临夏县民族中学2018-2019学年上学期高二数学12月月考试题含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
临夏县民族中学2018-2019学年上学期高二数学12月月考试题含解析
班级__________ 姓名__________ 分数__________
一、选择题
1. 给出以下四个说法:
①绘制频率分布直方图时,各小长方形的面积等于相应各组的组距;
②线性回归直线一定经过样本中心点,;
③设随机变量ξ服从正态分布N (1,32)则p (ξ<1)=;
④对分类变量X 与Y 它们的随机变量K 2的观测值k 越大,则判断“与X 与Y 有关系”的把握程度越小. 其中正确的说法的个数是( ) A .1
B .2
C .3
D .4
2. 已知等比数列{a n }的前n 项和为S n ,若=4,则
=( )
A .3
B .4
C .
D .13
3. 已知在平面直角坐标系xOy 中,点),0(n A -,),0(n B (0>n ).命题p :若存在点P 在圆
1)1()3(22=-++y x 上,使得2
π
=
∠APB ,则31≤≤n ;命题:函数x x
x f 3log 4
)(-=
在区间 )4,3(内没有零点.下列命题为真命题的是( )
A .)(q p ⌝∧
B .q p ∧
C .q p ∧⌝)(
D .q p ∨⌝)( 4. 线段AB 在平面α内,则直线AB 与平面α的位置关系是( )
A .A
B ⊂α
B .AB ⊄α
C .由线段AB 的长短而定
D .以上都不对
5. 如果命题p ∨q 是真命题,命题¬p 是假命题,那么( )
A .命题p 一定是假命题
B .命题q 一定是假命题
C .命题q 一定是真命题
D .命题q 是真命题或假命题
6. 设曲线2
()1f x x =+在点(,())x f x 处的切线的斜率为()g x ,则函数()cos y g x x =的部分图象
可以为( )
A .
B . C. D .
7. 设集合3|01x A x x -⎧⎫
=<⎨⎬+⎩⎭
,集合(){}2|220B x x a x a =+++>,若 A B ⊆,则的取值范围 ( )
A .1a ≥
B .12a ≤≤ C.a 2≥ D .12a ≤< 8. 2016年3月“两会”期间,有代表提出适当下调“五险一金”的缴存比例,现拟从某工厂职工中抽取
20名代表调查对这一提案的态度,已知该厂青年,中年,老年职工人数分别为350,500,150,按分
层抽样的方法,应从青年职工中抽取的人数为( ) A. 5 B.6 C.7
D.10
【命题意图】本题主要考查分层抽样的方法的运用,属容易题.
9. 在下列区间中,函数f (x )=()x ﹣x 的零点所在的区间为( ) A .(0,1) B .(1,2) C .(2,3 ) D .(3,4)
10.函数f (x )=x 2﹣2ax ,x ∈[1,+∞)是增函数,则实数a 的取值范围是( )
A .R
B .[1,+∞)
C .(﹣∞,1]
D .[2,+∞)
11.在中,角、、所对应的边分别为、、,若角
、、依次成等差数列,且
,
,
则等于( )
A .
B .
C .
D .2
12.如图,程序框图的运算结果为( )
A .6
B .24
C .20
D .120
二、填空题
13.已知z 是复数,且|z|=1,则|z ﹣3+4i|的最大值为 .
14.刘老师带甲、乙、丙、丁四名学生去西安参加自主招生考试,考试结束后刘老师向四名学生了解考试情况.四
名学生回答如下:
甲说:“我们四人都没考好.” 乙说:“我们四人中有人考的好.” 丙说:“乙和丁至少有一人没考好.” 丁说:“我没考好.”
结果,四名学生中有两人说对了,则这四名学生中的 两人说对了.
15.函数f (x )=log
(x 2
﹣2x ﹣3)的单调递增区间为 .
16.设函数32()(1)f x x a x ax =+++有两个不同的极值点1x ,2x ,且对不等式12()()0f x f x +≤ 恒成立,则实数的取值范围是 .
17.在(1+2x )10的展开式中,x 2项的系数为 (结果用数值表示).
18.(
﹣2)7的展开式中,x 2
的系数是 .
三、解答题
19.(本小题满分12分)
如图,在四棱锥ABCD S -中,底面ABCD 为菱形,Q P E 、、分别是棱AB SC AD 、、的中点,且⊥SE 平面ABCD .
(1)求证://PQ 平面SAD ; (2)求证:平面⊥SAC 平面SEQ .
20.已知曲线C 的参数方程为
(y 为参数),过点A (2,1)作平行于θ=
的直线l 与曲线C 分别
交于B ,C 两点(极坐标系的极点、极轴分别与直角坐标系的原点、x 轴的正半轴重合).
(Ⅰ)写出曲线C 的普通方程; (Ⅱ)求B 、C 两点间的距离.
21.已知函数f (x )=•,其中=(2cosx , sin2x ),=(cosx ,1),x ∈R .
(1)求函数y=f (x )的单调递增区间;
(2)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,f (A )=2,a=,且sinB=2sinC ,求△ABC 的面
积.
22.已知定义在[]3,2-的一次函数()f x 为单调增函数,且值域为[]2,7. (1)求()f x 的解析式;
(2)求函数[()]f f x 的解析式并确定其定义域.
23.已知p :“直线x+y ﹣m=0与圆(x ﹣1)2+y 2=1相交”;q :“方程x 2﹣x+m ﹣4=0的两根异号”.若p ∨q 为真,¬p 为真,求实数m 的取值范围.