2023年贵州省贵阳市 中考数学模拟试卷

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

贵阳市2023年中考数学模拟试卷
一、选择题:以下每小题均有A 、B 、C 、D 四个选项,其中只有一个选项正确,每小题3分,共36分.
1.5的相反数是( )
A .5
B .﹣5
C .15
D .﹣15 2.下列运算正确的是( )
A .a 6÷a 2=a 3
B .a 2+a 3=a 5
C .﹣2(a +b )=﹣2a +b
D .(﹣2a 2)2=4a 4
3.据报道,电信5G 技术赋能千行百业,打造数字经济底座.5G 牌照发放三年来,三大电信运营商共投资4772亿元.把数字4772亿用科学记数法表示为( )
A .4.772×109
B .4.772×1010
C .4.772×1011
D .4.772×1012
4.在一个不透明的布袋内,有红球5个,黄球4个,白球1个,蓝球3个,它们除颜色外,大小、质地都相同.若随机从袋中摸取一个球,则摸中哪种球的概率最大( )
A .红球
B .黄球
C .白球
D .蓝球
5.估计√21的值在( )
A .2和3之间
B .3和4之间
C .4和5之间
D .5和6之间
6.如图,将三角形纸片剪掉一角得四边形,设ΔABC 与四边形BCDE 的外角和的度数分别为α,β,则正确的是( )
(第6题图) (第7题图)
A .0αβ-=
B .0αβ-<
C .0αβ->
D .无法比较α与β的大小
7.如图所示的扇形统计图描述了某校学生对课后延时服务的打分情况(满分5分),则所打分数的众数为( )
A .5分
B .4分
C .3分
D .45% 8.分式方程2x−1﹣1=0的解是( )
A .x =1
B .x =﹣2
C .x =3
D .x =﹣3
9.如图,已知∠ABC =60°,点D 为BA 边上一点,BD =10,点O 为线段BD 的中点,以点O 为圆心,线段OB 长为半径作弧,交BC 于点E ,连接DE ,则BE 的长是( )
(第9题图)(第10题图)
A.5B.5√2C.5√3D.5√5
10.如图,某地修建的一座建筑物的截面图的高BC=5m,坡面AB的坡度为1:√3,则AB 的长度为()
A.10m B.10√3m C.5m D.5√3m
11.在解决数学实际问题时,常常用到数形结合思想,比如:|x+1|的几何意义是数轴上表示数x的点与表示数﹣1的点的距离,|x﹣2|的几何意义是数轴上表示数x的点与表示数2的点的距离.当|x+1|+|x﹣2|取得最小值时,x的取值范围是()
A.x≤﹣1B.x≤﹣1或x≥2C.﹣1≤x≤2D.x≥2
12.遵义市某天的气温y1(单位:℃)随时间t(单位:h)的变化如图所示,设y2表示0时到t时气温的值的极差(即0时到t时范围气温的最大值与最小值的差),则y2与t的函数图象大致是()
A B C D
二、填空题:每小题4分,共16分.
13.因式分解:a2+3a=.
14.若一元二次方程x2+3x+k=0有两个相等的实数根,则k的值为.
15.为开展“水情教育”主题教育宣讲活动,某单位从甲、乙、丙、丁四名宣讲员中随机选取两名进行宣讲,则恰好选中甲和丙的概率为.
16.如图,正方形ABCD中,点E、F分别在边BC、CD上,AE=AF,∠EAF=30°,则∠AEB=°;若△AEF的面积等于1,则AB的值是.
三、解答题:本大题9小题,共98分.解答应写出必要的文字说明、证明过程或演算步骤.17.(1)a,b两个实数在数轴上的对应点如图所示.
用“<”或“>”填空:a b,a
b
0;
(2)在初中阶段我们已经学习了一元二次方程的三种解法;他们分别是配方法、公式法和因式分解法,请从下列一元二次方程中任选两个,并解这两个方程.
①x2+3x﹣1=0;②x2﹣2x=0;③x2﹣4x=4;④x2﹣9=0.
18.某县教育局印发了上级主管部门的“法治和安全等知识”学习材料,某中学经过一段时间的学习,同学们都表示有了提高,为了解具体情况,综治办开展了一次全校性竞赛活动,王老师抽取了这次竞赛中部分同学的成绩,并绘制了下面不完整的统计图、表.
参赛成绩60≤x<
7070≤x<
80
80≤x<
90
90≤x≤
100
人数8m n32
级别及格中等良好优秀
请根据所给的信息解答下列问题:
(1)王老师抽取了名学生的参赛成绩;抽取的学生的平均成绩是分;(2)将条形统计图补充完整;
(3)若该校有1600名学生,请估计竞赛成绩在良好以上(x≥80)的学生有多少人?(4)在本次竞赛中,综治办发现七(1)班、八(4)班的成绩不理想,学校要求这两个班加强学习一段时间后,再由电脑随机从A、B、C、D四套试卷中给每班派发一套试卷进行测试,请用列表或画树状图的方法求出两个班同时选中同一套试卷的概率.
19.已知:点A(1,3)是反比例函数y1=k
(k≠0)的图象与直线y2=mx(m≠0)的一个
x
交点.
(1)求k、m的值;
(2)在第一象限内,当y2>y1时,请直接写出x的取值范围.
20.今年,某市举办了一届主题为“强国复兴有我”的中小学课本剧比赛.某队伍为参赛需租用一批服装,经了解,在甲商店租用服装比在乙商店租用服装每套多10元,用500元在甲商店租用服装的数量与用400元在乙商店租用服装的数量相等.
(1)求在甲,乙两个商店租用的服装每套各多少元?
(2)若租用10套以上服装,甲商店给以每套九折优惠.该参赛队伍准备租用20套服装,请问在哪家商店租用服装的费用较少,并说明理由.
21.如图,小敏在数学实践活动中,利用所学知识对他所在小区居民楼AB的高度进行测量,从小敏家阳台C测得点A的仰角为33°,测得点B的俯角为45°,已知观测点到地面的高度CD=36m,求居民楼AB的高度(结果保留整数.参考数据:sin33°≈0.55,cos33°≈0.84,tan33°≈0.65).
22.如图,在平行四边形ABCD中,点E和点F是对角线BD上的两点,且BF DE
=.(1)求证:BE DF
=;
(2)求证:ABE CDF
∆≅∆.
23.如图,在△ABC中,∠ACB=90°,D是AB边上一点,以BD为直径的⊙O与AC相切于点E,连接DE并延长交BC的延长线于点F.
(1)求证:BF=BD;
(2)若CF=1,tan∠EDB=2,求⊙O的直径.
24.已知抛物线y=﹣x2+2x+3与x轴交于A,B两点(点A在点B的左侧).(1)求点A,点B的坐标;
(2)如图,过点A的直线l:y=﹣x﹣1与抛物线的另一个交点为C,点P为抛物线对称轴上的一点,连接PA,PC,设点P的纵坐标为m,当PA=PC时,求m的值;
(3)将线段AB先向右平移1个单位长度,再向上平移5个单位长度,得到线段MN,若抛物线y=a(﹣x2+2x+3)(a≠0)与线段MN只有一个交点,请直接写出a的取值范围.
25.如图,在正方形ABCD中,E,F分别是BC,CD边上的点(点E不与点B,C重合),且∠EAF=45°.
(1)当BE=DF时,求证:AE=AF;
(2)猜想BE,EF,DF三条线段之间存在的数量关系,并证明你的结论;
(3)连接AC,G是CB延长线上一点,GH⊥AE,垂足为K,交AC于点H且GH=AE.若DF=a,CH=b,请用含a,b的代数式表示EF的长.。

相关文档
最新文档