ≠≠又且 2x =∴ ............................ 8分 12121x ===-当时,原式 ................................................................................10分 22.(1) 200 ............................................................................................................................ 2分(2)(2分) (3) (6分)解:画树状图如下:NM F ED CBA21122126P ==∴∴共种,满足题意的种。
2024年中考数学模拟考试试卷(附含答案)
三解答题:本大题共7个小题共78分解答应写出文字说明证明过程或演算步骤
19.计算
(1)计算: .
(2)化简: .
【答案】(1)
(2)
【解析】
【分析】(1)根据特殊角的锐角三角函数零指数幂绝对值化简计算即可;
(2)根据分式化简运算规则计算即可.
【小问1详解】
解:原式
;
【小问2详解】
解:原式
【点睛】本题考查了实数的混合运算与分式化简以及特殊角三角函数熟记运算法则是关键.
【详解】解:∵ 和 是以点 为直角顶点的等腰直角三角形
∴
∴
∴
∴ 故①正确;
设
∴
∴
∴ 故②正确;
当点 在 的延长线上时如图所示
∵
∴
∴
∵ .
∴
∴
∴ 故③正确;
④如图所示以 为圆心 为半径画圆
∵
∴当 在 的下方与 相切时 的值最小
∴四边形 是矩形
又
∴四边形 是正方形
∴
∵
∴
在 中
∴ 取得最小值时
∴
故④正确
故选:D.
【答案】
【解析】
【分析】连接 将 以 中心逆时针旋转 点的对应点为 由 的运动轨迹是以 为圆心 为半径的半圆可得: 的运动轨迹是以 为圆心 为半径的半圆再根据“圆外一定点到圆上任一点的距离在圆心定点动点三点共线时定点与动点之间的距离最短”所以当 三点共线时 的值最小可求 从而可求解.
【详解】解如图连接 将 以 中心逆时针旋转 点的对应点为
故选:C.
【点睛】本题考查科学记数法,按照定义,确定 与 的值是解决问题的关键.
2024年中考数学模拟考试试卷(带有答案)
A. B. C. D.
【答案】C
【解析】
【分析】根据题意可得反比例函数 图象在一三象限,进而可得 ,解不等式即可求解.
【详解】解:∵当 时有
∴反比例函数 的图象在一三象限
∴
解得:
故选:C.
【点睛】本题考查了反比例函数图象 性质,根据题意得出反比例函数 的图象在一三象限是解题的关键.
故答案为①③④.
【点睛】本题主要考查全等三角形的性质与判定、等腰直角三角形的性质及平行四边形的性质与判定,熟练掌握全等三角形的性质与判定、等腰直角三角形的性质及平行四边形的性质与判定是解题的关键.
三、解答题(本大题共9个题,满分75分)
16.(1)计算: ;
(2)解分式方程: .
【答案】(1) ;(2)
【详解】解:如图:作 的垂直平分线 ,作 的垂直平分线 ,设 与 相交于点O,连接 ,则点O是 外接圆的圆心
由题意得:
∴
∴ 是直角三角形
∴
∵
∴
故选:D.
【点睛】本题考查了三角形的外接圆与外心,扇形面积的计算,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.
8.如图,在 中 ,点 在边 上,且 平分 的周长,则 的长是()
A. B. C. D.
【答案】B
【解析】
【分析】用科学记数法表示较大的数时一般形式为 ,其中 , 为整数,据此判断即可.
【详解】解:数12910000用科学记数法表示为 .
故选:B.
【点睛】本题考查了科学记数法,科学记数法的表示形式为 的形式,其中 , 为整数.确定 的值时要看把原来的数,变成 时小数点移动了多少位, 的绝对值与小数点移动的位数相同.
北京十二中学2024届中考四模数学试题含解析
北京十二中学2024届中考四模数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(共10小题,每小题3分,共30分)1.正比例函数y=(k+1)x ,若y 随x 增大而减小,则k 的取值范围是( )A .k >1B .k <1C .k >﹣1D .k <﹣12.如图,直线m ∥n ,∠1=70°,∠2=30°,则∠A 等于( )A .30°B .35°C .40°D .50°3.如图,四边形ABCD 中,AB=CD ,AD ∥BC ,以点B 为圆心,BA 为半径的圆弧与BC 交于点E ,四边形AECD 是平行四边形,AB=3,则AE 的弧长为( )A .2πB .πC .32πD .34.如图,在矩形纸片ABCD 中,已知AB =3,BC =1,点E 在边CD 上移动,连接AE ,将多边形ABCE 沿直线A E 折叠,得到多边形A FGE ,点B 、C 的对应点分别为点F 、G .在点E 从点C 移动到点D 的过程中,则点F 运动的路径长为( )A.πB.3πC.33πD.233π5.如图,将△ABE向右平移2cm得到△DCF,如果△ABE的周长是16cm,那么四边形ABFD的周长是()A.16cm B.18cm C.20cm D.21cm6.如图是几何体的三视图,该几何体是()A.圆锥B.圆柱C.三棱柱D.三棱锥7.已知x2+mx+25是完全平方式,则m的值为()A.10 B.±10 C.20 D.±208.图中三视图对应的正三棱柱是()A.B.C.D.9.抛物线经过第一、三、四象限,则抛物线的顶点必在()A.第一象限B.第二象限C.第三象限D.第四象限10.如图,在▱ABCD中,AB=1,AC=42,对角线AC与BD相交于点O,点E是BC的中点,连接AE交BD 于点F.若AC⊥AB,则FD的长为()A.2 B.3 C.4 D.6二、填空题(本大题共6个小题,每小题3分,共18分)11.6(26)+-=__.12.A.如果一个正多边形的一个外角是45°,那么这个正多边形对角线的条数一共有_____条.B.用计算器计算:7•tan63°27′≈_____(精确到0.01).13.从-5,-103,-6,-1,0,2,π这七个数中随机抽取一个数,恰好为负整数的概率为______.14.如图,矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB于点E,则AD的长为____________.15.将一次函数y=2x+4的图象向下平移3个单位长度,相应的函数表达式为_____.16.有四张质地、大小、反面完全相同的不透明卡片,正面分别写着数字1,2,3,4,现把它们的正面向下,随机摆放在桌面上,从中任意抽出一张,则抽出的数字是奇数的概率是.三、解答题(共8题,共72分)17.(8分)如图,AB是⊙O的直径,点C在AB的延长线上,AD平分∠CAE交⊙O于点D,且AE⊥CD,垂足为点E.(1)求证:直线CE是⊙O的切线.(2)若BC=3,CD=32,求弦AD的长.18.(8分)如图,∠A=∠B=30°(1)尺规作图:过点C作CD⊥AC交AB于点D;(只要求作出图形,保留痕迹,不要求写作法)(2)在(1)的条件下,求证:BC2=BD•AB.19.(8分)已知二次函数y=a(x+m)2的顶点坐标为(﹣1,0),且过点A(﹣2,﹣12).(1)求这个二次函数的解析式;(2)点B(2,﹣2)在这个函数图象上吗?(3)你能通过左,右平移函数图象,使它过点B吗?若能,请写出平移方案.20.(8分)已知:如图,在平面直角坐标系中,O为坐标原点,△OAB的顶点A、B的坐标分别是A(0,5),B(3,1),过点B画BC⊥AB交直线于点C,连结AC,以点A为圆心,AC为半径画弧交x轴负半轴于点D,连结AD、CD.(1)求证:△ABC≌△AOD.(2)设△ACD的面积为,求关于的函数关系式.(3)若四边形ABCD恰有一组对边平行,求的值.21.(8分)天水某公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A型和B型两行环保节能公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元,求购买A型和B型公交车每辆各需多少万元?预计在该条线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1220万元,且确保这10辆公交车在该线路的年均载客量总和不少于650万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?22.(10分)如图,某校一幢教学大楼的顶部竖有一块“传承文明,启智求真”的宣传牌CD.小明在山坡的坡脚A处测得宣传牌底部D的仰角为60°,沿山坡向上走到B处测得宣传牌顶部C的仰角为45°.已知山坡AB的坡度i=1:,AB=10米,AE=15米,求这块宣传牌CD的高度.(测角器的高度忽略不计,结果精确到0.1米.参考数据:≈1.414,≈1.732)23.(12分)如图,以O为圆心,4为半径的圆与x轴交于点A,C在⊙O上,∠OAC=60°.(1)求∠AOC的度数;(2)P为x轴正半轴上一点,且PA=OA,连接PC,试判断PC与⊙O的位置关系,并说明理由;(3)有一动点M从A点出发,在⊙O上按顺时针方向运动一周,当S△MAO=S△CAO时,求动点M所经过的弧长,并写出此时M点的坐标.24.有一水果店,从批发市场按4元/千克的价格购进10吨苹果,为了保鲜放在冷藏室里,但每天仍有一些苹果变质,平均每天有50千克变质丢弃,且每存放一天需要各种费用300元,据预测,每天每千克价格上涨0.1元.设x天后每千克苹果的价格为p元,写出p与x的函数关系式;若存放x天后将苹果一次性售出,设销售总金额为y元,求出y 与x的函数关系式;该水果店将这批水果存放多少天后一次性售出,可以获得最大利润,最大利润为多少?参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解题分析】根据正比例函数图象与系数的关系列出关于k的不等式k+1<0,然后解不等式即可.【题目详解】解:∵正比例函数y=(k+1)x中,y的值随自变量x的值增大而减小,∴k+1<0,解得,k<-1;故选D.【题目点拨】本题主要考查正比例函数图象在坐标平面内的位置与k的关系.解答本题注意理解:直线y=kx所在的位置与k的符号有直接的关系.k>0时,直线必经过一、三象限,y随x的增大而增大;k<0时,直线必经过二、四象限,y随x 的增大而减小.2、C【解题分析】试题分析:已知m∥n,根据平行线的性质可得∠3=∠1=70°.又因∠3是△ABD的一个外角,可得∠3=∠2+∠A.即∠A=∠3-∠2=70°-30°=40°.故答案选C.考点:平行线的性质.3、B【解题分析】∵四边形AECD是平行四边形,∴AE=CD,∵AB=BE=CD=3,∴AB=BE=AE,∴△ABE是等边三角形,∴∠B=60°,∴AE的弧长=6023360ππ⨯⨯=.故选B.4、D【解题分析】点F的运动路径的长为弧FF'的长,求出圆心角、半径即可解决问题.【题目详解】如图,点F的运动路径的长为弧FF'的长,在Rt△ABC中,∵tan∠BAC=33BCAB==∴∠BAC=30°,∵∠CAF=∠BAC=30°,∴∠BAF=60°,∴∠FAF′=120°,∴弧FF'的长=120331803π=.故选D.【题目点拨】本题考查了矩形的性质、特殊角的三角函数值、含30°角的直角三角形的性质、弧长公式等知识,解题的关键是判断出点F运动的路径.5、C【解题分析】试题分析:已知,△ABE向右平移2cm得到△DCF,根据平移的性质得到EF=AD=2cm,AE=DF,又因△ABE的周长为16cm,所以AB+BC+AC=16cm,则四边形ABFD的周长=AB+BC+CF+DF+AD=16cm+2cm+2cm=20cm.故答案选C.考点:平移的性质.6、C【解题分析】分析:根据一个空间几何体的主视图和左视图都是长方形,可判断该几何体是柱体,进而根据俯视图的形状,可判断是三棱柱,得到答案.详解:∵几何体的主视图和左视图都是长方形,故该几何体是一个柱体,又∵俯视图是一个三角形,故该几何体是一个三棱柱,故选C.点睛:本题考查的知识点是三视图,如果有两个视图为三角形,该几何体一定是锥,如果有两个矩形,该几何体一定柱,其底面由第三个视图的形状决定.7、B【解题分析】根据完全平方式的特点求解:a2±2ab+b2.【题目详解】∵x2+mx+25是完全平方式,∴m=±10,故选B.【题目点拨】本题考查了完全平方公式:a2±2ab+b2,其特点是首平方,尾平方,首尾积的两倍在中央,这里首末两项是x和1的平方,那么中间项为加上或减去x和1的乘积的2倍.8、A【解题分析】由俯视图得到正三棱柱两个底面在竖直方向,由主视图得到有一条侧棱在正前方,从而求解【题目详解】解:由俯视图得到正三棱柱两个底面在竖直方向,由主视图得到有一条侧棱在正前方,于是可判定A选项正确.故选A.【题目点拨】本题考查由三视图判断几何体,掌握几何体的三视图是本题的解题关键.9、A【解题分析】根据二次函数图象所在的象限大致画出图形,由此即可得出结论.【题目详解】∵二次函数图象只经过第一、三、四象限,∴抛物线的顶点在第一象限.故选A.【题目点拨】本题考查了二次函数的性质以及二次函数的图象,大致画出函数图象,利用数形结合解决问题是解题的关键. 10、C【解题分析】利用平行四边形的性质得出△ADF ∽△EBF ,得出BE AD =BF DF ,再根据勾股定理求出BO 的长,进而得出答案. 【题目详解】解:∵在□ABCD 中,对角线AC 、BD 相交于O ,∴BO=DO,AO=OC,AD ∥BC ,∴△ADF ∽△EBF , ∴BE AD =BF DF, ∵2,∴2,∵AB=1,AC ⊥AB ,∴22AB AO +()22122+,∴BD=6, ∵E 是BC 的中点,∴BE AD =BF DF =12, ∴BF=2, FD=4.故选C.【题目点拨】本题考查了勾股定理与相似三角形的判定与性质,解题的关键是熟练的掌握勾股定理与相似三角形的判定与性质.二、填空题(本大题共6个小题,每小题3分,共18分)112.【解题分析】根据去括号法则和合并同类二次根式法则计算即可.【题目详解】解:原式==【题目点拨】此题考查的是二次根式的加减运算,掌握去括号法则和合并同类二次根式法则是解决此题的关键.12、20 5.1【解题分析】A、先根据多边形外角和为360°且各外角相等求得边数,再根据多边形对角线条数的计算公式计算可得;B、利用计算器计算可得.【题目详解】A、根据题意,此正多边形的边数为360°÷45°=8,则这个正多边形对角线的条数一共有8(83)2⨯-=20,故答案为20;B,故答案为5.1.【题目点拨】本题主要考查计算器-三角函数,解题的关键是掌握多边形的内角与外角、对角线计算公式及计算器的使用.13、2 7【解题分析】七个数中有两个负整数,故随机抽取一个数,恰好为负整数的概率是:2 7【题目详解】105,,1,0,2, 3π---这七个数中有两个负整数:-5,-1所以,随机抽取一个数,恰好为负整数的概率是:2 7故答案为2 7【题目点拨】本题考查随机事件的概率的计算方法,能准确找出负整数的个数,并熟悉等可能事件的概率计算公式是关键.14、【解题分析】试题解析:∵四边形ABCD 是矩形,∴OB =OD ,OA =OC ,AC =BD ,∴OA=OB ,∵AE 垂直平分OB ,∴AB =AO ,∴OA =AB =OB =3,∴BD =2OB =6,∴AD ==.【题目点拨】此题考查了矩形的性质、等边三角形的判定与性质、线段垂直平分线的性质、勾股定理;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.15、y=2x+1【解题分析】分析:直接根据函数图象平移的法则进行解答即可.详解:将一次函数y=2x+4的图象向下平移3个单位长度,相应的函数是y=2x+4-3=2x+1;故答案为y=2x+1.点睛:本题考查的是一次函数的图象与几何变换,熟知“上加下减”的法则是解答此题的关键.16、21 【解题分析】试题分析:这四个数中,奇数为1和3,则P (抽出的数字是奇数)=2÷4=12. 考点:概率的计算.三、解答题(共8题,共72分)17、(1)证明见解析(2【解题分析】(1)连结OC ,如图,由AD 平分∠EAC 得到∠1=∠3,加上∠1=∠2,则∠3=∠2,于是可判断OD ∥AE ,根据平行线的性质得OD ⊥CE ,然后根据切线的判定定理得到结论;(2)由△CDB ∽△CAD ,可得CD CB BD CA CD AD==,推出CD 2=CB•CA ,可得()2=3CA ,推出CA=6,推出AB=CA﹣BC=3,32262BDAD==,设BD=2k,AD=2k,在Rt△ADB中,可得2k2+4k2=5,求出k即可解决问题.【题目详解】(1)证明:连结OC,如图,∵AD平分∠EAC,∴∠1=∠3,∵OA=OD,∴∠1=∠2,∴∠3=∠2,∴OD∥AE,∵AE⊥DC,∴OD⊥CE,∴CE是⊙O的切线;(2)∵∠CDO=∠ADB=90°,∴∠2=∠CDB=∠1,∵∠C=∠C,∴△CDB∽△CAD,∴CD CB BD CA CD AD==,∴CD2=CB•CA,∴(2)2=3CA,∴CA=6,∴AB=CA﹣BC=3,322BDAD==,设2k,AD=2k,在Rt△ADB中,2k2+4k2=5,∴k=306,∴AD=303.18、见解析【解题分析】(1)利用过直线上一点作直线的垂线确定D点即可得;(2)根据圆周角定理,由∠ACD=90°,根据三角形的内角和和等腰三角形的性质得到∠DCB=∠A=30°,推出△CDB∽△ACB,根据相似三角形的性质即可得到结论.【题目详解】(1)如图所示,CD即为所求;(2)∵CD⊥AC,∴∠ACD=90°∵∠A=∠B=30°,∴∠ACB=120°∴∠DCB=∠A=30°,∵∠B=∠B,∴△CDB∽△ACB,∴BC AB BD BC,∴BC2=BD•AB.【题目点拨】考查了等腰三角形的性质和相似三角形的判定和性质和作图:在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.19、(1)y=﹣12(x+1)1;(1)点B(1,﹣1)不在这个函数的图象上;(3)抛物线向左平移1个单位或平移5个单位函数,即可过点B;【解题分析】(1)根据待定系数法即可得出二次函数的解析式;(1)代入B(1,-1)即可判断;(3)根据题意设平移后的解析式为y=-12(x+1+m)1,代入B的坐标,求得m的植即可.【题目详解】解:(1)∵二次函数y=a(x+m)1的顶点坐标为(﹣1,0),∴m=1,∴二次函数y=a(x+1)1,把点A(﹣1,﹣12)代入得a=﹣12,则抛物线的解析式为:y=﹣12(x+1)1.(1)把x=1代入y=﹣12(x+1)1得y=﹣92≠﹣1,所以,点B(1,﹣1)不在这个函数的图象上;(3)根据题意设平移后的解析式为y=﹣12(x+1+m)1,把B(1,﹣1)代入得﹣1=﹣12(1+1+m)1,解得m=﹣1或﹣5,所以抛物线向左平移1个单位或平移5个单位函数,即可过点B.【题目点拨】本题考查了待定系数法求二次函数的解析式,二次函数图象上点的坐标特征,二次函数的性质以及图象与几何变换.20、(1)证明详见解析;(2)S=(m+1)2+(m>);(2)2或1.【解题分析】试题分析:(1)利用两点间的距离公式计算出AB=5,则AB=OA,则可根据“HL”证明△ABC≌△AOD;(2)过点B作直线BE⊥直线y=﹣m于E,作AF⊥BE于F,如图,证明Rt△ABF∽Rt△BCE,利用相似比可得BC=(m+1),再在Rt△ACB中,由勾股定理得AC2=AB2+BC2=25+(m+1)2,然后证明△AOB∽△ACD,利用相似的性质得,而S△AOB=,于是可得S=(m+1)2+(m>);(2)作BH⊥y轴于H,如图,分类讨论:当AB∥CD时,则∠ACD=∠CAB,由△AOB∽△ACD得∠ACD=∠AOB,所以∠CAB=∠AOB,利用三角函数得到tan∠AOB=2,tan∠ACB=,所以=2;当AD∥BC,则∠5=∠ACB,由△AOB∽△ACD得到∠4=∠5,则∠ACB=∠4,根据三角函数定义得到tan∠4=,tan∠ACB=,则=,然后分别解关于m的方程即可得到m的值.试题解析:(1)证明:∵A(0,5),B(2,1),∴AB==5,∴AB=OA,∵AB⊥BC,∴∠ABC=90°,在Rt△ABC和Rt△AOD中,,∴Rt△ABC≌Rt△AOD;(2)解:过点B作直线BE⊥直线y=﹣m于E,作AF⊥BE于F,如图,∵∠1+∠2=90°,∠1+∠2=90°,∴∠2=∠2,∴Rt△ABF∽Rt△BCE,∴,即,∴BC=(m+1),在Rt△ACB中,AC2=AB2+BC2=25+(m+1)2,∵△ABC≌△AOD,∴∠BAC=∠OAD,即∠4+∠OAC=∠OAC+∠5,∴∠4=∠5,而AO=AB,AD=AC,∴△AOB∽△ACD,∴=,而S△AOB=×5×2=,∴S=(m+1)2+(m>);(2)作BH⊥y轴于H,如图,当AB∥CD时,则∠ACD=∠CAB,而△AOB∽△ACD,∴∠ACD=∠AOB,∴∠CAB=∠AOB,而tan ∠AOB==2,tan ∠ACB===, ∴=2,解得m=1;当AD ∥BC ,则∠5=∠ACB ,而△AOB ∽△ACD ,∴∠4=∠5,∴∠ACB=∠4,而tan ∠4=,tan ∠ACB=, ∴=, 解得m=2.综上所述,m 的值为2或1.考点:相似形综合题.21、(1)购买A 型公交车每辆需100万元,购买B 型公交车每辆需150万元.(2)购买A 型公交车8辆,则B 型公交车2辆费用最少,最少总费用为1100万元.【解题分析】(1)设购买A 型公交车每辆需x 万元,购买B 型公交车每辆需y 万元,根据“A 型公交车1辆,B 型公交车2辆,共需400万元;A 型公交车2辆,B 型公交车1辆,共需350万元”列出方程组解决问题;(2)设购买A 型公交车a 辆,则B 型公交车(10-a )辆,由“购买A 型和B 型公交车的总费用不超过1220万元”和“10辆公交车在该线路的年均载客总和不少于650万人次”列出不等式组探讨得出答案即可.【题目详解】(1)设购买A 型公交车每辆需x 万元,购买B 型公交车每辆需y 万元,由题意得24002350x y x y +=⎧⎨+=⎩,解得100150x y =⎧⎨=⎩, 答:购买A 型公交车每辆需100万元,购买B 型公交车每辆需150万元.(2)设购买A 型公交车a 辆,则B 型公交车(10﹣a )辆,由题意得100150(10)122060100(10)650a a a a +-⎧⎨+-⎩, 解得:283554a ≤≤, 因为a 是整数, 所以a =6,7,8;则(10﹣a )=4,3,2;三种方案:①购买A 型公交车6辆,则B 型公交车4辆:100×6+150×4=1200万元;②购买A 型公交车7辆,则B 型公交车3辆:100×7+150×3=1150万元;③购买A 型公交车8辆,则B 型公交车2辆:100×8+150×2=1100万元;购买A 型公交车8辆,则B 型公交车2辆费用最少,最少总费用为1100万元.【题目点拨】此题考查二元一次方程组和一元一次不等式组的应用,注意理解题意,找出题目蕴含的数量关系,列出方程组或不等式组解决问题.22、2.7米【解题分析】解:作BF ⊥DE 于点F ,BG ⊥AE 于点G在Rt △ADE 中∵tan ∠ADE=,∴DE="AE" ·tan ∠ADE=15∵山坡AB的坡度i=1:,AB=10∴BG=5,AG=,∴EF=BG=5,BF=AG+AE=+15∵∠CBF=45°∴CF=BF=+15∴CD=CF+EF—DE=20—10≈20—10×1.732=2.68≈2.7答:这块宣传牌CD的高度为2.7米.23、(1)60°;(2)见解析;(3)对应的M点坐标分别为:M1(2,﹣3)、M2(﹣2,﹣3、M3(﹣2,3、M4(2,3).【解题分析】(1)由于∠OAC=60°,易证得△OAC是等边三角形,即可得∠AOC=60°.(2)由(1)的结论知:OA=AC,因此OA=AC=AP,即OP边上的中线等于OP的一半,由此可证得△OCP是直角三角形,且∠OCP=90°,由此可判断出PC与⊙O的位置关系.(3)此题应考虑多种情况,若△MAO、△OAC的面积相等,那么它们的高必相等,因此有四个符合条件的M点,即:C点以及C点关于x轴、y轴、原点的对称点,可据此进行求解.【题目详解】(1)∵OA=OC,∠OAC=60°,∴△OAC是等边三角形,故∠AOC=60°.(2)由(1)知:AC=OA,已知PA=OA,即OA=PA=AC;∴AC=12OP,因此△OCP是直角三角形,且∠OCP=90°,而OC是⊙O的半径,故PC与⊙O的位置关系是相切.(3)如图;有三种情况:①取C 点关于x 轴的对称点,则此点符合M 点的要求,此时M 点的坐标为:M 1(2,﹣3);劣弧MA 的长为:60441803ππ⨯=; ②取C 点关于原点的对称点,此点也符合M 点的要求,此时M 点的坐标为:M 2(﹣2,﹣3;劣弧MA 的长为:120481803ππ⨯=; ③取C 点关于y 轴的对称点,此点也符合M 点的要求,此时M 点的坐标为:M 3(﹣2,3);优弧MA 的长为:2404161803ππ⨯=; ④当C 、M 重合时,C 点符合M 点的要求,此时M 4(2,3;优弧MA 的长为:3004201803ππ⨯=; 综上可知:当S △MAO =S △CAO 时,动点M 所经过的弧长为481620,,,3333ππππ对应的M 点坐标分别为:M 1(2,﹣3、M 2(﹣2,﹣3、M 3(﹣2,3、M 4(2,3.【题目点拨】本题考查了切线的判定以及弧长的计算方法,注意分类讨论思想的运用,不要漏解.24、()1?0.14p x =+;()22580040000y x x =-++;(3)该水果店将这批水果存放50天后一次性售出,可以获得最大利润,最大利润为12500元.【解题分析】(1)根据按每千克4元的市场价收购了这种苹果10000千克,此后每天每千克苹果价格会上涨0.1元,进而得出x 天后每千克苹果的价格为p 元与x 的函数关系;(2)根据每千克售价乘以销量等于销售总金额,求出即可;(3)利用总售价-成本-费用=利润,进而求出即可.【题目详解】()1根据题意知,0.14p x =+;()()()2=+-=-++.20.141000050580040000y x x x x()3300410000w y x=--⨯2=-+x x55002x=--+5(50)12500∴当50x=时,最大利润12500元,答:该水果店将这批水果存放50天后一次性售出,可以获得最大利润,最大利润为12500元.【题目点拨】此题主要考查了二次函数的应用以及二次函数最值求法,得出w与x的函数关系是解题关键.。
山东省潍坊青州市2024届中考四模数学试题含解析
山东省潍坊青州市2024届中考四模数学试题请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.等腰Rt ABC △中,90BAC ∠=︒,D 是AC 的中点,EC BD ⊥于E ,交BA 的延长线于F ,若12BF =,则FBC的面积为( )A .40B .46C .48D .502.如图所示几何体的主视图是( )A .B .C .D .3.下列等式正确的是( )A .(a+b )2=a 2+b 2B .3n +3n +3n =3n+1C .a 3+a 3=a 6D .(a b )2=a4.下列各式计算正确的是( )A .a 4•a 3=a 12B .3a•4a=12aC .(a 3)4=a 12D .a 12÷a 3=a 45.如图,点D 在△ABC 的边AC 上,要判断△ADB 与△ABC 相似,添加一个条件,不正确的是()A .∠ABD=∠CB .∠ADB=∠ABC C .AB CB BD CD = D .ADABAB AC =6.计算1+2+22+23+…+22010的结果是( )A .22011–1B .22011+1C .()20111212-D .()201112+12 7.如图,由四个正方体组成的几何体的左视图是( )A .B .C .D .8.如图,在ABC △中,D 、E 分别为AB 、AC 边上的点,DE BC ,BE 与CD 相交于点F ,则下列结论一定正确的是( )A .DF AE FC AC= B .AD EC AB AC = C .AD DE DB BC = D .DF EF BF FC= 9.如图是一个由正方体和一个正四棱锥组成的立体图形,它的主视图是( )A .B .C .D .10.如图,EF 过▱ABCD 对角线的交点O ,交AD 于E ,交BC 于F ,若▱ABCD 的周长为18, 1.5OE =,则四边形EFCD 的周长为( )A.14 B.13 C.12 D.1011.如图,AB是半圆O的直径,点C、D是半圆O的三等分点,弦2CD=.现将一飞镖掷向该图,则飞镖落在阴影区域的概率为()A.19B.29C.23D.1312.计算22783-⨯的结果是()A.3B.433C.533D.23二、填空题:(本大题共6个小题,每小题4分,共24分.)13.若3,a,4,5的众数是4,则这组数据的平均数是_____.14.化简:1mm-÷21mm-=_____.15.已知抛物线y=x2-x-1与x轴的一个交点为(m,0),则代数式m2-m+2017的值为____.16.如图,在Rt△ABC中,∠C=90°,∠A=30°,BC=2,⊙C的半径为1,点P是斜边AB上的点,过点P作⊙C的一条切线PQ(点Q是切点),则线段PQ的最小值为_____.17.分解因式:2a4﹣4a2+2=_____.18.飞机着陆后滑行的距离S(单位:米)与滑行的时间t(单位:秒)之间的函数关系式是s=60t﹣1.2t2,那么飞机着陆后滑行_____秒停下.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)在国家的宏观调控下,某市的商品房成交价由去年10月份的14000元/2m下降到12月份的11340元/2m.求11、12两月份平均每月降价的百分率是多少?如果房价继续回落,按此降价的百分率,你预测到今年2月份该市的商品房成交均价是否会跌破10000元/2m请说明理由20.(6分)如图,在△ABC中,点D、E分别在边AB、AC上,DE∥BC,且DE=23BC.如果AC=6,求AE的长;设AB a=,AC b=,求向量DE(用向量a、b表示).21.(6分)嘉淇在做家庭作业时,不小心将墨汁弄倒,恰好覆盖了题目的一部分:计算:(﹣7)0+|1﹣3|+(33)﹣1﹣□+(﹣1)2018,经询问,王老师告诉题目的正确答案是1.(1)求被覆盖的这个数是多少?(2)若这个数恰好等于2tan(α﹣15)°,其中α为三角形一内角,求α的值.22.(8分)关于x的一元二次方程x2﹣x﹣(m+2)=0有两个不相等的实数根.求m的取值范围;若m为符合条件的最小整数,求此方程的根.23.(8分)某校有3000名学生.为了解全校学生的上学方式,该校数学兴趣小组以问卷调查的形式,随机调查了该校部分学生的主要上学方式(参与问卷调查的学生只能从以下六个种类中选择一类),并将调查结果绘制成如下不完整的统计图.种类 A B C D E F上学方式电动车私家车公共交通自行车步行其他某校部分学生主要上学方式扇形统计图某校部分学生主要上学方式条形统计图根据以上信息,回答下列问题:参与本次问卷调查的学生共有____人,其中选择B类的人数有____人.在扇形统计图中,求E类对应的扇形圆心角α的度数,并补全条形统计图.若将A、C、D、E这四类上学方式视为“绿色出行”,请估计该校每天“绿色出行”的学生人数.24.(10分)计算:(﹣2)3+(﹣3)×[(﹣4)2+2]﹣(﹣3)2÷(﹣2)25.(10分)如图,在平行四边形ABCD中,E、F分别在AD、BC边上,且AE=CF.求证:(1)△ABE≌△CDF;四边形BFDE是平行四边形.26.(12分)如图,在矩形ABCD中,AB=4,BC=6,M是BC的中点,DE⊥AM于点E.求证:△ADE∽△MAB;求DE的长.27.(12分)一次函数y=x的图象如图所示,它与二次函数y=ax2-4ax+c的图象交于A、B两点(其中点A在点B的左侧),与这个二次函数图象的对称轴交于点C.(1)求点C的坐标;(2)设二次函数图象的顶点为D.①若点D与点C关于x轴对称,且△ACD的面积等于3,求此二次函数的关系式;②若CD=AC,且△ACD的面积等于10,求此二次函数的关系式.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、C【解题分析】∵CE⊥BD,∴∠BEF=90°,∵∠BAC=90°,∴∠CAF=90°,∴∠FAC=∠BAD=90°,∠ABD+∠F=90°,∠ACF+∠F=90°,∴∠ABD=∠ACF,又∵AB=AC,∴△ABD≌△ACF,∴AD=AF,∵AB=AC,D为AC中点,∴AB=AC=2AD=2AF,∵BF=AB+AF=12,∴3AF=12,∴AF=4,∴AB=AC=2AF=8,∴S△FBC=12×BF×AC=12×12×8=48,故选C.2、C【解题分析】从正面看几何体,确定出主视图即可.【题目详解】解:几何体的主视图为故选C.【题目点拨】本题考查了简单组合体的三视图,主视图即为从正面看几何体得到的视图.3、B【解题分析】(1)根据完全平方公式进行解答;(2)根据合并同类项进行解答;(3)根据合并同类项进行解答;(4)根据幂的乘方进行解答.【题目详解】解:A、(a+b)2=a2+2ab+b2,故此选项错误;B、3n+3n+3n=3n+1,正确;C、a3+a3=2a3,故此选项错误;D、(a b)2=a2b,故此选项错误;故选B.【题目点拨】本题考查整数指数幂和整式的运算,解题关键是掌握各自性质.4、C【解题分析】根据同底数幂的乘法,可判断A、B,根据幂的乘方,可判断C,根据同底数幂的除法,可判断D.【题目详解】A.a4•a3=a7,故A错误;B.3a•4a=12a2,故B错误;C.(a3)4=a12,故C正确;D.a12÷a3=a9,故D错误.故选C.【题目点拨】本题考查了同底数幂的除法,同底数幂的除法底数不变指数相减是解题的关键.5、C【解题分析】由∠A是公共角,利用有两角对应相等的三角形相似,即可得A与B正确;又由两组对应边的比相等且夹角对应相等的两个三角形相似,即可得D正确,继而求得答案,注意排除法在解选择题中的应用.【题目详解】∵∠A是公共角,∴当∠ABD=∠C或∠ADB=∠ABC时,△ADB∽△ABC(有两角对应相等的三角形相似),故A与B正确,不符合题意要求;当AB:AD=AC:AB时,△ADB∽△ABC(两组对应边的比相等且夹角对应相等的两个三角形相似),故D正确,不符合题意要求;AB:BD=CB:AC时,∠A不是夹角,故不能判定△ADB与△ABC相似,故C错误,符合题意要求,故选C.6、A【解题分析】可设其和为S,则2S=2+22+23+24+…+22010+22011,两式相减可得答案.【题目详解】设S=1+2+22+23+ (22010)则2S=2+22+23+…+22010+22011②②-①得S=22011-1.故选A.【题目点拨】本题考查了因式分解的应用;设出和为S,并求出2S进行做差求解是解题关键.7、B【解题分析】从左边看可以看到两个小正方形摞在一起,故选B.8、A【解题分析】根据平行线分线段成比例定理逐项分析即可.【题目详解】A.∵DE BC,∴DF DEFC BC=,AE DEAC BC=,∴DF AEFC AC=,故A正确;B. ∵DE BC,∴AD AEAB AC=,故B不正确;C. ∵DE BC,∴AD DEAB BC=,故C不正确;D. ∵DE BC,∴DF EFCF BF=,故D不正确;故选A.【题目点拨】本题考查了平行线分线段成比例定理,平行线分线段成比例定理指的是两条直线被一组平行线所截,截得的对应线段的长度成比例.推论:平行于三角形一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形的三边对应成比例.9、A【解题分析】对一个物体,在正面进行正投影得到的由前向后观察物体的视图,叫做主视图.【题目详解】解:由主视图的定义可知A 选项中的图形为该立体图形的主视图,故选择A.【题目点拨】本题考查了三视图的概念.10、C【解题分析】∵平行四边形ABCD ,∴AD ∥BC ,AD =BC ,AO =CO ,∴∠EAO =∠FCO ,∵在△AEO 和△CFO 中,AEO CFO AO COAOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AEO ≌△CFO ,∴AE =CF ,EO =FO =1.5,∵C 四边形ABCD =18,∴CD +AD =9,∴C 四边形CDEF =CD +DE +EF +FC =CD +DE +EF +AE =CD +AD +EF =9+3=12.故选C.【题目点拨】本题关键在于利用三角形全等,解题关键是将四边形CDEF 的周长进行转化.11、D【解题分析】连接OC 、OD 、BD ,根据点C ,D 是半圆O 的三等分点,推导出OC ∥BD 且△BOD 是等边三角形,阴影部分面积转化为扇形BOD 的面积,分别计算出扇形BOD 的面积和半圆的面积,然后根据概率公式即可得出答案.【题目详解】解:如图,连接OC 、OD 、BD ,∵点C 、D 是半圆O 的三等分点,∴==AC CD DB ,∴∠AOC =∠COD =∠DOB =60°,∵OC=OD ,∴△COD 是等边三角形,∴OC=OD=CD ,∵2CD =,∴2OC OD CD ===,∵OB=OD ,∴△BOD 是等边三角形,则∠ODB =60°,∴∠ODB =∠COD =60°,∴OC ∥BD ,∴=BCD BOD S S ,∴S 阴影=S 扇形OBD 226060223603603πππ⋅⨯===OD , S 半圆O 222222πππ⋅⨯===OD , 飞镖落在阴影区域的概率21233ππ=÷=, 故选:D .【题目点拨】本题主要考查扇形面积的计算和几何概率问题:概率=相应的面积与总面积之比,解题的关键是把求不规则图形的面积转化为求规则图形的面积.12、C【解题分析】化简二次根式,并进行二次根式的乘法运算,最后合并同类二次根式即可.【题目详解】原式.故选C.【题目点拨】本题主要考查二次根式的化简以及二次根式的混合运算.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、4【解题分析】试题分析:先根据众数的定义求出a的值,再根据平均数的定义列出算式,再进行计算即可.试题解析:∵3,a,4,5的众数是4,∴a=4,∴这组数据的平均数是(3+4+4+5)÷4=4.考点:1.算术平均数;2.众数.14、m【解题分析】解:原式=1mm-•21mm-=m.故答案为m.15、1【解题分析】把点(m,0)代入y=x2﹣x﹣1,求出m2﹣m=1,代入即可求出答案.【题目详解】∵二次函数y=x2﹣x﹣1的图象与x轴的一个交点为(m,0),∴m2﹣m﹣1=0,∴m2﹣m=1,∴m2﹣m+2017=1+2017=1.故答案为:1.【题目点拨】本题考查了抛物线与x轴的交点问题,求代数式的值的应用,解答此题的关键是求出m2﹣m=1,难度适中.16.【解题分析】当PC⊥AB时,线段PQ最短;连接CP、CQ,根据勾股定理知PQ2=CP2﹣CQ2,先求出CP的长,然后由勾股定理即可求得答案.【题目详解】连接CP、CQ;如图所示:∵PQ是⊙C的切线,∴CQ⊥PQ,∠CQP=90°,根据勾股定理得:PQ2=CP2﹣CQ2,∴当PC⊥AB时,线段PQ最短.∵在Rt△ACB中,∠A=30°,BC=2,∴AB=2BC=4,AC=23,∴CP=AC BCAB⋅=2324⨯=3,∴PQ=22CP CQ-=312-=,∴PQ的最小值是2.故答案为:2.【题目点拨】本题考查了切线的性质以及勾股定理的运用;注意掌握辅助线的作法,注意当PC⊥AB时,线段PQ最短是关键.17、1(a+1)1(a﹣1)1.【解题分析】原式提取公因式,再利用完全平方公式分解即可.【题目详解】解:原式=1(a4﹣1a1+1)=1(a1﹣1)1=1(a+1)1(a﹣1)1,故答案为:1(a+1)1(a﹣1)1【题目点拨】本题主要考查提取公因式与公式法的综合运用,关键要掌握提取公因式之后,根据多项式的项数来选择方法继续因式分解,如果多项式是两项,则考虑用平方差公式;如果是三项,则考虑用完全平方公式.18、1【解题分析】飞机停下时,也就是滑行距离最远时,即在本题中需求出s最大时对应的t值.【题目详解】由题意,s=﹣1.2t2+60t=﹣1.2(t2﹣50t+61﹣61)=﹣1.2(t﹣1)2+750即当t=1秒时,飞机才能停下来.故答案为1.【题目点拨】本题考查了二次函数的应用.解题时,利用配方法求得t=2时,s取最大值.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)10%;(1)会跌破10000元/m1.【解题分析】(1)设11、11两月平均每月降价的百分率是x,那么4月份的房价为14000(1-x),11月份的房价为14000(1-x)1,然后根据11月份的11340元/m1即可列出方程解决问题;(1)根据(1)的结果可以计算出今年1月份商品房成交均价,然后和10000元/m1进行比较即可作出判断.【题目详解】(1)设11、11两月平均每月降价的百分率是x,则11月份的成交价是:14000(1-x),11月份的成交价是:14000(1-x)1,∴14000(1-x)1=11340,∴(1-x)1=0.81,∴x1=0.1=10%,x1=1.9(不合题意,舍去)答:11、11两月平均每月降价的百分率是10%;(1)会跌破10000元/m1.如果按此降价的百分率继续回落,估计今年1月份该市的商品房成交均价为:11340(1-x)1=11340×0.81=9184.5<10000,由此可知今年1月份该市的商品房成交均价会跌破10000元/m1.【题目点拨】此题考查了一元二次方程的应用,和实际生活结合比较紧密,正确理解题意,找到关键的数量关系,然后列出方程是解题的关键.20、(1)1;(2)2()3DE b a=-.【解题分析】(1)由平行线截线段成比例求得AE的长度;(2)利用平面向量的三角形法则解答.【题目详解】(1)如图,∵DE∥BC,且DE=23 BC,∴23 AE DEAC BC==.又AC=6,∴AE=1.(2)∵AB a=,AC b=,∴BC AC AB b a=-=-.又DE∥BC,DE=23 BC,∴22()33DE BC b a ==-【题目点拨】考查了平面向量,需要掌握平面向量的三角形法则和平行向量的定义.21、(1)3(2)α=75°.【解题分析】(1)直接利用绝对值的性质以及负指数幂的性质以及零指数幂的性质分别化简得出答案;(2)直接利用特殊角的三角函数值计算得出答案.【题目详解】解:(1)原式=33□+1=1,∴□=33+1﹣1=3(2)∵α为三角形一内角,∴0°<α<180°,∴﹣15°<(α﹣15)°<165°,∵2tan(α﹣15)°=3∴α﹣15°=60°,∴α=75°.【题目点拨】此题主要考查了实数运算,正确化简各数是解题关键.22、(1)m >94-;(2)x 1=0,x 2=1. 【解题分析】解答本题的关键是是掌握好一元二次方程的根的判别式.(1)求出△=5+4m >0即可求出m 的取值范围;(2)因为m=﹣1为符合条件的最小整数,把m=﹣1代入原方程求解即可.【题目详解】解:(1)△=1+4(m +2)=9+4m >0 ∴94m >-. (2)∵m 为符合条件的最小整数, ∴m=﹣2.∴原方程变为2=0x x -∴x 1=0,x 2=1.考点:1.解一元二次方程;2.根的判别式.23、 (1)450、63; ⑵36°,图见解析; (3)2460 人.【解题分析】(1)根据“骑电动车”上下的人数除以所占的百分比,即可得到调查学生数;用调查学生数乘以选择B 类的人数所占的百分比,即可求出选择B 类的人数.(2)求出E 类的百分比,乘以360即可求出E 类对应的扇形圆心角α的度数;由总学生数求出选择公共交通的人数,补全统计图即可;(3)由总人数乘以“绿色出行”的百分比,即可得到结果.【题目详解】(1) 参与本次问卷调查的学生共有:16236%450÷=(人);选择B 类的人数有:4500.1463.⨯=故答案为450、63;-----=(2)E类所占的百分比为:136%14%20%16%4%10%.E类对应的扇形圆心角α的度数为:36010%36.⨯=⨯=(人).选择C类的人数为:45020%90补全条形统计图为:(3) 估计该校每天“绿色出行”的学生人数为3000×(1-14%-4%)=2460 人.【题目点拨】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24、-17.1【解题分析】按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的.【题目详解】解:原式=﹣8+(﹣3)×18﹣9÷(﹣2),=﹣8﹣14﹣9÷(﹣2),=﹣62+4.1,=﹣17.1.【题目点拨】此题要注意正确掌握运算顺序以及符号的处理.25、(1)见解析;(2)见解析;【解题分析】(1)由四边形ABCD是平行四边形,根据平行四边形的对边相等,对角相等的性质,即可证得∠A=∠C,AB=CD,又由AE=CF,利用SAS,即可判定△ABE≌△CDF.(2)由四边形ABCD是平行四边形,根据平行四边形对边平行且相等,即可得AD∥BC,AD=BC,又由AE=CF,即可证得DE=BF.根据对边平行且相等的四边形是平行四边形,即可证得四边形BFDE是平行四边形.【题目详解】证明:(1)∵四边形ABCD是平行四边形,∴∠A=∠C,AB=CD,在△ABE和△CDF中,∵AB=CD,∠A=∠C,AE=CF,∴△ABE≌△CDF(SAS).(2)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.∵AE=CF,∴AD﹣AE=BC﹣CF,即DE=BF.∴四边形BFDE是平行四边形.26、(1)证明见解析;(2)24 5.【解题分析】试题分析:利用矩形角相等的性质证明△DAE∽△AMB. 试题解析:(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠DAE=∠AMB,又∵∠DEA=∠B=90°,∴△DAE∽△AMB.(2)由(1)知△DAE∽△AMB,∴DE:AD=AB:AM,∵M是边BC的中点,BC=6,∴BM=3,又∵AB=4,∠B=90°,∴AM=5,∴DE:6=4:5,∴DE=245.27、(1)点C(1,);(1)①y=x1-x;②y=-x1+1x+.【解题分析】试题分析:(1)求得二次函数y=ax1-4ax+c对称轴为直线x=1,把x=1代入y=x求得y=,即可得点C的坐标;(1)①根据点D与点C关于x轴对称即可得点D的坐标,并且求得CD的长,设A(m,m),根据S△ACD=3即可求得m的值,即求得点A的坐标,把A.D的坐标代入y=ax1-4ax+c得方程组,解得a、c的值即可得二次函数的表达式.②设A(m,m)(m<1),过点A作AE⊥CD于E,则AE=1-m,CE=-m,根据勾股定理用m表示出AC的长,根据△ACD的面积等于10可求得m的值,即可得A点的坐标,分两种情况:第一种情况,若a>0,则点D在点C下方,求点D的坐标;第二种情况,若a<0,则点D在点C上方,求点D的坐标,分别把A、D的坐标代入y=ax1-4ax+c即可求得函数表达式.试题解析:(1)y=ax1-4ax+c=a(x-1)1-4a+c.∴二次函数图像的对称轴为直线x=1.当x=1时,y=x=,∴C(1,).(1)①∵点D与点C关于x轴对称,∴D(1,-),∴CD=3.设A(m,m)(m<1),由S△ACD=3,得×3×(1-m)=3,解得m=0,∴A(0,0).由A(0,0)、D(1,-)得解得a=,c=0.∴y=x1-x.②设A(m,m)(m<1),过点A作AE⊥CD于E,则AE=1-m,CE=-m,AC==(1-m),∵CD=AC,∴CD=(1-m).由S△ACD=10得×(1-m)1=10,解得m=-1或m=6(舍去),∴m=-1.∴A(-1,-),CD=5.若a>0,则点D在点C下方,∴D(1,-),由A(-1,-)、D(1,-)得解得∴y=x1-x-3.若a<0,则点D在点C上方,∴D(1,),由A(-1,-)、D(1,)得解得∴y=-x1+1x+.考点:二次函数与一次函数的综合题.。
山东省潍坊联考2024届中考四模数学试题含解析
山东省潍坊联考2024届中考四模数学试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(共10小题,每小题3分,共30分)1.如图分别是某班全体学生上学时乘车、步行、骑车人数的分布直方图和扇形统计图(两图都不完整),下列结论错误的是( )A .该班总人数为50B .步行人数为30C .乘车人数是骑车人数的2.5倍D .骑车人数占20%2.如图,已知射线OM ,以O 为圆心,任意长为半径画弧,与射线OM 交于点A ,再以点A 为圆心,AO 长为半径画弧,两弧交于点B ,画射线OB ,那么∠AOB 的度数是( )A .90°B .60°C .45°D .30°3.若关于x 的不等式组324x a x a <+⎧⎨>-⎩无解,则a 的取值范围是( ) A .a≤﹣3 B .a <﹣3C .a >3D .a≥3 4.下列计算正确的是( )A .a 2•a 3=a 5B .2a+a 2=3a 3C .(﹣a 3)3=a 6D .a 2÷a=2 5.如图,在ABCD 中,E 为CD 上一点,连接AE 、BD ,且AE 、BD 交于点F ,DEF ABF S S 425∆∆=::,则DE :EC=( )A .2:5B .2:3C .3:5D .3:26.下列各数中是无理数的是()A.cos60°B.·1.3C.半径为1cm的圆周长D.387.如图,⊙O的半径OA=6,以A为圆心,OA为半径的弧交⊙O于B、C点,则BC=()A.63B.62C.33D.328.下列各数中,最小的数是()A.0 B.2C.1D.π-9.某自行车厂准备生产共享单车4000辆,在生产完1600辆后,采用了新技术,使得工作效率比原来提高了20%,结果共用了18天完成任务,若设原来每天生产自行车x辆,则根据题意可列方程为( )A.1600x+4000(120%)x+=18 B.1600x40001600(120%)x-++=18C.1600x+4000160020%x-=18 D.4000x40001600(120%)x-++=1810.如图,AD,CE分别是△ABC的中线和角平分线.若AB=AC,∠CAD=20°,则∠ACE的度数是()A.20°B.35°C.40°D.70°二、填空题(本大题共6个小题,每小题3分,共18分)11.化简:a ba b b a+--22=__________.12.如图,在平面直角坐标系中,四边形OABC的顶点O是坐标原点,点A的坐标(6,0),B的坐标(0,8),点C 的坐标(﹣54),点M,N分别为四边形OABC边上的动点,动点M从点O开始,以每秒1个单位长度的速度沿O→A→B路线向终点B匀速运动,动点N从O点开始,以每秒2个单位长度的速度沿O→C→B→A路线向终点A 匀速运动,点M,N同时从O点出发,当其中一点到达终点后,另一点也随之停止运动,设动点运动的时间为t秒(t>0),△OMN 的面积为S .则:AB 的长是_____,BC 的长是_____,当t =3时,S 的值是_____.13.如图△ABC 中,AB=AC=8,∠BAC=30°,现将△ABC 绕点A 逆时针旋转30°得到△ACD ,延长AD 、BC 交于点E ,则DE 的长是_____.14.分解因式2x 2﹣4x+2的最终结果是_____.15.计算2x 3·x 2的结果是_______.16.一个不透明的袋子中装有6个球,其中2个红球、4个黑球,这些球除颜色外无其他差别.现从袋子中随机摸出一个球,则它是黑球的概率是______.三、解答题(共8题,共72分)17.(8分)在平面直角坐标系xOy 中,点M 的坐标为()11,x y ,点N 的坐标为()22,x y ,且12x x ≠,12y y =,我们规定:如果存在点P ,使MNP ∆是以线段MN 为直角边的等腰直角三角形,那么称点P 为点M 、N 的“和谐点”.(1)已知点A 的坐标为()1,3,①若点B 的坐标为()3,3,在直线AB 的上方,存在点A ,B 的“和谐点”C ,直接写出点C 的坐标;②点C 在直线x =5上,且点C 为点A ,B 的“和谐点”,求直线AC 的表达式.(2)⊙O 的半径为r ,点()1,4D 为点()1,2E 、(),F m n 的“和谐点”,且DE =2,若使得DEF ∆与⊙O 有交点,画出示意图直接写出半径r 的取值范围.18.(8分)投资1万元围一个矩形菜园(如图),其中一边靠墙,另外三边选用不同材料建造.墙长24m ,平行于墙的边的费用为200元/m ,垂直于墙的边的费用为150元/m ,设平行于墙的边长为x m 设垂直于墙的一边长为y m ,直接写出y 与x 之间的函数关系式;若菜园面积为384m 2,求x 的值;求菜园的最大面积.19.(8分)(1)问题:如图1,在四边形ABCD 中,点P 为AB 上一点,∠DPC=∠A=∠B=90°.求证:AD·BC=AP·BP . (2)探究:如图2,在四边形ABCD 中,点P 为AB 上一点,当∠DPC=∠A=∠B=θ时,上述结论是否依然成立.说明理由.(3)应用:请利用(1)(2)获得的经验解决问题:如图3,在△ABD 中,AB=6,AD=BD=1.点P 以每秒1个单位长度的速度,由点A 出发,沿边AB 向点B 运动,且满足∠DPC=∠A .设点P 的运动时间为t (秒),当DC 的长与△ABD 底边上的高相等时,求t 的值.20.(8分)如图,在ABC 中,90ACB ∠=︒,BC 的垂直平分线DE 交BC 于D ,交AB 于E ,F 在射线DE 上,并且EF AC =.(1)求证:AF CE =;(2)当B ∠的大小满足什么条件时,四边形ACEF 是菱形?请回答并证明你的结论.21.(8分)路边路灯的灯柱BC 垂直于地面,灯杆BA 的长为2米,灯杆与灯柱BC 成120︒角,锥形灯罩的轴线AD 与灯杆AB 垂直,且灯罩轴线AD 正好通过道路路面的中心线(D 在中心线上).已知点C 与点D 之间的距离为12米,求灯柱BC的高.(结果保留根号)22.(10分)如图,在平面直角坐标系xOy中,已知点A(3,0),点B(0,33),点O为原点.动点C、D分别在直线AB、OB上,将△BCD沿着CD折叠,得△B'CD.(Ⅰ)如图1,若CD⊥AB,点B'恰好落在点A处,求此时点D的坐标;(Ⅱ)如图2,若BD=AC,点B'恰好落在y轴上,求此时点C的坐标;(Ⅲ)若点C的横坐标为2,点B'落在x轴上,求点B'的坐标(直接写出结果即可).23.(12分)小明有两双不同的运动鞋放在一起,上学时间到了,他准备穿鞋上学.他随手拿出一只,恰好是右脚鞋的概率为;他随手拿出两只,请用画树状图或列表法求恰好为一双的概率.24.嘉兴市2010~2014年社会消费品零售总额及增速统计图如下:请根据图中信息,解答下列问题:(1)求嘉兴市2010~2014年社会消费品零售总额增速..这组数据的中位数.(2)求嘉兴市近三年(2012~2014年)的社会消费品零售总额....这组数据的平均数.(3)用适当的方法预测嘉兴市2015年社会消费品零售总额(只要求列出算式,不必计算出结果).参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解题分析】根据乘车人数是25人,而乘车人数所占的比例是50%,即可求得总人数,然后根据百分比的含义即可求得步行的人数,以及骑车人数所占的比例.【题目详解】A、总人数是:25÷50%=50(人),故A正确;B、步行的人数是:50×30%=15(人),故B错误;C、乘车人数是骑车人数倍数是:50%÷20%=2.5,故C正确;D、骑车人数所占的比例是:1-50%-30%=20%,故D正确.由于该题选择错误的,故选B.【题目点拨】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.2、B【解题分析】首先连接AB,由题意易证得△AOB是等边三角形,根据等边三角形的性质,可求得∠AOB的度数.【题目详解】连接AB,根据题意得:OB=OA=AB,∴△AOB是等边三角形,∴∠AOB=60°.故答案选:B.【题目点拨】本题考查了等边三角形的判定与性质,解题的关键是熟练的掌握等边三角形的判定与性质.3、A【解题分析】【分析】利用不等式组取解集的方法,根据不等式组无解求出a的取值范围即可.【题目详解】∵不等式组324x ax a<+⎧⎨>-⎩无解,∴a﹣4≥3a+2,解得:a≤﹣3,故选A.【题目点拨】本题考查了一元一次不等式组的解集,熟知一元一次不等式组的解集的确定方法“同大取大、同小取小、大小小大中间找、大大小小无处找”是解题的关键.4、A【解题分析】直接利用合并同类项法则以及积的乘方运算法则、整式的除法运算法则分别计算得出答案.【题目详解】A、a2•a3=a5,故此选项正确;B、2a+a2,无法计算,故此选项错误;C、(-a3)3=-a9,故此选项错误;D、a2÷a=a,故此选项错误;故选A.【题目点拨】此题主要考查了合并同类项以及积的乘方运算、整式的除法运算,正确掌握相关运算法则是解题关键.5、B【解题分析】∵四边形ABCD 是平行四边形,∴AB ∥CD∴∠EAB=∠DEF ,∠AFB=∠DFE∴△DEF ∽△BAF∴()2DEF ABF S S DE AB ∆∆=:: ∵DEF ABF S S 425∆∆=::, ∴DE :AB=2:5∵AB=CD ,∴DE :EC=2:3故选B6、C【解题分析】分析:根据“无理数”的定义进行判断即可.详解:A 选项中,因为1cos602=,所以A 选项中的数是有理数,不能选A ; B 选项中,因为·1.3是无限循环小数,属于有理数,所以不能选B ;C 选项中,因为半径为1cm 的圆的周长是2πcm ,2π是个无理数,所以可以选C ;D ,2是有理数,所以不能选D.故选.C.点睛:正确理解无理数的定义:“无限不循环小数叫做无理数”是解答本题的关键.7、A【解题分析】试题分析:根据垂径定理先求BC 一半的长,再求BC 的长.解:如图所示,设OA 与BC 相交于D 点.∵AB =OA =OB =6,∴△OAB 是等边三角形.又根据垂径定理可得,OA 平分BC ,利用勾股定理可得BD 226333-=所以BC =2BD =63故选A.点睛:本题主要考查垂径定理和勾股定理. 解题的关键在于要利用好题中的条件圆O 与圆A 的半径相等,从而得出△OAB 是等边三角形,为后继求解打好基础.8、D【解题分析】根据实数大小比较法则判断即可.【题目详解】π-<0<12,故选D .【题目点拨】本题考查了实数的大小比较的应用,掌握正数都大于0,负数都小于0,两个负数比较大小,其绝对值大的反而小是解题的关键.9、B【解题分析】根据前后的时间和是18天,可以列出方程.【题目详解】若设原来每天生产自行车x 辆,根据前后的时间和是18天,可以列出方程()16004000160018120x x-+=+%. 故选B【题目点拨】本题考核知识点:分式方程的应用. 解题关键点:根据时间关系,列出分式方程.10、B【解题分析】先根据等腰三角形的性质以及三角形内角和定理求出∠CAB=2∠CAD=40°,∠B=∠ACB=12(180°-∠CAB)=70°.再利用角平分线定义即可得出∠ACE=12∠ACB=35°.【题目详解】∵AD是△ABC的中线,AB=AC,∠CAD=20°,∴∠CAB=2∠CAD=40°,∠B=∠ACB=12(180°-∠CAB)=70°.∵CE是△ABC的角平分线,∴∠ACE=12∠ACB=35°.故选B.【题目点拨】本题考查了等腰三角形的两个底角相等的性质,等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合的性质,三角形内角和定理以及角平分线定义,求出∠ACB=70°是解题的关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、a+b【解题分析】将原式通分相减,然后用平方差公式分解因式,再约分化简即可。
海南省重点中学2024届中考数学四模试卷含解析
海南省重点中学2024年中考数学四模试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如果零上2℃记作+2℃,那么零下3℃记作()A.-3℃B.-2℃C.+3℃D.+2℃2.-10-4的结果是()A.-7 B.7 C.-14 D.133.下列运算中正确的是( )A.x2÷x8=x−6B.a·a2=a2C.(a2)3=a5D.(3a)3=9a34.若x>y,则下列式子错误的是()A.x﹣3>y﹣3 B.﹣3x>﹣3y C.x+3>y+3 D.x y > 335.实数21-的相反数是()A.21-B.21+C.21--D.12-6.如图所示,如果将一副三角板按如图方式叠放,那么∠1 等于( )A.120︒B.105︒C.60︒D.45︒7.随着“中国诗词大会”节目的热播,《唐诗宋词精选》一书也随之热销.如果一次性购买10本以上,超过10本的那部分书的价格将打折,并依此得到付款金额y(单位:元)与一次性购买该书的数量x(单位:本)之间的函数关系如图所示,则下列结论错误的是()A .一次性购买数量不超过10本时,销售价格为20元/本B .a =520C .一次性购买10本以上时,超过10本的那部分书的价格打八折D .一次性购买20本比分两次购买且每次购买10本少花80元8.在Rt △ABC 中,∠C =90°,AB =4,AC =1,则cosB 的值为( )A .154B .14C .1515D .417179.长江经济带覆盖上海、江苏、浙江、安徽、江西、湖北、湖南、重庆、四川、云南、贵州等11省市,面积约2 050 000平方公里,约占全国面积的21% .将2 050 000用科学记数法表示应为( )A .205万B .420510⨯C .62.0510⨯D .72.0510⨯ 10.小明解方程121x x x--=的过程如下,他的解答过程中从第( )步开始出现错误. 解:去分母,得1﹣(x ﹣2)=1①去括号,得1﹣x +2=1②合并同类项,得﹣x +3=1③移项,得﹣x =﹣2④系数化为1,得x =2⑤A .①B .②C .③D .④二、填空题(共7小题,每小题3分,满分21分)11.如图,已知AB 是⊙O 的直径,点C 在⊙O 上,过点C 的切线与AB 的延长线交于点P ,连接AC ,若∠A=30°,PC=3,则BP 的长为 .12.如图,四边形OABC 中,AB ∥OC ,边OA 在x 轴的正半轴上,OC 在y 轴的正半轴上,点B 在第一象限内,点D为AB的中点,CD与OB相交于点E,若△BDE、△OCE的面积分别为1和9,反比例函数y=kx的图象经过点B,则k=_______.13.如图,AB是⊙O的弦,∠OAB=30°.OC⊥OA,交AB于点C,若OC=6,则AB的长等于__.14.有一个计算程序,每次运算都是把一个数先乘以2,再除以它与1的和,多次重复进行这种运算的过程如下:则,y2=_____,第n次的运算结果y n=_____.(用含字母x和n的代数式表示).15.如图,在△ABC中,BE平分∠ABC,DE∥BC,如果DE=2AD,AE=3,那么EC=_____.16.如图,已知长方体的三条棱AB、BC、BD分别为4,5,2,蚂蚁从A点出发沿长方体的表面爬行到M的最短路程的平方是_____.17.某市居民用电价格如表所示:用电量不超过a千瓦时超过a千瓦时的部分单价(元/千瓦时)0.5 0.6小芳家二月份用电200千瓦时,交电费105元,则a=______.三、解答题(共7小题,满分69分)18.(10分)如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD,等边△ABE,已知∠BAC=30°,EF⊥AB,垂足为F,连接DF试说明AC=EF;求证:四边形ADFE是平行四边形.19.(5分)春节期间,小丽一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游.租车公司:按日收取固定租金80元,另外再按租车时间计费.共享汽车:无固定租金,直接以租车时间(时)计费.如图是两种租车方式所需费用y1(元)、y2(元)与租车时间x(时)之间的函数图象,根据以上信息,回答下列问题:(1)分别求出y1、y2与x的函数表达式;(2)请你帮助小丽一家选择合算的租车方案.20.(8分)如图,建筑物AB的高为6cm,在其正东方向有个通信塔CD,在它们之间的地面点M(B,M,D三点在一条直线上)处测得建筑物顶端A、塔项C的仰角分别为37°和60°,在A处测得塔顶C的仰角为30°,则通信塔CD的高度.(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,3=1.73,精确到0.1m)21.(10分)如图,AB为⊙O的直径,C为⊙O上一点,∠ABC的平分线交⊙O于点D,DE⊥BC于点E.试判断DE与⊙O的位置关系,并说明理由;过点D作DF⊥AB于点F,若BE=33,DF=3,求图中阴影部分的面积.22.(10分)某年级组织学生参加夏令营活动,本次夏令营分为甲、乙、丙三组进行活动.下面两幅统计图反映了学生报名参加夏令营的情况,请你根据图中的信息回答下列问题:该年级报名参加丙组的人数为;该年级报名参加本次活动的总人数,并补全频数分布直方图;根据实际情况,需从甲组抽调部分同学到丙组,使丙组人数是甲组人数的3倍,应从甲组抽调多少名学生到丙组?23.(12分)如图所示,抛物线y=x2+bx+c经过A、B两点,A、B两点的坐标分别为(﹣1,0)、(0,﹣3).求抛物线的函数解析式;点E为抛物线的顶点,点C为抛物线与x轴的另一交点,点D为y轴上一点,且DC=DE,求出点D的坐标;在第二问的条件下,在直线DE上存在点P,使得以C、D、P为顶点的三角形与△DOC相似,请你直接写出所有满足条件的点P的坐标.24.(14分)如图,将△ABC放在每个小正方形的边长为1的网格中,点A、点B、点C均落在格点上.(I)计算△ABC的边AC的长为_____.(II)点P、Q分别为边AB、AC上的动点,连接PQ、QB.当PQ+QB取得最小值时,请在如图所示的网格中,用无刻度的直尺,画出线段PQ、QB,并简要说明点P、Q的位置是如何找到的_____(不要求证明).参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解题分析】一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【题目详解】∵“正”和“负”相对,∴如果零上2℃记作+2℃,那么零下3℃记作-3℃.故选A.2、C【解题分析】解:-10-4=-1.故选C.3、A【解题分析】根据同底数幂的除法法则:底数不变,指数相减;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘进行计算即可.【题目详解】解:A、x2÷x8=x-6,故该选项正确;B、a•a2=a3,故该选项错误;C、(a2)3=a6,故该选项错误;D、(3a)3=27a3,故该选项错误;故选A.【题目点拨】此题主要考查了同底数幂的乘除法、幂的乘方和积的乘方,关键是掌握相关运算法则.4、B【解题分析】根据不等式的性质在不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变即可得出答案:A、不等式两边都减3,不等号的方向不变,正确;B、乘以一个负数,不等号的方向改变,错误;C、不等式两边都加3,不等号的方向不变,正确;D、不等式两边都除以一个正数,不等号的方向不变,正确.故选B.5、D【解题分析】根据相反数的定义求解即可.【题目详解】-的相反数是-2121+,故选D.【题目点拨】本题考查了实数的性质,在一个数的前面加上负号就是这个数的相反数.6、B【解题分析】解:如图,∠2=90°﹣45°=45°,由三角形的外角性质得,∠1=∠2+60°=45°+60°=105°.故选B.点睛:本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.7、D【解题分析】A、根据单价=总价÷数量,即可求出一次性购买数量不超过10本时,销售单价,A选项正确;C、根据单价=总价÷数量结合前10本花费200元即可求出超过10本的那部分书的单价,用其÷前十本的单价即可得出C正确;B、根据总价=200+超过10本的那部分书的数量×16即可求出a 值,B 正确;D ,求出一次性购买20本书的总价,将其与400相减即可得出D 错误.此题得解.【题目详解】解:A 、∵200÷10=20(元/本),∴一次性购买数量不超过10本时,销售价格为20元/本,A 选项正确;C 、∵(840﹣200)÷(50﹣10)=16(元/本),16÷20=0.8, ∴一次性购买10本以上时,超过10本的那部分书的价格打八折,C 选项正确;B 、∵200+16×(30﹣10)=520(元),∴a =520,B 选项正确;D 、∵200×2﹣200﹣16×(20﹣10)=40(元),∴一次性购买20本比分两次购买且每次购买10本少花40元,D 选项错误.故选D .【题目点拨】考查了一次函数的应用,根据一次函数图象结合数量关系逐一分析四个选项的正误是解题的关键.8、A【解题分析】∵在Rt △ABC 中,∠C =90°,AB =4,AC =1,∴BC ,则cos B =BC AB =4, 故选A9、C【解题分析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【题目详解】2 050 000将小数点向左移6位得到2.05,所以2 050 000用科学记数法表示为:20.5×106, 故选C .【题目点拨】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.10、A【解题分析】根据解分式方程的方法可以判断哪一步是错误的,从而可以解答本题.【题目详解】 12x x x--=1, 去分母,得1-(x-2)=x ,故①错误,故选A .【题目点拨】本题考查解分式方程,解答本题的关键是明确解分式方程的方法.二、填空题(共7小题,每小题3分,满分21分)11、.【解题分析】 试题分析:连接OC,已知OA=OC ,∠A=30°,所以∠OCA=∠A=30°,由三角形外角的性质可得∠COB=∠A+∠ACO=60°,又因PC 是⊙O 切线,可得∠PCO=90°,∠P=30°,再由PC=3,根据锐角三角函数可得OC=PC•tan30°=,PC=2OC=2,即可得PB=PO ﹣OB=.考点:切线的性质;锐角三角函数.12、16【解题分析】根据题意得S △BDE :S △OCE =1:9,故BD :OC=1:3,设D (a,b )则A(a,0),B(a,2b),得C(0,3b),由S △OCE =9得ab=8,故可得解.【题目详解】解:设D (a,b )则A(a,0),B(a,2b)∵S △BDE :S △OCE =1:9∴BD :OC=1:3∴C(0,3b)∴△COE高是OA的34,∴S△OCE=3ba×3412⨯=9解得ab=8k=a×2b=2ab=2×8=16故答案为16.【题目点拨】此题利用了:①过某个点,这个点的坐标应适合这个函数解析式;②所给的面积应整理为和反比例函数上的点的坐标有关的形式.13、18【解题分析】连接OB,∵OA=OB,∴∠B=∠A=30°,∵∠COA=90°,∴AC=2OC=2×6=12,∠ACO=60°,∵∠ACO=∠B+∠BOC,∴∠BOC=∠ACO-∠B=30°,∴∠BOC=∠B,∴CB=OC=6,∴AB=AC+BC=18,故答案为18.14、431xx+2(21)1nnxx-+【解题分析】根据题目中的程序可以分别计算出y2和y n,从而可以解答本题.【题目详解】∵y1=21xx+,∴y2=1121yy+=221211xxxx⨯+++=431xx+,y3=871xx+,……y n=2211nnxx-+().故答案为:4231211nnx xx x+-+,().【题目点拨】本题考查了分式的混合运算,解答本题的关键是明确题意,用代数式表示出相应的y2和y n.15、1.【解题分析】由BE平分∠ABC,DE∥BC,易得△BDE是等腰三角形,即可得BD=2AD,又由平行线分线段成比例定理,即可求得答案.【题目详解】解:∵DE∥BC,∴∠DEB=∠CBE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠ABE=∠DEB,∴BD=DE,∵DE=2AD,∴BD=2AD,∵DE∥BC,∴AD:DB=AE:EC,∴EC=2AE=2×3=1.故答案为:1.【题目点拨】此题考查了平行线分线段成比例定理以及等腰三角形的判定与性质.注意掌握线段的对应关系是解此题的关键.16、61【解题分析】分析: 要求长方体中两点之间的最短路径,最直接的作法,就是将长方体展开,然后利用两点之间线段最短解答,注意此题展开图后蚂蚁的爬行路线有两种,分别求出,选取最短的路程.详解: 如图①:AM2=AB2+BM2=16+(5+2)2=65;如图②:AM2=AC2+CM2=92+4=85;如图:AM2=52+(4+2)2=61.∴蚂蚁从A点出发沿长方体的表面爬行到M的最短路程的平方是:61.故答案为:61.点睛: 此题主要考查了平面展开图,求最短路径,解决此类题目的关键是把长方体的侧面展开“化立体为平面”,用勾股定理解决.17、150【解题分析】根据题意可得等量关系:不超过a千瓦时的电费+超过a千瓦时的电费=105元;根据等量关系列出方程,解出a的值即可.【题目详解】∵0.5×200=100<105,∴a<200.由题意得:0.5a+0.6(200-a)=105,解得:a=150.故答案为:150【题目点拨】此题主要考查了一元一次方程的应用,关键是正确找出题目中的等量关系,列出方程.三、解答题(共7小题,满分69分)18、证明见解析.【解题分析】(1)一方面Rt△ABC中,由∠BAC=30°可以得到AB=2BC,另一方面△ABE是等边三角形,EF⊥AB,由此得到AE=2AF,并且AB=2AF,从而可证明△AFE≌△BCA,再根据全等三角形的性质即可证明AC=EF.(2)根据(1)知道EF=AC,而△ACD是等边三角形,所以EF=AC=AD,并且AD⊥AB,而EF⊥AB,由此得到EF∥AD,再根据平行四边形的判定定理即可证明四边形ADFE是平行四边形.【题目详解】证明:(1)∵Rt△ABC中,∠BAC=30°,∴AB=2BC.又∵△ABE是等边三角形,EF⊥AB,∴AB=2AF.∴AF=BC.∵在Rt△AFE和Rt△BCA中,AF=BC,AE=BA,∴△AFE≌△BCA(HL).∴AC=EF.(2)∵△ACD是等边三角形,∴∠DAC=60°,AC=AD.∴∠DAB=∠DAC+∠BAC=90°.∴EF∥AD.∵AC=EF,AC=AD,∴EF=AD.∴四边形ADFE是平行四边形.考点:1.全等三角形的判定与性质;2.等边三角形的性质;3.平行四边形的判定.19、(1)y1=kx+80,y2=30x;(2)见解析.【解题分析】(1)设y1=kx+80,将(2,110)代入求解即可;设y2=mx,将(5,150)代入求解即可;(2)分y1=y2,y1<y2,y1>y2三种情况分析即可.【题目详解】解:(1)由题意,设y1=kx+80,将(2,110)代入,得110=2k+80,解得k=15,则y1与x的函数表达式为y1=15x+80;设y2=mx,将(5,150)代入,得150=5m,解得m=30,则y2与x的函数表达式为y2=30x;(2)由y1=y2得,15x+80=30x,解得x=;由y1<y2得,15x+80<30x,解得x>;由y1>y2得,15x+80>30x,解得x<.故当租车时间为小时时,两种选择一样;当租车时间大于小时时,选择租车公司合算;当租车时间小于小时时,选择共享汽车合算.本题考查了一次函数的应用及分类讨论的数学思想,解答本题的关键是掌握待定系数法求函数解析式的方法.20、通信塔CD 的高度约为15.9cm .【解题分析】过点A 作AE ⊥CD 于E ,设CE=xm ,解直角三角形求出AE ,解直角三角形求出BM 、DM ,即可得出关于x 的方程,求出方程的解即可.【题目详解】过点A 作AE ⊥CD 于E ,则四边形ABDE 是矩形,设CE=xcm ,在Rt △AEC 中,∠AEC=90°,∠CAE=30°,所以AE=330CE tan =︒xcm , 在Rt △CDM 中,CD=CE+DE=CE+AB=(x+6)cm , DM=)36603x CD tan +=︒cm , 在Rt △ABM 中,BM=63737AB tan tan =︒︒cm , ∵AE=BD , )3663373x x tan +=+︒, 解得:33, ∴CD=CE+ED=3337tan ︒+9≈15.9(cm ), 答:通信塔CD 的高度约为15.9cm .本题考查了解直角三角形,能通过解直角三角形求出AE、BM的长度是解此题的关键.21、(1)DE与⊙O相切,理由见解析;(2)阴影部分的面积为2π﹣332.【解题分析】(1)直接利用角平分线的定义结合平行线的判定与性质得出∠DEB=∠EDO=90°,进而得出答案;(2)利用勾股定理结合扇形面积求法分别分析得出答案.【题目详解】(1)DE与⊙O相切,理由:连接DO,∵DO=BO,∴∠ODB=∠OBD,∵∠ABC的平分线交⊙O于点D,∴∠EBD=∠DBO,∴∠EBD=∠BDO,∴DO∥BE,∵DE⊥BC,∴∠DEB=∠EDO=90°,∴DE与⊙O相切;(2)∵∠ABC的平分线交⊙O于点D,DE⊥BE,DF⊥AB,∴DE=DF=3,∵3,∴223+33()=6,∵sin∠DBF=31 =62,∴∠DBA=30°,∴∠DOF=60°,∴sin60°=332 DFDO DO==,∴DO=23,则FO=3,故图中阴影部分的面积为:260(23)13333236022ππ⨯-⨯⨯=-.【题目点拨】此题主要考查了切线的判定方法以及扇形面积求法等知识,正确得出DO的长是解题关键.22、(1)21人;(2)10人,见解析(3)应从甲抽调1名学生到丙组【解题分析】(1)参加丙组的人数为21人;(2)21÷10%=10人,则乙组人数=10-21-11=10人,如图:(3)设需从甲组抽调x名同学到丙组,根据题意得:3(11-x)=21+x解得x=1.答:应从甲抽调1名学生到丙组(1)直接根据条形统计图获得数据;(2)根据丙组的21人占总体的10%,即可计算总体人数,然后计算乙组的人数,补全统计图;(3)设需从甲组抽调x名同学到丙组,根据丙组人数是甲组人数的3倍列方程求解23、(1)y=x2﹣2x﹣3;(2)D(0,﹣1);(3)P点坐标(﹣13,0)、(13,﹣2)、(﹣3,8)、(3,﹣10).【解题分析】(1)将A,B两点坐标代入解析式,求出b,c值,即可得到抛物线解析式;(2)先根据解析式求出C点坐标,及顶点E的坐标,设点D的坐标为(0,m),作EF⊥y轴于点F,利用勾股定理表示出DC,DE的长.再建立相等关系式求出m值,进而求出D点坐标;(3)先根据边角边证明△COD≌△DFE,得出∠CDE=90°,即CD⊥DE,然后当以C、D、P为顶点的三角形与△DOC 相似时,根据对应边不同进行分类讨论:①当OC与CD是对应边时,有比例式OC ODDC DP=,能求出DP的值,又因为DE=DC,所以过点P作PG⊥y轴于点G,利用平行线分线段成比例定理即可求出DG,PG的长度,根据点P在点D的左边和右边,得到符合条件的两个P点坐标;②当OC与DP是对应边时,有比例式OC ODDP DC=,易求出DP,仍过点P作PG⊥y轴于点G,利用比例式DG PG DPDF EF DE==求出DG,PG的长度,然后根据点P在点D的左边和右边,得到符合条件的两个P点坐标;这样,直线DE上根据对应边不同,点P所在位置不同,就得到了符合条件的4个P点坐标.【题目详解】解:(1)∵抛物线y=x2+bx+c经过A(﹣1,0)、B(0,﹣3),∴10{3b cc-+==-,解得2{3bc=-=-,故抛物线的函数解析式为y=x2﹣2x﹣3;(2)令x2﹣2x﹣3=0,解得x1=﹣1,x2=3,则点C的坐标为(3,0),∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴点E坐标为(1,﹣4),设点D的坐标为(0,m),作EF⊥y轴于点F(如下图),∵DC2=OD2+OC2=m2+32,DE2=DF2+EF2=(m+4)2+12,∵DC=DE,∴m2+9=m2+8m+16+1,解得m=﹣1,∴点D的坐标为(0,﹣1);(3)∵点C(3,0),D(0,﹣1),E(1,﹣4),∴CO=DF=3,DO=EF=1,根据勾股定理,,在△COD和△DFE中,∵{90CO DFCOD DFE DO EF=∠=∠=︒=,∴△COD ≌△DFE (SAS ),∴∠EDF=∠DCO ,又∵∠DCO+∠CDO=90°,∴∠EDF+∠CDO=90°,∴∠CDE=180°﹣90°=90°,∴CD ⊥DE ,①当OC 与CD 是对应边时,∵△DOC ∽△PDC , ∴OC OD DC DP=1DP , 解得DP=3, 过点P 作PG ⊥y 轴于点G , 则DG PG DP DF EF DE ==,即31DG PG ==解得DG=1,PG=13, 当点P 在点D 的左边时,OG=DG ﹣DO=1﹣1=0,所以点P (﹣13,0), 当点P 在点D 的右边时,OG=DO+DG=1+1=2, 所以,点P (13,﹣2); ②当OC 与DP 是对应边时,∵△DOC ∽△CDP , ∴OC OD DP DC=,即3DP, 解得过点P 作PG ⊥y 轴于点G ,则DG PG DPDF EF DE==,即3103110DG PG==,解得DG=9,PG=3,当点P在点D的左边时,OG=DG﹣OD=9﹣1=8,所以,点P的坐标是(﹣3,8),当点P在点D的右边时,OG=OD+DG=1+9=10,所以,点P的坐标是(3,﹣10),综上所述,在直线DE上存在点P,使得以C、D、P为顶点的三角形与△DOC相似,满足条件的点P共有4个,其坐标分别为(﹣13,0)、(13,﹣2)、(﹣3,8)、(3,﹣10).考点:1.相似三角形的判定与性质;2.二次函数动点问题;3.一次函数与二次函数综合题.245作线段AB关于AC的对称线段AB′,作BQ′⊥AB′于Q′交AC于P,作PQ⊥AB于Q,此时PQ+QB 的值最小【解题分析】(1)利用勾股定理计算即可;(2)作线段AB关于AC的对称线段AB′,作BQ′⊥AB′于Q′交AC于P,作PQ⊥AB于Q,此时PQ+QB的值最小.【题目详解】解:(1)221+255(2)作线段AB关于AC的对称线段AB′,作BQ′⊥AB′于Q′交AC于P,作PQ⊥AB于Q,此时PQ+QB的值最小.故答案为作线段AB关于AC的对称线段AB′,作BQ′⊥AB′于Q′交AC于P,作PQ⊥AB于Q,此时PQ+QB的值最小.【题目点拨】本题考查作图-应用与设计,勾股定理,轴对称-最短问题,垂线段最短等知识,解题的关键是学会利用轴对称,根据垂线段最短解决最短问题,属于中考常考题型.。
2024届江苏省苏州市青云中学中考数学四模试卷含解析
2024届江苏省苏州市青云中学中考数学四模试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.﹣6的倒数是()A.﹣B.C.﹣6 D.62.下列实数中是无理数的是()A.227B.2﹣2C.5.15D.sin45°3.如图,下列四个图形是由已知的四个立体图形展开得到的,则对应的标号是()A.①②③④B.②①③④C.③②①④D.④②①③4.如图,在△ABC中,∠ACB=90°, ∠ABC=60°, BD平分∠ABC ,P点是BD的中点,若AD=6, 则CP的长为( )A.3.5 B.3 C.4 D.4.55.实数a,b在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣2 B.a<﹣3 C.a>﹣b D.a<﹣b6.关于8)A835B8C822D8 37.下列运算正确的是()A.a2+a3=a5B.(a3)2÷a6=1 C.a2•a3=a6D.(+)2=58.下列命题中,真命题是()A.对角线互相垂直且相等的四边形是正方形B.等腰梯形既是轴对称图形又是中心对称图形C.圆的切线垂直于经过切点的半径D.垂直于同一直线的两条直线互相垂直9.如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“我”字的一面相对面上的字是()A.国B.厉C.害D.了10.若关于x的方程333x m mx x++--=3的解为正数,则m的取值范围是()A.m<92B.m<92且m≠32C.m>﹣94D.m>﹣94且m≠﹣3411.如图,将△OAB绕O点逆时针旋转60°得到△OCD,若OA=4,∠AOB=35°,则下列结论错误的是()A.∠BDO=60°B.∠BOC=25°C.OC=4 D.BD=412.2017年,全国参加汉语考试的人数约为6500000,将6500000用科学记数法表示为()A.6.5×105B.6.5×106C.6.5×107D.65×105二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在△ABC中,∠ABC=90°,AB=CB,F为AB延长线上一点,点E在BC上,且AE=CF,若∠CAE=32°,则∠ACF的度数为__________°.14.如图,李明从A 点出发沿直线前进5米到达B 点后向左旋转的角度为α,再沿直线前进5米,到达点C 后,又向左旋转α角度,照这样走下去,第一次回到出发地点时,他共走了45米,则每次旋转的角度α为_____.15.如图,等腰△ABC 中,AB =AC =5,BC =8,点F 是边BC 上不与点B ,C 重合的一个动点,直线DE 垂直平分BF ,垂足为D .当△ACF 是直角三角形时,BD 的长为_____.16.如图,在平面直角坐标系中,点O 为坐标原点,点P 在第一象限,⊙P 与x 轴交于O ,A 两点,点A 的坐标为(6,0),⊙P 的半径为13,则点P 的坐标为_______.17.已知抛物线y=ax 2+bx+c=0(a≠0) 与 x 轴交于 A ,B 两点,若点 A 的坐标为 ()2,0-,线段 AB 的长为8,则抛物线的对称轴为直线 ________________.18.在一个不透明的口袋中,有3个红球、2个黄球、一个白球,它们除颜色不同之外其它完全相同,现从口袋中随机摸出一个球记下颜色后放回,再随机摸出一个球,则两次摸到一个红球和一个黄球的概率是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,把两个边长相等的等边△ABC 和△ACD 拼成菱形ABCD ,点E 、F 分别是CB 、DC 延长上的动点,且始终保持BE=CF ,连结AE 、AF 、EF .求证:AEF 是等边三角形.20.(6分)解方程:(x ﹣3)(x ﹣2)﹣4=1.21.(6分)如图1,直角梯形OABC 中,BC ∥OA ,OA=6,BC=2,∠BAO=45°.(1)OC 的长为 ;(2)D 是OA 上一点,以BD 为直径作⊙M ,⊙M 交AB 于点Q .当⊙M 与y 轴相切时,sin ∠BOQ= ;(3)如图2,动点P 以每秒1个单位长度的速度,从点O 沿线段OA 向点A 运动;同时动点D 以相同的速度,从点B 沿折线B ﹣C ﹣O 向点O 运动.当点P 到达点A 时,两点同时停止运动.过点P 作直线PE ∥OC ,与折线O ﹣B ﹣A 交于点E .设点P 运动的时间为t (秒).求当以B 、D 、E 为顶点的三角形是直角三角形时点E 的坐标.22.(8分)计算:()20113232-⎛⎫+--- ⎪⎝⎭﹣3tan30°. 23.(8分)艺术节期间,学校向学生征集书画作品,杨老师从全校36个班中随机抽取了4 个班 (用A ,B ,C ,D 表示),对征集到的作品的数量进行了统计,制作了两幅不完整的统计图.请 根据相关信息,回答下列问题: (1)请你将条形统计图补充完整;并估计全校共征集了_____件作品;(2)如果全校征集的作品中有4件获得一等奖,其中有3名作者是男生,1名作者是女生,现要在获得一等奖的作者中选取两人参加表彰座谈会,请你用列表或树状图的方法,求选取的两名学生恰好是一男一女的概率.24.(10分)如图,已知在⊙O 中,AB 是⊙O 的直径,AC =8,BC =1.求⊙O 的面积;若D 为⊙O 上一点,且△ABD 为等腰三角形,求CD 的长.25.(10分)如图,点A (m ,m +1),B (m +1,2m -3)都在反比例函数的图象上.(1)求m,k的值;(2)如果M为x轴上一点,N为y轴上一点,以点A,B,M,N为顶点的四边形是平行四边形,试求直线MN的函数表达式.26.(12分)中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如图所示:本数(本) 频数(人数) 频率5 a0.26 18 0.367 14 b8 8 0.16合计c 1(1)统计表中的a=________,b=________,c=________;请将频数分布表直方图补充完整;求所有被调查学生课外阅读的平均本数;若该校八年级共有1200名学生,请你分析该校八年级学生课外阅读7本及以上的人数.27.(12分)某商场经营某种品牌的童装,购进时的单价是60元.根据市场调查,在一段时间内,销售单价是80元时,销售量是200件,而销售单价每降低1元,就可多售出20件.写出销售量y件与销售单价x元之间的函数关系式;写出销售该品牌童装获得的利润w元与销售单价x元之间的函数关系式;若童装厂规定该品牌童装销售单价不低于76元,且商场要完成不少于240件的销售任务,则商场销售该品牌童装获得的最大利润是多少?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、A【解题分析】解:﹣6的倒数是﹣.故选A.2、D【解题分析】A、是有理数,故A选项错误;B、是有理数,故B选项错误;C、是有理数,故C选项错误;D、是无限不循环小数,是无理数,故D选项正确;故选:D.3、B【解题分析】根据常见几何体的展开图即可得.【题目详解】由展开图可知第一个图形是②正方体的展开图,第2个图形是①圆柱体的展开图,第3个图形是③三棱柱的展开图,第4个图形是④四棱锥的展开图,故选B【题目点拨】本题考查的是几何体,熟练掌握几何体的展开面是解题的关键.4、B【解题分析】解:∵∠ACB=90°,∠ABC=60°,∴∠A=10°,∵BD平分∠ABC,∴∠ABD=12∠ABC=10°,∴∠A=∠ABD,∴BD=AD=6,∵在Rt△BCD中,P点是BD的中点,∴CP=12BD=1.故选B.5、D【解题分析】试题分析:A.如图所示:﹣3<a<﹣2,故此选项错误;B.如图所示:﹣3<a<﹣2,故此选项错误;C.如图所示:1<b<2,则﹣2<﹣b<﹣1,又﹣3<a<﹣2,故a<﹣b,故此选项错误;D.由选项C可得,此选项正确.故选D.考点:实数与数轴6、D【解题分析】根据二次根式的加法法则、实数与数轴上的点是一一对应的关系、二次根式的化简及无理数的估算对各项依次分析,即可解答.【题目详解】选项A B的点;选项C选项D.故选D.【题目点拨】本题考查了二次根式的加法法则、实数与数轴上的点是一一对应的关系、二次根式的化简及无理数的估算等知识点,熟记这些知识点是解题的关键.7、B【解题分析】利用合并同类项对A进行判断;根据幂的乘方和同底数幂的除法对B进行判断;根据同底数幂的乘法法则对C进行判断;利用完全平方公式对D进行判断.【题目详解】解:A、a2与a3不能合并,所以A选项错误;B、原式=a6÷a6=1,所以A选项正确;C、原式=a5,所以C选项错误;D、原式=2+2+3=5+2,所以D选项错误.故选:B.【题目点拨】本题考查同底数幂的乘除、二次根式的混合运算,:二次根式的混合运算先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.解题关键是在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.8、C【解题分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.解答:解:A、错误,例如对角线互相垂直的等腰梯形;B、错误,等腰梯形是轴对称图形不是中心对称图形;C、正确,符合切线的性质;D、错误,垂直于同一直线的两条直线平行.故选C.9、A【解题分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【题目详解】∴有“我”字一面的相对面上的字是国.故答案选A.【题目点拨】本题考查的知识点是专题:正方体相对两个面上的文字,解题的关键是熟练的掌握正方体相对两个面上的文字.10、B【解题分析】解:去分母得:x+m﹣3m=3x﹣9,整理得:2x=﹣2m+9,解得:x=292m-+,已知关于x的方程333x m mx x++--=3的解为正数,所以﹣2m+9>0,解得m<92,当x=3时,x=292m-+=3,解得:m=32,所以m的取值范围是:m<92且m≠32.故答案选B.11、D【解题分析】由△OAB绕O点逆时针旋转60°得到△OCD知∠AOC=∠BOD=60°,AO=CO=4、BO=DO,据此可判断C;由△AOC、△BOD是等边三角形可判断A选项;由∠AOB=35°,∠AOC=60°可判断B选项,据此可得答案.【题目详解】解:∵△OAB绕O点逆时针旋转60°得到△OCD,∴∠AOC=∠BOD=60°,AO=CO=4、BO=DO,故C选项正确;则△AOC、△BOD是等边三角形,∴∠BDO=60°,故A选项正确;∵∠AOB=35°,∠AOC=60°,∴∠BOC=∠AOC-∠AOB=60°-35°=25°,故B选项正确.故选D.【题目点拨】本题考查旋转的性质,解题的关键是掌握旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等及等边三角形的判定和性质.12、B【解题分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【题目详解】将6500000用科学记数法表示为:6.5×106.故答案选B.【题目点拨】本题考查了科学计数法,解题的关键是熟练的掌握科学计数法的表示形式.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、58【解题分析】根据HL 证明Rt △CBF ≌Rt △ABE ,推出∠FCB=∠EAB ,求出∠CAB=∠ACB=45°,求出∠BCF=∠BAE=13°,即可求出答案.【题目详解】解:∵∠ABC=90°,∴∠ABE=∠CBF=90°,在Rt △CBF 和Rt △ABE 中,CF CE BC AB =⎧⎨=⎩∴Rt △CBF ≌Rt △ABE (HL ),∴∠FCB=∠EAB ,∵AB=BC ,∠ABC=90°,∴∠CAB=∠ACB=45°.∵∠BAE=∠CAB ﹣∠CAE=45°﹣32°=13°,∴∠BCF=∠BAE=13°,∴∠ACF=∠BCF+∠ACB=45°+13°=58°故答案为58【题目点拨】本题考查了全等三角形的性质和判定,注意:全等三角形的判定定理有SAS ,ASA ,AAS ,SSS ,全等三角形的性质是全等三角形的对应边相等,对应角相等.14、40︒.【解题分析】根据共走了45米,每次前进5米且左转的角度相同,则可计算出该正多边形的边数,再根据外角和计算左转的角度.【题目详解】连续左转后形成的正多边形边数为:4559÷=,则左转的角度是360940︒÷=︒.故答案是:40︒.【题目点拨】本题考查了多边形的外角计算,正确理解多边形的外角和是360°是关键.15、2或78【解题分析】分两种情况讨论:(1)当AFC 90∠︒=时,AF BC ⊥,利用等腰三角形的三线合一性质和垂直平分线的性质可解; (2)当CAF 90=∠︒时,过点A 作AM BC ⊥于点M ,证明AMC FAC ∽,列比例式求出FC ,从而得BF ,再利用垂直平分线的性质得BD . 【题目详解】解:(1)当AFC 90∠︒=时,AF BC ⊥,142AB ACBF BC BF =∴=∴= ∵DE 垂直平分BF ,8122BC BD BF =∴== .(2)当CAF 90=∠︒时,过点A 作AM BC ⊥于点M ,AB AC = BM CM =∴在Rt AMC 与Rt FAC 中,AMC FAC 90C C ∠∠∠∠︒==,=, AMC FAC ∴∽,AC MCFC AC= 2AC FC MC ∴= 15,42254AC MC BC FC ===∴=2578441728BF BC FC BD BF ∴=-=-=∴==.故答案为2或78. 【题目点拨】本题主要考查了等腰三角形的三线合一性质和线段垂直平分线的性质定理得应用.本题难度中等. 16、(3,2). 【解题分析】过点P 作PD ⊥x 轴于点D ,连接OP ,先由垂径定理求出OD 的长,再根据勾股定理求出PD 的长,故可得出答案. 【题目详解】过点P 作PD ⊥x 轴于点D ,连接OP ,∵A (6,0),PD ⊥OA , ∴OD=12OA=3, 在Rt △OPD 中 ∵13 OD=3, ∴PD=2 ∴P(3,2) . 故答案为(3,2). 【题目点拨】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键. 17、2x =或x=-1 【解题分析】由点A 的坐标及AB 的长度可得出点B 的坐标,由抛物线的对称性可求出抛物线的对称轴.【题目详解】∵点A的坐标为(-2,0),线段AB的长为8,∴点B的坐标为(1,0)或(-10,0).∵抛物线y=ax2+bx+c(a≠0)与x轴交于A、B两点,∴抛物线的对称轴为直线x=262-+=2或x=2102--=-1.故答案为x=2或x=-1.【题目点拨】本题考查了抛物线与x轴的交点以及二次函数的性质,由抛物线与x轴的交点坐标找出抛物线的对称轴是解题的关键.18、1 3【解题分析】先画树状图展示所有36种等可能的结果数,再找出两次摸到一个红球和一个黄球的结果数,然后根据概率公式求解.【题目详解】画树状图如下:由树状图可知,共有36种等可能结果,其中两次摸到一个红球和一个黄球的结果数为12,所以两次摸到一个红球和一个黄球的概率为121= 363,故答案为1 3 .【题目点拨】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、见解析【解题分析】分析:由等边三角形的性质即可得出∠ABE=∠ACF,由全等三角形的性质即可得出结论.详解:证明:∵△ABC 和△ACD 均为等边三角形 ∴AB=AC ,∠ABC=∠ACD=60°, ∴∠ABE=∠ACF=120°, ∵BE=CF , ∴△ABE ≌△ACF , ∴AE=AF , ∴∠EAB=∠FAC , ∴∠EAF=∠BAC=60°, ∴△AEF 是等边三角形.点睛:此题是四边形综合题,主要考查了等边三角形的性质和全等三角形的判定和性质,直角三角形的性质,相似三角形的判定和性质,解题关键是判断出△ABE ≌△ACF.20、x 1x 2【解题分析】试题分析:方程整理为一般形式,找出a ,b ,c 的值,代入求根公式即可求出解. 试题解析:解:方程化为2520x x -+=,1a =,5b =-,2c =.224(5)41217b ac ∆=-=--⨯⨯=>1.x ===即152x =,252x =. 21、(4)4;(2)35;(4)点E 的坐标为(4,2)、(53,103)、(4,2). 【解题分析】分析:(4)过点B 作BH ⊥OA 于H ,如图4(4),易证四边形OCBH 是矩形,从而有OC =BH ,只需在△AHB 中运用三角函数求出BH 即可.(2)过点B 作BH ⊥OA 于H ,过点G 作GF ⊥OA 于F ,过点B 作BR ⊥OG 于R ,连接MN 、DG ,如图4(2),则有OH =2,BH =4,MN ⊥OC .设圆的半径为r ,则MN =MB =MD =r .在Rt △BHD 中运用勾股定理可求出r =2,从而得到点D 与点H 重合.易证△AFG ∽△ADB ,从而可求出AF 、GF 、OF 、OG 、OB 、AB 、BG .设OR =x ,利用BR 2=OB 2﹣OR 2=BG 2﹣RG 2可求出x ,进而可求出BR .在Rt △ORB 中运用三角函数就可解决问题.(4)由于△BDE 的直角不确定,故需分情况讨论,可分三种情况(①∠BDE =90°,②∠BED =90°,③∠DBE =90°)讨论,然后运用相似三角形的性质及三角函数等知识建立关于t 的方程就可解决问题. 详解:(4)过点B 作BH ⊥OA 于H ,如图4(4),则有∠BHA =90°=∠COA ,∴OC ∥BH . ∵BC ∥OA ,∴四边形OCBH 是矩形,∴OC =BH ,BC =OH . ∵OA =6,BC =2,∴AH =0A ﹣OH =OA ﹣BC =6﹣2=4. ∵∠BHA =90°,∠BAO =45°, ∴tan ∠BAH =BHHA=4,∴BH =HA =4,∴OC =BH =4. 故答案为4.(2)过点B 作BH ⊥OA 于H ,过点G 作GF ⊥OA 于F ,过点B 作BR ⊥OG 于R ,连接MN 、DG ,如图4(2). 由(4)得:OH =2,BH =4.∵OC 与⊙M 相切于N ,∴MN ⊥OC . 设圆的半径为r ,则MN =MB =MD =r . ∵BC ⊥OC ,OA ⊥OC ,∴BC ∥MN ∥OA . ∵BM =DM ,∴CN =ON ,∴MN =12(BC +OD ),∴OD =2r ﹣2,∴DH =OD OH -=24r -. 在Rt △BHD 中,∵∠BHD =90°,∴BD 2=BH 2+DH 2,∴(2r )2=42+(2r ﹣4)2. 解得:r =2,∴DH =0,即点D 与点H 重合,∴BD ⊥0A ,BD =AD . ∵BD 是⊙M 的直径,∴∠BGD =90°,即DG ⊥AB ,∴BG =AG . ∵GF ⊥OA ,BD ⊥OA ,∴GF ∥BD ,∴△AFG ∽△ADB , ∴AF AD =GF BD =AG AB =12,∴AF =12AD =2,GF =12BD =2,∴OF =4,∴OG同理可得:OB AB BG =12AB .设OR =x ,则RG x .∵BR ⊥OG ,∴∠BRO =∠BRG =90°,∴BR 2=OB 2﹣OR 2=BG 2﹣RG 2,∴(2﹣x 2=(2﹣(x )2.解得:x ,∴BR 2=OB 2﹣OR 2=(2)2=365,∴BR .在Rt △ORB 中,sin ∠BOR =BR OB35.故答案为35. (4)①当∠BDE =90°时,点D 在直线PE 上,如图2.此时DP =OC =4,BD +OP =BD +CD =BC =2,BD =t ,OP =t . 则有2t =2. 解得:t =4.则OP =CD =DB =4. ∵DE ∥OC ,∴△BDE ∽△BCO ,∴DE OC =BD BC =12,∴DE =2,∴EP =2, ∴点E 的坐标为(4,2). ②当∠BED =90°时,如图4.∵∠DBE =OBC ,∠DEB =∠BCO =90°,∴△DBE ∽△OBC ,∴BEBC =2DB BE OB ∴,,∴BE . ∵PE ∥OC ,∴∠OEP =∠BOC .∵∠OPE =∠BCO =90°,∴△OPE ∽△BCO ,∴OEOB =OPBC,2t ,∴OE .∵OE +BE =OB解得:t =53,∴OP =53,OE ,∴PE =103, ∴点E 的坐标为(51033,). ③当∠DBE =90°时,如图4.此时PE =PA =6﹣t ,OD =OC +BC ﹣t =6﹣t .则有OD =PE ,EA (6﹣t ),∴BE =BA ﹣EA ﹣(t )﹣.∵PE ∥OD ,OD =PE ,∠DOP =90°,∴四边形ODEP 是矩形, ∴DE =OP =t ,DE ∥OP ,∴∠BED =∠BAO =45°.在Rt △DBE 中,cos ∠BED =BE DE DE BE ,∴t ﹣=2t ﹣4.解得:t =4,∴OP =4,PE =6﹣4=2,∴点E 的坐标为(4,2).综上所述:当以B 、D 、E 为顶点的三角形是直角三角形时点E 的坐标为(4,2)、(51033,)、(4,2).点睛:本题考查了圆周角定理、切线的性质、相似三角形的判定与性质、三角函数的定义、平行线分线段成比例、矩形的判定与性质、勾股定理等知识,还考查了分类讨论的数学思想,有一定的综合性. 22、1. 【解题分析】直接利用零指数幂的性质、绝对值的性质和负整数指数幂的性质及特殊角三角函数值分别化简得出答案. 【题目详解】(20113232-⎛⎫+- ⎪⎝⎭﹣3tan30°31﹣1﹣3×3=1. 【题目点拨】此题主要考查了实数运算及特殊角三角函数值,正确化简各数是解题关键. 23、(1)图形见解析,216件;(2)12【解题分析】(1)由B 班级的作品数量及其占总数量的比例可得4个班作品总数,再求得D 班级的数量,可补全条形图,再用36乘四个班的平均数即估计全校的作品数;(2)列表得出所有等可能结果,从中找到一男、一女的结果数,根据概率公式求解可得.【题目详解】(1)4个班作品总数为:1201236360÷=件,所以D班级作品数量为:36-6-12-10=8;∴估计全校共征集作品364×36=324件.条形图如图所示,(2)男生有3名,分别记为A1,A2,A3,女生记为B,列表如下:A1A2A3 BA1(A1,A2)(A1,A3)(A1,B)A2(A2,A1)(A2,A3)(A2,B)A3(A3,A1)(A3,A2)(A3,B)B (B,A1)(B,A2)(B,A3)由列表可知,共有12种等可能情况,其中选取的两名学生恰好是一男一女的有6种.所以选取的两名学生恰好是一男一女的概率为61 122=.【题目点拨】考查了列表法或树状图法求概率以及扇形与条形统计图的知识.注意掌握扇形统计图与条形统计图的对应关系.用到的知识点为:概率=所求情况数与总情况数之比.24、(1)25π;(2)CD12,CD2=2【解题分析】分析:(1)利用圆周角定理的推论得到∠C是直角,利用勾股定理求出直径AB,再利用圆的面积公式即可得到答案;(2)分点D在上半圆中点与点D在下半圆中点这两种情况进行计算即可.详解:(1)∵AB是⊙O的直径,∴∠ACB =90°, ∵AB 是⊙O 的直径, ∴AC =8,BC =1, ∴AB =10,∴⊙O 的面积=π×52=25π. (2)有两种情况:①如图所示,当点D 位于上半圆中点D 1时,可知△ABD 1是等腰直角三角形,且OD 1⊥AB ,作CE ⊥AB 垂足为E ,CF ⊥OD 1垂足为F ,可得矩形CEOF ,∵CE =8624105AC BC AB ⋅⨯==, ∴OF = CE =245,∴1241555D F =-=, ∵2222246()5BE BC CE =-=-=185,∴187555OE =-=, ∴75CF OE ==,∴22221171()()255CD CF D F =+=+=; ②如图所示,当点D 位于下半圆中点D 2时,同理可求222222749()()7255CD CF FD =+=+=. ∴CD 1=2,CD 2=72点睛:本题考查了圆周角定理的推论、勾股定理、矩形的性质等知识.利用分类讨论思想并合理构造辅助线是解题的关键.25、(1)m =3,k =12;(2)或【解题分析】【分析】(1)把A(m ,m +1),B(m +3,m -1)代入反比例函数y =kx,得k =m(m +1)=(m +3)(m -1),再求解;(2)用待定系数法求一次函数解析式;(3)过点A 作AM ⊥x 轴于点M ,过点B 作BN ⊥y 轴于点N ,两线交于点P.根据平行四边形判定和勾股定理可求出M,N 的坐标. 【题目详解】解:(1)∵点A(m ,m +1),B(m +3,m -1)都在反比例函数y =kx的图像上, ∴k =xy ,∴k =m(m +1)=(m +3)(m -1), ∴m 2+m =m 2+2m -3,解得m =3, ∴k =3×(3+1)=12. (2)∵m =3,∴A(3,4),B(6,2).设直线AB 的函数表达式为y =k′x +b(k′≠0), 则4326k bk b=+⎧⎨=+''⎩ 解得236k b ⎧=-⎪⎨⎪=⎩'∴直线AB 的函数表达式为y =-23x +6. (3)M(3,0),N(0,2)或M(-3,0),N(0,-2).解答过程如下:过点A 作AM ⊥x 轴于点M ,过点B 作BN ⊥y 轴于点N ,两线交于点P. ∵由(1)知:A(3,4),B(6,2), ∴AP =PM =2,BP =PN =3,∴四边形ANMB 是平行四边形,此时M(3,0),N(0,2).当M′(-3,0),N′(0,-2)时,根据勾股定理能求出AM′=BN′,AB =M′N′,即四边形AM′N′B 是平行四边形.故M(3,0),N(0,2)或M(-3,0),N(0,-2).【题目点拨】本题考核知识点:反比例函数综合. 解题关键点:熟记反比例函数的性质.26、(1)10,0.28,50(2)图形见解析(3)6.4(4)528【解题分析】分析:(1)首先求出总人数,再根据频率,总数,频数的关系即可解决问题;(2)根据a 的值画出条形图即可;(3)根据平均数的定义计算即可;(4)用样本估计总体的思想解决问题即可;详解:(1)由题意c=180.36=50, a=50×0.2=10,b=1450=0.28,c=50; 故答案为10,0.28,50;(2)将频数分布表直方图补充完整,如图所示:(3)所有被调查学生课外阅读的平均本数为:(5×10+6×18+7×14+8×8)÷50=320÷50=6.4(本).(4)该校七年级学生课外阅读7本及以上的人数为:(0.28+0.16)×1200=528(人).点睛:本题考查频数分布直方图、扇形统计图、样本估计总体等知识,解题的关键是熟练掌握基本概念,灵活运用所学知识解决问题,属于中考常考题型.27、(1)201800y x =-+;(2)2203000108000w x x =-+-;(3)最多获利4480元.【解题分析】(1)销售量y为200件加增加的件数(80﹣x)×20;(2)利润w等于单件利润×销售量y件,即W=(x﹣60)(﹣20x+1800),整理即可;(3)先利用二次函数的性质得到w=﹣20x2+3000x﹣108000的对称轴为x=75,而﹣20x+1800≥240,x≤78,得76≤x≤78,根据二次函数的性质得到当76≤x≤78时,W随x的增大而减小,把x=76代入计算即可得到商场销售该品牌童装获得的最大利润.【题目详解】(1)根据题意得,y=200+(80﹣x)×20=﹣20x+1800,所以销售量y件与销售单价x元之间的函数关系式为y=﹣20x+1800(60≤x≤80);(2)W=(x﹣60)y=(x﹣60)(﹣20x+1800)=﹣20x2+3000x﹣108000,所以销售该品牌童装获得的利润w元与销售单价x元之间的函数关系式为:W=﹣20x2+3000x﹣108000;(3)根据题意得,﹣20x+1800≥240,解得x≤78,∴76≤x≤78,w=﹣20x2+3000x﹣108000,对称轴为x=﹣30002(20)⨯-=75,∵a=﹣20<0,∴抛物线开口向下,∴当76≤x≤78时,W随x的增大而减小,∴x=76时,W有最大值,最大值=(76﹣60)(﹣20×76+1800)=4480(元).所以商场销售该品牌童装获得的最大利润是4480元.【题目点拨】二次函数的应用.。
中考数学综合模拟参考12卷 人教新课标版
中考数学综合模拟参考12卷 人教新课标版考生须知:1. 本试卷满分120分, 考试时间100分钟.2. 答题前, 在答题纸上写姓名和准考证号.3. 必须在答题纸的对应答题位置上答题,写在其他地方无效. 答题方式详见答题纸上的说明.4. 考试结束后, 试题卷和答题纸一并上交.试题卷一. 仔细选一选 (本题有10个小题, 每小题3分, 共30分)下面每小题给出的四个选项中, 只有一个是正确的. 注意可以用多种不同的方法来选取正确答案.1.(2010浙江宁波)下列各图是选自历届世博会会徽中的图案,其中是中心对称图形的是2.(原创)2010年5月1日至10月31日上海世博会参观者7308万人,7308万人用科学计数发表示为( )人A. 7.308×106B. 7.308×107C. 73.08×106D. 0.7308×1083.(原创)在227 ,π,9,0.1 010 010 001,14,38,sin60°中,有理数的个数是( ) A .1. B .2 C .3 D .44.(湖南益阳)小军将一个直角三角板(如图1)绕它的一条直角边所在的直线旋转一周形成一个几何体,将这个几何体的侧面展开得到的大致图形是( )A. B . C . D .5.(原创)下列命题:①如果一个角的两边与另一个角的两边分别平行,那么这两个角相等.②有两边和其中一边的对角对应相等的两个三角形全等; ③方程1312112-=+--x x x 的解是0=x ;1图(A) (B) (C) (D)④两圆的半径分别是3和4,圆心距为d ,若两圆有公共点,则.71<<d⑤若00a b >>,,则0a b +>;其中真命题的个数有( )A.1个B.2个C.3个D.4个6.(原创)在平面直角坐标系中,形如)(2n m ,的点(其中n m 、为整数),称为标准点,那么抛物线922+-=x x y 上有这样的标准点( )个. A . 2个 B.4个 C.6个 D.无数个7.(改编) “祝福北京”、“祝福奥运”是每个中国人良好的心愿.亮亮、兵兵和军军三个同学都有一套外形完全相同,背面写着“祝福”、“北京”、“奥运”字样的三张卡片.他们分别从自己的一套卡片中随机抽取一张,抽取得三张卡片中含有“祝福”“北京”“奥运”的概率是( )A.127 B.19 C.29 D.138.(原创)将一张纸第一次翻折,折痕为AB (如图1),第二次翻折,折痕为PQ (如图2),第三次翻折使PA 与PQ 重合,折痕为PC (如图3),第四次翻折使PB 与PA 重合,折痕为PD (如图4).此时,如果将纸复原到图1的形状,则CPD ∠的大小是( )A .120B .90C .60D .459.(2010 山东济南)如图,在ABC △中,2AB AC ==,20BAC ∠=.动点P Q ,分别在直线BC 上运动,且始终保持100PAQ ∠=.设BP x =,CQ y =,则y 与x 之间的函数关系用图象大致可以表示为 ( )10.(2010·重庆)已知:如图,在正方形ABCD外取一点E,连结AE、BE、DE.过点A作AE的垂线交DE于点P.若AE=AP=1,PB= 5.下列结论:①△APD≌△AEB;②点B到直线AE 的距离为2;③EB⊥ED;④S△APD+S△APB=1+6;⑤S正方形ABCD=4+ 6.其中正确结论的序号是( )A.①③④ B.①②⑤ C.③④⑤ D.①③⑤二. 认真填一填 (本题有6个小题, 每小题4分, 共24分)要注意认真看清题目的条件和要填写的内容, 尽量完整地填写答案.11.(原创)因式分解:2ax2-4ax+2a=▲ .12.(原创)某小组16名同学的身高(厘米)平均数是164,中位数是158,众数是162。
最新江苏省盐城市中考数学第四次模拟考试试卷附解析
江苏省盐城市中考数学第四次模拟考试试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,EB 为半圆O 的直径,点A 在EB 的延长线上,AD 切半圆O 于点D ,BC ⊥AD 于点C ,AB =2,半圆O 的半径为2,则BC 的长为( )A .2B .1C .1.5D .0.5 2.如图,将△ABC 绕顶点A 顺时针旋转60°后,得到△AB ′C ′,且C ′为BC 的中点,则C ′D :DB ′=( )A .1:2B .1:C .1D .1:3 3.如图,P 是Rt △ABC 的斜边BC 上异于B ,C 的一点,过P 点作直线截△ABC ,使截得的三角形与△ABC 相似,满足这样条件的直线共有( )A .1条B .2条C .3条D .4条 4.关于二次函数212y x =-的图象,下列叙述错误的是( ) A .顶点是(0,0) B .对称轴是y 轴 C .开口向上 D .有最大值是05.的结果的是( ) A .-2 B .2 C .2±D .16 6.甲,乙,丙,丁四位同学拿尺子检测一个窗框是否为矩形.他们各自做了如下检测后都说窗框是矩形,你认为正确的是( )A .甲量得窗框两组对边分别相等B .乙测得窗框的对角线长相等C .丙测得窗框的一组邻边相等D .丁测得窗框的两组对边分别相等且两条对角线也相等7.平行四边形的两条对角线分别为6和10,则其中一条边x 的取值范围为( )A .4<x <6B .2<x <8C .0<x <10D .0<x <68.给出以下几个命题:(1)三边都相等的三角形是正三角形;(2)各边都相等的四边形是正四边形;(3)各个角都相等的六边形是正六边形,其中正确的有 ( )A .0个B .l 个C .2个D .3个9.将如图1所示的Rt △ABC 绕直角边BC 旋转一周,所得几何体的左视图是( )10.下列计算正确的是( )A .222448a a a +=B .()()2322366x x x -+=- C .()428428a b a b -= D .()222141x x +=+11.将方程2x 472312x ---=-去分母,得( ) A .22(2x 4)(7)x --=--B .24(2x 4)7x --=--C .244(2x 4)(7)x --=--D .24447x x -+=-+12.长方形的一边长等于32a b +,另一边比它小a b -,那么这个长方形周长是( )A .106a b +B . 73a b +C . 1010a b +D .128a b +二、填空题13.已知点A 、点 B 在x 轴上,分别以A 、B 为圆心的两圆相交于M(a ,-12)、N(3,2a+ 3b),则b a 的值是 .14.如图,∠ACB=∠CDB=6O °,则△ABC 是 三角形.15.对于函数y=-1x,当x>0时,y随x的增大而 . 16.如图所示,水平放置的圆柱形油桶的截面半径是 R ,油面高为截面上有油的弓形(阴影部分)的面积为 .17.圆锥的底面半径是3 cm ,高是 4 cm ,则它的侧面积是 cm 2.18.数据98,l00,101,102,99的标准差是 .19.在一次中学生运动会上,参加男子跳高比赛的有l7名运动员,通讯员将成绩表送组委 会时,成绩表不慎被墨水污染掉一部分(如下表所示),但他记得这组运动员的成绩的众数是1.75 m ,表中每个成绩都至少有一名运动员.根据这些信息,可以计算这17名运动员的平均跳高成绩是 m(精确到0.01 m).20. 如图,要使 a b ,需添加的条件是 (写出一个即可).21.如图,已知等腰直角ΔABC 的直角边长与正方形MNPQ 的边长均为20厘米,AC 与MN 在同一直线上,开始时点A 与点N 重合.让ΔABC 以每秒2厘米的速度向左运动,最终点A与点M 重合,则重叠部分面积y(厘米2)与时间t(秒)之间的函数关系式为____________.三、解答题22.将编号依次为1,2,3,4的四个同样的小球放进一个不透明的袋子中,摇匀后甲、乙二人做如下游戏:每人从袋子中各摸出一个球,然后将这两个球上的数字相乘,若积为奇数,则甲获胜;若积为偶数,则乙获胜.请问:这样的游戏规则对甲、乙双方公平吗?请用概率的知识说明理由.23.如图,△ABC 内接于⊙O ,AH ⊥BC ,垂足为 H ,AD 平分∠BAC ,交⊙O 于D . 求证:AD 平分∠HAO .24.已知二次函数22(1)23y m x m m =++--的图象经过原点,试确定m 的值.25.如图,用9个全等的等边三角形,按图拼成一个几何图案,从该图案中可找出个平行四边形.26.为了防止“传染性”病毒入侵校园,根据上级疾病控制中心的要求:每m 2的教室地面,需用质量分数为0.2%的过氧乙酸溶液200g 进行喷洒消毒.(1)请估算:你所在班级的教室地面面积约为 m 2(精确到1m 2);(2)请计算:需要用质量分数为20%的过氧乙酸溶液多少g 加水稀释,才能按疾病控制中心的要求,对你所在班级的教室地面消毒一次?27.在长度为3的线段上取一点,使此点到线段两端点的距离的乘积为2,求此点所分得的两线段长.28.如图,AC和BD相交于点0,且AB∥DC,OA=08,△0CD是等腰三角形吗?说明理由.29.已知:如图,A,B,C,D在同一条直线上,AB=CD,AE∥BF,且AE=BF,则CE∥DF,试说明理由.30.某酒店客房部有三人间、双人间客房,收费数据如下表:普通(元/间/天)豪华(元/间/天)三人间150300双人间140400一些三人普通间和双人普通间客房.若每问客房正好住满,且一天共花去住宿费1510元,则旅游团住了三人普通间和双人普通间客房各多少间?(只要求列出方程,不解方程)【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.D3.C4.C5.B6.D7.B8.B9.A10.A11.C12.C二、填空题13.914.等边15.增大16.2223R π17. 15π18..1.6920.如∠1=∠3等21.2)10(2t y -=三、解答题22.答:这种游戏规则对甲、乙双方不公平.理由如下:不妨设甲先摸,则甲、乙所摸得球的情况如下:总共有122种,积为偶数的情况有105126=. 因1566<,所以这样的游戏规则对甲、乙双方不公平. 23. 连结 OD ,∵AD 平分∠BAC ,∴⌒BD =⌒CD ,∴OD ⊥BC ,∵AH ⊥BC ,∴.OD ∥AH ,∴∠ODA=∠HAD ,∵OA=OD ,∴∠ODA=∠OAD , 2 3 4 1 2 3 41 3 4 12 4 1 23 甲: 乙(2)(3)(2)(6)(3)(6)(4)(8)积:∴∠HAD=∠OADlD ,即 AD 平分∠HAO .24.∵图象经过原点,∴2230m m --=,∴11m =-,23m =,∵10m +≠∴m =3.25.1526.根据教室面积估算27.1,228.是等腰三角形.说明∠C=∠D29.略30.设三人普通间共住了x 人,则双人普通间共住了 (50x -)人,由题意得5015050%14050%151032x x -⨯⨯+⨯⨯=。
2021年江苏省中考数学第四次模拟考试试卷附解析
2021年江苏省中考数学第四次模拟考试试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,用一个平面去截长方体,则截面形状为( )2.按如下方法,将△ABC 的三边缩小的原来的21,如图,任取一点O ,连AO 、BO 、CO ,并取它们的中点D 、E 、F ,得△DEF ,则下列说法正确的个数是( )①△ABC 与△DEF 是位似图形 ②△ABC 与△DEF 是相似图形③△ABC 与△DEF 的周长比为1:2 ④△ABC 与△DEF 的面积比为4:1A .1B .2C .3D .43.△ABC 中,A = 47°,AB = 1.5 cm ,AC=2 cm ,△DEF 中,E = 47°,ED =2.8 cm ,EF=2. 1 cnn ,这两个三角形( )A . 相似B .不相似C . 全等D . 以上都不对4.关于二次函数247y x x =+-的最值,叙述正确的是( )A .当x=2 时,函数有最大值B .当 x=2时,函数有最小值C .当 x=-2 时,函数有最大值D .当 x= 一2 时,函数有最小值5.如果抛物线24(1)y x m =++的图象与x 轴有两个交点,那么 m 的取值范围是( ) A .m>0 B .m<0 C .m<-1D .m>-1 6.矩形、菱形、正方形都具有的性质是( ) A .每一条对角线平分一组对角 B .对角线相等C .对角线互相平分D .对角线互相垂直7.下列四边形中既是轴对称图形,又是中心对称图形的是( )A .梯形B .等腰梯形C .平行四边形D .矩形 8.下列图形中,可以折成正方体的是( )A .B .C .D .9.等腰三角形的顶角为 80°,则一腰上的高与底边的夹角为( )A .1O °B. 40°C. 50°D. 80°10.对于任何整数n ,多项式22(3)n n +-都能被( )A .3n +整除B .n 整除C .3整除D .不能确定 11.在x ,1,22x -,2r π,12S ab =,n m ,2V r h π=中,代数式的个数为( ) A .5 个 B .4 个 C .3 个 D .2 个12. 若有理数 a 、b 在数轴上对应点位置如图所示,则下列正确的是( )A .||b a >-B .||a b >-C .b a >D .||||a b >13.把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.......在自然界和日常生活中,大量地存在这种图形变换(如图1).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换......过程中,两个对应三角形(如图2)的对应点所具有的性质是( )A .对应点连线与对称轴垂直B .对应点连线被对称轴平分C .对应点连线被对称轴垂直平分D .对应点连线互相平行14.把方程0382=+-x x 化成n m x =+2)(的形式,则n m ,的值( )A .4、13B .-4、19C .-4、13D .4、19 二、填空题15. 如图,P 是α 的边上一点,且 P 点坐标为(3,4),sin α =45,cos α = .16.抛物线y =ax 2+2ax +a 2+2的一部分如图所示,那么该抛物线在y 轴右侧与x 轴交点的坐标是_____________.17.一个底面为正方形的直棱柱的侧面展开图是一个边长为4的正方形,它的表面积为 ,体积为 .三、解答题18.如图所示,快下降到地面的某伞兵在灯光下的影子为AB .试确定灯源P 的位置,并画出竖立在地面上木桩的影子EF .(保留作图痕迹,不要求写作法)A CB A ' B 'C ' 图2 图119.已知抛物线y1=x2-2x+c的部分图象如图1所示.(1)求c的取值范围;(2)若抛物线经过点(0,-1),试确定抛物线y1=x2-2x+c的解析式;(3)若反比例函数y2=kx的图象经过(2)中抛物线上点(1,a),试在图2所示直角坐标系中,画出该反比例函数及(2)中抛物线的图象,并利用图象比较y1与y2的大小..20.已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM 的平分线,CE⊥AN,垂足为点E.(1)求证:四边形ADCE为矩形;(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.图1图221.解不等式组:⎪⎩⎪⎨⎧-<-≤-xx x 14340121,并将其解集在数轴上表示出来.22.已知一个正比例函数和一个一次函数的图象相交于点A(1,4),且一次函数的图象与x 轴交于点B(3,0).(1)求这两个函数的解析式;(2)画出它们图象.23.解不等式组2(2)33134x x x x +>+⎧⎪-⎨≥⎪⎩,并写出不等式组的整数解.24.如图,AB 为⊙0的直径,C 为⊙0上一点,AD ⊥CD 于D ,AC 平分∠DAB .求证:CD 是⊙0的切线.0 1 2 3-1 -2 -3 -4 -5 -625.如图所示,一棵大树被龙卷风吹断了,折断点离地面9 m,树顶端落在离树根12 m处,问这棵大树原先高度是多少?26.已知2517x mx nyy mx ny=+=⎧⎧⎨⎨=--=⎩⎩是方程组的解,求m,n的值.27.解下列程组:(1)245x yx y+=⎧⎨-=⎩(2)⎪⎩⎪⎨⎧=-+=+.11)1(2,231yxyx28.三峡一期工程结束后,当年发电量为 5. 5×109千瓦时,某区有 100 万户居民,若平均每户每年用电32.7510⨯千瓦时,那么该年所发的电能供该区居民使用多少年?29.一个底面半径为4cm,高为10cm的圆柱形烧杯中装满水.把烧杯中的水倒入底面半径为1cm 的圆柱形试管中,刚好倒满8根试管,求每根试管的高为多少cm?设试管的高为xcm,则有π×42×10=8×π×12×x , 解得 x=2030.已知二次函数122--=x x y .(1)求此二次函数的图象与x 轴的交点坐标.(2)二次函数2x y =的图象如图所示,将2x y =的图象经过怎样的平移,就可以得到二次函数122--=x x y 的图象.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.C3.A4.D5.C6.C7.D8.B9.B10.C11.A12.A13.B14.C二、填空题15.3516.(1,0)17.18,4三、解答题18.略19.(1)c<0; (2) y1=x2-2x-1;(3)a=-2;当x=2或±1时,y1=y2;当x<-1或0<x<1或x>2时,y1>y2;当-1<x<0或1<x<2时, y1<y2.20.(1)证明:在△A BC中, AB=AC,AD⊥BC.∴∠BAD=∠DAC.∵ AN是△ABC外角∠CAM的平分线,∴MAE CAE∠=∠.∴∠DAE=∠DAC+∠CAE=⨯21180°=90°.又∵ AD⊥BC,CE⊥AN,∴ADC CEA∠=∠=90°,∴四边形ADCE为矩形.(2)例如,当AD=12BC时,四边形ADCE是正方形.证明:∵ AB=AC,AD⊥BC于D.∴ DC=12BC.又 AD=12BC,∴ DC=AD.由(1)四边形ADCE为矩形,∴矩形ADCE是正方形.21.由11024314xx x⎧-⎪⎨⎪-<-⎩≤得⎩⎨⎧->≤52xx,不等式组的解集为-5<x≤2.解集在数轴上表示略.22.(1)y=4x ,y=-2x+6;(2)图略23.31x -≤<,整数解为-3,-2,-1,024.连结OC ,∵OC=OA ,∴∠OCA=∠0AC=∠CAD ,∴OC ∥AD ,又∵AD ⊥CD ,∴OC ⊥CD ,即CD 是⊙0的切线. 25.24m26.m=3,n=127.(1)⎩⎨⎧-==23y x ,(2)⎩⎨⎧==15y x 28.2年29.30.解:(1)0122=--x x 解得 211+=x , 212-=x∴图象与x 轴的交点坐标为(21+,0)和(21-,0).(2)11222=⨯--=-a b 214)2(144422-=⨯--⨯-=-a b ac ∴顶点坐标为(1,2-).将二次函数2x y =图象向右平移1个单位,再向下平移2个单位, 就可以得到二次函数122--=x x y 的图象.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初四中考数学模拟试题
一、选择题
1.把不等式组1
10x x +⎧⎨-≤⎩
的解集表示在数轴上,正确的是( )
(A )
(B )
(C )
(D )
2.下列事件中是必然事件的是(
)
(A )打开电视机,正在播少儿节目(B )北京的中秋节晚上一定能看到月亮
(C )早晨的太阳一定从东方升起 (D )小红3岁就加入了少先队
3.下图是由一些相同的小正方体构成的几何体的三视图.
这些相同的小正方体的个数是( )
(A )4个
(B )5个 (C )
6个 (D )7个
4.
已知⊙O 1和⊙O 2的半径分别为3cm
和5cm ,两圆的圆心距是6cm ,则两圆的位置关系是(
)
(A )内含 (B )外离
(C
)内切 (D )相交
5.蜡是非晶体,在加热过程中先要变软,然后逐渐变稀,然后全部变为液态,
整个过程温度不断上升,没有一定的熔化温度,如图所示,四个图象中表示蜡
溶化的是( )
(A ) (B ) (C ) (D )
6.三角形两边长分别为3和6,第三边是方程2680x x -+=的解,则这个三角形的周长是( )
(A )11 (B )13 (C )11或13 (D )11和13
7.下列美丽的图案,既是轴对称图形又是中心对称图形的个数是
(A )1个 (B )2个 (C )3个 (D )4个
二、填空题
8.某县是全省人口最多的县,约为473500人,用科学记数法表示为_______.
9.分解因式:2
44x y xy y -+=_________.
10.正在修建的一段高速公路上,有一段工程,若甲、乙两个工程队单独完
成,甲工程队比乙工程队少用10天;若甲、乙两队合作,12天可以完成.若
设甲单独完成这项工程需要x 天.则根据题意,可列方程为________________.
11.一商店把某种品牌的羊毛衫按标价的八折出售,仍可获利20%,若该品牌
的羊毛衫的进价每价是100元,则标价是每件___________元.
-1 1 -1 1
-1 -1 1
主视图 左视图 俯视图
t /分
12.若2
4(2)0,x y x +++-=则32x y +=______________.
13.已知:如图(1),在Rt △ABC 中,∠B=90°,D 、E 分别是边AB 、AC 的中点,DE=4,AC=10,则
AB=_____________.
14.小红、小明、小芳在一起做游戏时,需要确定游
戏的先后顺序.他们约定用“剪子、包袱、锤子”的方式确定.问在一个回合中三个人都出包袱的概率是____________. 三、作图题
15. 为迎接2008年奥运会,青岛市政府欲在一新建广场上修建一个圆形大花坛,并在大花坛内M 点处建一个亭子,如果要经过亭子修一条穿越大花坛的小路。
(1)如何设计小路才能使亭子M 位于小路中点处(在图中作出表示小路的线段)。
(2)若大花坛的直径为30米,花坛中心O 到亭子M 的距离为9米,则小路有多长?
(1)
(2)解:
四、计算、解答题 16.计算:
17.某学校为了解该校七年级学生的身高情况,抽样调查了部分同学,将所得数据处理后,制成扇形统计图和频数分布直方图(部分)如下: (每组只含最低值不含最高值,身高单位:cm ,测量时精确到1cm )
(1)请根据所提供的信息补全频数分布直方图; (2)样本的中位数在统计图的哪个范围内?
(3)如果上述样本的平均数为157cm ,方差为8.8;该校八年级学生身高的平均数为159cm ,方差为0.6,那么_________(填“七年级”或“八年级”)学生的身高比较整齐.
A
B
E
D
C
图(1)
/cm
10
4
150~155cm 18%
155~160cm 32%
160~165cm
18%
165~170cm 10%
170~175cm 4%145~150cm 12%140~145cm 6%
175
17016516015515014514032
18
12
6
身高学生人数
18、小刚和小明用如图的两个转盘进行“配紫色”游戏,规则如下:分别旋转两个转盘,若其中一个转出了红色,另一个转出了蓝色,则可配成紫色,此时小刚得1分,否则小明得1分。
这个游戏对双方公平吗?请说明理由。
若你认为不公平,如何修改规则才能使这个游戏对双方公平?
19、某人在建筑物AB 的顶部A 测得一烟囱CD 的顶端C 的仰角为45°,测得C 在湖中的倒影E 的俯角为60°,已知建筑物AB 高20米,求烟囱CD 的高。
20.有一块三角形土地,它的底边BC=100米,高AH=80米,某单位要沿着地边BC 修一座底面是矩形DEFG 的大楼,D 、G 分别在边AB 、AC 上.若大楼的宽是40米,求这个矩形的面积.
21.某商店经销一种销售成本为每千克40元的水产品.据市场分析,若按每千克50元销售,一个月能售出500千克;销售单位每涨1元,月销售量就减少10千克.针对这种水产品的销售情况,请解答以下问题: (1)当销售单价定为每千克55元时,计算月销售量和月销售利润; (2)设销售单价为每千克x 元,月销售利润为y 元,求y 与x 的函数表达式。
(3)商店想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应定为多少?
D A
图(3)
B C
H
E G
F
A B
C
D
E
22.如图(5),在⊙O 中,AB 是直径,半径为R ,弧AC 的长等于3
1
πR
求:(1)∠AOC 的度数.
(2)若D 为劣弧BC 上的一动点,且弦AD 与半径OC 交于E 点.试探求△AEC ≌△DEO 时,D 点的位置.
23.阅读材料:
如图(6)在四边形ABCD 中,对角线AC ⊥BD ,垂足为P.
求证:S 四边形ABCD =
证明:AC ⊥BD →
∴S 四边形ABCD =S △ACD +S △ACB =
=
解答问题:
(1)上述证明得到的性质可叙述为____________________________
(2)已知:如图(7),等腰梯形ABCD 中,AD ∥BC ,对角线AC ⊥BD 且相交于点P ,AD=3cm,BC=7cm ,利用上述的性质求梯形的面积.
图(5)
O
A
C
B
图(6)
P
A
C
B
D
D
P
B
C
A 图7
24. 如图甲,直角梯形ABCD 中,∠A =∠B =90°,AD =AB =6cm ,BC =8cm 。
点E 从点A 出发沿AD 方向以1厘米/秒的速度向终点D 运动;点F 从点C 出发
沿CA 方向以2厘米/秒的速度向终点A 运动。
当点E 、
点F 中有一点运动到终点,另一点也随之停止。
设运动的时间为t 秒。
(1) 当t 为何值时,△AEF 和△ACD 相似?
(2) 如图乙,连结BF ,随着点E 、F 的运动,四
边形ABFE 可能是直角梯形?若可能,请求出t 的值及四边形ABFE 的面积;若不能,请说明理由。
(3)当t 为何值时,△AFE 的面积最大?最大值是多少?
F
E
C
D
B
A
F
E C
D
B
A
F
E
C D
B
A。