传热学-第五版-中建工-课后答案详解
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绪论
思考题与习题(89P -)答案:
1. 冰雹落体后溶化所需热量主要是由以下途径得到:
Q λ—— 与地面的导热量 f Q ——与空气的对流换热热量
注:若直接暴露于阳光下可考虑辐射换热,否则可忽略不计。
2.略 3.略 4.略 5.略
6.夏季:在维持20℃的室内,人体通过与空气的对流换热失去热量,但同时又与外界和内
墙面通过辐射换热得到热量,最终的总失热量减少。
(T T 〉外内)
冬季:在与夏季相似的条件下,一方面人体通过对流换热失去部分热量,另一方面又与
外界和内墙通过辐射换热失去部分热量,最终的总失热量增加。
(T T 〈外内)
挂上窗帘布阻断了与外界的辐射换热,减少了人体的失热量。
7.热对流不等于对流换热,对流换热 = 热对流 + 热传导 热对流为基本传热方式,对流换热为非基本传热方式 8.门窗、墙壁、楼板等等。
以热传导和热对流的方式。
9.因内、外两间为真空,故其间无导热和对流传热,热量仅能通过胆壁传到外界,但夹层 两侧均镀锌,其间的系统辐射系数降低,故能较长时间地保持热水的温度。
当真空被破坏掉后,1、2两侧将存在对流换热,使其保温性能变得很差。
10.t R R A λλ= ⇒ 1
t R R A
λλ==
2218.331012m --=⨯ 11.q t λ
σ
=
∆ const λ=→直线 const λ≠ 而为λλ=(t )时→曲线
12. i R α 1R λ 3R λ 0R α 1f t −−
→ q
首先通过对流换热使炉子内壁温度升高,炉子内壁通过热传导,使内壁温度生高,内壁与空气夹层通过对流换热继续传递热量,空气夹层与外壁间再通过热传导,这样使热量通过空气夹层。
(空气夹层的厚度对壁炉的保温性能有影响,影响a α的大小。
) 13.已知:360mm σ=、0.61()
W
m K λ=∙ 118f t =℃ 2187()
W
h m K =∙
210f t =-℃ 22124()
W
h m K =∙ 墙高2.8m ,宽3m
求:q 、1w t 、2w t 、φ 解:12
11
t q h h σλ∆=
++=
18(10)
45.92870.61124
--=++2W m
111()f w q h t t =-⇒ 11137.541817.5787w f q t t h =-
=-=℃ 2
2
2()w f q h t t =-⇒ 22237.54
109.7124
w f q t t h =+=-+=-℃ 45.92 2.83385.73q A W φ=⨯=⨯⨯=
14.已知:3H m =、0.2m σ=、2L m =、45λ=()
W m K ∙ 1150w t =℃、2285w t =℃
求:t R λ、R λ、q 、φ
解:40.2
7.407104532
t K R W A HL λσσλλ-====⨯⨯⨯
30.2 4.4441045
t R λσλ-===⨯2m K W ∙
323
285150
1030.44.44410
t KW q m R λ--∆-=
=⨯=⨯ 3
428515010182.37.40710
t t KW R λφ--∆-=
=⨯=⨯ 15.已知:50i d mm =、 2.5l m =、85f t =℃、2
73()
W
h m K =∙、2
5110W
q m =
求:i w t 、φ
()i w f q h t h t t =∆=-
⇒i
w f q
t t h =+
5110
8515573
=+=℃
0.05 2.551102006.7i Aq d lq W
φππ===⨯⨯=16.已知:150w t =℃、220w t =℃、24
1.2 3.96()
W c m K =∙、1'
200w t =℃
求: 1.2q 、'1.2q 、 1.2q ∆
解:124
41.2 1.2()()100100w w t t q c ⎡⎤=-⎢⎥⎣⎦
44227350273203.96(
)()139.2100100W m ++⎡⎤
=⨯-=⎢⎥⎣⎦
12''441.2
1.2()()100100w w t t q
c ⎡⎤=-⎢⎥⎢⎥⎣⎦
442273200273203.96(
)()1690.3100100W m ++⎡⎤
=⨯-=⎢⎥⎣⎦
'2
1.2 1.2 1.21690.3139.21551.1W
q q q m ∆=-=-=
17.已知:2
24A m =、2
15000()
W
h m K =∙、2285()
W
h m K =∙、145t =℃
2500t =℃、'2
285()
W
k h m K ==∙、1mm σ=、398λ=()
W
m K ∙
求:k 、φ、∆
解:由于管壁相对直径而言较小,故可将此圆管壁近似为平壁 即:12
111
k h h σλ=
++=
3
1
83.5611101
500039085
-=⨯++2()W m k ∙ 383.5624(50045)10912.5kA t KW φ-=∆=⨯⨯-⨯=
若k ≈2h
'100k k
k
-∆=
⨯%8583.56 1.7283.56-==% 因为:
1211h h
,2
1
h σλ 即:水侧对流换热热阻及管壁导热热阻远小于燃气侧对流换热热阻,此时前两个热阻均可以忽略不记。
18.略
第一章导热理论基础
思考题与习题(24P )答案: 1. 略 2. 已知:
10.62()W m K λ=∙、20.65()W m K λ=∙、30.024()W m K λ=∙、
40.016()W m K λ=∙
求:'R λ、''R λ
解:2'
3124124224259210 1.1460.620.650.016m K R W λσσσλλλ-⨯⨯⨯⨯⎛⎫∙=++=++⨯= ⎪⎝⎭
'"
2
32232560.265/0.650.024R m k W λσσλλ⨯⎛⎫=+=+=⋅ ⎪
⎝⎭
由计算可知,双Low-e 膜双真空玻璃的导热热阻高于中空玻璃,也就是说双Low-e 膜双真空玻璃的保温性能要优于中空玻璃。
3. 4.略 5.
6.已知:50mm σ=、2
t a bx =+、200a =℃、2000b =-℃/m 2、45()
W
m K λ=∙
求:(1)0x q =、6x q = (2)v q
解:(1)000
20x x x dt
q bx dx λ
λ====-=-= 3322452(2000)5010910x x x dt
W q bx m dx σσσ
λ
λ-====-=-=-⨯⨯-⨯⨯=⨯
(2)由
2
20v
q d t dx λ
+=
23
32245(2000)218010v d t W q b m dx
λλ=-=-=-⨯-⨯=⨯
7.略
8.略
9.取如图所示球坐标,其为无内热源一维非稳态导热 故有:
22t a t r r r r τ∂∂∂⎛⎫= ⎪∂∂∂⎝⎭
00,t t τ==
0,
0t
r r
∂==∂ ,()f t
r R h t t r
λ∂=-=-∂ 10.解:建立如图坐标,在x=x 位置取dx 长度微元体,根据能量守恒有:
x dx x Q Q Q ε++= (1)
x dt Q dx λ=-+
()x dx d dt
Q t dx dx dx
λ+=-+
+∙ 4()b b Q EA E A T Udx εεεσ===
代入式(1),合并整理得:
24
20b f
U d t T dx εσλ-= 该问题数学描写为:
24
20b f U d t T dx εσλ-= 00,x t T == ,
0()x l
dt
x l dx ===假设的 4()b e x l
dt
f
T f dx λεσ=-=真实的
第二章稳态导热
思考题与习题(P 51-53)答案 1.略 2.略
3.解:(1)温度分布为 12
1w w w t t t t x δ
-=-
(设12w w t t >)
其与平壁的材料无关的根本原因在 coust λ=(即常物性假设),否则t 与平壁
的材料有关 (2)由 dt
q dx
λ=- 知,q 与平壁的材料即物性有关 4.略
5.解: 2111222
()0,(),w w
w w d dt r dr dr
r r t t t t r r t t =
==>==设
有: 1212
4()11w w Q t t r r πλ
=
-- 21
21
4F r r R r r λπλ-=
6.略
7.已知:4,3,0.25l m h m δ=== 115w t =℃, 25w t =-℃, 0.7/()W m k λ=⋅ 求:Q
解: ,l h δ ,可认为该墙为无限大平壁 15(5)
0.7(43)6720.25
t
Q F
W λδ∆--∴==⨯⨯⨯=
8.已知:2220,0.14,15w F m m t δ===-℃,3
1.28/(), 5.510W m k Q W λ=⋅=⨯ 求:1w t
解: 由 t
Q F
λδ
∆= 得一无限平壁的稳态导热
3
12 5.510150.141520 1.28
w w Q t t F δλ⨯=+=-+⨯=⨯℃ 9.已知:12240,20mm mm δδ==,120.7/(),0.58/()W m k W m k λλ=⋅=⋅
3210.06/(),0.2W m k q q λ=⋅=
求:3δ
解: 设两种情况下的内外面墙壁温度12w w t t 和保持不变,
且12w w t t >
由题意知:12
112
12
w w t t q δδλλ-=
+
12
23
12123
w
w t t q δδδλλλ-=
++
再由: 210.2q q =,有
12
12
3
12
1212
123
0.2
w w w w t t t t δδδδδλλλλλ--=+++
得:
123312240204(
)40.06()90.60.70.58
mm δδδλλλ=+=⨯⨯+= 10.已知:1450w t =℃,20.0940.000125,50w t t λ=+=℃,2
340/q W m ≤ 求:δ 解: 412
,0.094 1.25102
w w t t t
q m m λλδ
+∆==+⨯⨯
41212[0.094 1.2510]2w w w w t t t t t
m
q q
δλ+-∆==+⨯⋅ 4
4505045050
[0.094 1.2510]0.14742340
m +-=+⨯⨯
⨯= 即有 2
340/147.4q W m m m
δ≤≥
时有 11.已知:11120,0.8/()mm W m k δλ==⋅,2250,0.12/()mm W m k δλ==⋅
33250,0.6/()mm W m k δλ==⋅
求:'
3?δ=
2
21
3
13
2
1
2
tw 1
tw 2
q 1
1λ1
2λ
2
3λ
3
解: '21
21
'
3
1231123
13
,w w w w t t t t q q δδδδδλλλλλ--=
=
+++
由题意知:'q q = 即有:
21
21
'3
123
1123
13
w w w w
t t t t δδδδδλλλλλ--=
+++
'3
332
2
λδδδλ=+ 0.6
250
505000.12
mm =+⨯=
12.已知:1600w t =℃,2480w t =℃,3200w t =℃,460w t =℃ 求:
123
,,
R R R R R R λλλλλλ
解:由题意知其为多层平壁的稳态导热 故有: 1412233
4123w w w w w w w w t t t t t t t t q R R R R λλλλ----=
===
∴
112146004800.2260060
w w w w R t t R t t λλ--===-- 22314480200
0.5260060
w w w w R t t R t t λλ--===--
33414200600.2660060
w w w w R t t R t t λλ--===-- 13.略
14.已知:1)11012,40/(),3,250f mm W m k mm t δλδ==⋅==℃,60f t =℃ 2
2
0112,75/(),50/()h W m k h W m k λλ==⋅=⋅ 2)223,320/()mm W m k δλ==⋅ 3)2'
2
3030,,70/()h W m k δδλλ===⋅
2
2
tw 1
tw 4
tw 2
tw 3
R 1
R
2
R
3
R =R 1+R 2R
3
+t α
t f
2
2
求:123123,,,,,q q q k k k ∆∆∆ 解: 未变前的 122
03
0102
250605687.2/1113101754050
f f t t q W m h h δλ---=
=
=⨯++++ 1)2
13
11121129.96/()11
12101754050
k W m k h h δλ-=
=
=⋅⨯++++ 21129.96(25060)5692.4/q k t W m =∆=⨯-= 21105692.45687.2 5.2/q q q W m ∆=-=-= 2)223
2122
11
29.99/()11
131017532050
k W m k h h δλ-=
=
=⋅⨯++++ 22229.99(25060)5698.4/q k t W m =∆=⨯-= 22205698.45687.211.2/q q q W m ∆=-=-= 3) 2
2
33
0'101136.11/()11
131********
k W m k h h δλ-=
=
=⋅⨯++++ 23336.11(25060)6860.7/q k t W m =∆=⨯-= 23306860.75687.21173.5/q q q W m ∆=-=-= 321q q q ∴∆∆>∆ ,第三种方案的强化换热效果最好 15.已知:35,130A C B mm mm δδδ===,其余尺寸如下图所示,
1.53/(),0.742/()A C B W m k W m k λλλ==⋅=⋅
求:R λ
解:该空斗墙由对称性可取虚线部分,成为三个并联的部分
11113222,A B C A B C R R R R R
R R R R =++==++ 3321111311135101301020.1307()/1.53 1.53
C A B A B C R R m k W δδδλλλ--⨯⨯∴=++=⨯+==⋅
33
2322222335101301020.221()/1.530.742
C A B A B C R m k W δδδλλλ--⨯⨯=++=⨯+=⋅
221211
5.0410()/1111220.13070.221
R m k W R R λ-∴=
==⨯⋅⨯+⨯+
16.已知:121160,170,58/()d mm d mm W m k λ===⋅,2230,0.093/()mm W m k δλ==⋅
33140,0.17/(),300w mm W m k t δλ==⋅=℃,450w t =℃
求:1)123,,R R R λλλ; 2) l q : 3) 23,w w t t . 解:
tw 111
2
323tw
4
R 1R
1R 1R
2
R
3R 2
R 2
R
3R
3
1)4211111170ln
ln 1.66410()/2258160
d R m k W d λπλπ-=
==⨯⋅⨯ 2222221117060
ln
ln 0.517()/220.093170d R m k W d λδπλπ++=
==⋅⨯ 22333
2222111706080
ln
ln 0.279()/2220.1717060
d R m k W d λδδπλδπ++++=
==⋅+⨯+
132R R R λλλ∴< 2) 2330050314.1/0.5170.279
l i t t q W m R R R λλλ∆∆-=
===++∑
3)由 12
1
w w l t t q R λ-=
得 4211300314.1 1.66410299.95w w l t t q R λ-=-=-⨯⨯=℃ 同理:
34350314.10.279137.63w w l t t q R λ=+=+⨯=℃ 17.已知:1221211
,,22
m m d d δδλλ=== 求:
'l
l
q q 解:忽略管壁热阻
010
1210201
2221
1
ln ln 222d d R d d λδδδπλπλδ+++=++ '
010
1220101
2221
1
ln ln 222d d R d d λδδδπλπλδ+++=++ '',l l t t
q q R R λλ
∆∆=
= (管内外壁温13,w w t t 不变)
01012'
20101'010*******
22211
ln
ln 22222211ln ln 222l l d d q R d d d d q R d d λλ
δδδπλπλδδδδπλπλδ+++++∴==+++++
3
0101
001
01
01001
241ln
ln 22241ln ln 22d d d d d d d d δδδδδδ++++=++++
由题意知: 1001011
[(2)]2m d d d d δδ=++=+ 2112011
[(2)]32
m
m m d d d d δδ=++=+ 即:21010101232()m m d d d d d δδδ=⇒+=+⇒= (代入上式)
'
'15ln 3ln
23 1.27715
ln 3ln 23
l l q R q R λλ+∴==
=+ 即: '0.783l l q q =
'21.7%l l
l
q q q -∆==即热损失比原来减小21.7%。
18.已知:1,d mm =32.2210/,l R m -=⨯Ω0.15/()W m k λ=⋅
1max 65w t =℃,240w t =℃,0.5,mm δ=
求:max I
解: 2
1m a x 2
m a x 12ln 2w w l l t t q I R d d
δπλ-==
+
112
2
1max 2max
3
6540
123.7()2 2.2210120.5ln ln 220.151w w l t t I A R d d δ
πλ
π-⎛
⎫⎛⎫ ⎪ ⎪--∴=== ⎪ ⎪+⨯+⨯ ⎪ ⎪ ⎪⎝⎭⨯⎝⎭
19.已知:121185,100,40/(),180w d mm d mm W m k t λ===⋅=℃ 230.053/(),40w W m k t λ=⋅≤℃,52.3/l q W m = 求:2δ 解: 13
22212
1122
211ln ln 22w w l t t t
q d d R R d d λλδπλπλ-∆=
=
+++
2
l
tw 1
tw 2tw 3R
R λ1
λ2
2πλ1ln d2d1
2πλ2
ln d2+2δd2
整理得:
221111804011002(ln )20.053(ln )2252.324085
2100(1)(1)7222
l d
t q d d e e mm πλππλπδ∆--⨯-⨯=-=⨯-=
或:21R R λλ ,故有 13
222
22
21ln 2w w l t t t
q d R d λδπλ-∆=
=+
⇒ 2222(1)722
l
t q d
e
m m
πλδ∆=-= 20.已知:)4.7715.273(,/6.199,30,3,35.01211+-=====w t kg kJ r mm mm mm d δδ℃
325w t =℃,210.03/(),16.3/(),1W m k W m k h λλτ=⋅=⋅=
求:m
解: 12
31w w F F t t
Q R R λλ-=+
31
1211111112111111()()111144(2)(2)(22)2222
w w t t d d d d πλπλδδδδ-=
-+-++++
2(25273.1577.4)
111111()()16.30.350.3560.030.3560.416
π+-=⨯-+⨯-
102.7W =
或:
12F F R R λλ ,故有: 312232(25273.1577.4)0.03
102.711111()()40.3560.416w w t t Q W r r ππλ-+-⨯=
==--
102.7 3.6 1.85/199.6
Q m kg h r τ⨯=== 21.略 22.略
23. 解: f
f f t t l x t t x t t m dx
d -===-===-==-2211222,,0,0θθ
θθθθθ
t 1
t 2
tw 1
tw 2tw 3R
R
λF1λF24πλ1
(1r 1)-1
r 24πλ2(1r 2)-1
r 3
解微分方程可得其通解: 12mx mx c e c e θ-=+ 由此得温度分布(略)
24.已知:25,l mm =3,mm δ=20140/(),75/(),80W m k h W m k t λ=⋅=⋅=℃
30f t =℃,0x l q == 求:,l q θ 解:
0.00.4725
m l l l l =
=== 18.9m = 0
[()][0.472518.9]
(8030)()(0.4725)
ch m l x ch x ch ml ch θθ--==-⨯
44.91(0.472518.9)ch x =- 3044.91(0.472518.9)t ch x ∴=+-
002()()l Q hU h q th ml th ml L mL m θθ=
== 275
(8030)(0.4725)174.7/18.9
th W m ⨯=
⨯-= 25.已知:15,20,48.5/(),84l mm l mm W m k t δλ===⋅=℃,040t =℃ 2
20/()h W m k =⋅
求:t ∆ 解:
0.122ml =
====
00
()()
f l l f
t t ch ml ch ml t t θθ-=
⇒
=-
0()84(2)40
99.93()1(2)1
l f t ch ml t ch t ch ml ch --∴=
==--℃
(2) 3.7622ch =
99.9384
100%100%15.9%99.93
f l f
t t t t --∆=
⨯=
⨯=
26.已知:00.8,160,60mm l mm t δ===℃,16.3/()W m k λ=⋅,其他条件同25题
求:t ∆ 解:
160 6.27ml =
==
0()84(6.27)60
84.09()1(6.27)1
l f t ch ml t ch t ch ml ch --=
==--℃
(6.27)264.24ch =
84.0984
100%100%0.11%84.09
f l f
t t t t --∆=
⨯=
⨯=
27.已知:3,16mm l mm δ== 2(1)140/(),
80/()
W m k h W m k
λ=⋅=⋅ 2(2)40/(),125/()W m k h W m k λ=⋅=⋅ 求:f η 解:(1
)316100.312ml -====⨯= ()(0.312)
0.970.312
f th ml th ml η=
== (2
)316100.73ml -====⨯= ()(0.73)
0.8530.73
f th ml th ml η=
== 28.已知:1277,140,4,25,50/()d mm d mm mm P mm W m k δλ=====⋅ 2060/(),320h W m k t =⋅=℃,75f t =℃ 求:l q 解: 211
()31.52
l d d =
-= 33.52
c l l δ
=+
=
2172c c r r l =+=
334221()410(7238.5)10 1.3410c f r r m δ---=-=⨯⨯-⨯=⨯
()
11332
2
32
2
4226033.5100.82150 1.3410c h l f λ--⎛⎫
⨯⎛⎫
=⨯=
⎪ ⎪
⨯⨯⎝⎭
⎝⎭
2172 2.1533.5
c r r == 查图得: 0.78f η= 每片肋片的散热量为1Q 100()f f f Q Q hF t t ηη==- 22
2102()
()c f f r r h t t πη=-- 2
2
6
2(7238.5)100.7860(32075)266.7W π-=-⨯⨯⨯⨯-= 每米肋片管的散热量为:
12(1)l q nQ n Q =+- 1000
14125
n =+=片/米 41266.740 1.4811kW =⨯+⨯= 2Q 为两肋片间的表面的散热量 210()f Q d P t t π=-
3
3
77102510(32075) 1.48W π--=⨯⨯⨯⨯⨯-= 29.略
30.已知:2
1213 2.2,0.3,0.56/(),0w l l m m W m k t δλ⨯=⨯==⋅=℃,230w t =℃
求:l q
解: 1
113100.3A l L
L
S L δδ⨯⨯=
=
=
=
22
2 2.27.330.3
A l L L
S L δδ⨯⨯==== l 1
l 2
30.54S L = 121,5
l l δ>
123(224)l S S S t Q q L L
λ++∆== , 12w w t t t ∆=- (21027.3340.54)0.56(300)=⨯+⨯+⨯⨯⨯- 618.6/W m =
31.已知:1165,90w d mm t ==℃,21.5, 1.05/(),6w H m W m k t λ==⋅=℃ 220/()h W m k =⋅ 求:l q
解: ,3l r H r >>
∴ 22ln()
l
s H r
π= 22ln()l Q s t q t H l l r
λπλ
∆===∆
2 1.05
(906)154.2/2 1.5ln 0.165/2W m π⨯=
⨯-=⨯⎛⎫ ⎪⎝⎭
32.已知:21210.520.52,0.42,0.023/(),30w l l m H m W m k t λ⨯=⨯==⋅=℃ 214w t =-℃, 34Q W = 求:δ 解: 12
11212,,l l l H
S S l l δ
δ
⨯⨯=
=
=
3410.54,0.54S H S l == 1234(444)Q S S S S t λ=+++∆ 12134
40.520.5240.520.42
34
4440.540.4240.540.52
0.023(3014)
l l l H Q
S S t
δλ+⨯+⨯⨯=
=
---⨯⨯-⨯⨯∆⨯+
2
3.621036.2m mm -=⨯=
33.已知:5, 2.54,2,80mm m P MPa t δμ=∆==∆=℃,180/()W m k λ=⋅
tw 2
底H
求:c t ∆
解:由 2.54,2m P MPa μ∆==,查表得,420.8810()/c R m k W -=⨯⋅ c t
Q R δδλλ
∆=
++ 31t t t ∆=-
再由 c c
t
Q R ∆=,22c A B t t t ∆=-
得
4
3
40.8810
80495102
20.8810
180
c
c c R t t R δλ
---⨯∆=
∆=
⨯=⨯+⨯+⨯℃
第三章 非稳态导热
1.略
2.略
3.略
4.略
5.已知:3
2
10.15,420/(),8400/,58/()p d mm c J kg k kg m h W m k ρ==⋅==⋅ 22126/()h W m k =⋅ 求:0102,ττ
解:3
3012111484004200.1532210 1.52()3235842p p p d d c c c V s h F h d h ρπρρτπ-⎛⎫⎛⎫ ⎪ ⎪
⨯⨯⎝⎭⎝⎭====⨯=⨯⨯⎛⎫
⎪
⎝⎭
同理:302284004200.152
100.7()323126
p d c s h ρτ-⎛⎫
⎪
⨯⨯⎝⎭==⨯=⨯⨯ 6.略
7.已知:3
00.5,8930/,400/(),25p d mm kg m c J kg k t ρ===⋅=℃,120f t =℃
20
95/(),
1%,22/()h W m k W m k θ
λθ=⋅==⋅(康铜) 求:,t τ 解:由
001%f
f
t t t t θθ-==- λλ
Rc
t 1
t 2A
t 2B
t
3
t
⇒ 00.01()1200.01(25120)119.05
f f t t t t =+⨯
-=+⨯-=℃ 34950.51013 3.6100.10.123223
R V h
h
F Biv M λλ--⨯⨯====⨯<=⨯⨯⨯
故满足集总参数法的求解条件,有:
V
V
Bi Fo e θ
θ-= 3
20189304000.5103ln ln(110)14.43952
p c V s hF ρθτθ--⨯⨯⨯⨯⇒=-
=-⨯=⨯ 8.已知:2
3,11,mm F m δ==⨯2
39/(),48.5/()h W m k W m k λ=⋅=⋅,0300t =℃,
20f t =℃,6212.710/,a m s -=⨯50t =℃
求:τ
解: 3
333010
1220.98100.10.148.53
V h
Bi M δ
λ--⨯⨯===⨯<=⨯
∴ 满足集总参数法的求解条件,故有:
p
hF
c V
e τ
ρθθ-= 00
ln
ln p c V
V hF
haF ρθλθτθθ⇒=-
=- 3
6
3
48.511050202ln 3283912.710130020
s --⨯⨯⨯-=-=⨯⨯⨯- 9.略
10.已知:080t =℃,20,20f d mm t ==℃,12/,5min,34u m s t τ===℃ 3
8954/,383.1/(),386/()p kg m c J kg k W m k ρλ==⋅=⋅ 求:h
解:假设可使用集总参数法,故有:
p hF
c V
e τρθθ-
=
3
20120
8954383.110
342022ln ln 83.2/()560
8020
p c V h W m k F ρθτθ-⨯⨯⨯⨯-⇒=-
=-=⋅⨯-
由 3
3
83.220101
2 2.16100.10.1
2386
2
V R
h
h F Biv M λλ--⨯⨯====⨯<
=⨯
⨯ ∴ 满足集总参数法的计算,上述假设成立。
11.已知:2,,,,,,12min A B A B pA pB A B f A B B c c t t t h h δδρρτ=====→∞=
00
50%mA mB θθ
θθ== 求:A τ
解: 1
100
0,0.52
A
mA
mB A A A A
Bi Bi h θθλδθθ--===== 查表得:0.24A B Fo Fo == 即:
2
22
212248min A
A A
B B
A A
B B
B a a ττδττδ
δδ⎛⎫
=
⇒==⨯= ⎪⎝⎭
12.已知:300.50.50.5,30a b c m t ⨯⨯=⨯⨯=℃,800f t =℃,52/()W m k λ=⋅
220.063/,80/(),30min a m h h W m k τ==⋅=
求:m t
解: 152 2.61800.5
2
Bi h λδ-=
==⨯⨯
22
0.0633060
0.536000.25
a Fo τδ⨯⨯===⨯ 对于正六面体有:3
000f m
m m f t t t t θ
θθθ-⎛⎫== ⎪-⎝⎭平板
由 1
2.60.5B i F o -==, 查图有:00.9m θθ⎛⎫
=
⎪
⎝⎭平板
3
300800(80030)0.9239
m m f t t θθθ⎛⎫
∴=-=--⨯= ⎪
⎝⎭
平板
℃ 13.已知:72040,510/,4/(),25mm a m s W m k t δλ-==⨯=⋅=℃,1260f t =℃
240/(),
1
h
h W m k δ
=⋅=, t=1000℃
Bi=h δ/λ=0.4>0.1
∴ 不满足集总参数法的求解条件,故有: x/δ=1 查图3-6得θw/θm=0.83 θw/θo=(t-tf)/(to-tf)=0.21
θm/θo=(θw/θo)/( θw/θm)=0.21/0.83=0.25
查图3-5可得Fo=4.0
∴τ=Fo δ²/a=3.5h
40
.14=f t 已知:℃、20=w t ℃、s m u 8.0=∞、m l 45.0=、5105Re ⨯=c 、m x 1.01=、
m x 2.02=、m x 3.03=l x =4
求:
x α α
解:30)(2
1
=+=
w f m t t t ℃ 按30=m t ℃ 查表得:42.5Pr =、)
(618.0k m w ⋅=λ、s
m v 2
7
10
05.8-⨯=
由 v
x
u x ∞=
Re 得m x 1.01= 41094.9Re ⨯=x m x 2.02= 51099.1Re ⨯=x < ec R 均为层流 m x 3.03= 51098.2Re ⨯=x m x 45.04= 51047.4Re ⨯=x
∴ ==213
1Re Pr 332.0x x χ
λα m x 1.01= 3.1136
m x 2.02= 9.803 )
(2k m w
⋅
m x 3.03= 8.655 m x 45.04= 5.535
∴ x αα2= 图略
15. 已知:m l 3.0=、s
m u 9.0=∞、25=f t ℃
求:max δ、)(y u l
解:由25=f t ℃查表得 s
m v 2
7
10
055.9-⨯=
∴ c l v l u Re 1098.210
055.99.03.0Re 5
7<⨯=⨯⨯==
-∞ m l l
35
max 1055.23.01098.264.4Re 64.4-⨯=⨯⨯=
=
δ
∞⎥⎦⎤
⎢⎣⎡-=u y y y u l 3max max
)(21)(23)(δδ
=
333)10
55.21
(9.0211055.219.023y y --⨯⨯⨯-⨯⨯⨯ ∴ 371071.24.529)(y y y u l ⨯-= s m 图略
16. 略
17. 略
18. 已知:
s
m u 10=∞、80=f t ℃、30=w t ℃、m l 8.0=、5105Re ⨯=c 、m b 1= 求:c x 、α、Q 解:55)(2
1
=+=
w f m t t t ℃ 按55=m t ℃ 查表得:s
m v 2
5
10
846.1-⨯=、697
.0Pr =、
)(10865.22k m w ⋅⨯=-λ
由 m u v x v x u c c c c 923.01010864.1105Re Re 5
5=⨯⨯⨯==→=-∞∞
c x l < ∴全板长均为层流
31
2
1
Pr Re 664
.02l
l l
λ
αα==∴
)
(9.13697.010846.18.0108.010865.2664.02
31215
2k m w ⋅=⨯⨯⨯⨯⨯⨯=--)(
w t F Q 556)3080(8.019.13=-⨯⨯⨯=∆=α
19. 略 20. 略
21. 已知:
δ
y
u u =∞ 层流 求:x δ
解:由动量积分方程有:
)
()1()1()(2
02020σ
δ
ρδδρρρ
δδδ∞∞∞∞∞∞=⎥⎦
⎤
⎢⎣⎡-=-⋅=-=⎰⎰⎰u dx d dy y y u dx d dy u u u u u dx d dy u u u dx d 式左式右=
δ
∞
==U u
dy
dU u
y 0
即: δ
σδ
ρ∞∞=U u U dx d )(2
即 c o n s t U =∞ 即有:
dx U v d U v dx d ∞
∞=⇒=6δδδσδ 两边积分有:
∞
∞=⇒=⎰
⎰u v dx U v d x x
621
6
20
δδδδ
2
1
Re 12x x
=
∴
δ
,v
x
U x ∞=
Re 22. 略
23. 已知:w t cy by a t ,2+-= f t 求:x α
解:由边界层特点知 0=y w t t = 00
2
2
==y x
t d d
δ=y f t t = 得:0=c 、 w t a = 、δ
)
(f w t t b -=
δ
λλ
λ
λ
α=
⋅-=
+---
=⋅
--===b t t cy b t t d d t t f
w y f
w y y
t f
w x 00
)2( 24. 略
25. 略 dr r
r r ⎰=
01αα,t F Q ∆=α
26. 略 dx l l
x ⎰=0
1αα,t F Q ∆=α
27. 略 0
=--
=y f w dy
dt
t t λ
α
28. 已知:2
3m F =、m l 11=、1401=w t ℃、301=f t ℃、s
m
u 501=∞、
w Q 150001=、m l 52=、202=w t ℃、702=f t ℃、s m u 82=∞
求:2α 解:85)30140(21
)(21111=+=+=
w f m t t t ℃ 45)7020(2
1
)(21222
=+=+=w f m t t t ℃ 按 1m t 2m t 查表得:
691.0Pr 1=、)
(1009.321k m w
⋅⨯=-λ、s
m v 2
5
110
16.2-⨯=
6985.0Pr 2=、)
(108.222k m w
⋅⨯=-λ、s
m
v 2
5
210746.1-⨯=
有:6
5
11111031.21016.2150Re ⨯=⨯⨯==
-∞v l u 65
22221031.210
746.15
08.8Re ⨯=⨯⨯==
-∞v l u 知:1Re =2Re ,1Pr ≈2Pr ,且几何相似 得:21Nu Nu =
12
1
1212
2
2αλλλα⋅⋅=
=
l l Nu l 而:1
11
1t ∆=
F Q α
=
∴2α⋅⋅2112l l λλ1
11
t ∆F Q )(24.830140315000
511009.3108.3222k m w ⋅=-⨯
⨯⨯⨯⨯=-)( 29. 略
30. 已知:mm d a 16=,mm d b 30=,b a G G 2=,b a t t =
求:(1)是否相似(2)如何相似
解:(1)b a t t = ,且为同类流体 b a v v =∴,b a p p = 再:2
4
d G
F G
u m π
ρρ⋅
==
有:222
224
4a
b b b b
a
a a
mb
ma d d d G d G u u =⋅
⋅=
π
ρπ
ρ
得:=b a Re Re ⋅=⋅⋅=2b mb a ma b
b mb a a
ma d u d u v d u v d u 22a b d d b
a
d d ⋅12≠=a b d d
即:b a Re Re ≠ 知:两者流态不相似
(2)若要相似,需b a Re Re = 即:
11Re Re =→=b
mb a ma b a d u d
u 而:2
2a b b a mb ma d G d G u u =,带入上式有:122=⋅⋅b a
a b b a d d d d G G 15
83016===∴
b a b a d d G G 即:要使两者相似,两者的质量流量之比应为15
8
31. 略 32. 略 33. 略 34.
略
第六章 单相流体对流换热及准则关联式
1、(1)、不同。
夏季——热面朝下,冬季——冷面朝下(相当于热面朝上)。
(2)、不同。
流动情况及物性不同。
(3)、有影响,高度为其定型尺寸。
(4)、在相同流速下,d 大→Re 大→α大 (Re ud
υ
=)
在相同流量下,d 大→Re 小→α小 (2
4
V
u d
π
=
)
(5)、略 2、略
3、不可以,其不满足边界层类型换热问题所具备的4个特征。
4-15、略
16.已知:110,0.045/,51,2,200f w t C G kg s d mm l m t C =====
求:2,f t α
解:/10l d ,满足管长条件 设: 2110f t C =
则:'''
'
''
19090
133.8190ln ln 90m t t t C t t
∆-∆-∆=
==∆∆ 200133.866.2f w m t t t C ∴=-∆=-=
按f t 查表有:
62
2
19.6210/,Pr 0.695, 2.93710/()f f f m s W m K υλ--=⨯==⨯⋅
3
6
21.0075/(),
1.041/,20.4110/
f f f C p k J k
g K k g m N s m
ρμ-=⋅==
⨯⋅
4236
0.045
,Re 5.510511020.41104
4
4
m m f f
f
u d
G
G
d d μπ
π
π
υ
ρμ--=
=
=
=
=⨯⨯⨯⨯⨯
0.80.4
0.023Re Pr f f
f
d
λα∴=
⨯ 240.80.42
3
2.937100.023(5.510)(0.695)71/()5110
W m K --⨯=⨯⨯⨯⨯=⋅⨯ 21()()f f f w f Q GCp t t dl t t απ=-=- '
21()f f w f f
dl
t t t t GCp απ=+
-
t f
t'x
t
33
715110210(200133.8)43.220.045 1.007510
C π
-⨯⨯⨯=+-=⨯⨯ 相比较知:'22f f t t ≠,故原假设不合理,重新假设:70f t C = ,重复上述步骤,
直至'22f f t t ≈,符合计算精度要求,结果略。
(85)f t C =
17.已知:1212.6, 1.8/,80,28,34,/20m w f f d mm u m s t C t C t C l d =====> 求:α
解:'''8028
1.1328034
t t ∆-=
=<∆- 121
()312
f f f t t t C ∴=
+= 按31f t C =
查表得:
720.62/(),7.910/,Pr 5.31f f f W m K m s λυ-=⋅=⨯=
344
7
1.81
2.610Re 2.87101107.910
m f f
u d
υ--⨯⨯=
==⨯>⨯⨯ ∴管内流动处于旺盛紊流 (1)按迪图斯-贝尔特公式计算
0.8
0.4
0.023Re Pr ,,/10f f f w f Nu t t l d =>> 40.80.42
3
0.620.023(2.8710)(5.31)8130/()12.610
f
f Nu W m K d
λα-=
=⨯⨯⨯⨯
=⋅⨯ (2)按西得-塔特公式计算:
0.14
1
0.8
30.027Re Pr f f f f w Nu μμ⎛⎫= ⎪
⎝⎭
0.14
41
40.83
340.627.87100.027(2.8710)(5.31)12.610 3.5510f
f Nu d λα---⎛⎫⨯∴==⨯⨯⨯⨯⨯ ⎪⨯⨯⎝⎭
2
9545/()W m K =⋅
18.已知:5
2
12250,160,240,1/, 3.8410/w f f m t C t C t C u m s q W m =====⨯
求:,d l
解: 由q coust =知:121
()2002
f f f t t t C =
+=
按f t 查表得:
62420.15810/, 1.3610/,Pr 0.93f f f m s N s m υμ--=⨯=⨯⋅=
24266.310/(), 1.0910/f w W m K N s m λμ--=⨯⋅=⨯⋅
假设管内流动为紊流,Re m f f
u d
υ=
而 ()w f q t t α=- → ()w f q
t t α=
-
另:0.14
1
0.8
30.027Re Pr f f f f w Nu μμ⎛⎫= ⎪
⎝⎭ → 0.14
1
0.83
0.027Re Pr f
f f f w d λμαμ⎛⎫= ⎪⎝⎭
得:5
0.80.1413
0.027Pr ()f f m f w f f w u d t t q μλυμ⎡⎤⎛⎫⎛⎫⎢⎥=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦
()5
0.140.8413
645
1 1.36100.6630.0270.93(250200)0.15810 1.0910 3.8410---⎡⎤⎛⎫⨯⎛⎫=⨯⨯⨯-⎢⎥ ⎪ ⎪⨯⨯⨯⎝⎭⎢⎥⎝⎭⎣⎦
0.114m =
而:54
6
0.1141Re 7.210100.15810
m i
f f
u d υ-⨯=
=
=⨯>⨯ 原假设成立 再由: 21()f f f Q dlq GCp t t π==- 24
f m G d u π
ρ=
得: 3215
()
0.114863 4.50510(240160)23.144 3.8410
i f f f f d Cp t t l m q
ρ-⨯⨯⨯⨯-=
==⨯⨯ 且有:/23.1/0.11410l d =>,满足f Nu 计算关联式的要求。
19.已知:112,180,4,20, 1.7,90f m w d mm D mm n t C u m t C ======
求:2f t 解:设2
40f t C = 有:'''9020
29040
t t ∆-=
<∆-,即121()302f f f t t t C =+= 按30f t C =
查表有:
3995.7/, 4.174/(),0.618/()f f f kg m Cp kJ kg K W m K ρλ==⋅=⋅
620.80510/,Pr 5.42f f m s υ-=⨯=
得:344
6
1210 1.7Re 2.53101100.80510
m f f
u d
υ--⨯⨯=
==⨯>⨯⨯ w f t t >,取:0.80.40.023Re Pr f f
f
R Nu ε= 3
110.3R d R ε⎛⎫
=+ ⎪⎝⎭
有:3
40.80.4
0.628120.023(2.5310)(5.42)110.30.01290f
f Nu d λα⎛⎫
⎛⎫==⨯⨯⨯⨯⨯+⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭
2
7774
/()
W m K =⋅ 再由:'
21()()w f f f f Q dl t t GCp t t πα=-=- 得: '
21()f f w f f
dl t t t t GCp πα
=+
-
112333
4()()
4
44180777410(9030)2070995.7 4.17410 1.71210
f w f f w f
f f m f m f
d n D n D t t t t t t Cp u d u d Cp C ππαπα
πρρπ--⋅⋅⋅=+
-=+-⋅⨯⨯⨯⨯-=+=⨯⨯⨯⨯⨯
'22f f t t ≠,与假设不符,重新假设2f t 的值,重复上述的步骤,直至计算得满足要求的
值。
结果略!(65)f t C =
20.略
21.已知:10.16, 2.5,5,911.1,47,0.5/f m d m l m U V I A t C u m s ======
,0w q = 求:,w f t t t α∆=-
解:5911.14555.5Q IU W ==⨯=
21()f f f Q F t GCp t t α=∆=-
取3
3
4.1810/(),980/f f Cp J kg K kg m ρ=⨯⋅=
21124
f f f f
f m f Q Q
t t t GCp d u Cp πρ=+
=+
23
4555.5
4747.110.169800.5 4.18104
C π
=+
=⨯⨯⨯⨯⨯
可按147f f t t C == 查取物性:
620.644/(),0.58710/,Pr 3.77f f f W m K m s λυ-=⋅=⨯=
有:546
0.50.16
Re 1.36101100.58710
m f f
u d
υ-⨯=
=
=⨯>⨯⨯ 且:/10,w f l d t t >> 取:0.8
0.4
0.023Re Pr f f f Nu =
50.80.420.644
0.023(1.3610)(3.77)2013/()0.16
f
f Nu W m K d
λα=
=⨯⨯⨯⨯
=⋅ 4555.5 1.80.16 2.52013Q Q t C F dl απαπ
∆=
===⨯⨯ 22.已知:12.5/,40,50,85,0.0002,10f w G kg s t C d mm t C l m ====∆==
求:2,f t Q
解:设2121
70,()552
f f f f t C t t t C ==
+=
按55f t C = 查表得: 2
6
21.005/(), 2.8710/(),18.4610
/,
f f f C p k J k
g K W m K m s λυ--=⋅=
⨯⋅=
⨯
3Pr 0.697, 1.077/f f kg m ρ==
2
21,2lg 1.744
m f G
u f d πρ-⎡⎤⎛⎫
==⨯+ ⎪⎢⎥∆⎝⎭⎣⎦⋅
由:23
Pr
8f St ⋅=
得()f f m
St Cp u α
ρ=
()32
42
2
2233 2.5
1.077 1.00510 1.0770.05
118Pr 1.742lg 80.697 1.742lg 0.0002f f m
Cp u πρα⨯⨯⨯⨯⨯=
=
⎡⎤⎡⎤
⎛⎫⎛⎫+⨯⨯+ ⎪ ⎪⎢⎥
⎢⎥
∆⎝⎭⎝⎭⎣
⎦⎣
⎦
2
2437/()W m K =⋅
再由: '21()()f f f w f Q GCp t t F t t α=-=- 得: '
21()f f w f f
F
t t t t GCp α=+- F d l
π= 3
2437100.0540(8555)852.5 1.00510
C π
-⨯⨯=+
-=⨯⨯ '22f f t t ≠,与假设不符,重新假设2f t 的值,重复上述的步骤,直至计算得满足要求
的值。
结果略!5(75, 3.6710367)f t C Q W kW ==⨯=
23.略
24.已知: 1.3/,19, 5.5,42,80,55m w f u m s d mm l m P mmHg t C t C ===∆===
求:α
解:按55f t C =
查表得:
32985.6/, 4.177/(),65.310/()f f f kg m Cp kJ kg K W m K ρλ-==⋅=⨯⋅ 620.51710/,Pr 3.265f f m s υ-=⨯=
知:22242133.32
2.323101 5.51985.6 1.320.0192
f m P f l u d ρ-∆⨯=
==⨯⋅⨯⨯⨯
由:23
Pr 8f f
f St ⋅=
()f f m
St Cp u α
ρ=得: 2
3Pr 8
f f m f f Cp u αρ-=⋅⋅
32
223
985.6 4.17710 1.3 2.323107061/()8 3.265
W m K -⨯⨯⨯⨯⨯=
=⋅⨯
若为光滑量,则有:44
6
1.30.019Re 4.7810100.51710
m f f
u d
υ-⨯=
=
=⨯>⨯ 知:0.8
0.4
0.023Re Pr f f f Nu = '
0.8
0.4
40.80.4
0.653
0.023R e
P r
0.023(4.7810)(3.265)
0.019
f
f f
d
λα=
⨯=⨯⨯⨯⨯ 2
7030
/()
W m K =⋅ 相比较有:'
αα≈
25.已知: 1.27/,38.5,57.9,22, 2.5m f w u m s t C t C d mm l m ===== 求:α
解:按38.5f t C = 查表得:
620.0269/(),16.7410/,Pr 0.7113f f f W m K m s λυ-=⋅=⨯=
知:33
6
1.272210Re 1.671016.7410
m f f
u d
υ--⨯⨯=
==⨯⨯,层流 而:/60l d >,则: 0.45230.8
0.40.0214(R e
100)P r 1f f f f w T d Nu l T ⎡⎤⎛⎫⎛⎫⎢⎥=-+ ⎪ ⎪⎝⎭⎢⎥⎝⎭
⎣⎦
得:0.45
230.80.4
0.0214(Re 100)Pr 1f
f f f w T d d l T λα⎡⎤⎛⎫⎛⎫⎢⎥=-+ ⎪ ⎪⎝⎭⎢⎥⎝⎭
⎣⎦
()()20.4530.80.4
30.02690.022311.50.0214 1.67101000.711310.02225330.9⎡⎤⎛⎫⎛⎫⎡⎤⎢⎥=⨯⨯⨯-⨯+ ⎪ ⎪⎢⎥⎣⎦⎝⎭⎝⎭⎢⎥⎣⎦
26.24/()W m K =⋅
26.已知: 3.5/,58.1,90,25m f w u m s t C t C ===
其他同题
求:α
解:按58.1f t C =
查表得:
620.02836/(),18.7210/,Pr 0.7092f f f W m K m s λυ-=⋅=⨯=
知:36
3.50.022
Re 4.111018.7210
m f f
u d
υ-⨯=
=
=⨯⨯,过渡流 0.45230.80.42
0.0214(Re 100)Pr 115.78/()f f f w T d W m K l T α⎡⎤⎛⎫⎛⎫⎢⎥=-+=⋅ ⎪ ⎪⎝⎭⎢⎥⎝⎭
⎣⎦
27.已知:1212,16,400, 2.4/,73.1,96m f w d mm d mm l mm u m s t C t C ======
求:α
解:按73.1f t C =
查表得:
620.67/(),0.399510/,Pr 2.445f f f W m K m s λυ-=⋅=⨯=
而:()
2
221212144
44()
e d d F
d d d mm U d d π
π-=
=⨯=-=+ 3446410 2.4
Re 2.410100.399510
m e
f f u d υ--⨯⨯=
==⨯>⨯ 故可有:0.80.4
0.023Re Pr f
f f e
d λα=
⨯
40.80.420.67
0.023(2.410)(2.445)8897.2/()0.004
W m K =⨯
⨯⨯⨯=⋅ 28.已知:1250,0.0125/,6,73.1,62f f d mm G kg s l m t C t C =====
求:,,w t Q α 解:按121
()42.752
f f f t t t C =
+= 查表得: 620.0275/(),17.2410/,Pr 0.711, 1.009/()
f f f f W m K m s Cp kJ k
g K λυ-=⋅=⨯==⋅
31.175/f kg m ρ=
有:2
Re ,4
m f m f
f u d
G
u d π
υρ=
=
⋅
得:2
444
Re 1.651010f f f
G
d
d
π
ρυ⋅=
=⨯>
故有:0.80.42
0.023
Re Pr 26.11/()f
f f
W m K d
λα==⋅ 再由:21()()f f f w f Q GCp t t dl t t απ=-=⋅⋅-得: 21()
62.5f f f w f GCp t t t t C dl
απ-=+
=⋅
再按:''''
''
53.66ln f w m w t t t t t t C t t
∆-∆=-∆=-=∆∆
查表得: 620.02805/(),18.2910/,Pr 0.7097
f f f W m K m s λυ-=⋅=⨯=。