高数二 8.2数项级数的审敛性

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


级数
1 发散,
n1 n
级数
n1
1 n2
收敛,
(
1)
b.条件是充分的,而非必要.

un
2
(1)n 2n
3 2n
vn ,
级数 un
n1
2 (1)n
n1
2n
收敛,

un1 un
2 (1)n1 2(2 (1)n )
an ,
lim
n
a2n
1, 6
lim
n
a2n1
3, 2
lim un1 u n
n1
n1
莱布尼茨定理 如果交错级数满足条件:
(ⅰ)un
un1
(n
1,2,3,)
;(ⅱ)lim n
un
0,
则级数收敛,且其和s u1,其余项rn 的绝对值
rn un1.
证明 un1 un 0, s2n (u1 u2 ) (u3 u4 ) (u2n1 u2n )
数列 s2n是单调增加的 , 又 s2n u1 (u2 u3 ) (u2n2 u2n1 ) u2n
审敛法
2、正项级数及其审敛法
(1).定义如: 果级数 un中各项均有un 0,
n1
这种级数称为正项级数.
(2).正项级数收敛的充要条件s:1 s2 sn
部分和数列{sn }为单调增加数列.
定理
正项级数收敛 部分和所成的数列sn有界.
(3).比较审敛法 设 un和vn均为正项级数,
n1
是正项级数,如果lim un1 n un
(数或
)
则 1时级数收敛; 1 时级数发散; 1时失效.
证明 当为有限数时, 对 0,
N , 当n N时, 有 un1 , un
即 un1 (n N )
un
当 1时, 取 1 , 使r 1,
uN 2 ruN 1 , uN 3 ruN 2 r 2uN 1 , ,
u1 数列 s2n是有界的 ,
lim n
s2n
s
u1 .
lim
n
u2n1
0,
lim n
s2n1
lim(
n
s2n
u2n1 )
s,
级数收敛于和 s, 且s u1. 余项 rn (un1 un2 ), rn un1 un2 ,
n1
n1
且un vn (n 1, 2,),若 vn 收敛,则 un 收敛;
n1
n1
反之,若 un 发散,则 vn 发散.
n1
n1
证明 (1) 设 vn un vn ,
n1
且 sn u1 u2 un v1 v2 vn ,
即部分和数列有界
un收敛.
n1
(2) 设 sn (n ) 且 un vn ,
1 np
1, n
则P 级数发散.
y
设 p 1,由图可知
1
np
n dx x n1 p
sn
1
1 2p
1 3p
1 np
y
1 xp
(
p
1)
1
2 1
dx xp
n dx x n1 p
o 1 234
x
1
n dx 1 xp
1
p
1
1
(1
1 n p1
)
1
1 p1
即sn有界, 则P 级数收敛.
P

un
是正项级数,如果lim n
n
un
n1
(为数或 ), 则 1时级数收敛;
1时级数发散; 1时失效.
例如, 设级数
1,
nn
n1
n
un
n
1 nn
1 n
0 (n )
级数收敛.
3、交错级数及其审敛法
定义: 正、负项相间的级数称为交错级数.
(1)n1un或 (1)nun (其中un 0)
级数当 当pp
1时, 1时,
收敛 发散
重要参考级数: 几何级数, P-级数, 调和级数.
例 2 证明级数
1 是发散的.
n1 n(n 1)
证明 1 1 , n(n 1) n 1
而级数
1 发散,
n1 n 1
级数
1 发散.
n1 n(n 1)
(4).比较审敛法的极限形式:
设 un 与 vn 都是正项级数,如果
n1 10
(n ),
故级数
n! n1 10n
发散.
(3) lim un1 lim (2n 1) 2n 1, n un n (2n 1) (2n 2)
比值审敛法失效, 改用比较审敛法
(2n
1 1)
2n
1 n2
,
级数
n1
1 n2
Hale Waihona Puke 收敛,故级数n12n
1 (2n
1)
收敛.
(7).根值审敛法 (柯西判别法):
1
1
(1)

sin ; (2) n1 n
(1) lim nsin 1
n
n
n1
3
n
;
n sin 1
lim n
n 1
1,
原级数发散.
1
n
(2)
lim
n
3n
1
n
3n
lim 1
n
1
n 3n
1,
n1
31n收敛,
故原级数收敛.
(6).比值审敛法(达朗贝尔 D’Alembert 判别法):
设 un
n
lim
n
an
不存在.
例 4 判别下列级数的收敛性:
1
(1)
;
n1 n!
n!
(2) n1 10n ; 1
1
(3)
.
n1 (2n 1) 2n

(1)
un1 un
(n 1)! 1
1
n1
0
(n ),
n!
故级数 1 收敛.
n1 n!
(2)
un1 un
(n 1)! 10n1
10n n!
uN m r m1uN 1,
而级数 r m1uN1收敛,
m1
uNm uu收敛, 收敛
m1
n N 1
当 1时, 取 1, 使r 1,
当n N时, un1 run un ,
lim
n
un
0.
发散
比值审敛法的优点: 不必找参考级数.
两点注意:
a.当 1时比值审敛法失效;
则 n sn
不是有界数列
vn发散.
定理证毕.
n1
推论: 若 un 收敛(发散)
n1
且vn kun (n N )(kun vn ), 则 vn 收敛(发散).
n1
比较审敛法的不便: 须有参考级数.
例 1 讨论 P-级数
1
1 2p
1 3p
1 4p
1 np
的收敛性.(
p
0)

设 p 1,
2 vn
2

l 2 vn
un
3l 2
vn
(n N )
由比较审敛法的推论, 得证.
(5).极限审敛法:
设 un 为正项级数,
n1
如果lim n
nun
l
0
(或lim n
nun
),
则级数 un 发散;
n1
如果有 p 1,
使得lim n
n
p
un
存在,
则级数 un 收敛.
n1
例 3 判定下列级数的敛散性:
n1
n1
lim un n vn
l,
则(1) 当 0 l 时,二级数有相同的敛散性;
(2) 当 l 0时,若 vn 收敛,则 un 收敛;
n1
n1
(3) 当 l 时, 若 vn 发散,则 un 发散;
n1
n1
证明 (1)由lim un l v n
n
对于 l 0,
2
N , 当n N时, l l un l l
相关文档
最新文档