湖口县民族中学2018-2019学年上学期高二数学12月月考试题含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湖口县民族中学2018-2019学年上学期高二数学12月月考试题含解析
班级__________ 姓名__________ 分数__________
一、选择题
1. 已知△ABC 中,a=1,b=,B=45°,则角A 等于( )
A .150°
B .90°
C .60°
D .30°
2. 在10
201511x x ⎛⎫++ ⎪⎝
⎭的展开式中,含2
x 项的系数为( )
(A )10 ( B ) 30 (C ) 45 (D ) 120
3. 江岸边有一炮台高30米,江中有两条船,由炮台顶部测得俯角分别为45°和30°,而且两条船与炮台底部连线成30°角,则两条船相距( )
A .10米
B .100米
C .30米
D .20米 4. 若复数z 满足iz=2+4i ,则在复平面内,z 对应的点的坐标是( )
A .(2,4)
B .(2,﹣4)
C .(4,﹣2)
D .(4,2)
5. ()()
2
2f x a x a =-+ 在区间[]0,1上恒正,则的取值范围为( )
A .0a >
B .02a <<
C .02a <<
D .以上都不对
6. 抛物线y=x 2的焦点坐标为( ) A .(0,

B .(
,0)
C .(0,4)
D .(0,2)
7. 将甲,乙等5位同学分别保送到北京大学,清华大学,浙江大学等三所大学就读,则每所大学至少保送一人的不同保送的方法数为( )
(A )150种 ( B ) 180 种 (C ) 240 种 (D ) 540 种
8. 把“二进制”数101101(2)化为“八进制”数是( ) A .40(8)
B .45(8)
C .50(8)
D .55(8)
9. 已知向量(1,2)a =,(1,0)b =,(3,4)c =,若λ为实数,()//a b c λ+,则λ=( ) A .
14 B .1
2
C .1
D .2
10.α是第四象限角,,则sin α=( )
A .
B .
C .
D .
11.如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆.在扇形OAB 内随机取一点,则此点取自阴影部分的概率是( )
A .1﹣
B .﹣
C .
D .
12.在ABC ∆中,角A ,B ,C 的对边分别是,,,BH 为AC 边上的高,5BH =,若
2015120aBC bCA cAB ++=,则H 到AB 边的距离为( )
A .2
B .3 C.1 D .4
二、填空题
13.已知正方体ABCD ﹣A 1B 1C 1D 1的一个面A 1B 1C 1D 1在半径为的半球底面上,A 、B 、C 、D 四个顶点都
在此半球面上,则正方体ABCD ﹣A 1B 1C 1D 1的体积为 .
14.阅读如图所示的程序框图,运行相应的程序,若输入的X 的值为2,则输出的结果是 .
15.若数列{a n }满足:存在正整数T ,对于任意的正整数n ,都有a n+T =a n 成立,则称数列{a n }为周期为T 的周
期数列.已知数列{a n }满足:a1>=m (m >a ),a n+1=
,现给出以下三个命题:
①若 m=,则a 5=2;
②若 a 3=3,则m 可以取3个不同的值;
③若 m=,则数列{a n }是周期为5的周期数列.
其中正确命题的序号是 .
16.若函数f (x )=x 2﹣2x (x ∈[2,4]),则f (x )的最小值是 .
17.计算:×5﹣1
= .
18.下列命题:
①函数y=sinx 和y=tanx 在第一象限都是增函数;
②若函数f (x )在[a ,b]上满足f (a )f (b )<0,函数f (x )在(a ,b )上至少有一个零点; ③数列{a n }为等差数列,设数列{a n }的前n 项和为S n ,S 10>0,S 11<0,S n 最大值为S 5; ④在△ABC 中,A >B 的充要条件是cos2A <cos2B ;
⑤在线性回归分析中,线性相关系数越大,说明两个量线性相关性就越强. 其中正确命题的序号是 (把所有正确命题的序号都写上).
三、解答题
19.数列{}n a 中,18a =,42a =,且满足*2120()n n n a a a n N ++-+=∈. (1)求数列{}n a 的通项公式; (2)设12||||||n n S a a a =++,求n S .
20.已知函数

(1)求f (x )的周期.
(2)当时,求f (x )的最大值、最小值及对应的x 值.
21.(本小题满分12分)
如图,在四棱锥ABCD S -中,底面ABCD 为菱形,Q P E 、、分别是棱AB SC AD 、、的中点,且⊥SE 平面ABCD .
(1)求证://PQ 平面SAD ; (2)求证:平面⊥SAC 平面SEQ .
22.已知函数f (x )=.
(1)求f (f (﹣2));
(2)画出函数f (x )的图象,根据图象写出函数的单调增区间并求出函数f (x )在区间(﹣4,0)上的值域.
23.已知函数f(x0=.
(1)画出y=f(x)的图象,并指出函数的单调递增区间和递减区间;
(2)解不等式f(x﹣1)≤﹣.
24.已知函数f(x)=x3+ax+2.
(Ⅰ)求证:曲线=f(x)在点(1,f(1))处的切线在y轴上的截距为定值;(Ⅱ)若x≥0时,不等式xe x+m[f′(x)﹣a]≥m2x恒成立,求实数m的取值范围.
湖口县民族中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案) 一、选择题
1. 【答案】D
【解析】解:∵,B=45°
根据正弦定理可知
∴sinA==
∴A=30° 故选D .
【点评】本题主要考查正弦定理的应用.属基础题.
2. 【答案】C
【解析】因为10
10
101
9102015201520151111(1)(1)(1)x x x C x x x x ⎛⎫⎛⎫++=++=++++
⎪ ⎪⎝⎭⎝⎭,所以2
x 项只能在
10(1)x +展开式中,即为2210
C x ,系数为2
1045.C =故选C . 3. 【答案】C
【解析】解:如图,过炮台顶部A 作水平面的垂线,垂足为B ,设A 处观测小船C 的俯角为45°,
设A 处观测小船D 的俯角为30°,连接BC 、BD Rt △ABC 中,∠ACB=45°,可得BC=AB=30米
Rt △ABD 中,∠ADB=30°,可得BD=AB=30

在△BCD 中,BC=30米,BD=30米,∠CBD=30°,
由余弦定理可得:
CD 2=BC 2+BD 2﹣2BCBDcos30°=900 ∴CD=30米(负值舍去) 故选:C
【点评】本题给出实际应用问题,求炮台旁边两条小船距的距离.着重考查了余弦定理、空间线面的位置关系等知识,属于中档题.熟练掌握直线与平面所成角的定义与余弦定理解三角形,是解决本题的关键.
4. 【答案】C
【解析】解:复数z 满足iz=2+4i ,则有z=
=
=4﹣2i ,
故在复平面内,z 对应的点的坐标是(4,﹣2),
故选C .
【点评】本题主要考查两个复数代数形式的乘除法,虚数单位i 的幂运算性质,复数与复平面内对应点之间的关系,属于基础题.
5. 【答案】C 【解析】
试题分析:由题意得,根据一次函数的单调性可知,函数()()
2
2f x a x a =-+在区间[]0,1上恒正,则
(0)0(1)0f f >⎧⎨>⎩,即2
020
a a a >⎧⎨-+>⎩,解得02a <<,故选C. 考点:函数的单调性的应用. 6. 【答案】D
【解析】解:把抛物线y=x 2方程化为标准形式为x 2=8y , ∴焦点坐标为(0,2). 故选:D .
【点评】本题考查抛物线的标准方程和简单性质的应用,把抛物线的方程化为标准形式是关键.
7. 【答案】A
【解析】5人可以分为1,1,3和1,2,2两种结果,所以每所大学至少保送一人的不同保送的方法数为
22333
535
3
32
2
150C C C A A A ⋅⋅+⋅=种,故选A . 8. 【答案】D
【解析】解:∵101101(2)=1×25+0+1×23+1×22+0+1×20
=45(10).
再利用“除8取余法”可得:45(10)=55(8). 故答案选D .
9. 【答案】B
【解析】
试题分析:因为(1,2)a =,(1,0)b =,所以()()1,2a b λλ+=+,又因为()//a b c λ+,所以
()1
4160,2
λλ+-==
,故选B. 考点:1、向量的坐标运算;2、向量平行的性质.
10.【答案】B
【解析】解:∵α是第四象限角,
∴sin α=,
故选B .
【点评】已知某角的一个三角函数值,求该角的其它三角函数值,应用平方关系、倒数关系、商的关系,这是三角函数计算题中较简单的,容易出错的一点是角的范围不确定时,要讨论.
11.【答案】A
【解析】解:设扇形的半径为r ,则扇形OAB 的面积为

连接OC ,把下面的阴影部分平均分成了2部分,然后利用位移割补的方法,分别平移到图中划线部分,则阴
影部分的面积为:


∴此点取自阴影部分的概率是.
故选A .
12.【答案】D
【解析】
考点:1、向量的几何运算及平面向量基本定理;2、向量相等的性质及勾股定理.
【方法点睛】本题主要考查向量的几何运算及平面向量基本定理、向量相等的性质及勾股定理,属于难题,平面向量问题中,向量的线性运算和数量积是高频考点,当出现线性运算问题时,注意两个向量的差
OA OB OD
+=(D点是AB的中点),另外,要选好基底-=,这是一个易错点,两个向量的和2
OA OB BA
AB AC,当涉及到向量数量积时,要记熟向量数量积的公式、坐标公式、几向量,如本题就要灵活使用向量,
何意义等.
二、填空题
13.【答案】2.
【解析】解:如图所示,
连接A1C1,B1D1,相交于点O.
则点O为球心,OA=.
设正方体的边长为x,则A1O=x.
在Rt△OAA1中,由勾股定理可得:+x2=,
解得x=.
∴正方体ABCD﹣A
B1C1D1的体积V==2.
1
故答案为:2.
14.【答案】﹣3.
【解析】解:分析如图执行框图,
可知:该程序的作用是计算分段函数f(x)=的函数值.
当x=2时,f(x)=1﹣2×2=﹣3
故答案为:﹣3
【点评】本题主要考查了选择结构、流程图等基础知识,算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.
15.【答案】①②.
【解析】解:对于①由a n+1=,且a1=m=<1,
所以,>1,,,∴a5=2 故①正确;
对于②由a3=3,若a3=a2﹣1=3,则a2=4,若a1﹣1=4,则a1=5=m.
若,则.
若a1>1a1=,若0<a1≤1则a1=3,不合题意.
所以,a3=2时,m即a1的不同取值由3个.
故②正确;
若a
=m=>1,则a2=,所a3=>1,a4=
1
故在a1=时,数列{a
}是周期为3的周期数列,③错;
n
故答案为:①②
【点评】本题主要考查新定义题目,属于创新性题目,但又让学生能有较大的数列的知识应用空间,是较好的题目
16.【答案】0.
【解析】解:f(x))=x2﹣2x=(x﹣1)2﹣1,
其图象开口向上,对称抽为:x=1,
所以函数f(x)在[2,4]上单调递增,
所以f(x)的最小值为:f(2)=22﹣2×2=0.
故答案为:0.
【点评】本题考查二次函数在闭区间上的最值问题,一般运用数形结合思想进行处理.
17.【答案】9.
【解析】解:×5﹣1=×=×=(﹣5)×(﹣9)×=9,
∴×5﹣1=9,
故答案为:9.
18.【答案】②③④⑤
【解析】解:①函数y=sinx和y=tanx在第一象限都是增函数,不正确,取x=,,但是
,,因此不是单调递增函数;
②若函数f(x)在[a,b]上满足f(a)f(b)<0,函数f(x)在(a,b)上至少有一个零点,正确;
③数列{a n}为等差数列,设数列{a n}的前n项和为S n,S10>0,S11<0,∴=5(a6+a5)>0,
=11a6<0,
∴a5+a6>0,a6<0,∴a5>0.因此S n最大值为S5,正确;
④在△ABC中,cos2A﹣cos2B=﹣2sin(A+B)sin(A﹣B)=2sin(A+B)sin(B﹣A)<0⇔A>B,因此正确;
⑤在线性回归分析中,线性相关系数越大,说明两个量线性相关性就越强,正确.
其中正确命题的序号是②③④⑤.
【点评】本题综合考查了三角函数的单调性、函数零点存在判定定理、等差数列的性质、两角和差化积公式、线性回归分析,考查了推理能力与计算能力,属于难题.
三、解答题
19.【答案】(1)102n a n =-;(2)229(5)940(5)
n n n n S n n n ⎧-≤⎪
=⎨-+>⎪⎩.
【解析】
试题分析:(1)由2120n n n a a a ++-+=,所以{}n a 是等差数列且18a =,42a =,即可求解数列{}n a 的通项公式;(2)由(1)令0n a =,得5n =,当5n >时,0n a <;当5n =时,0n a =;当5n <时,0n a >,即可分类讨论求解数列n S .
当5n ≤时,12||||||n n S a a a =++
2
129n a a a n n =+++=-
∴2
29(5)940(5)
n n n n S n n n ⎧-≤⎪=⎨-+>⎪⎩.1
考点:等差数列的通项公式;数列的求和. 20.【答案】
【解析】解:(1)∵函数.
∴函数f (x )=2sin (2x+).
∴f (x )的周期T==π
即T=π
(2)∵


∴﹣1≤sin (2x+)≤2
最大值2,2x =,此时,
最小值﹣1,2x
= 此时
【点评】本题简单的考察了三角函数的性质,单调性,周期性,熟练化为一个角的三角函数形式即可.
21.【答案】(1)详见解析;(2)详见解析. 【解析】
试题分析:(1)根据线面平行的判定定理,可先证明PQ 与平面内的直线平行,则线面平行,所以取SD 中点F ,连结PF AF ,,可证明AF PQ //,那就满足了线面平行的判定定理了;(2)要证明面面垂直,可先证明线面垂直,根据所给的条件证明⊥AC 平面SEQ ,即平面⊥SAC 平面SEQ . 试题解析:证明:(1)取SD 中点F ,连结PF AF ,. ∵F P 、分别是棱SD SC 、的中点,∴CD FP //,且CD FP 2
1
=. ∵在菱形ABCD 中,Q 是AB 的中点,
∴CD AQ //,且CD AQ 2
1
=
,即AQ FP //且AQ FP =. ∴AQPF 为平行四边形,则AF PQ //.
∵⊄PQ 平面SAD ,⊂AF 平面SAD ,∴//PQ 平面SAD .
考点:1.线线,线面平行关系;2.线线,线面,面面垂直关系.
【易错点睛】本题考查了立体几何中的线与面的关系,属于基础题型,重点说说垂直关系,当证明线线垂直时,一般要转化为线面垂直,证明线与面垂直时,即证明线与平面内的两条相交直线垂直,证明面面垂直时,转化为证明线面垂直,所以线与线的证明是基础,这里经常会搞错两个问题,一是,线与平面内的两条相交直线垂直,线与平面垂直,很多同学会记成一条,二是,面面垂直时,平面内的线与交线垂直,才与平面垂直,很多同学会理解为两个平面垂直,平面内的线都与另一个平面垂直,需熟练掌握判定定理以及性质定理. 22.【答案】
【解析】解:(1)函数f(x)=.
f(﹣2)=﹣2+2=0,
f(f(﹣2))=f(0)=0.3分
(2)函数的图象如图:…
单调增区间为(﹣∞,﹣1),(0,+∞)(开区间,闭区间都给分)…
由图可知:
f(﹣4)=﹣2,f(﹣1)=1,
函数f(x)在区间(﹣4,0)上的值域(﹣2,1].…12分.
23.【答案】
【解析】解:(1)图象如图所示:由图象可知函数的单调递增区间为(﹣∞,0),(1,+∞),
丹迪减区间是(0,1)
(2)由已知可得
或,
解得x≤﹣1或≤x≤,
故不等式的解集为(﹣∞,﹣1]∪
[,].
【点评】本题考查了分段函数的图象的画法和不等式的解集的求法,属于基础题.
24.【答案】
【解析】(Ⅰ)证明:f(x)的导数f′(x)=x2+a,
即有f(1)=a+,f′(1)=1+a,
则切线方程为y﹣(a+)=(1+a)(x﹣1),
令x=0,得y=为定值;
(Ⅱ)解:由xe x+m[f′(x)﹣a]≥m2x对x≥0时恒成立,
得xe x+mx2﹣m2x≥0对x≥0时恒成立,
即e x+mx﹣m2≥0对x≥0时恒成立,
则(e x+mx﹣m2)min≥0,
记g(x)=e x+mx﹣m2,
g′(x)=e x+m,由x≥0,e x≥1,
若m≥﹣1,g′(x)≥0,g(x)在[0,+∞)上为增函数,
∴,
则有﹣1≤m≤1,
若m<﹣1,则当x∈(0,ln(﹣m))时,g′(x)<0,g(x)为减函数,
则当x∈(ln(﹣m),+∞)时,g′(x)>0,g(x)为增函数,
∴,∴1﹣ln(﹣m)+m≥0,
令﹣m=t,则t+lnt﹣1≤0(t>1),
φ(t)=t+lnt﹣1,显然是增函数,
由t>1,φ(t)>φ(1)=0,则t>1即m<﹣1,不合题意.
综上,实数m的取值范围是﹣1≤m≤1.
【点评】本题为导数与不等式的综合,主要考查导数的应用,考查考生综合运用知识的能力及分类讨论的思想,考查考生的计算能力及分析问题、解决问题的能力、化归与转化思想.。

相关文档
最新文档