中考专题复习第九讲分式方程含详细参考答案.doc

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年中考专题复习
第九讲 分式方程
【基础知识回顾】
一、 分式方程的概念
分母中含有 的方程叫做分式方程
【名师提醒:分母中是否含有未知数是区分分式方程和整式方程的根本依据】
二、分式方程的解法:
1、解分式方程的基本思路是 把分式方程转化为整式方程:即
分式方程 ﹥整式方程
2、解分式方程的一般步骤:
①、 ②、 ③、
3、增根:
在进行分式方程去分母的变形时,有时可能产生使原方程分母为 的根称为方程的增根。

因此,解分式方程时必须验根,验根的方法是代入最简公分母,使最简公分母为 的根是增根应舍去。

【名师提醒:1、分式方程解法中的验根是一个必备的步骤,不被省略
2、分式方程有增根与无解并非用一个概念,无解既包含产生增根这一情况,也包含原方程去分母后的整式方程无解。

如:1x a x ---3x
=1有增根,则a= ,若该方程无解,则a= 。


三、分式方程的应用:
解题步骤同其它方程的应用一样,不同的是列出的方程是分式方程,所以在解分式方程应用题同样必须 ,既要检验是否为原方程的根,又要检验是否符合题意。

转化 去分母
【名师提醒:分式方程应用题常见类型有行程问题、工作问题、销售问题等,其中行程问题中又出现逆水、顺水航行这一类型】
【重点考点例析】
考点一:分式方程的解
()
A.a=1 B.a=2
【思路分析】根据分式方程的解的定义把x=4代入原分式方程得到关于a的一次
考点三:由实际问题抽象出分式方程
例3 (2018•嘉兴)甲、乙两个机器人检测零件,甲比乙每小时多检测20个,甲检测300个比乙检测200个所用的时间少10%,若设甲每小时检测x个,则根据
考点四:分式方程的应用
例 4 (2018•玉林)山地自行车越来越受中学生的喜爱.一网店经营的一个型号山地自行车,今年一月份销售额为30000元,二月份每辆车售价比一月份每辆车售价降价100元,若销售的数量与上一月销售的数量相同,则销售额是27000元.
(1)求二月份每辆车售价是多少元?
(2)为了促销,三月份每辆车售价比二月份每辆车售价降低了10%销售,网店
A.x=1 B.x=2
C.x=-1 D.无解
2.(2018•临沂)新能源汽车环保节能,越来越受到消费者的喜爱.各种品牌相继投放市场.一汽贸公司经销某品牌新能源汽车.去年销售总额为5000万元,今年1~5月份,每辆车的销售价格比去年降低1万元.销售数量与去年一整年的相同.销售总额比去年一整年的少20%,今年1-5月份每辆车的销售价格是多少万元?设今年1-5月份每辆车的销售价格为x万元.根据题意,列方程正确的是()
A.5000500012% 1
(0) x x
-
=
+
B.
()
500 500010% 02
1
x x
+
+
=
C.5000500012% 1
(0) x x
-
=
-
D.
()
500 500010% 02
1
x x
+
-
=
4.(2018•威海)某自动化车间计划生产480个零件,当生产任务完成一半时,
多少个零件?
5.(2018•东营)小明和小刚相约周末到雪莲大剧院看演出,他们的家分别距离剧院1200m和2000m,两人分别从家中同时出发,已知小明和小刚的速度比是3:4,结果小明比小刚提前4min到达剧院.求两人的速度.
6.(2018•菏泽)列方程(组)解应用题:
为顺利通过国家义务教育均衡发展验收,我市某中学配备了两个多媒体教室,购买了笔记本电脑和台式电脑共120台,购买笔记本电脑用了7.2万元,购买台式电脑用了24万元,已知笔记本电脑单价是台式电脑单价的1.5倍,那么笔记本电脑和台式电脑的单价各是多少?
【备考真题过关】
一、选择题
A.5 B.4
C.3 D.2
范围是()
A.m≤3B.m≤3且m≠2
C.m<3 D.m<3且m≠2
3.(2018•荆州)解分式方程
14
3
22
x x
-=
--
时,去分母可得()
A.1-3(x-2)=4 B.1-3(x-2)=-4
C.-1-3(2-x)=-4 D.1-3(2-x)=4
4.(2018•成都)分式方程
11
1
2
x
x x
+
+=
-
的解是()
A.x=1 B.x=-1
C.x=3 D.x=-3
5. (2018•通辽)学校为创建“书香校园”购买了一批图书.已知购买科普类图书花费10000元,购买文学类图书花费9000元,其中科普类图书平均每本的价格比文学类图书平均每本的价格贵5元,且购买科普书的数量比购买文学书的数量少100本.求科普类图书平均每本的价格是多少元?若设科普类图书平均每本的价格是x元,则可列方程为()
A.
9000
10
0 0
5
00
1
x
x
-=
-
B.
100
90000
10
0 5
x x
-=
-
C.
9
10
0000
00
100 5x
x
-=
-
D.
1000 90000
100
5
x
x
-=
-
二、填空题
三、解答题
11.(2018•柳州)解方程21 2
x x =- .
12.(2018•贺州)解分式方程:241 111
x x x -+=-+ 。

13.(2018•岳阳)为落实党中央“长江大保护”新发展理念,我市持续推进长江岸线保护,还洞庭湖和长江水清岸绿的自然生态原貌.某工程队负责对一面积为33000平方米的非法砂石码头进行拆除,回填土方和复绿施工,为了缩短工期,该工程队增加了人力和设备,实际工作效率比原计划每天提高了20%,结果提前11天完成任务,求实际平均每天施工多少平方米?
14.(2018•曲靖)甲乙两人做某种机械零件,已知甲每小时比乙多做4个,甲做120个所用的时间与乙做100个所用的时间相等,求甲乙两人每小时各做几个零件?
15. (2018•玉林)山地自行车越来越受中学生的喜爱.一网店经营的一个型号山地自行车,今年一月份销售额为30000元,二月份每辆车售价比一月份每辆车售价降价100元,若销售的数量与上一月销售的数量相同,则销售额是27000元.
(1)求二月份每辆车售价是多少元?
(2)为了促销,三月份每辆车售价比二月份每辆车售价降低了10%销售,网店仍可获利35%,求每辆山地自行车的进价是多少元?
16. (2018•宁波)某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元.已知乙种商品每件进价比甲种商品每件进价多8元,且购进的甲、乙两种商品件数相同.
(1)求甲、乙两种商品的每件进价;
(2)该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为60元,乙种商品的销售单价为88元,销售过程中发现甲种商品销量不好,商场决定:
甲种商品销售一定数量后,将剩余的甲种商品按原销售单价的七折销售;乙种商品销售单价保持不变.要使两种商品全部售完后共获利不少于2460元,问甲种商品按原销售单价至少销售多少件?
2019年中考专题复习
第九讲分式方程
【聚焦山东中考】
1.【思路分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
【解答】解:去分母得:x2+2x-x2-x+2=3,
解得:x=1,
经检验x=1是增根,分式方程无解.
故选:D.
【点评】此题考查了分式方程的解,始终注意分母不为0这个条件.
2.【思路分析】设今年1-5月份每辆车的销售价格为x万元,则去年的销售价格
当x=3时,3-5=-m,解得m=2,
故答案为:2.
【点评】本题考查了分式方程的增根.增根问题可按如下步骤进行:
①让最简公分母为0确定增根;
②化分式方程为整式方程;
③把增根代入整式方程即可求得相关字母的值.
5.【思路分析】设小明的速度为3x米/分,则小刚的速度为4x米/分,根据时间=路程÷速度结合小明比小刚提前4min到达剧院,即可得出关于x的分式方程,解
∴3x=75,4x=100.
答:小明的速度是75米/分,小刚的速度是100米/分.
【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.
【备考真题过关】
一、选择题
3.【思路分析】分式方程去分母转化为整式方程,即可作出判断.
【解答】解:去分母得:1-3(x-2)=-4,
故选:B.
【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.
4.【思路分析】观察可得最简公分母是x(x-2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.
【解答】解:
11
1
2
x
x x
+
+=
-

去分母,方程两边同时乘以x(x-2)得:
(x+1)(x-2)+x=x(x-2),
x2-x-2+x=x2-2x,
x=1,
经检验,x=1是原分式方程的解,
故选:A.
【点评】考查了解分式方程,(1)解分式方程的基本思想是“转化思想”,把分
二、填空题
6.【思路分析】方程两边都乘以最简公分母,化为整式方程,然后解方程,再进行检验.
【解答】解:方程两边都乘以2(x2-1)得,
8x+2-5x-5=2x2-2,
解得x1=1,x2=0.5,
检验:当x=0.5时,x-1=0.5-1=-0.5≠0,
当x=1时,x-1=0,
所以x=0.5是方程的解,
故原分式方程的解是x=0.5.
故答案为:x=0.5
【点评】本题考查了解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.
7.【思路分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
【解答】解:去分母得:x+6=4x,
解得:x=2,
经检验x=2是分式方程的解,
故答案为:x=2
【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.
经检验即可得到分式方程的解.
【解答】解:去分母得:x-2-3x=0,
解得:x=-1,
经检验x=1是分式方程的解.
故答案为:-1
【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.
三、解答题
10.【思路分析】根据等式的性质,可得整式方程,根据解整式方程,可得答案.【解答】解:两边乘x(x-1),得
3x-2(x-1)=0,
解得x=-2,
经检验:x=-2是原分式方程的解.
【点评】本题考查了解分式方程,利用等式的性质将分式方程转化成整式方程是解题关键,要检验方程的根.
11.【思路分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
【解答】解:去分母得:2x-4=x,
解得:x=4,
经检验x=4是分式方程的解.
【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.
值,经检验即可得到分式方程的解.
【解答】解:去分母得:4+x2-1=x2-2x+1,
解得:x=-1,
经检验x=-1是增根,分式方程无解.
【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.
13.【思路分析】设原计划平均每天施工x平方米,则实际平均每天施工1.2x平方米,根据时间=工作总量÷工作效率结合提前11天完成任务,即可得出关于x 的分式方程,解之即可得出结论.
【解答】解:设原计划平均每天施工x平方米,则实际平均每天施工1.2x平方米,
根据题意得:3300033000
11
1.2
x x
-=,
解得:x=500,
经检验,x=500是原方程的解,
∴1.2x=600.
答:实际平均每天施工600平方米.
【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.
14.【思路分析】设甲每小时做x个零件,则乙每小时做(x-4)个零件,根据工作时间=工作总量÷工作效率结合甲做120个所用的时间与乙做100个所用的时间相等,即可得出关于x的分式方程,解之经检验后即可得出结论.
【解答】解:设甲每小时做x个零件,则乙每小时做(x-4)个零件,
根据题意得:120100
4
x x
=
-

解得:x=24,
经检验,x=24是分式方程的解,
∴x-4=20.
答:甲每小时做24个零件,乙每小时做20个零件.
【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.
15.【思路分析】(1)设二月份每辆车售价为x元,则一月份每辆车售价为(x+100)元,根据数量=总价÷单价,即可得出关于x的分式方程,解之经检验后即可得出结论;
(2)设每辆山地自行车的进价为y元,根据利润=售价-进价,即可得出关于y 的一元一次方程,解之即可得出结论.
【解答】解:(1)设二月份每辆车售价为x元,则一月份每辆车售价为(x+100)元,
根据题意得:3000027000
100
x x
=
+

解得:x=900,
经检验,x=900是原分式方程的解.
答:二月份每辆车售价是900元.
(2)设每辆山地自行车的进价为y元,
根据题意得:900×(1-10%)-y=35%y,
解得:y=600.
答:每辆山地自行车的进价是600元.
【点评】本题考查了分式方程的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)找准等量关系,正确列出一元一次方程.
16.【思路分析】(1)设甲种商品的每件进价为x元,乙种商品的每件进价为y 元.根据“某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元.购进的甲、乙两种商品件数相同”列出方程;
(2)设甲种商品按原销售单价销售a件,则由“两种商品全部售完后共获利不少于2460元”列出不等式.
【解答】解:(1)设甲种商品的每件进价为x元,则乙种商品的每件进价为(x+8)元.
根据题意,得,20002400
8
x x
=
+

解得x=40.
经检验,x=40是原方程的解.
答:甲种商品的每件进价为40元,乙种商品的每件进价为48元;
(2)甲乙两种商品的销售量为2000
50
40
=.
设甲种商品按原销售单价销售a件,则
(60-40)a+(60×0.7-40)(50-a)+(88-48)×50≥2460,
解得a≥20.
答:甲种商品按原销售单价至少销售20件.
【点评】本题考查了分式方程的应用,一元一次不等式的应用.本题属于商品销售中的利润问题,对于此类问题,隐含着一个等量关系:利润=售价-进价.。

相关文档
最新文档