暑假新高一数学衔接讲义含初中高中部分

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1讲数与式
910
+⨯(1)n n +
+
第2讲一元二次函数与二次不等式
第3讲一元二次方程与韦达定理
第4讲绝对值不等式与无理式不等式
第5讲集合的基本概念
例5.设集合}{
12A x x =<<,}
{
B x x a =<,且A B ⊆,则实数a 的范围是( )
.2A a ≥ B.2a > C.1a > D.1a ≤
变式:若A={x|x2
-3x+2=0},B={x|x2
-a x+a -1=0},且B⊆A,则a 的
值为___ ___
【典型例题—2】韦恩图: 【内容概述】
用平面上封闭曲线的内部代表集合,这种图叫做韦恩图。

例6. 求下列集合之间的关系,并用Venn 图表示.
A ={x |x 是平行四边形},
B ={x |x 是菱形},
C ={x |x 是矩形},
D ={x |x 是正方形}. 【典型例题—3】集合相等:
设集合A={x|x 2
-1=0},B ={-1,1},那么这两个集合会有什么关系呢?
【概括】
集合A 与集合B 中的元素完全相同,只是表示方法不同,我们就说集合A 与集合B 相等,
即:A=B
例7.判断集合{}
2A x x ==与集合{}
240B x x =-=的关系. 例8.判断集合A 与B 是否相等?
(1) A={0},B= ∅;
(2) A={…,-5,-3,-1,1,3,5,…},B={x| x=2m+1 ,m ∈Z } ; (3) A={x| x=2m-1 ,m ∈Z },B={x| x=2m+1 ,m ∈Z }.
变式:已知三元集合A={y x xy x -,,},B={y x |,|,0 },且A=B,求y x 与的值.
【典型例题—4】真子集: 【内容概述】
如果集合B 是集合A 的子集,并且集合A 中至少有一个元素不属于集合B ,那么把集合B 叫做集合A 的真子集.记作B
A (或A
B), 读作“A 真包含B ”(或“B 真包含于A ”).
[不包含本身的子集叫做真子集] 对于集合A 、B 、C ,如果A B ,B
C ,则A
C .
例9.选用适当的符号“⊂≠”或“
”填空:
(1){1,3,5}_ _{1,2,3,4,5}; (2){2}_ _ {x| |x|=2}; (3){1} _∅. 例10.设集合{}0,1,2M =,试写出M 的所有子集,和真子集
变式:已知集}
{
2
230A x x x =--=,}
{
10B x ax =-= 若B⊂≠A,求a 的值所组成的集合M.
【典型例题—5】空集 【内容概述】
1、我们把不含任何元素的集合叫做空集,记作∅
2、空集是任何集合的子集。

3、空集是任何非空集合的真子集 例11.求方程x 2
+1=0的实数根
变式:下列四个集合中,表示空集的是( )
A.{0} B.},,|),{(2
2
R y R x x y y x ∈∈-= C.},,5|||{N x Z x x x ∉∈= D.},0232|{2
N x x x x ∈=-+ 课后练习
1.已知集合A={c b a ,,},B={x|x∈A},则集合B的真子集个数最多是( ) A.5个 B.6个 C.7个 D.8个
2. 设集合M⊆{1,2,3,4,5},且a ∈M时,6-a ∈M,则集合M=_______________.
第6讲集合的基本运算
变式1:已知集合},019|{22为常数a a ax x x A =-+-=,}065|{2
=+-=x x x B , }082|{2=-+=x x x C ,求当a 为何值时,∅≠B A 与∅=C A 同时成立.
变式2:已知集合}9,1,5{},,12,0{2
a a B a a A --=-=分别符合下列条件的a 的值.
(1)B A ∈9; (2){}B A =9.
例4.设集合}|{},1,0,1{2x x x N M ≤=-=,则N M =_______________________.
变式1:图中阴影部分用集合表示为_______________.
变式2:已知集合}3|{},42|{a x a x B x x A <<=<<=.
(1)若∅=B A ,求a 的取值范围;
(2)若}4|{<<=x a x B A ,求a 的取值范围.
知识点三、补集
【内容概述】
1.全集:在研究集合与集合之间的关系时,有时这些集合都是某一个给定集合的子集,这个给定集合可以看成一个全集,用符号“U ”表示,也就是说,全集含有我们所要研究的各个集合的全部元素.
2.补集:如果集合A 是全集U 的一个子集,由全集U 中不属于集合A 的所有元素组成的集合,叫做集合A 相对于全集U 的补集,简称为集合A 的补集.
3.对补集定义的理解要注意以下几点:
(1)补集是相对于全集而存在的,研究一个集合的补集之前一定要明确其所对应的全集.比如当研究数的运算性质时,我们常常将实数集R 当做全集.
(2)补集既是集合之间的一种关系,同时也是集合之间的一种运算,当然也是一种数学思想.
(3)从符号角度来看,若U x ∈,U A ⊂,则A x ∈和A C x U ∈二者必居其一.
4.集合图形,理解补集的如下性质:
(1)∅====∅∅=)(,)(,)(,,A C A U A C A A A C C U C U C U U U U U U
(2)若B A ⊆,则)()(B C A C U U ⊇;反之,若)()(B C A C U U ⊇,则B A ⊆
(3)若A=B ,则B C A C U U =;反之,若B C A C U U =,则A=B
【典型例题】
例5.设全集U 是实数集R ,}4|{2
>=x x A ,}13|{<≥=x x x B 或都是U 的子集,则图中阴影部分所表示的集合是__________________.
变式1:已知集合}012|{2=++=b ax x x A 和}0|{2
=+-=b ax x x B
满足R U B C A B A C U U ===},4{)(},2{)( ,求实数a 、b 的值.
第7讲集合的综合复习。

相关文档
最新文档