2019年安徽省中考数学专题复习(三)网格作图题(含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题复习(三)网格作图题

1.(2019·合肥模拟)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点四边形ABCD(顶点是网格线的交点),按要求画出四边形AB1C1D1和四边形AB2C2D2.

(1)以A为旋转中心,将四边形ABCD顺时针旋转90°,得到四边形AB1C1D1;

(2)以A为位似中心,将四边形ABCD作位似变换,且放大到原来的两倍,得到四边形AB2C2D2.

解:(1)如图,四边形AB1C1D1为所作.

(2)如图,四边形AB2C2D2为所作.

2.(2019·蜀山区二模)如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点B的坐标为(1,0).

(1)画出△ABC关于x轴对称的△A1B1C1,写出B1点的坐标;

(2)画出将△ABC绕原点O按逆时针旋转90°所得的△A2B2C2,写出B2点的坐标.

解:(1)如图所示,△A1B1C1即为△ABC关于x轴对称的图形,B1点的坐标是(1,0).

(2)如图所示,△A2B2C2即为△ABC绕原点O按逆时针旋转90°的三角形,B2点的坐标是(0,1).

3.(2019·安徽二模)如图,已知A(2,3),B(1,1),C(4,1)是平面直角坐标系中的三点.

(1)请画出△ABC关于y轴对称的△A1B1C1;

(2)画出△A1B1C1向下平移3个单位得到的△A2B2C2;

(3)若△ABC中有一点P坐标为(x,y),请直接写出经过以上变换后△A2B2C2中点P的对应点P2的坐标.

解:(1)如图所示,△A1B1C1即为所求.

(2)如图所示,△A2B2C2即为所求.

(3)根据题意,可得P的对应点P2的坐标为(-x,y-3).

4.(2019·芜湖模拟)如图,在9×7的小正方形网格中,△ABC的顶点A,B,C在网格的格点上.将△ABC向左平

移3个单位,再向上平移3个单位得到△A ′B ′C ′.再将△ABC 按一定规律依次旋转:第1次,将△ABC 绕点B 顺时针旋转90°得到△A 1BC 1;第2次,将△A 1BC 1绕点A 1顺时针旋转90°得到△A 1B 1C 2;第3次,将△A 1B 1C 2绕点C 2顺时针旋转90°得到△A 2B 2C 2;第4次,将△A 2B 2C 2绕点B 2顺时针旋转90°得到△A 3B 2C 3,依次旋转下去.

(1)在网格中画出△A′B′C′和△A 2B 2C 2;

(2)请直接写出至少在第几次旋转后所得的三角形刚好为△A′B′C′.

解:(1)△A′B′C′和△A 2B 2C 2的图象如图所示.

(2)通过画图可知,△ABC 至少在第8次旋转后得到△A′B′C′.

5.如图,△ABC 的三个顶点和点O 都在正方形网格的格点上,每个小正方形的边长都为1.

(1)将△ABC 先向右平移4个单位,再向上平移2个单位得到△A 1B 1C 1,请画出△A 1B 1C 1;

(2)请画出△A 2B 2C 2,使△A 2B 2C 2和△ABC 关于点O 成中心对称;

(3)在(1)、(2)中所得到的△A 1B 1C 1与△A 2B 2C 2成轴对称吗?若成轴对称,请画出对称轴;若不成轴对称,请说明理由.

解:(1)如图所示,△A 1B 1C 1,即为所求.

(2)如图所示,△A 2B 2C 2,即为所求.

(3)如图所示,△A 1B 1C 1与△A 2B 2C 2成轴对称,直线a ,b 即为所求.

6.(2019·阜阳校级二模)如图所示,在边长为1个单位长度的小正方形组成的网格中,△ABC 的顶点A ,B ,C 在小正方形的顶点上.将△ABC 向下平移2个单位得到△A 1B 1C 1,然后将△A 1B 1C 1绕点C 1顺时针旋转90°得到△A 2B 2C 1.

(1)在网格中画出△A 1B 1C 1和△A 2B 2C 1;

(2)计算线段AC 在变换到A 2C 1的过程中扫过区域的面积.(重叠部分不重复计算)

解:(1)如图,△A 1B 1C 1和△A 2B 2C 1为所作.

(2)线段AC 在变换到A 2C 1的过程中扫过区域的面积S =2×2+90·π·(22)2

360

=4+2π.

7.(2019·昆明)如图,△ABC 三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).

(1)请画出将△ABC 向左平移4个单位长度后得到的图形△A 1B 1C 1;

(2)请画出△ABC 关于原点O 成中心对称的图形△A 2B 2C 2;

(3)在x轴上找一点P,使PA+PB的值最小,请直接写出点P的坐标.

解:(1)如图所示.

(2)如图所示.

(3)找出A关于x轴的对称点A′(1,-1),连接BA′,与x轴交点即为P.如图所示,点P坐标为(2,0).

8.(2019·濉溪县模拟)如图,已知△ABC的三个顶点的坐标分别为A(3,3),B(-1,0),C(4,0).

(1)经过平移,可使△ABC的顶点A与坐标原点O重合,请直接写出此时点C 的对应点C1坐标;(不必画出平移后的三角形)

(2)将△ABC绕点B逆时针旋转90°,得到△A′BC′,画出△A′BC′并写出A′点的坐标;

(3)以点A为位似中心放大△ABC,得到△AB2C2,使放大前后的面积之比为1∶4,请你在网格内画出△AB2C2.

解:(1)∵经过平移,可使△ABC的顶点A与坐标原点O重合,∴A点向下平移3个单位再向左平移3个单位,故C1坐标为(1,-3).

(2)如图所示,△A′BC′即为所求,A′点的坐标为(-4,4).

(3)如图所示,△AB2C2即为所示.

相关文档
最新文档