单相半波可控整流电路阻感性负载.ppt

合集下载

第3讲 整流(单相半波可控整流电路)

第3讲 整流(单相半波可控整流电路)

w t1
wt wt
Id
wt
Id p-a p+a
施加反压使其关断,L储存的能量保
证了电流id在L-R-VDR回路中流通, 此过程通常称为续流。 √若L足够大,id连续,且id波形接 近一条水平线 。
i VD
f) g)
O
R
wt
O u VT O
wt
wt
图3-4 单相半波带阻感负载有 续流二极管的电路及波形
◆改变触发时刻,ud和id波形随之改变,直流输出电压ud为极性不变但 瞬时值变化的脉动直流,其波形只在u2正半周内出现,故称“半波”整 流。 ◆电路中采用了可控器件晶闸管,且交流输入为单相,故该电路称为单 相半波可控整流电路。整流电压ud波形在一个电源周期中只脉动 1次, 故该电路为单脉波整流电路。 ◆基本数量关系 ☞a:从晶闸管开始承受正向阳极电压起到施加触发脉冲止的电角度 称为触发延迟角,也称触发角或控制角。 ☞q:晶闸管在一个电源周期中处于通态的电角度称为导通角。
T a) u1 u2
VT u VT id ud R
u2 b)
0
ug
wt
1
p
2p
wt
c)
0 ud
wt
d)
0 u VT
a
q
wt
e) 0
wt
图3-1 单相半波可控整流电路及波形
u2 b) 0 ug c) 0 ud d)
wt
1
p
2p
wt
wt
0
u VT
a
q
wt
e) 0
wt
图3-1 单相半波可控整流电路及波形
wt
图3-2 带阻感负载的单相半 波可控整流电路及其波形

第二章 单相可控整流电路

第二章  单相可控整流电路

第三节 单相桥式半控整流电路
一、电阻性负载
◆计算公式与全控桥带电阻性负载时一样。
◆不同点:
(1)晶闸管所承受的最大正、反向
电压均为
2U

2
(2)流过整流二极管的电流平均值
和有效值与流过晶闸管的电流平均值和
有效值是一样的。即:
I dD

I dT
0.45U 2 R
1 cos
2
(2-30)
ID
IT
Id
Ud Rd
0.45 U 2 1 cos
R2
(2-2)
☞负载上得到的直流输出电压有效值U和电流有效值I分别为:
U
1
2
2
2U 2 sin(t) d (t) U 2
sin 2 2 4
(2-3)
I U U 2 sin 2
(2-13)
第一节 单相半波可控整流电路
二、电感性负载
2. 加续流二极管VDR
☞晶闸管承受的最大正反向电压UTM仍为 2U 2 ;而续流二 极管承受的最大反向电压UDM也为 2U 2 。晶闸管的最大移 相范围仍是0-180°。
◆单相半波可控整流电路的特点是简单,但输出脉动大;转换 效率低;变压器二次侧电流中含直流分量,造成变压器铁芯直 流磁化。为使变压器铁芯不饱和,需增大铁芯截面积,增大了 设备的容量。——桥式电路。
☞为解决失控现象→并接续流二极管VDR 。加续流二极管 VDR后,续流过程由VDR完成,避免了失控的现象。
图2-12 单相桥式半控整流电路带电感性负载时的失控现象
图2-13 单相桥式半控整流电路带电感性负载 加续流二极管
2U 2
(2-27)

第四讲 单相半波可控整流电路

第四讲 单相半波可控整流电路

3)电路参数计算 ①输出电压平均值Ud与输出电流平均值Id。
U d
1 2π
π
2U2 sin td(t)
2U 2 2π
[ cos t]π
0.45U
2
1
cos 2
2U2 (1 cos ) 2π
Id
Ud Rd
0.45 U2 Rd
1 cos 2
(2)接续流二极管时
②流过晶闸管电流的平均值IdT和有效值IT
单相半波可控整流带电阻性负载电路参数的计算
1)输出电压平均值与平均电流的计算:
Ud
1 2π
π
2U2 sin td(t)
2U 2 2π
[ cos t]π
2U 2 2π
(1
cos )
0.45U 2
1
cos 2
Id
Ud Rd
0.45U 2 1 cos
Rd 2
2)负载上电压有效值U与电流有效值的计算:
Rd 2π

晶闸管可能承受的正反向峰值电压为:U TM 2U 2
4)功率因数 cos P UI π sin 2
S U2I


例1-3: 单相半波可控整流电路,阻性负载,电源电压U2为220V,要
求的直流输出电压为50V,直流输出平均电流为20A,试计算:晶闸 管的控制角。输出电流有效值。电路功率因数。晶闸管的额定电压和 额定电流,并选择晶闸管的型号。
定性分析: 1) 60o 时的波形分析 (a)输出电压波形
(b)晶闸管两端电压波形
60o 时输出电压和晶闸管两端电压的实测波形
(a)输出电压波形 (b)晶闸管两端电压波形
2) 120o时的波形分析 (a)输出电压波形 (b)晶闸管两端电压波形

单相桥式半控整流电路建模与仿真(阻感性负载)

单相桥式半控整流电路建模与仿真(阻感性负载)
寸标注规范,使用计算机绘图。
(4)曲线图表要求:所有曲线、图表、线路图、流程图、程序框图、示意
图等不准徒手画,必须按国家规定标准或工程要求绘制(采用计算机辅助绘图)。
(5)课程设计说明书(报告)中图表、公式要求如下:
(a)图:图的名称采用中文,中文字体为五号宋体,图名在图片下面。引
用图应在图题右上角标出文献来源。图号以章为单位顺序编号。格式为:图1-1,
(1)计算正确,论述清楚,文字简练通顺,插图简明,书写整洁。文中图、
表按制图要求绘制。
(2)段落及层次要求:每节标题以四号黑体左起打印(段前段后各0.5行),
节下为小节,以小四号黑体左起打印(段前段后各0.5行)。换行后以小四号宋
体打印正文。节、小节分别以1、1.1、1.1.1依次标出,空一字符后接各部分的标题。
签字:
年月日
课程设计说明书撰写格式
为了保证课程设计质量,特制定本规范。
设计说明书要求按统一格式打印,其版面要求:A4纸,页边距:上2cm,下
2cm,左2.5cm、右2cm;字体:正文宋体、小四号;行距:固定值20;页码:
底部居中。
一份完整的设计说明书应包括以下几个方面:
一、封面(包括题目、院系、学生班级、设计组号、学生组员姓名、指导
1.设计目的:
1)加深电力电子技术内容的理解.
2)锻炼学生的分析问题,解决问题,查阅资料,以及综合应用知识的能力。
3)学会使用MATLAB\SIMULINK软件来进行电力电子的建模与仿真.
2.设计内容和要求(包括原始数据、技术参数、条件、设计要求等):
已知:单相半波可控整流电路中,晶闸管参数如下
负载参数: (阻感性负载).当
教师姓名等)(见附1)。

单相桥式全控整流电路(阻感性负载)

单相桥式全控整流电路(阻感性负载)

1.单相桥式全控整流电路(阻-感性负载)电路图如图1所示图1.单相桥式全控整流电路(阻-感性负载)1.2单相桥式全控整流电路工作原理(阻-感性负载)1) 在u2正半波的(0~α )区间:晶闸管VT1、VT4承受正压,但无触发脉冲,处于关断状态。

假设电路已工 作在稳定状态,则在O 〜α区间由于电感释放能量,晶闸管VT2、VT3维持导通。

2) 在u2正半波的ω t=α时刻及以后:在ω t=α处触发晶闸管 VT1、VT4使其导通,电流沿 a →VT1 → L → R →VT4 →b →Tr 的二次绕组→ a 流通,此时负载上有输出电压(ud=u2)和电流。

电源电 压反向加到晶闸管VT2、VT3上,使其承受反压而处于关断状态。

3) 在u2负半波的(π ~ π + α)区间:当ω t=π时,电源电压自然过零,感应电势使晶闸管 VT1、VT4继续导通。

1.1单相桥式全控整流电路电路结构(阻 -感性负载)单相桥式全控整流电路用四个晶闸管, 接成共阳极,每一只晶闸管是一个桥臂。

两只晶闸管接成共阴极,两只晶闸管 单相桥式全控整流电路(阻-感性负载)I!*-■\U/-1-kγ叫OO:Ow...0f ∣2√*-(b}≡r∣√在电压负半波,晶闸管VT2、VT3承受正压,因无触发脉冲,VT2、VT3处于关 断状态。

4)在u2负半波的ω t=π +α时刻及以后:在ω t=π + α处触发晶闸管 VT2、VT3使其导通,电流沿 b →VT3→L →R → VT2→a →Tr 的二次绕组→ b 流通,电源电压沿正半周期的方向施加到负载上, 负载上有输出电压(Ud=-U2)和电流。

此时电源电压反向加到 VT1、VT4上,使其承受反压而变为关断状态。

晶闸管 VT2、VT3 一直要导通到下一周期ω t=2 π +α处再次触发晶闸管VT1、VT4为止。

1.3单相桥式全控整流电路仿真模型(阻-感性负载)单相桥式全控整流电路(阻-感性负载)仿真电路图如图2所示:图2单相双半波可控整流电路仿真模型(阻-感性负载)興朋rgui—B∣÷ FtJιIU lPUIHTfrIflηi pr1 ⅛B -∣S ,T⅛∏Ftor2电源参数,频率50hz,电压100v ,如图3⅞⅛ BIQCk Parameter5: AC VoItage SOUrCe AC Voltage SOUrCe (mask) CIink)Ideal S l innSOidaI AC VOlt age SIDUrCe-图3.单相桥式全控整流电路电源参数设置VT1,VT4脉冲参数,振幅3V ,周期0.02,占空比10%,时相延迟α /360*0.02, 如图4图4.单相桥式全控整流电路脉冲参数设置ApplyCancelHe :IPVT2,VT3脉冲参数,振幅3V,周期0.02,占空比10%,时相延迟(α+180)/360*0.02,如图5⅝∣ Source BloCk Parameters: PUISe Generator2图5.单相桥式全控整流电路脉冲参数设置1.4单相桥式全控整流电路仿真参数设置(阻-感性负载)设置触发脉冲α分别为30°、60°、90°、120°。

第2章单相可控整流电路

第2章单相可控整流电路

带续流二极管的工作情况
a)
u1
u2
b) O ud
c) O id
d) O
iV T
e) O
iV D R f)
O uV T
g) O
T
VT
u2
uV T ud
t1
Id -
Id +
id
iV D R
L
VD R R
t t t t t
工作过程和特点:
(1)在U2的正半周,VDR 承受反向电压,不导通,不 影响电路的正常工作;
实际上很少应用此种电路; 分析该电路的主要目的在于利用其简单易
学的特点,建立起整流电路的基本概念。
二、单相桥式全控整流电路
带电阻负载的工作情况
晶闸管VT1和VT4组成一对桥臂,VT2和VT3组成另一对桥臂。 在实际的电路中,一般都采用这种标注方法,即上面为1、3, 下面为2、4。
VT1和VT3组成共阴极组,加触发脉冲后,阳极电位高者导通。 VT2和VT4组成共阳极组,加触发脉冲后,阴极电位低者导通。 触发脉冲每隔180°发一次,分别触发VT1、VT4、VT2、VT3。
T
i2
a
u1
u2
T
b
V
1
T
V
3
id
L ud
R
4
2
V
V
u2
a)
O
t
ud
O id
i
V
T
1
O
,4
iV
T
2
O
,3
O i2
O u V T1 ,4
O
Id Id
Id Id
t Id
t t t t

单相桥式全控整流电路(阻感性负载)

单相桥式全控整流电路(阻感性负载)

1、单相桥式全控整流电路(阻-感性负载)1、1单相桥式全控整流电路电路结构(阻-感性负载)单相桥式全控整流电路用四个晶闸管,两只晶闸管接成共阴极,两只晶闸管接成共阳极,每一只晶闸管就是一个桥臂。

单相桥式全控整流电路(阻-感性负载)电路图如图1所示图1、单相桥式全控整流电路(阻-感性负载)1、2单相桥式全控整流电路工作原理(阻-感性负载)1)在u2正半波得(0~α)区间:晶闸管VT1、VT4承受正压,但无触发脉冲,处于关断状态。

假设电路已工作在稳定状态,则在0~α区间由于电感释放能量,晶闸管VT2、VT3维持导通。

2)在u2正半波得ωt=α时刻及以后:在ωt=α处触发晶闸管VT1、VT4使其导通,电流沿a→VT1→L→R→VT4→b →Tr得二次绕组→a流通,此时负载上有输出电压(ud=u2)与电流。

电源电压反向加到晶闸管VT2、VT3上,使其承受反压而处于关断状态。

3)在u2负半波得(π~π+α)区间:当ωt=π时,电源电压自然过零,感应电势使晶闸管VT1、VT4继续导通。

在电压负半波,晶闸管VT2、VT3承受正压,因无触发脉冲,VT2、VT3处于关断状态。

4)在u2负半波得ωt=π+α时刻及以后:在ωt=π+α处触发晶闸管VT2、VT3使其导通,电流沿b→VT3→L→R→VT2→a→Tr得二次绕组→b流通,电源电压沿正半周期得方向施加到负载上,负载上有输出电压(ud=-u2)与电流。

此时电源电压反向加到VT1、VT4上,使其承受反压而变为关断状态。

晶闸管VT2、VT3一直要导通到下一周期ωt=2π+α处再次触发晶闸管VT1、VT4为止。

1、3单相桥式全控整流电路仿真模型(阻-感性负载)单相桥式全控整流电路(阻-感性负载)仿真电路图如图2所示:图2 单相双半波可控整流电路仿真模型(阻-感性负载)电源参数,频率50hz,电压100v,如图3图3、单相桥式全控整流电路电源参数设置VT1,VT4脉冲参数,振幅3V,周期0、02,占空比10%,时相延迟α/360*0、02,如图4图4、单相桥式全控整流电路脉冲参数设置VT2,VT3脉冲参数,振幅3V,周期0、02,占空比10%,时相延迟(α+180)/360*0、02,如图5图5、单相桥式全控整流电路脉冲参数设置1、4单相桥式全控整流电路仿真参数设置(阻-感性负载)设置触发脉冲α分别为30°、60°、90°、120°。

实验一 单相半波可控整流电路

实验一 单相半波可控整流电路
实验一 单相半波可控整流电路
主讲人:姚琛
一、实验目的
1、掌握晶闸管仿真模型模块各参数的含义。 2、理解晶闸管的特性。 3、单相半波可控整流电路阻性负载时,电路波形分析。 4、单相半波可控整流电路阻感性负载时,电路波形分
二、晶闸管测试电路结构模型图-阻性负载
阻性负载仿真波形----120°
120°/360°×0.02s=0.0067s
三、晶闸管测试电路结构模型图-阻感性负载
阻感性负载仿真波形----0°(L=0.02H)
阻感性负载仿真波形----90°(L=0.02H)
阻感性负载仿真波形----90°(L=0.05H)
四、晶闸管测试电路结构模型图-带续流二极管阻感性负载
阻性负载仿真波形----30°
30°/360°×0.02s=0.00167s
阻性负载仿真波形----45°
45°/360°×0.02s=0.0025s
阻性负载仿真波形----60°
60°/360°×0.02s=0.0033s
阻性负载仿真波形----90°
90°/360°×0.02s=0.005s
带续流二极管的阻感性负载仿真波形---90°(L=0.05H)
实验总结(作业)-单相半波可控整流电路
● 1、对带电阻性负载的电路模型,改变脉冲发生器模块的参数,观察控制角 为90º时的仿真波形。
● 2、对带阻感性负载的电路模型,改变脉冲发生器模块的参数,观察控制角 为0º时的仿真波形。
● 3、增大或减小负载的电感量,观察输出仿真波形的变化情况。

2.1.2 单相半波可控整流电路(阻感性负载)

2.1.2  单相半波可控整流电路(阻感性负载)

期间: (4)在ωt=ωt2~ ωt3期间: 负载电流从最大值开始下 ) 电感电压改变方向,电感释放能量, 降,电感电压改变方向,电感释放能量,企图维持 电流不变。 电流不变。 ( 5) 在 ωt=π时 , 交流电压 过零 , 由于感应电压的 ) 时 交流电压u 过零, 存在,晶闸管阳极、阴极间的电压u 仍大于零, 存在,晶闸管阳极、阴极间的电压 仍大于零,晶 闸管继续导通, 闸管继续导通,此时电感储存的磁能一部分释放变 成电阻的热能,另一部分磁能变成电能送回电网, 成电阻的热能,另一部分磁能变成电能送回电网, 电感的储能全部释放完后,晶闸管在u 反压作用下 电感的储能全部释放完后,晶闸管在 而截止。直到下一个周期的正半周, 而截止。 直到下一个周期的正半周, 即ωt=2π+α时, 时 晶闸管再次被触发导通,如此循环不已。 晶闸管再次被触发导通,如此循环不已。
3)晶闸管的电流平均值IdT )晶闸管的电流平均值
I dT π -α = I 2π d
4)晶闸管的电流有效值IT )晶闸管的电流有效值
1 π 2 π −α IT = I ∫α I d d (ωt ) = 2π 2π d
5)续流二极管的电流平均值IdD
I dD π +α = Id 2π
1 2π
π +α
6)续流二极管的电流有效值ID 续流二极管的电流有效值
ID =

0
π +α I d (ωt ) = Id 2π
2 d
7)晶闸管和续流二极管承受的最大正反向电压 晶闸管和续流二极管承受的最大正反向电压均为电 源电压的峰值。 源电压的峰值。
U TM = 2U 2
单相半波可控整流器的优点是电路简单, 单相半波可控整流器的优点是电路简单,调整方 容易实现。但整流电压脉动大, 便,容易实现。但整流电压脉动大,每周期脉动 一次。变压器二次侧流过单方向的电流, 一次。变压器二次侧流过单方向的电流,存在直 流磁化、利用率低的问题,为使变压器不饱和, 流磁化、利用率低的问题,为使变压器不饱和, 必须增大铁心截面,这样就导致设备容量增大。 必须增大铁心截面,这样就导致设备容量增大。

单相桥式全控整流电路阻感性负载

单相桥式全控整流电路阻感性负载

单相桥式全控整流电路(阻感性负载)————————————————————————————————作者:————————————————————————————————日期:1. 单相桥式全控整流电路(阻-感性负载)1.1单相桥式全控整流电路电路结构(阻-感性负载)单相桥式全控整流电路用四个晶闸管,两只晶闸管接成共阴极,两只晶闸管接成共阳极,每一只晶闸管是一个桥臂。

单相桥式全控整流电路(阻-感性负载)电路图如图1所示图1. 单相桥式全控整流电路(阻-感性负载)1.2单相桥式全控整流电路工作原理(阻-感性负载)1)在u2正半波的(0~α)区间:晶闸管VT1、VT4承受正压,但无触发脉冲,处于关断状态。

假设电路已工作在稳定状态,则在0~α区间由于电感释放能量,晶闸管VT2、VT3维持导通。

2)在u2正半波的ωt=α时刻及以后:在ωt=α处触发晶闸管VT1、VT4使其导通,电流沿a→VT1→L→R→VT4→b→Tr的二次绕组→a流通,此时负载上有输出电压(ud=u2)和电流。

电源电压反向加到晶闸管VT2、VT3上,使其承受反压而处于关断状态。

3)在u2负半波的(π~π+α)区间:当ωt=π时,电源电压自然过零,感应电势使晶闸管VT1、VT4继续导通。

在电压负半波,晶闸管VT2、VT3承受正压,因无触发脉冲,VT2、VT3处于关断状态。

4)在u2负半波的ωt=π+α时刻及以后:在ωt=π+α处触发晶闸管VT2、VT3使其导通,电流沿b→VT3→L→R→VT2→a→Tr的二次绕组→b流通,电源电压沿正半周期的方向施加到负载上,负载上有输出电压(ud=-u2)和电流。

此时电源电压反向加到VT1、VT4上,使其承受反压而变为关断状态。

晶闸管VT2、VT3一直要导通到下一周期ωt=2π+α处再次触发晶闸管VT1、VT4为止。

1.3单相桥式全控整流电路仿真模型(阻-感性负载)单相桥式全控整流电路(阻-感性负载)仿真电路图如图2所示:图2 单相双半波可控整流电路仿真模型(阻-感性负载)电源参数,频率50hz,电压100v,如图3图3.单相桥式全控整流电路电源参数设置VT1,VT4脉冲参数,振幅3V,周期0.02,占空比10%,时相延迟α/360*0.02,如图4图4. 单相桥式全控整流电路脉冲参数设置VT2,VT3脉冲参数,振幅3V,周期0.02,占空比10%,时相延迟(α+180)/360*0.02,如图5图5. 单相桥式全控整流电路脉冲参数设置1.4单相桥式全控整流电路仿真参数设置(阻-感性负载)设置触发脉冲α分别为30°、60°、90°、120°。

单相半波可控整流电路

单相半波可控整流电路

Um 2U2 2 220 311V
考虑(2~3)倍安全裕量,晶闸管的额定电压为
UTN (2 ~ 3)U m (2 ~ 3)311 622 ~ 933 V
选取晶闸管型号为 KP100-7F晶闸管。
3.1 单相半波可控整流电路
T
VT
id
二、电感性负载
a) u1
uVT u2
L ud
UTM 2U 2
3.1 单相半波可控整流电路
〖例3-1〗 如图所示单相半波可控整流器,电阻性负
载,电源电压U2为220V,要求的直流输出最高平
均电压为50 V,直流输出平均电流为20A 。 试计算: (1) 晶闸管的控制角; (2) 输出电流有效值; (3) 电路功率因数; (4) 晶闸管的额定电压和额定电流。
断状态,负载电流为零,负载上没有输出电压,直到电源
电压u2的下一周期,直流输出电压ud和负载电流id的波形相
位相同。
通过改变触发角α的大小,直流输出电压ud的波形发生变化, 负载上的输出电压平均值发生变化,显然α=180º时,Ud=0。 由于晶闸管只在电源电压正半波内导通,输出电压ud为极
性不变但瞬时值变化的脉动直流,故称“半波”整流。
3.1 单相半波可控整流电路
首先,引入两个重要的基本概念:
• 触发角α :从晶闸管开始承受正向阳极电压起到施加 发脉冲止的电角度,用α表示,也称触发角或控制角。 • 导通角θ :晶闸管在一个电源周期中处于通态的电角度 称为导通角,用θ表示 。
在单相半波可控整流电阻性负载电路中,
移相角α的控制范围为:0~π, 对应的导通角θ的可变范围是π~0, 两者关系为 α+θ=π。
图3-1 单相半波可控整流电路 (电阻性负载)及波形

单相半波可控整流电路(阻感性负载加续流二极管)

单相半波可控整流电路(阻感性负载加续流二极管)

03 续流二极管
续流二极管的作用
防止反向电流
在晶闸管关断期间,如果没有续流二极管,阻感性负载中的电流会反向流动, 可能导致设备损坏。续流二分反向电压,从而降低加在晶闸管上的反向电压,保护 晶闸管不受过电压的损坏。
续流二极管的选择与使用
测试设备
万用表、示波器、电源等。
测试结果分析
观察整流电路的输出电压和电流波形,分析其性能指标,并与理论 值进行比较。
THANKS FOR WATCHING
感谢您的观看
耐压要求
选择续流二极管时,应考虑其反向击 穿电压是否满足电路需求。
电流容量
根据阻感性负载的电流大小选择合适 的电流容量的续流二极管,以确保其 能够承受较大的电流。
开关频率
在高频开关状态下使用的二极管应具 有良好的开关性能和较小的反向恢复 时间。
安装方式
续流二极管应安装在散热良好的地方, 并确保其连接牢固可靠。
详细描述
在整流器导通期间,输入电压施加到阻感负载上,产生正向的电压波形。当整流 器截止时,续流二极管导通,将负载电流继续传递,此时电压波形为零。
电流波形分析
总结词
在单相半波可控整流电路中,电流波形在整流器导通期间呈 现矩形波形状,而在整流器截止期间呈现零电流。
详细描述
在整流器导通期间,电流从输入电源流向阻感负载,形成矩 形波形状。当整流器截止时,续流二极管导通,负载电流通 过二极管继续流动,此时电流波形为零。
乎没有无功损耗。
感性负载
02
主要特点是电流滞后于电压,功率因素较低,会产生较大的无
功损耗。
阻感性负载
03
同时具有电阻性和感性负载的特点,电流和电压之间有一定的
相位差,功率因素较低。

单相半波可控整流电路电阻性负载

单相半波可控整流电路电阻性负载

2p
wt
单相半波可控整流电路—电阻性负载
2.工作原理
u2
电源
波形 0 wt1 p
2p
wt
ug
门极
直到下个周期正半周时,控制极脉
脉冲 0a
wt
冲到来,晶闸管再次导通,周而复
ud
始。
输出
wt1 p
2p
电压
q
wt
uVT VT电压
波形 0 wt1 p
2p
wt
单相半波可控整流电路—电阻性负载
3.基本物理量
2.工作原理
u2
电源
波形 0 wt1 p
2p
wt
当 a 45o 时,晶闸管承受正向
ug 门极
电压,同步,晶闸管旳控制极有触
脉冲 0a
wt
u2
发信号,晶闸管导通,负载上得到
ud
u2 ud
输出电压 旳波形是与电源电压 相同
输出 电压
a 30o
பைடு நூலகம்
形状旳波形。
wt1 p
q
2p
wt
ud
uVT
VT电压
波形 0 wt1 p
d
O
wt
在 a 时刻触发晶闸管导通,负载
i VT
I
d
上有输出电压和电流。在此期间
O
续流二极管VD承受反向电压而关
i VD
R
p-a
p+a
wt
断。
O
wt
u VT
O
wt
二、单相半波可控整流电路—阻感性负载
u
2.工作原理
2
O
wt 1
wt
u
在电源电压负半波(π~2π区间), d

整流电路波形总结

整流电路波形总结

1、单相半波可控整流电路——阻性负载,触发角α2、单相半波可控整流电路——阻感负载,触发角α3、单相半波可控整流电路——阻感负载有续流二极管,触发角α4、单相桥式全控整流电路——纯阻性负载,触发角α5、单相桥式全控整流电路——带反电动势负载,触发角α6、单相桥式全控整流电路——阻感性负载,触发角α7、单相全波可控整流电路(单相双半波可控整流电路)——阻性负载,触发角α8、单相桥式半控整流电路——阻性负载,触发角α9、单相桥式半控整流电路——阻感负载,有续流二极管,触发角α10、单相桥式半控整流电路另一种接法ﻬ1、三相半波可控整流电路——纯阻性负载R 1)纯电阻负载,触发角为0度2)纯阻性负载,触发角30度3)纯阻性负载,触发角大于30度电流断续,以60度为例2、三相半波可控整流电路——阻感负载1)阻感负载,触发角60度(当触发角α≤30° 时,整流电压波形与纯阻性负载时相同,因为两种负载情况下,负载电流均连续)。

3、三相桥式全控整流电路1)纯电阻负载,触发角0度纯阻性负载,0度触发角时晶闸管工作情况2)纯阻性负载,触发角30度3)纯阻性负载,触发角60度4)纯阻性负载,触发角90度5)阻感负载,触发角0度6)阻感负载,触发角30度7)阻感负载,触发角90度4、考虑变压器漏感时的三相半波可控整流电路及波形各种整流电路换相压降和换相重叠角的计算5、电容滤波的不可控整流电路(单相桥式整流电路)6、感容滤波的二极管整流电路7、带平衡电抗器的双反星型可控整流电路触发角为0度时,两组整流电压电流波形平衡电抗器作用下输出电压的波形和电抗器上的电压波形平衡电抗器作用下,两个晶闸管同时导通的情况当触发角为30度、60度、90度时,双反星形电路的输出电压波形8、多重化整流电路(并联多重联结的12脉波整流电路)9、移相30度串联2重联结电路--移相30度串联2重联结电路电流波形三相桥式整流电路工作于有源逆变状态时的电压波形--。

单相半波可控整流

单相半波可控整流

答案
答案
1 8 0 8 9 9 1 1 . 5 9 r a d
α=89°
SU I 4 8 4 0 V A 2
PU I s i n 2 P F 0 . 4 9 9 SU I 2 4 2
UU ( 2 ~ 3 ) ( 2 ~ 3 ) 3 1 1 6 2 2 ~ 9 3 3 V , 选 取 8 0 0 V T n T m
2.2.2 单相桥式全控整流电路
1、阻性负载
(α 的移相范围是0°~180°)
动画
u U s in t2 U s in t 2 2 m 2
图2.2.6 单相全控桥式整流电路 带电阻性负载的电路与工作波形
工作原理分析:
当交流电压 u2进入正半周时 ,a端电位高于b端电位 ,两个晶闸管 T1T2同时承受正向电压 ,如果此时门极无触发信号ug ,则两个晶闸管仍处 于正相阻断状态,其等效电阻远远大于负载电阻 Rd,电源电压u2将全部加 在T 1 和T 2 上 。 在ω t=α 时刻 ,给T1和T2同时加触发脉冲 ,则两个晶闸管立即触发 导通 。 在ω t=π +α 时,同时给T1和T2加触发脉冲使其导通 。 当由负半周电压过零变正时,T3和T4因电流过零而关断。在此期间T1 和T2因承受反压而截止。 由以上电路工作原理可知,在交流电源的正、负半周里, T1、T2和T3、 T4两组晶闸管轮流触发导通,将交流电源变成脉动的直流电。改变触发脉 冲出现的时刻,即改变α 的大小,、的波形和平均值随之改变。
感性负载上的输出电压平均值Ud为
1 1 U U U u d ( t ) u d ( t ) d dR dL R L 2 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4、基本数量关系
1)输出电压平均值Ud
1
Ud 2π
2U2 sintdt
2U 2 π
1 cos
2
1 cos
0.45U2 2
2)输出电流平均值Id
Id
Ud R
0.45U 2 R
1 cos
2
3)晶闸管的电流平均值IdT
I dT
π -

Id
4)晶闸管的电流有效值IT
IT
1
2
Id2d (t)
(2)在ωt=α时刻,门极加触发信号,晶闸管触发导通,电 源电压u2加到负载上,输出电压ud= u2 。由于电感的存在, 负载电流id只能从零按指数规律逐渐上升。
(3)在ωt=ωt1~ ωt2期间:输出电流id 从零增至最大值。在 id的增长过程中,电感产生的感应电势力图限制电流增大, 电源提供的能量一部分供给负载电阻,一部分为电感的储 能。
3、波形情况
输出电压、电流及元件的电压波形如图2-3(b)所示。图2-4给 出了 600时单相半波整流电路带阻-感性负载、大电感负载时
的负载电压、电流和晶闸管两端电压的仿真波形。
(a) 阻-感性负载
图2-4
(b) 大电感负载
❖ 直流输出电压平均值Ud为
Ud
1
2
2U2 sintd(t)
❖ 从Ud的波形可以看出,由于电感的存在,电源电
3、波形
300
图2-6
600
1200
900
图2-6
1500
❖ 电感性负载加续流二极管后,输出电压波形与电 阻性负载波形相同,续流二极管可起到提高输出 电压的作用。在大电感负载时负载电流波形连续 且近似一条直线,流过晶闸管的电流波形和流过 续流二极管的电流波形是矩形波。
❖ 对于电感性负载加续流二极管的单相半波可控整 流器移相范围与单相半波可控整流器电阻性负载 相同,为0~180º,且有α+θ=180º。
2
I
d
5)续流二极管的电流平均值IdD
IdD
π

Id
6)续流二极管的电流有效值ID
ID
1
2
I
2 d
d
(t
)
0
2 Id
7)晶闸管和续流二极管承受的最大正反向电压
晶闸管和续流二极管承受的最大正反向电压均为电 源电压的峰值。
U TM 2U 2
❖ 单相半波可控整流器的优点是电路简单,调整方 便,容易实现。但整流电压脉动大,每周期脉动 一次。变压器二次侧流过单方向的电流,存在直 流磁化、利用率低的问题,为使变压器不饱和, 必须增大铁心截面,这样就导致设备容量增大。
图2-5
2、工作原理
❖ 1)在电源电压正半波,电压u2>0,晶闸管uAK>0。在 ωt=α处触发晶闸管,使其导通,形成负载电流id,负载上 有输出电压和电流,此间续流二极管VD承受反向阳极电 压而关断。
❖ 2)在电源电压负半波,电感感应电压使续流二极管VD导 通续流,此时电压u2 <0, u2通过续流二极管VD使晶闸 管承受反向电压而关断,负载两端的输出电压为续流二极 管的管压降,如果电感足够大,续流二极管一直导通到下 一周期晶闸管导通,使id连续,且id波形近似为一条直线。
压由正到负过零点也不会关断,输出电压出现了
负波形,输出电压和电流的平均值减小;当大电
感负载时输出电压正负面积趋于相等,输出电压
平均值趋于零,则id也很小。所以,实际的大感
电路中,常常在负载两端并联一个续流二极管。
2.1.3 单相半波可控整流电路(阻感性负载加 续流二极管)
1、电路结构
❖ 电感性负载加 ❖ 续流二极管的 ❖ 电路如图所示。
2.1.2 单相半波可控整流电路(阻感性负载)
1、电路的结构
❖ 阻感性负载的等效电路可用一个电感和电阻的串联电路来表
示。
u2
图2-3
t1 t3
0
t2
t4
ug
0 ud
t5
0Hale Waihona Puke tt Udt
uT
Tr
id
VT
uL
L
u1
u2
ud uR
R
id
0
uT
0
t
t
(a) (b)
2、工作原理
(1)在ωt=0~α期间:晶闸管阳-阴极间的电压uAK大于零, 此时没有触发信号,晶闸管处于正向关断状态,输出电压、 电流都等于零。
(4)在ωt=ωt2~ ωt3期间:负载电流从最大值开始下 降,电感电压改变方向,电感释放能量,企图维持 电流不变。
(5)在ωt=π时,交流电压u2过零,由于感应电压的 存在,晶闸管阳极、阴极间的电压uAK仍大于零,晶 闸管继续导通,此时电感储存的磁能一部分释放变 成电阻的热能,另一部分磁能变成电能送回电网, 电感的储能全部释放完后,晶闸管在u2 反压作用下 而截止。直到下一个周期的正半周,即ωt=2π+α时, 晶闸管再次被触发导通,如此循环不已。
相关文档
最新文档