2015年四川省高考数学试卷(理科)答案与解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015年四川省高考数学试卷(理科)
参考答案与试题解析
一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一个是符合题目要求的。
1.(5分)(2015•四川)设集合A={x|(x+1)(x﹣2)<0},集合B={x|1<x<3},则A∪B=()
A.{x|﹣1<x<3} B.{x|﹣1<x<1} C.{x|1<x<2} D.{x|2<x<3} 2.(5分)(2015•四川)设i是虚数单位,则复数i3﹣=()
A.﹣i B.﹣3i C.i D.3i
3.(5分)(2015•四川)执行如图所示的程序框图,输出s的值为()
A.
﹣B.C.
﹣
D.
4.(5分)(2015•四川)下列函数中,最小正周期为π且图象关于原点对称的函数是()
A.
y=cos(2x+)B.
y=sin(2x+)
C.y=sin2x+cos2x D.y=sinx+cosx
5.(5分)(2015•四川)过双曲线x2﹣=1的右焦点且与x轴垂直的直线,交该双曲线的
两条渐近线于A、B两点,则|AB|=()
A.B.2C.6D.4
6.(5分)(2015•四川)用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数共有()
A.144个B.120个C.96个D.72个
7.(5分)(2015•四川)设四边形ABCD为平行四边形,||=6,||=4,若点M、N满足
,,则=()
A.20 B.15 C.9D.6
8.(5分)(2015•四川)设a、b都是不等于1的正数,则“3a>3b>3”是“log a3<log b3”的()A.充要条件B.充分不必要条件
C.必要不充分条件D.既不充分也不必要条件
9.(5分)(2015•四川)如果函数f(x)=(m﹣2)x2+(n﹣8)x+1(m≥0,n≥0)在区间[]上单调递减,那么mn的最大值为()
A.16 B.18 C.25 D.
10.(5分)(2015•四川)设直线l与抛物线y2=4x相交于A、B两点,与圆(x﹣5)2+y2=r2(r>0)相切于点M,且M为线段AB的中点,若这样的直线l恰有4条,则r的取值范围是()
A.(1,3)B.(1,4)C.(2,3)D.(2,4)
二、填空题:本大题共5小题,每小题5分,共25分。
11.(5分)(2015•四川)在(2x﹣1)5的展开式中,含x2的项的系数是(用数字填写答案).
12.(5分)(2015•四川)sin15°+sin75°的值是.
13.(5分)(2015•四川)某食品的保鲜时间y(单位:小时)与储藏温度x(单位:℃)满足函数关系y=e kx+b(e=2.718…为自然对数的底数,k、b为常数).若该食品在0℃的保鲜时间是192小时,在22℃的保鲜时间是48小时,则该食品在33℃的保鲜时间是小时.14.(5分)(2015•四川)如图,四边形ABCD和ADPQ均为正方形,他
们所在的平面互相垂直,动点M在线段PQ上,E、F分别为AB、BC的中
点,设异面直线EM与AF所成的角为θ,则cosθ的最大值为.
15.(5分)(2015•四川)已知函数f(x)=2x,g(x)=x2+ax(其中a∈R).
对于不相等的实数x1、x2,设m=,n=.现有
如下命题:
①对于任意不相等的实数x1、x2,都有m>0;
②对于任意的a及任意不相等的实数x1、x2,都有n>0;
③对于任意的a,存在不相等的实数x1、x2,使得m=n;
④对于任意的a,存在不相等的实数x1、x2,使得m=﹣n.
其中的真命题有(写出所有真命题的序号).
三、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤。
16.(12分)(2015•四川)设数列{a n}(n=1,2,3,…)的前n项和S n满足S n=2a n﹣a1,且a1,a2+1,a3成等差数列.
(Ⅰ)求数列{a n}的通项公式;
(Ⅱ)记数列{}的前n项和为T n,求使得|T n﹣1|成立的n的最小值.
17.(12分)(2015•四川)某市A、B两所中学的学生组队参加辩论赛,A中学推荐了3名男生、2名女生,B中学推荐了3名男生、4名女生,两校所推荐的学生一起参加集训.由于集训后队员水平相当,从参加集训的男生中随机抽取3人,女生中随机抽取3人组成代表队.
(Ⅰ)求A中学至少有1名学生入选代表队的概率;
(Ⅱ)某场比赛前,从代表队的6名队员中随机抽取4人参赛,设X表示参赛的男生人数,求X的分布列和数学期望.
18.(12分)(2015•四川)一个正方体的平面展开图及该正方体的直观图的示意图如图所示.在正方体中,设BC的中点为M、GH的中点为N.
(Ⅰ)请将字母F、G、H标记在正方体相应的顶点处(不需说明理由);
(Ⅱ)证明:直线MN∥平面BDH;
(Ⅲ)求二面角A﹣EG﹣M的余弦值.
19.(12分)(2015•四川)如图,A、B、C、D为平面四边形ABCD的四个内角.
(Ⅰ)证明:tan;
(Ⅱ)若A+C=180°,AB=6,BC=3,CD=4,AD=5,求tan+tan+tan+tan的值.
20.(13分)(2015•四川)如图,椭圆E:的离心率是,过点P
(0,1)的动直线l与椭圆相交于A、B两点,当直线l平行于x轴时,直线l被椭圆E截得的线段长为2.
(Ⅰ)求椭圆E的方程;
(Ⅱ)在平面直角坐标系xOy中,是否存在与点P不同的定点Q,使得恒成立?若存在,求出点Q的坐标;若不存在,请说明理由.
21.(14分)(2015•四川)已知函数f(x)=﹣2(x+a)lnx+x2﹣2ax﹣2a2+a,其中a>0.(Ⅰ)设g(x)是f(x)的导函数,讨论g(x)的单调性;
(Ⅱ)证明:存在a∈(0,1),使得f(x)≥0在区间(1,+∞)内恒成立,且f(x)=0在区间(1,+∞)内有唯一解.
答案:
1、解:∵集合A={x|(x+1)(x﹣2)<0},集合B={x|1<x<3},
∴集合A={x|﹣1<x<2},
∵A∪B={x|﹣1<x<3},
故选:A
2、
解:∵i是虚数单位,则复数i3﹣,
∴===i,
故选;C
3、解:模拟执行程序框图,可得
k=1
k=2
不满足条件k>4,k=3
不满足条件k>4,k=4
不满足条件k>4,k=5
满足条件k>4,S=sin=,
输出S的值为.
故选:D.
4、解:
y=cos(2x+)=﹣sin2x,是奇函数,函数的周期为:π,满足题意,所以A正确y=sin(2x+)=cos2x,函数是偶函数,周期为:π,不满足题意,所以B不正确;
y=sin2x+cos2x=sin(2x+),函数是非奇非偶函数,周期为π,所以C不正确;
y=sinx+cosx=sin(x+),函数是非奇非偶函数,周期为2π,所以D不正确;
故选:A.
5、
解:双曲线x2﹣=1的右焦点(2,0),渐近线方程为y=,
过双曲线x2﹣=1的右焦点且与x轴垂直的直线,x=2,
可得y A=2,y B=﹣2,
∴|AB|=4.故选:D.
6、解:根据题意,符合条件的五位数首位数字必须是4、5其中1个,末位数字为0、2、4
中其中1个;
分两种情况讨论:
①首位数字为5时,末位数字有3种情况,在剩余的4个数中任取3个,放在剩余的3
个位置上,有A43=24种情况,此时有3×24=72个,
②首位数字为4时,末位数字有2种情况,在剩余的4个数中任取3个,放在剩余的3
个位置上,有A43=24种情况,此时有2×24=48个,
共有72+48=120个.故选:B
7、
解:∵四边形ABCD为平行四边形,点M、N满足,,
∴根据图形可得:=+=,
==,
∴=,
∵=•()=2﹣,
2=22,
=22,
||=6,||=4,
∴=22=12﹣3=9故选;C
8、解:a、b都是不等于1的正数,
∵3a>3b>3,
∴a>b>1,
∵log a3<log b3,
∴,
即<0,
或
求解得出:a>b>1或1>a>b>0或b>1,0<a<1
根据充分必要条件定义得出:“3a>3b>3”是“log a3<log b3”的充分条不必要件,故选:B.9、
解:∵函数f(x)=(m﹣2)x2+(n﹣8)x+1(m≥0,n≥0)在区间[]上单调递减,∴f′(x)≤0,故(m﹣2)x+n﹣8≤0在[,2]上恒成立.而(m﹣2)x+n﹣8是一次函数,在[,2]上的图象是一条线段.故只须在两个端点处f′()≤0,f′(2)≤0即可.即
由(2)得m≤(12﹣n),
∴mn≤n(12﹣n)≤=18,
当且仅当m=3,n=6时取得最大值,经检验
m=3,n=6满足(1)和(2).故选:B.
解法二:
∵函数f(x)=(m﹣2)x2+(n﹣8)x+1
(m≥0,n≥0)在区间[]上单调递减,
∴①m=2,n<8 对称轴x=﹣,
②即
③即
设或或
设y=,y′=,
当切点为(x0,y0),k取最大值.
①﹣=﹣2.k=2x,
∴y0=﹣2x0+12,y0==2x0,可得x0=3,y0=6,
∵x=3>2
∴k的最大值为3×6=18
②﹣=﹣.,k=,
y0==,
2y0+x0﹣18=0,
解得:x0=9,y0=
∵x0<2
∴不符合题意.
③m=2,n=8,k=mn=16
综合得出:m=3,n=6时k最大值k=mn=18,故选;B
10、解:设A(x1,y1),B(x2,y2),M(x0,y0),则
斜率存在时,设斜率为k,则y12=4x1,y22=4x2,利用点差法可得ky0=2,
因为直线与圆相切,所以=﹣,所以x0=3,
即M的轨迹是直线x=3,
代入抛物线方程可得y=±2,所以交点与圆心(5,0)的距离为4,
所以2<r<4时,直线l有2条;
斜率不存在时,直线l有2条;
所以直线l恰有4条,2<r<4,故选:D.
11、解:根据所给的二项式写出展开式的通项,
T r+1=;
要求x2的项的系数,
∴5﹣r=2,∴r=3,
∴x2的项的系数是22(﹣1)3C53=﹣40.故答案为:﹣40.
12、
解:sin15°+sin75°=sin15°+cos15°=(sin15°cos45°+cos15°sin45°)=sin60°=.故答案为:.
13、解:由题意可得,x=0时,y=192;x=22时,y=48.
代入函数y=e kx+b,
可得e b=192,e22k+b=48,
即有e11k=,e b=192,
则当x=33时,y=e33k+b=×192=24.故答案为:24.
14、解:根据已知条件,AB,AD,AQ三直线两两垂直,分别以这三直线为x,y,z轴,建
立如图所示空间直接坐标系,设AB=2,则:
A(0,0,0),E(1,0,0),F(2,1,0);
M在线段PQ上,设M(0,y,2),0≤y≤2;
∴;
∴cosθ==;
设f(y)=,;
函数g(y)=﹣2y2+y﹣12是二次函数,对称轴为x=﹣3,且g(0)=﹣12<0;
∴g(y)<0在[0,2]恒成立,∴f′(y)<0;
∴f(y)在[0,2]上单调递减;
∴y=0时,f(y)取到最大值.
故答案为:.
15、解:对于①,由于2>1,由指数函数的单调性可得f(x)在R上递增,即有m>0,
则①正确;
对于②,由二次函数的单调性可得g(x)在(﹣∞,﹣)递减,在(,+∞)递减,
则n>0不恒成立,
则②错误;
对于③,由m=n,可得f(x1)﹣f(x2)=g(x1)﹣g(x2),考查函数h(x)=x2+ax
﹣2x,
h′(x)=2x+a﹣2x ln2,当a→﹣∞,h′(x)小于0,h(x)单调递减,则③错误;
对于④,由m=﹣n,可得f(x1)﹣f(x2)=﹣[g(x1)﹣g(x2)],考查函数h(x)=x2+ax+2x,
h′(x)=2x+a+2x ln2,对于任意的a,h′(x)不恒大于0或小于0,则④正确.
故答案为:①④.
16、解:(Ⅰ)由已知S n=2a n﹣a1,有
a n=S n﹣S n﹣1=2a n﹣2a n﹣1(n≥2),
即a n=2a n﹣1(n≥2),
从而a2=2a1,a3=2a2=4a1,
又∵a1,a2+1,a3成等差数列,
∴a1+4a1=2(2a1+1),解得:a1=2.
∴数列{a n}是首项为2,公比为2的等比数列.故;
(Ⅱ)由(Ⅰ)得:,
∴.
由,得,即2n>1000.
∵29=512<1000<1024=210,
∴n≥10.
于是,使|T n﹣1|成立的n的最小值为10.
17、解:(Ⅰ)由题意,参加集训的男、女学生个有6人,参赛学生全从B中抽出(等价
于A中没有学生入选代表队)的概率为:=,因此A中学至少有1名学生入选代表队的概率为:1﹣=;
(Ⅱ)某场比赛前,从代表队的6名队员中随机抽取4人参赛,X表示参赛的男生人数,
则X的可能取值为:1,2,3,
P(X=1)==,
P(X=2)==,
P(X=3)==.
X的分布列:
X 1 2 3
P
和数学期望EX=1×=2.
18、解:(Ⅰ)F、G、H的位置如图;
证明:(Ⅱ)连接BD,设O是BD的中点,
∵BC的中点为M、GH的中点为N,
∴OM∥CD,OM=CD,
HN∥CD,HN=CD,
∴OM∥HN,OM=HN,
即四边形MNHO是平行四边形,
∴MN∥OH,
∵MN⊄平面BDH;OH⊂面BDH,
∴直线MN∥平面BDH;
(Ⅲ)方法一:
连接AC,过M作MH⊥AC于P,
则正方体ABCD﹣EFGH中,AC∥EG,
∴MP⊥EG,
过P作PK⊥EG于K,连接KM,
∴EG⊥平面PKM
则KM⊥EG,
则∠PKM是二面角A﹣EG﹣M的平面角,
设AD=2,则CM=1,PK=2,
在Rt△CMP中,PM=CMsin45°=,
在Rt△PKM中,KM==,
∴cos∠PKM=,
即二面角A﹣EG﹣M的余弦值为.
方法二:以D为坐标原点,
分别为DA,DC,DH方向为x,y,z轴建立空间坐标系如图:
设AD=2,则M(1,2,0),G(0,2,2),E(2,0,2),O(1,1,0),则=(2,﹣2,0),,
设平面EGM的法向量为=(x,y,z),
则,即,令x=2,得=(2,2,1),
在正方体中,DO⊥平面AEGC,
则==(1,1,0)是平面AEG的一个法向量,
则cos<>====.
二面角A﹣EG﹣M的余弦值为.
19、
证明:(Ⅰ)tan===.等式成立.
(Ⅱ)由A+C=180°,得C=180°﹣A,D=180°﹣B,由(Ⅰ)可知:
tan+tan+tan+tan==
连结BD,在△ABD中,有BD2=AB2+AD2﹣2AB•ADcosA,AB=6,BC=3,CD=4,AD=5,在△BCD中,有BD2=BC2+CD2﹣2BC•CDcosC,
所以AB2+AD2﹣2AB•ADcosA=BC2+CD2﹣2BC•CDcosC,
则:cosA===.
于是sinA==,
连结AC,同理可得:cosB===,
于是sinB==.
所以tan+tan+tan+tan===.
20、解:(Ⅰ)∵直线l平行于x轴时,直线l被椭圆E截得的线段长为2,
∴点(,1)在椭圆E上,
又∵离心率是,
∴,解得a=2,b=,
∴椭圆E的方程为:+=1;
(Ⅱ)结论:存在与点P不同的定点Q(0,2),使得恒成立.
理由如下:
当直线l与x轴平行时,设直线l与椭圆相交于C、D两点,
如果存在定点Q满足条件,则有==1,即|QC|=|QD|.
∴Q点在直线y轴上,可设Q(0,y0).
当直线l与x轴垂直时,设直线l与椭圆相交于M、N两点,
则M、N的坐标分别为(0,)、(0,﹣),
又∵=,∴=,解得y0=1或y0=2.
∴若存在不同于点P的定点Q满足条件,则Q点坐标只能是(0,2).
下面证明:对任意直线l,均有.
当直线l的斜率不存在时,由上可知,结论成立.
当直线l的斜率存在时,可设直线l的方程为y=kx+1,
A、B的坐标分别为A(x1,y1)、B(x2,y2),
联立,消去y并整理得:(1+2k2)x2+4kx﹣2=0,
∵△=(4k)2+8(1+2k2)>0,
∴x1+x2=﹣,x1x2=﹣,
∴+==2k,
已知点B关于y轴对称的点B′的坐标为(﹣x2,y2),
又k AQ===k﹣,k QB′===﹣k+=k﹣,
∴k AQ=k QB′,即Q、A、B′三点共线,
∴===.
故存在与点P不同的定点Q(0,2),使得恒成立.
21、解:(Ⅰ)由已知,函数f(x)的定义域为(0,+∞),
g(x)=,
∴.
当0<a<时,g(x)在上单调递增,在区间上单调递减;
当a时,g(x)在(0,+∞)上单调递增.
(Ⅱ)由=0,解得,
令φ(x)
=x2,则φ(1)=1>0,φ(e)=.
故存在x0∈(1,e),使得φ(x0)=0.
令,u(x)=x﹣1﹣lnx(x≥1),
由知,函数u(x)在(1,+∞)上单调递增.
∴.
即a0∈(0,1),
当a=a0时,有f′(x0)=0,f(x0)=φ(x0)=0.
由(Ⅰ)知,f′(x)在(1,+∞)上单调递增,
故当x∈(1,x0)时,f′(x)<0,从而f(x)>f(x0)=0;
当x∈(x0,+∞)时,f′(x)>0,从而f(x)>f(x0)=0.
∴当x∈(1,+∞)时,f(x)≥0.
综上所述,存在a∈(0,1),使得f(x)≥0在区间(1,+∞)内恒成立,且f(x)=0在区间(1,+∞)内有唯一解.。