气缸压力传感器
压力传感器
第三章 压力传感器的结构、 原理与检测
P
1
第一节 概述
第二节 进气压力传感器
第三节 大气压力传感器 第四节 制动主缸油压传感器 第五节 蓄压器压力传感器 第六节 空气滤清器真空开关
第七节 机油压力开关
P
2
第一节
概 述
压力传感器在汽车上应用较广,它的作用是检测气体或 液体的压力变化情况,并把检测结果转换成电信号输入给电 控单元。 一、压力传感器的类型 1.压力传感器按结构可分为 1)电磁式:或称膜盒传动的可变电感式、差动变压器组合 式。敏感元件有膜盒、波纹管、U形管等。 2)压阻效应式:压阻效应是指当半导体受到应力作用时, 由于载流子迁移率的变化,其电阻率发生变化的现象。 半导体压阻式传感器具有灵敏度高、动态响应好、精度 高易于微型化和集成化等特点而应用广泛。 3)电阻-应变效应式:电阻-应变效应是指金属导体的电阻 在导体受力产生变形(伸长或缩短)时发生变化的现象。
基片 半导体应变片
密封圈
传感 元件
壳体
P
23
安装位置:主缸下部。
P
24
第五节
蓄压器压力传感器
作用:检测牵引力控制系统(TRC)蓄压器油液压力,并将压力 信号转换为电信号输入ECU,以控制液压泵的工作。 1.传感器结构: 由压力检测部分(半导体压敏元件)、电路部分等组成。
2.传感器工作原理: 当油液压力低时,它 向ECU输入油压低信号, 以便起动油压泵,使之运 转;当油液压力高时,它 压力 开关 输入ECU的信号使液压 泵停止运转。 低压…
3.5 3.0 2.5 2.0 1.5 1.0 0.5
UO 输出电压/V
压力 kPa
17 34 51 68 85 100
传感器工作流程图.doc
传感器工作流程图传感器工作流程图几种传感器的工作原理一、进气压力传感器进气压力传感器(ManifoldAbsolutePressureSensor),简称MAP。
它以真空管连接进气歧管,随着引擎不同的转速负荷,感应进气歧管内的真空变化,再从感知器内部电阻的改变,转换成电压信号,供ECU电脑修正喷油量和点火正时角度。
换言之,ECU电脑输出5V电压给进气压力感知器,再由信号端侦测电压值,电脑,当引擎在怠速时,其电压信号约1-1.5V,节气门全开时,则约有4.5V电压信号。
原理:进气压力传感器检测的是节气门后方的进气歧管的绝对压力,它根据发动机转速和负荷的大小检测出歧管内绝对压力的变化,然后转换成信号电压送至发动机控制单元(ECU),ECU 依据此信号电压的大小,控制基本喷油量的大小。
二、曲轴位置传感器曲轴位置传感器的作用就是确定曲轴的位置,也就是曲轴的转角。
它通常要配合凸轮轴位置传感器一起来工作确定基本点火时刻。
我们都知道,发动机是在压缩冲程末开始点火的,那么发动机电脑是怎么知道哪缸该点火了呢?就是通过曲轴位置传感器和凸轮轴位置传感器的信号来计算的,通过曲轴位置传感器,可以知道哪缸活塞处于上止点,通过凸轮轴位置传感器,可以知道哪缸活塞是在压缩冲程中。
这样,发动机电脑知道了该什么时候给哪缸点火了。
原理:曲轴位置传感器通常安装在分电器内,是控制系统中最重要的传感器之一。
其作用有:检测发动机转速,因此又称为转速传感器;检测活塞上止点位置,故也称为上止点传感器,包括检测用于控制点火的各缸上止点信号、用于控制顺序喷油的第一缸上止点信号。
曲轴传感器主要有三种类型:磁电感应式、霍尔效应式和光电式。
1、磁电感应式:磁电感应式转速传感器和曲轴位置传感器分上、下两层安装在分电器内。
传感器由永磁感应检测线圈和转子(正时转子和转速转子)组成,转子随分电器轴一起旋转。
正时转子有一、二或四个齿等多种形式,转速转子为24个齿。
永磁感应检测线圈固定在分电器体上。
压力传感器的量程范围
压力传感器的压力适用范围是分级的。
这是因为压力传感器的弹性膜承受流体压力有一个限度。
这就是通常所说的耐压极限,超过此极限弹性膜便破裂了。
一般来说,每一传感器都有20 - 300 %的过压能力。
因此,产品说明书上的压力最大量程为耐压极限的30 - 80 %. 选用过高的压力量程是不必要的。
压力量程的选用应主要考虑三个方面的因素:即传感器的最大过压能力、精度与压力量程的关系和传感器的价格与压力量程的关系。
对于传感器的最大过压能力,传感器承受静压力与动压力情况下是有很大区别的。
后者往往会出现冲击压力,甚至冲击波。
冲击压力远高于静压力。
如果选用的最大工作压力量程是指静压力的话,传感器在承受动压力时,应选用较大的过压能力。
否则冲击压力很容易达到极限耐压,使压力传感器受到破坏。
对于精度与压力量程的关系。
压力传感器的热零点漂移和热灵敏度漂移系数及非线性误差是影响传感器精度的重要指标。
对同一压力传感器来说,热零点漂移系数随工作压力增加而减小,而热灵敏度系数和非线性误差随工作压力增加而增加。
因此,工作压力增加有利于减小热零点漂移,而不利于热灵敏度漂移和非线性误差。
热零点漂移比较大时,提高工作压力量程有利于提高压力传感器的精度。
热零点漂移比较小时,减小工作压力量程有利于提高精度。
对不同压力量程的传感器来说,灵敏度是不同的。
低压力量程传感器的灵敏度高分辨率自然也高。
对于传感器的价格与压力量程的关系,一般来说,013 - 1MPa 的压力传感器的价格较便宜,011MPa以下或1MPa 以上的压力传感器价格比较贵。
测定2- 3kPa 压力时可选购10 - 50kPa 的压力传感器。
特别是使用者自己设计和选用补偿电路时,能使精度进一步提高。
这样可以使成本大幅度降低。
一般而言,质量好的压力传感器,满量程输出都可以达到100mV/ 10V. 如果只用一半的压力量程,则对应的输出便只有50mV/ 10V. 因此最大工作量程应尽可能接近产品说明书上所标明的该压力传感器的量程级。
mems压力传感器分类
mems压力传感器分类一、分类1. 压阻式传感器:压阻式传感器是利用材料的阻值随压力的变化而变化来实现测量的。
它的原理是当压力施加在传感器上时,材料内部的电阻值会随之变化。
通过测量电阻值的变化,可以间接测量压力的大小。
2. 压电式传感器:压电式传感器是利用压电材料的特性来实现测量的。
压电材料具有压力作用下产生电荷的能力,利用这个原理可以将压力转化为电信号进行测量。
3. 电容式传感器:电容式传感器是利用电容的变化来实现测量的。
当压力施加在传感器上时,传感器内部的电容值会发生变化。
通过测量电容的变化,可以推算出压力的大小。
4. 磁电阻式传感器:磁电阻式传感器是利用磁电阻效应来实现测量的。
当压力施加在传感器上时,传感器内部的磁电阻值会发生变化。
通过测量磁电阻的变化,可以间接测量压力的大小。
二、应用1. 工业领域:mems压力传感器在工业领域有广泛的应用。
比如,在液位测量中,通过测量压力的变化来推算液位的高低;在气体流量测量中,通过测量压力的变化来推算气体的流量;在压力控制中,通过测量压力的变化来实现对系统的控制等等。
2. 汽车领域:mems压力传感器在汽车领域也有重要的应用。
比如,在轮胎压力监测系统中,通过安装压力传感器来检测轮胎的压力,及时发现轮胎漏气或者过高的压力,提醒驾驶员进行维修或调整;在汽车发动机控制系统中,通过测量气缸压力的变化来实现对发动机工作状态的监测和控制等等。
3. 医疗领域:mems压力传感器在医疗领域也有广泛的应用。
比如,在呼吸机中,通过测量患者的呼出气体压力来判断患者的呼吸情况;在血压监测仪中,通过测量患者的血液压力来判断患者的血压情况等等。
4. 环境监测领域:mems压力传感器在环境监测领域也发挥着重要的作用。
比如,在大气压力监测中,通过测量大气压力的变化来判断天气的变化;在水压监测中,通过测量水压力的变化来判断水源的供应情况等等。
mems压力传感器具有多种分类和广泛的应用领域。
流量传感器在汽车中的应用
流量传感器在汽车中的应用发动机用传感器有很多种,其中包括温度传感器、压力传感器、旋转传感器、流量传感器、位置流量传感器传感器、浓度传感器、爆震传感器等。
这类传感器是整个车用传感器的核心,利用它们可提高发动机动力性、降低油耗、减少废气、反映故障等,由于其工作在发动机振动、汽油蒸汽、污泥、水花等恶劣环境中,因此它们的耐恶劣环境技术指标要高于一般的传感器。
它们的性能指标要求有很多种,其中最关键的是测量精度与可靠性,否则由传感器检测带来的误差最终将导致发动机控制系统失灵或产生故障。
接下来逐一进行分析。
1、流量传感器温度传感器:主要检测发动机温度,吸入气体温度、冷却水温度、燃油温度、催化温度等,将它们转变成电信号,从而控制喷油嘴针阀开启时刻和持续时间,以保证供给发动机最佳混合气并达到排气净化效果等。
实际应用的温度传感器主要有线绕电阻式、热敏电阻式和热电偶式。
线绕电阻式温度传感器的精度较高,但响应特性差;热敏式传感器灵敏度高,响应特性较好,但线性差,适用温度较低;热电偶式传感器的精度高,测温范围宽,但需考虑放大器和冷端处理问题。
2、压力流量传感器传感器:主要检测气缸负压,从而控制点火和燃料喷射;检测大气压,从而控制爬坡时空燃比;检测气缸内压,从而控制点火提前角;检测废气再循环流量、发动机油压、制动器油压、轮胎空气压力等等,并对相关量作出反应。
车用压力传感器目前已有若干种,应用较多的有电容器式、压阻式、差动变压器式(LVDT)、表面弹性波式(SAW)。
电容器式传感器具有输入能量高,动态响应好、环境适应性好等特点;压阻式受温度影响大,需另设温度补偿电路,但适用于大量生产;LVDT式有较大输出,易于数字输出,但抗振性较差;SAW式具有体积小、质量轻、功耗低、可靠性强、灵敏度高、分辨率高、数字量输出等特点,是一种较为理想的传感器。
3、旋转流量传感器传感器f l o w-m e t e r s.c n:主要用于检测曲轴转角、发动机转数、风门开度、车速等,从而控制点火提前角、燃油配量和喷射时间等,产品主要有发电机式、磁阻式、霍尔效应式、光学式、振动式等。
发动机八大传感器作用简洁解释
发动机八大传感器作用简洁解释发动机是现代汽车的核心组件之一,它负责产生动力,并驱动车辆行驶。
然而,发动机的正常运行和性能表现不仅依赖于其内部构造和机械部件,还依赖于一系列关键的传感器。
这些传感器扮演着监测和控制发动机运行的重要角色。
在本文中,我们将深入探讨发动机的八大传感器的作用,以帮助读者更好地理解和利用这些关键部件。
1. 氧气传感器(O2传感器)氧气传感器监测发动机排气中的氧气含量。
通过检测排气中的氧气水平,氧气传感器能够判断燃烧过程的质量,并根据需要调整燃油供应以实现最优的燃烧效率。
它有助于减少废气排放和提高燃油经济性。
2. 曲轴位置传感器(Crankshaft Position Sensor)曲轴位置传感器用于检测发动机曲轴的旋转速度和位置。
它提供发动机转速的关键信息,以便控制点火系统和燃油喷射系统的操作。
通过准确测量曲轴位置,曲轴位置传感器确保点火系统按时点火,以实现最佳的动力输出。
3. 曲轴相位传感器(Crankshaft Phase Sensor)曲轴相位传感器用于测量曲轴的旋转相位。
通过监测曲轴相位,曲轴相位传感器可以帮助控制发动机的点火和喷射时机,并调整气缸内压强的分布。
它对于发动机的节能、减排和动力输出都起着至关重要的作用。
4. 凸轮轴位置传感器(Camshaft Position Sensor)凸轮轴位置传感器用于检测发动机凸轮轴的位置和速度。
凸轮轴位置传感器的作用类似于曲轴位置传感器,但它专门用于控制凸轮轴的操作,以确保气门的开闭时间和幅度与发动机控制系统的要求相匹配。
5. 气体温度传感器(Intake Air Temperature Sensor)气体温度传感器测量进气道中的空气温度。
准确的气体温度信息对于燃烧过程的控制和发动机性能至关重要。
气体温度传感器可以帮助调整燃油喷射量和点火时机,以适应不同的气温条件。
6. 大气压力传感器(Manifold Absolute Pressure Sensor)大气压力传感器测量进气道中的绝对压力。
第3章 压力传感器
铁心
接进气歧管 传感线圈 真空膜盒 b) 节气门关闭状态
P 11
a) 节气门开启状态
(二)压阻效应式进气压力传感器
1.传感器结构: 1) 硅膜片:用半导体材料硅制 成的,是利用半导体压阻效 应的压力转换元件。硅膜片 的一面是真空室,另一面是 进气 歧管压力。
2) 真空室:提供绝对压力基准。
硅膜片
P 8
(一)电磁式进气压力传感器 1.传感器结构: 1) 一对真空膜盒(压力计):检测敏感元件。 2) 铁心和传感线圈:转换为电量的元件。
弹片 铁心
接进气歧管 传感线圈 真空膜盒 b) 节气门关闭状态 a) 节气门开启状态
电磁式进气压力传感器结构图
P 9
2.传感器工作原理 具有弹性的真空膜盒抽成真空。外部气压变化时,膜盒 产生凸出或凹进的现象,通过传动机构,使线圈中铁心的位 置发生改变,从而使线圈中穿过的磁通量发生变化,于是线 圈变产生出大小不同的感应电动势来,由此即把气压变化的 物理量转换成由线圈两端输出的电信号。
弹片
铁心
接进气歧管 传感线圈 真空膜盒 b) 节气门关闭状态
P 10
a) 节气门开启状态
当节气门开启时,进气歧管内气体的绝对压力增加即真 空度减小,真空膜盒被压缩,把动铁心往右拉,如图a所示, 于是减小了磁轭与动铁心(衔铁)的间隙,使传感线圈中的 感应电动势增大。当此信号输出给ECU后,ECU控制喷油器, 使燃油的喷射量增加。节气门关闭时,则相反。
TRC:TRC功能与TCS相同,此种叫法多出现于丰田、 雷克萨斯等日系车型上。 ATC:功能与TCS相同,自动牵引力控制,又称为牵引 力控制。 Automatic Traction Control的缩写。
P
发动机气缸密封性试验
五、实验方法和步骤
1.气缸压缩压力检测
2) 利用气缸压力测试仪检测 (1) 用气缸压力传感器式气缸压力测试仪检测。
先拆下被测气缸的火花塞或喷油器,旋上仪器 配置的压力传感器,用起动机转动曲轴3~5 s, 由传感器输出的关于气缸压力的信号经放大后 送入A/D转换器进行数模转换,输入显示装置 即可指示出所测气缸的压缩压力。
1、 实验过程的详细记录。 2、实验数据的记录和数据处理。 3、分析密封性状况及可能产生的故障。
二、实验目的及要求
1、 测定气缸压缩压力、气缸漏气率、进气 管真空度、曲轴箱窜气量等评价参数。
2、 熟悉实验步骤,掌握实验台各相关仪器 的使用方法。
三、实验所用的主要仪器和设备
(1) 气缸压力表 (2) 气缸压力传感器式气缸 压力测试仪。 (3) QLY-l型气缸漏气量检 测仪。 (4) 曲轴箱气量检测仪
五、实验方法和步骤
2.气缸漏气量(率)检测方法
检测时,发动机不运转,活塞处于压缩行程上止点 。 (1) 发动机预热至正常工作温度。 (2) 用压缩空气吹净火花塞周围,清除脏物,而后拧下所
有气缸的火花塞,并在火花塞孔上装好充气嘴。 (3) 接好压缩空气源,在检测仪出气口堵塞的情况下,用
调压阀调节进气压力,使测量表指针指示0.4 MPa。 (4) 卸下分电器盖,安装好活塞定位盘 。
五、实验方法和步骤
1.气缸压缩压力检测
2) 利用气缸压力测试仪检测 (2) 用起动电流或起动电压降式气缸压力测试仪检测。
发动机应首先运转至正常工作温度,并把节气门和阻 风门置于全开位置。 ① 拆下任一缸火花塞,把缸压传感器安装在火花塞孔中。 ② 把电流传感器夹在蓄电池的搭铁线上,传感器上箭头 指向蓄电池负极,两爪对正、密合;转速传感器按要 求连接。 ③ 用起动机带动发动机运转4~6 s,仪器将会自动打印 出各缸的压缩压力值。缸压传感器所在缸为标准缸, 其余各缸的压缩压力值从标准缸以下按点火次序排列。
汽车压力传感器的结构、 原理与检测
UO 输出电压/V
压力 kPa
17 34 51 68 85 100
真空室
硅片
P
0
传感器结构图
输出特性
21
二、检测方法 以三菱轿车大气压力传感器为例。安装在空气流量传感 器内,由惠斯登电桥组成,当海拔变化,输出信号到ECU的 16号端子。ECU据此修正喷油量。13和23端子并联以减少接 触电阻。
P 16
2.传感器工作原理 利用两个极板之间的电容与极板间的间隙成反比原理。
氧化铝片和绝缘垫圈构成真空腔的膜盒,该盒装在与进 气管相通的容器内。当进气歧管压力发生变化时,极板氧化 铝片弯曲变形,极板的间隙发生变化,其电容随之变化,从 而获得与压力成正比的电容值信号。 把电容式传感器作为谐振电路的一部分,当进气压力发 生变化时,谐振频率发生相应的变化,其输出信号的频率与 进气压力成正比。其频率大约在80~120Hz内变化。 ECU 根 据 信 号 的 频 率便可算出进气歧管的 绝对压力。
基片 半导体应变片
密封圈
传感 元件
壳体
P
23
安装位置:主缸下部。
P
24
第五节
蓄压器压力传感器
作用:检测牵引力控制系统(TRC)蓄压器油液压力,并将压力 信号转换为电信号输入ECU,以控制液压泵的工作。 1.传感器结构: 由压力检测部分(半导体压敏元件)、电路部分等组成。
2.传感器工作原理: 当油液压力低时,它 向ECU输入油压低信号, 以便起动油压泵,使之运 转;当油液压力高时,它 压力 开关 输入ECU的信号使液压 泵停止运转。 低压…
大气压传感器 测量大气压的范围: 10~1100mb(200PSi) 大气压分辨率: 0.1mbar 测量温度范围: -40℃~+85℃
汽车八大传感器以及安装位置和作用
汽车八大传感器以及安装位置和作用1. 发动机冷却液液位传感器此传感器在冷却液膨胀箱盖上。
当发动机冷却液位下降后,启亮报警指示灯。
此开关为常闭开关。
2. 发动机冷却液温度传感器此传感器在冷却液膨胀箱盖上。
温度传感器的电阻与冷却液温度成正比变化,该传感器向仪表盘发送调解信号电压操纵仪表。
发动机冷地液温度在仪表盘上以显示条形式显示,显示条最多为12格,每格表示5~6摄氏度。
发动机冷机(温度低于56摄氏度)时,显示条只显示1格;当发动机处于正常工作温度时,显示条将最多显示10格;发动机温度过高、显示格数从11增到12时,启亮仪表盘上的报警指标灯报警。
此报警为关键性报警。
3. 发动机机油压力传感器此传感器在机体石侧,为常闭开关。
传感器的电阻与发动机机油压力成正比变化,向仪表组发现调解信号电压操纵仪表。
报警压力取决于发动机转速。
在发动机转速低于500r/min时,开关关闭。
在以下几种情况时,开关打开,启亮报警无线电示灯报警同时机油压力显示条降低至最少格:1)发动机转速为500~1500r/min,机油压力低于60kPa时;2)发动机转速为1500~2000r/min,机油压力低于110kPa时;3)发动机转速为2 除此之外,根据车型的不同还有其它传感器4. 碰撞传感器雨水感应传感器(下雨时雨刷可以自动工作)灯光传感器环境温度传感器5. 空气流量传感器空气流量传感器是将吸入的空气转换成电信号送至电控单元(ECU),作为决定喷油的基本信号之一。
根据测量原理不同,可以分为旋转翼片式空气流量传感器(丰田PREVIA旅行车)、卡门涡游式空气流量传感器(丰田凌志LS400轿车)、热线式空气流量传感器(日产千里马车用VG30E发动机和国产天津三峰客车TJ6481AQ4装用的沃尔沃B230F发动机)和热膜式空气流量传感器四种型式。
前两者为体积流量型,后两者为质量流量型。
目前主要采用热线式空气流量传感器和热膜式空气流量传感器两种。
机动车气缸压缩压力检测
气缸压缩压力检测检测活塞到达压缩终了上止点时气缸压缩压力(以下简称为“气缸压力”)的大小,可以表征气缸的密封性。
检测气缸压力所使用的检测设备和检测方法有以下几种。
(1)用气缸压力表检测用气缸压力表检测气缸压力,由于仪表具有结构简单、小巧轻便、价格低廉和使用可靠等优点,因而在汽车维修企业中应用广泛。
1)气缸压力表的结构与工作原理该压力表是一种气体专用压力表,一般由压力表头、导管、单向阀和接头等组成。
压力表头多为鲍登管(Bourdon-tube)式,其驱动元件是一根扁平的弯曲成圆圈状的管子,一端为固定端,另一端为活动端。
活动端通过杠杆、齿轮机构与表头指针相连。
当气体压力进入弯管时,弯管伸直。
于是,通过杠杆、齿轮机构带动表头指针摆动,在表盘上指示出气体压力的大小。
气缸压力表的接头有两种形式。
一种为螺纹管接头,可以拧紧在火花塞或喷油器螺纹孔内;另一种为锥形或阶梯形的橡胶接头,可以用手压紧在火花塞或喷油器孔上。
接头通过导管与压力表头相连通。
导管也有两种,一种为软导管,另一种为金属硬导管。
软导管适用于螺纹管接头与压力表头的连接,硬导管适用于橡胶接头与表头的连接。
气缸压力表导管上还装有能通大气的单向阀。
当单向阀处于关闭位置时,可保持压力表指针的测试状态以便于读数。
当单向阀处于打开位置时,可使压力表指针回零以便于重新测试。
气缸压力表外形图如图2-6所示Z.tif。
图2-6气缸压力表外形图2)气缸压力表使用方法①检测条件发动机应运转至正常工作温度;用起动机带动已拆除全部火花塞或喷油器的发动机运转,其转速应符合原厂规定。
②检测方法拆下发动机空气滤清器,用压缩空气吹净火花塞或喷油器周围的脏物,拆下全部火花塞或喷油器,并按气缸顺序放置。
对于汽油发动机,还应把点火系二次高压总线从分电器端拔下并可靠搭铁,以防止电击或着火。
然后,把气缸压力表的橡胶接头插在被测缸的火花塞或喷油器孔内,扶正压紧。
将节气门(带有阻风门的还包括阻风门)置于全开位置,用起动机转动曲轴3~5s(不少于四个压缩行程),待气缸压力表指针指示并保持最大压2.2气缸密封性检测35力后停止转动。
机舱中常用的传感器
机舱中常用的传感器一、温度传感器较低温度场合——用热电阻或热敏电阻式(用半导体材料制成,具有负的电阻温度系数),如冷却水、滑油温度、主轴承温度等。
较高温度场合——热电偶式,如主机排气温度。
1.热电阻式温度传感器热电阻常由铜丝或铂丝用双线并绕在绝缘骨架上,再插入护套内组成。
其电阻与温度成正比(正的电阻温度系数)。
铜热电阻——测温范围-500C~+1200C。
铂热电阻——测温范围-1200C~+8000C(监视系统多用铂电阻)热电阻测温电桥Rt:热电阻; R0:调零(调迁移)电位器W:调桥臂电流(调量程)电位器;R1=R2为固定电阻(R1>> Rt,R2>>R0)i1=i2=i主要取决于R1、R2的大小。
设Rt=起始电阻Rt0+随温度变化电阻ΔRt,则输出电压:Uab=Ua--Ub=i Rt--i R0=i(Rt0+ΔRt)--iR0当t=00C时,ΔRt=0,则Rt=R0,这时可调整R0使Uab=0(调零)。
如果起始温度为TL,对应热电阻起始电阻为RL,可调整R0=RL,同样可使Uab=0,即将测温始点迁移到TL。
当温度在TL的基础上升时,Rt增大ΔRt,此时Ua↑,而Ub不变,Uab↑,即:Uab=Ua--Ub =i(Rt0+ΔRt)--iR0= iΔRt可见电桥输出Uab与热电阻随测量温度而变化的阻值ΔRt成正比,此即热电阻的温度检测原理。
其量程可由W改变电流值来调整,即t=tmax时,使Uab=Uabmax热电阻的温度修正——热电阻三线制接法热电阻插入需检测的监视点,与测量电桥之间用铜丝线连接,铜丝线的阻值也会随温度而变化,引起测量误差。
实际测量电桥中采用热电阻“三线制”连接法来实现环境温度的补偿,即增加一根电源线LC,将热电阻的两根导线La和Lb分别接在测量桥臂和调零桥臂上Uab=Ua--Ub =i(Rt+Ra)--i(R0+Rb)=i(Rt--R0)+i(Ra--Rb)只要Ra恒等于Rb,则Uab与环境温度无关。
浅谈气缸压缩压力的检测与故障诊断
浅谈气缸压缩压力的检测与故障诊断【摘要】本文主要介绍了气缸压缩压力的常用检测方法及诊断参数标准,并对测试结果进行了分析,以确定故障的原因及维修方法。
【关键词】气缸压缩压力;检测;故障诊断0 引言气缸密封性与气缸体、气缸盖、气缸垫、气门、火花塞孔、活塞及活塞环等零件的技术状况有关。
在发动机使用过程中,上述零件的损坏、磨损、烧蚀、结焦或积碳,将会影响气缸密封性。
导致发动机功率下降,燃油消耗率增加,使用寿命大大缩短。
1 气缸密封性的常用检测方法在不拆解的条件下,检测气缸密封性的常用方法有:1.1 测量气缸压缩压力;1.2 测量曲轴箱窜气量;1.3 测量气缸漏气量或气缸漏气率;1.4 测量进气管负压。
在就车检测时,只要进行其中的一项或两项,就能确定气缸密封性的好坏。
由于检测气缸压缩压力具有实用性强、仪表轻巧、检测方便和价格低廉等优点,因而在汽车维修过程中应用十分广泛。
2 气缸压缩压力的检测气缸压缩压力是指四冲程发动机压缩终了上止点时的压力。
测量发动机气缸的压力,可以诊断气缸、活塞组的密封情况,活塞环、气门、气缸垫密封性是否良好和气门间隙是否适当等。
气缸压缩压力常用检测方法有用气缸压力表检测和用气缸压力检测仪检测。
2.1 用气缸压力表检测气缸压缩压力2.1.1 检测方法由于气缸压力受很多因素影响较大,所以,测量气缸压力,必须在下列条件下进行:蓄电池电力充足;用规定的力矩拧紧气缸盖螺栓;彻底清洗空气滤清器或更换新的空气滤清器;发动机达到正常的工作温度(水温80~90℃,油温70~90℃);用起动机带动卸除全部火花塞的发动机运转,转速为200~300r/min,或按原厂规定。
具体检测方法如下:1)先用压缩空气吹净火花塞周围的脏物。
2)拆下全部火花塞。
对于汽油机还应把点火系次级高压线拔下并可靠搭铁,以防止电击或着火。
3)把专用气缸压力表的锥形橡皮头插在被测量气缸的火花塞孔内,扶正压紧。
4)将节气门(有阻风门的还包括阻风门)置于全开位置,用起动机带动曲轴转动3~5秒(不少于4个压缩行程),待压力表表针指示并保持最大压力读数后停止转动。
自动控制系统的传感器与执行器
自动控制系统的传感器与执行器自动控制系统在现代工业生产中扮演着至关重要的角色,它可以准确地控制各种设备和机械的运行,以提高生产效率和产品质量。
而传感器和执行器作为自动控制系统的核心组成部分,发挥着关键的作用。
本文将探讨传感器和执行器在自动控制系统中的重要性,并介绍一些常见的传感器和执行器类型。
一、传感器的作用与分类传感器是自动控制系统中的感知器官,通过感知环境中的各种物理量,并将其转换成电子信号,以便控制系统对环境做出相应的反应。
传感器在自动控制系统中起到了收集信息的作用,它通过将现实世界的物理信息转化为控制系统能够理解的信号,为自动控制系统提供了必要的输入。
根据所感知的物理量不同,传感器可以分为多种类型。
常见的传感器包括温度传感器、湿度传感器、压力传感器、光敏传感器等。
温度传感器可以感知环境的温度变化;湿度传感器可以感知环境的湿度变化;压力传感器可以感知环境中的压力变化;光敏传感器可以感知环境光线的强度变化。
通过这些传感器,自动控制系统可以获得关于环境的详细信息,以便做出相应的调控。
二、执行器的功能与种类与传感器不同,执行器是自动控制系统中的行动器官,它根据控制系统的信号,将电子信号转换为物理行动,从而实现对设备和机械的控制。
执行器可以根据控制系统的要求进行启动、停止、加速、减速等操作,以实现自动化的生产过程。
常见的执行器包括马达、电磁阀、液压缸、气缸等。
马达是执行器的一种常见形式,它通过将电能转化为机械能,驱动设备的运转。
电磁阀可以根据控制信号开关流体的通路,实现对流体的控制。
液压缸和气缸则可以通过液压或气压的作用,推动机械部件进行运动。
三、传感器和执行器的协调作用传感器和执行器在自动控制系统中密切协作,彼此之间的作用是相辅相成的。
传感器通过感知环境的改变,向控制系统提供准确的反馈信号,控制系统根据传感器提供的信息做出相应的控制决策,并将控制指令传递给执行器。
执行器则根据控制系统的指令,将电子信号转化为物理行动,对设备和机械进行精确的控制。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
神威气动 文档标题:气缸压力传感器
一、气缸压力传感器的介绍:
引导活塞在缸内进行直线往复运动的圆筒形金属机件。
空气在发动机气缸中通过膨胀将热能转化为机械能;气体在压缩机气缸中接受活塞压缩而提高压力。
涡轮机、旋转活塞式发动机等的壳体通常也称“气缸”。
气缸的应用领域:印刷(张力控制)、半导体(点焊机、芯片研磨)、自动化控制、机器人等等。
二、气缸种类:
①单作用气缸:仅一端有活塞杆,从活塞一侧供气聚能产生气压,气压推动活塞产生推力伸出,靠弹簧或自重返回。
②双作用气缸:从活塞两侧交替供气,在一个或两个方向输出力。
③膜片式气缸:用膜片代替活塞,只在一个方向输出力,用弹簧复位。
它的密封性能好,但行程短。
④冲击气缸:这是一种新型元件。
它把压缩气体的压力能转换为活塞高速(10~20米/秒)
运动的动能,借以做功。
⑤无杆气缸:没有活塞杆的气缸的总称。
有磁性气缸,缆索气缸两大类。
做往复摆动的气缸称摆动气缸,由叶片将内腔分隔为二,向两腔交替供气,输出轴做摆动运动,摆动角小于280°。
此外,还有回转气缸、气液阻尼缸和步进气缸等。
三、气缸结构:
气缸是由缸筒、端盖、活塞、活塞杆和密封件等组成,其内部结构如图所示:
2:端盖
端盖上设有进排气通口,有的还在端盖内设有缓冲机构。
杆侧端盖上设有密封圈和防尘圈,以防止从活塞杆处向外漏气和防止外部灰尘混入缸内。
杆侧端盖上设有导向套,以提高气缸的导向精度,承受活塞杆上少量的横向负载,减小活塞杆伸出时的下弯量,延长气缸使用寿命。
导向套通常使用烧结含油合金、前倾铜铸件。
端盖过去常用可锻铸铁,为减轻重量并防锈,常使用铝合金压铸,微型缸有使用黄铜材料的。
3:活塞
活塞是气缸中的受压力零件。
为防止活塞左右两腔相互窜气,设有活塞密封圈。
活塞上的耐磨环可提高气缸的导向性,减少活塞密封圈的磨耗,减少摩擦阻力。
耐磨环长使用聚氨酯、聚四氟乙烯、夹布合成树脂等材料。
活塞的宽度由密封圈尺寸和必要的滑动部分长度来决定。
滑动部分太短,易引起早期磨损和卡死。
活塞的材质常用铝合金和铸铁,小型缸的活塞有黄铜制成的。
神威气动 4:活塞杆
活塞杆是气缸中最重要的受力零件。
通常使用高碳钢、表面经镀硬铬处理、或使用不锈钢、以防腐蚀,并提高密封圈的耐磨性。
5:密封圈
回转或往复运动处的部件密封称为动密封,静止件部分的密封称为静密封。
缸筒与端盖的连接方法主要有以下几种:
整体型、铆接型、螺纹联接型、法兰型、拉杆型。
6:气缸工作时要靠压缩空气中的油雾对活塞进行润滑。
也有小部分免润滑气缸。
四、气缸工作原理:
1:根据工作所需力的大小来确定活塞杆上的推力和拉力。
由此来选择气缸时应使气缸的输出力稍有余量。
若缸径选小了,输出力不够,气缸不能正常工作;但缸径过大,不仅使设备笨重、成本高,同时耗气量增大,造成能源浪费。
在夹具设计时,应尽量采用增力机构,以减少气缸的尺寸。
2:下面是气缸理论出力的计算公式:
F:气缸理论输出力(kgf)
F′:效率为85%时的输出力(kgf)--(F′=F×85%)
D:气缸缸径(mm)
P:工作压力(kgf/C㎡)
例:直径340mm的气缸,工作压力为3kgf/cm2时,其理论输出力为多少?芽输出力是多少?
将P、D连接,找出F、F′上的点,得:
F=2800kgf;F′=2300kgf
在工程设计时选择气缸缸径,可根据其使用压力和理论推力或拉力的大小,从经验表1-1中查出。
神威气动 例:有一气缸其使用压力为5kgf/cm2,在气缸推出时其推力为132kgf,(气缸效率为85%)问:该选择多大的气缸缸径?
由气缸的推力132kgf和气缸的效率85%,可计算出气缸的理论推力为F=F′/85%=155(kgf)
由使用压力5kgf/cm2和气缸的理论推力,查出选择缸径为?63的气缸便可满足使用要求。
五:气缸图片展示:
抱紧气缸如下图:
带阀气缸:
神威气动
带锁气缸
迷你气缸
笔型气缸
神威气动
薄型气缸
手指气缸。