基于熵的海洋平台安全评价专家评定模型

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于熵的海洋平台安全评价专家评定模型
余建星1 , 李彦苍1 , 吴海欣1 , 傅健2 , 王常文2 , 徐金利3
(1 .天津大学建筑工程学院港口与海洋工程天津市重点实验室, 天津300072 ; 2 .海洋石油工程股份有限公司, 天津300452 ; 3 .静海交通局, 天津301600)
摘要:针对现今海洋平台安全评价中存在的仅靠主观臆断选取专家的缺陷,在定义最优专家的基础上,采用熵度量各专家给出评价结果的不确定性及专家与最优专家的差异,建立了基于熵的专家评定模型。

海洋平台装船过程安全评价中,对专家的评定实例表明,该模型计算简单,意义明确,对海洋平台安全评价具有重要的理论与现实意义。

关键词:海洋平台; 安全评价; 专家选取; 熵; 模型
中图分类号: F27 文献标识码: A
S pecialists selection m odel for sa fety assessment of
offsh ore platforms based on entropy
Y U J i an2xing1 , L I Y an2cang1 , WU Hai2xin1 , FU J ian2 , WAN G C hang2wen2 , X U J in2li3
(1. K ey Lab of Harb or and Ocean Eng ineering of Tianjin C ity , C olleg e of C ivil Eng ineering , Tianjin University , Tianjin 300072 , C hina ; 2. O ff shore Eng ineering C o ., Ltd. , Tianjin 300452 , C hina ; 3. Jing hai Bureau of C ommunisations , Tianjin 301600 , China)
Abstract : In view of the shortc oming of safety assessment of off shore platforms , in w hich the specialists are selected b y the d ecision maker sub2 jectiv ely , a m od el of specialist assessment based on entropy is set u p . The entropy is employed to measure the d ifference b etw een every spe2 cialist and the m ost optimal specialist . The m ost optimal specialist refers to the averag e level of the specialist g rou p . The en tropy is also used to measure the uncertainty of the scores g iven b y every specialist . The application resu lts in specialist selection for safety assessment of packet load ou t show the efficiency of the m od e . The w ork has sig nificant meaning in theory and practice for safety assessment of off shore platforms. K ey w ords : off shore platform ; safety assessment ; selection of specialists ; entropy ; m od el
随着人们对海洋油气资源需求的日益增加,作为海上生产和生活基地的海洋平台已得到越来越广泛的应用。

与陆地结构相比,其不仅结构复杂、体积庞大、造价昂贵,且所处环境十分复杂与恶劣,加之以往对其环境的复杂性、随机性及平台结构积累损伤和使用安全度的认识和评价不充分,曾多次发生海洋平台事故, 造成重大的经济损失和社会影响 1 。

因此,有效地进行海洋平台安全评价具有重要的现实意义。

目前的评价方法主要是在专家打分的基础上运用一定数学手段来获得各评价指标的综合权重,再对各要素进行排序和分析。

在专家的选取上,多为评价方的主观选择,对专家资质认定及选取研究相对较少,而专家的选择在很大程度上将影响评价的最终结果。

所以对专家的资质认定及选择的研究具有重要的理论及现实意义。

借鉴传递熵 2 的思想,用熵表示专家评价结果的不确定性和各专家与理想专家的水平差异,建立了基于熵的专家评定模型,提高了专家选择的科学性,对于海洋平台装船、拖航、安装、使用、维修及报废的评价和决策具有现实意义。

收稿日期:2006201203
基金项目:国家自然科学基金资助项目(505779047) ; 教育部博士点基金资助项目(20030056045)
作者简介:余建星(1958 - ) ,男,福建泉州人,博士,教授,博士生导师,主要从事大型结构可靠性与风险研究。

第 4 期
余建星 ,等 :基于熵的海洋平台安全评价专家评定模型 91
1 平台安全评价及专家选取现状
自 1947 年墨西哥 C ouissana 海域建造第一座钢质海洋平台以来 ,世界上已建造近 6 000 座海洋石油开采 平台 。

20 世纪 60 年代至今 ,我国已建成 100 余座海洋平台 。

因海洋平台结构是载荷 、抗力和风险相对较复 杂 ,矛盾较集中和突出的结构形式 ,故在数量猛增的同时 ,也发生了许多惨痛的事故 ,造成了巨大的经济损 失 、人员伤亡及恶劣的社会影响 ,促使国内外一些政府 、石油部门和科研机构致力于海洋平台安全评价 ,并取 得了一定成果 。

文献 3 对海洋平台的装船 、运输及安装过程的风险进行了研究 ,形成了一套合理 、实用的海 洋平台安全评价及风险分析模型及方法 ,并在工程中得到较好的应用 。

在结构安全确定性评价方面 ,Aggar 2 wal 等人提出了有代表性的四级评价方法 4 。

美国于 1985 年起对 AI MS 和 C AP 项目进行了研究 。

英国 、挪威 等国家也开发了结构破坏分析软件 。

中国海洋石油有限公司天津分公司联合国内多所院校共同研究 ,取得
了系列研究成果 。

在可靠度评价方面 ,自 20 世纪 60 年代起 ,挪威 、美国 、欧共体及我国进行了研究 5 ~8 ,并 形成了 PNE T 法 、分枝定界法和数值模拟方法与软件 ,但仍需在评价标准及方法适应性方面进行进一步研 究 。

在维修及报废的评估方面 ,王光远于 20 世纪 90 年代初提出了以结构物服役期间的动态可靠度为核心 进行维修及报废评估9 。

目前 ,安全评估正向实时化 、数字化方向发展 。

以上研究对于海洋平台的安全生产具有重要意义 ,但各综合评价方法的基础多为专家打分法 ,这样 ,专 家的选取标准 、专家水平的可信度 、专家提供信息的可信度就成为决策者面临的突出问题 。

现今的专家打分 法主要是由决策者通过主观臆断选择专家 ,然后通过德尔菲法或其他专家调查法进行问卷 ,由决策者做出决 策 ,对专家资质及提供信息的可靠度的研究相对较少 。

而专家的信息在很大程度上决定了决策的水平及正 误 。

理论界和工程界亟需一套较为实用的专家评定模型及方法 。

2 熵简介
2. 1 熵的概念
熵 (entropy ) 是简单巨系统的一个重要概念 ,最早是 1864 年由物理学家 R Clausius 在《热之唯动说》中提 出用以描述 系 统 状 态 的 物 理 量10 。

1865 年 被 作 为 表 征 热 力 学 过 程 进 行 方 向 的 物 理 量 正 式 命 名 为 熵 。

H Helm holtz 等将热力学熵引入理论化学领域
10。

1870 年 , L B oltzmann 提供了熵的微观物理图像10 。

1923 年 ,我国物理学家胡刚复首次将其译为熵
2。

1945 年 E Schroedinger 将其引入生物学领域
11。

Shannon C E 于 1948 和 1949 年发表了《通信的数学理论》和《在噪声中的通信》12
,提出了信息熵的概念 ,以其
作为不确定
性的量度 。

而后 ,信息 熵 被 应 用 于 几 乎 所 有 学 科 。

1957 年 , E T J a ynes 首 次 明 确 提 出 了 最 大 熵 原 理 (Max 2
E nt )
13。

20 世纪 50 年代末产生了 K olm ogorov 熵
10
,20 世纪 60 年代产生了拓扑熵 、黑洞熵 、Schrodinger 熵 、模
糊熵等 2
,并提出了最大熵谱 。

1991 年我国学者顾昌耀 、邱菀华首先定义了复熵并将其应用于决策分析
2。

熵已广泛应用于热力学 、化学 、生物学 、信息论和决策论等领域
14 ~16。

纵观熵的 140 年的历史 ,可以说熵是
“不确定性”的最佳测度 。

里夫金和霍华德曾称熵定律是自然界一切定律中的最高定律17。

爱因斯坦称熵
定律为“整个科学的首要法则”。

人们称熵为新的世界观 、真理观 ,是现代新文明观的科学基础 ,21 世纪将是 熵世纪 2 。

在热力学中熵为ΔS =ΔQ。

其中 : S 为熵函数 ,ΔS 为熵变 ,ΔQ 为热力过程中系统吸收的元热量 , T 为
T
系统热力学温度 ; 统计物理学中 , 熵 S = K ln N , 即系统的玻尔兹曼熵 S 等于玻氏系数 K 与系统物质状态个数 N 之对数的 乘 积 ; 非 平 衡 态 下 , 系 统 熵 值 为 S = - k ∑f l n f , 其 中 : f 为 系 统 分 布 函 数 ; 信 息 熵 H = - k
n n
∑P i ln P i , 其中 : k 为一大于零的恒量 , P i 为状态 i 发生的概率 , n 为状态数 , p i ≥0 , 且 ∑p i = 1 。

i = 1
i = 1
2. 3 熵的性质
熵性质 :1) 对称性 : P 1 , P 2 , , P n 的顺序改变 , 熵值不变 。

即 S ( p 1 , p 2 , , p n ) = S ( p n , p n - 1 , , p 1 ) = S
( p 2 , p 1 , , p n ) ; 2) 非负性 : S ( p 1 , p 2 , , p n ) ≥
0 ; 3) 可加性 :相对独立的状态 , 其熵的和等于和的熵 ; 4) 极值 1 性 : p i = n 时 , 熵值最大 ( 值为 ln n ) 。

92
海 洋 工 程 第 24 卷
2. 4 熵的应用
熵理论目前应用的主要领域为 :1) 利用熵优化原理 ( 最大熵原理和极小交叉熵原理) 进行优化 ; 2) 确定权 重 ; 3) 引入其它理论 , 作为不确定性的一种度量 ; 4) 作为复杂性评价的新尺度 ; 5) 作为算法的停机判断准则 。

2. 5 传递熵
传递熵是信息准确度和价值的有效测度 。

设状态空间 x 上信息 A 的条件概率为 P ( y k , x l ) ( k , l = 1 , 2 ,
, n ) , A 的传递矩阵为 E ( A ) = ( e 1 , e 2 , , e n ) , 其中 : e l ( l = 1 , 2 , , n) 为状态 l 发生时信息 A 的准确度 , 其
n n
1 值越大 , 准确度越高 。

e l = n - 1k ∑[ P ( y l / x l ) - P ( y k / x l ) , l = 1 ,
2 , , n 。

称 H ( A ) = ∑h k 为信息 A 的传递 = 1 k = 1
- e k ln e k 2/ е- e k | ln e k |
(1/ e ≤e k ≤1)
( - 1/ n - 1 ≤e k ≤1/ e ) 熵 。

其中 : h k = 。

传递熵表明了给定信息 A 的不确定度 。

3 专家评定模型
受不完备信息 、评价所需时间 、个人偏好和对目标识别程度等不确定性因素的影响 , 专家的打分结果差
别往往会很大 。

因为熵是不确定性的最佳量度 , 借鉴传递熵的思想 , 用熵表示各专家评价结果的不确定性 , 可建立评价专家给定信息质量和进行专家选取的熵模型 。

在安全评价过程中 , 假定存在一理想的最优专家 , 其打分最公正 、最准确 。

实际的计算和判定时 , 可以选 取对被评价物的认识与专家群体有最高一致性的专家 , 即与总体差异最小的专家 。

与最优专家给定分值差 距越大的待评专家 , 其所给出结果的可信度就越低 , 此差距也用熵表示 , 可建立以下模型 :
设 S 1 , S 2 ,
, S m 为 m 个专家 , 其构成评价群组 G 。

被评价目标为 B 1 , B 2 ,
, B n 。

x ij ( i = 1 , 2 ,
, m ; j =
, x i n ) T ∈E n 和矩阵 X = ( x ij ) m ×n 是各
1 ,
2 ,
, n ) 是第 i 个专家对第 j 个目标的评分值 。

向量 x i = ( x i 1 , x i 2 ,
专家和专家组在一次评估中提供的结论 。

记 S 3 为最优专家 , 取与专家群体有最高一致性的专家 , 其评分向 , x 3 n ) T
∈E n。

用各专家的评分结果与 S 3 的差异大小来度量所选专家的优劣 。

专家
量为 x = ( x 3 1 , x 3 2 , 的评价水平向量为 :
E i = ( e i 1 , e i 2 ,
, e in ) ,
, m ; k = 1 , 2 ,
, j) , 反映了专家 S i 对目标 B 1 , B 2 ,
其中 : e ik = 1 - | x ik - ¯x ik | m ax x ik , ( i = 1 , 2 ,
价结论的水平 。

, B n 所做的评
至此 , 可建立如下基于熵的专家评价结果评定模型 :
n
∑h
ij
H i =
j = 1
- e ij ln e ij , 1/ e ≤e ij ≤1
2/ e - e ij | ln e ij | , 0 < e ij < 1/ e
其中 : h ij =
i = 1 , 2 , , m , j = 1 , 2 , , n 。

此模型将专家对给定问题的评价能力用其给定的评分结果的不确定性来度量 , 熵值 H i 的大小表示了不 确定性的程度 。

熵值 H i 越小 , 专家的决策水平越高 , 给出的评分越科学 ; 反之 , 熵值最大的专家给出的评价
结论可信度越低 , 给出的评价越不科学 。

故可采用下式表示各目标中专家所对应的权重 , 即第 i 个专家的权 重为
1
/ H i , i = 1 , 2 ,
, m 。

c i =

1/ H i
c i 值越大 , 表示专家 i 的意见应在评价中占的比重越大 。

这样 , 便建立了对专家评定的数学模型 。

根据专家评分结果 , 可对专家的评价水平进行评定 , 将其应用 于海洋平台安全评价过程中 , 就可确定各专家的结论的合理性及各专家意见的权重 , 以使决策更具科学性 。

4 计算实例
以海洋平台导管架装船过程安全评价为例说明模型的应用 。

平台导管架装船过程是海洋工程关键性环 节 , 因工作环境特殊 , 操作空间有限 , 加之导管架重量大 , 装船过程极易发生事故 。

一旦发生事故 , 将造成巨 大的经济损失和人员伤亡 , 所以必须对其安全性进行评价 。

第 4 期
余建星 ,等 :基于熵的海洋平台安全评价专家评定模型 93
为了说明模型的具体应用步骤 , 主要考虑导管架装船过程以下三个方面的风险 :拖拉系统失效 、导管架 受损 、码头破坏 。

采用专家打分法分别对拖拉系统 、导管架 、码头三个目标安全性进行评价 , 设专家组由 6 位 被认为是相关领域的专家 S 1 , S 2 ,
, S 6 组成 , 他们给出的评分结果见表 1 , 试对专家评分结果进行评价并确
定在决策时应采用哪些专家的意见 。

表 1 专家评分表
T a b . 1 Scores giv en by the specialists
专 家
目 标
S 1 S 2 S 3 S 4 S 5 S 6
拖 拉 系 统 导 管 架 5
4 1
2 3 4
2 3 5
1 2 4
2 4 5
1 4 5
码 头
采用本文提出的模型 ,计算结果见表 2 。

表 2 计算结果
T a b . 2 Calculatio n results
E i = ( e i 1 , e i 2 , e i 3 ) S i
H i c i 准确度排序
(01433 , 01833 , 01600) (01967 , 01917 , 11000) (01967 , 01917 , 01800) (01767 , 01667 , 11000) (01967 , 01833 , 01800) (01767 , 01833 , 01800)
S 1 S 2 S 3 S 4 S 5 S 6
0. 821 0. 112 0. 290 0. 473 0. 363 0. 534
0. 060 0. 439 0. 170 0. 104 0. 135 0. 092
⑥ ① ② ④ ③ ⑤
由计算结果可知 , 专家 S 1 的熵值最大 , 准确度最差 , 其意见在安全评价中所占比重最小 ; 专家 S 2 的熵值 最小 , 准确度最高 , 意见所占比重应最大 。

专家 S 3 、S 5 、S 4 、S 6 的准确度依次递减 , 所占比重也应递减 。

5 结 语
海洋平台安全评价是一项具有极其重要意义的工作 ,其评价结果直接影响到从平台的建造 、装船 、运输 、 安装 、使用 、维修到报废过程的决策 。

而准确评价的基础是对专家的评定以及专家对目标的准确评价 。

本文 借鉴传递熵的原理 ,建立了基于熵的专家评定模型 ,海洋平台装船过程安全评价的专家评定计算实例表明 , 该模型意义明确 ,计算简单 ,能较准确地反映专家的水平 ,克服了专家选取过程中存在主观臆断的缺陷 , 对 海洋平台安全评价具有重要意义 。

参考文献 :
1 V ald es Victor M , R amirez R ob erto Orteg a . Issues and challeng es in the prequ alification of of f shore platforms in Mexico J . Journal of O ff shore Mechanics & Arctic Eng ineering , 2000 , 122(2) :65 - 71.
邱菀华 . 管理决策与应用熵学 M . 北京 : 机械工业出版社 , 2002.
Y u Jianxing , Tan Zhend ong. Application of risk prob ab ility evalu ation m ethod to off shore platform constru ction J . Transactions o f Tian 2 jin University , 2005 , 11 (4) : 303 - 307.
Agg arw al P K. Dev elopment of a m ethod olog y for safety assessment of existing steel jacket of f shore platforms A . The 22nd O ff shore Technolog y C on ference C . H ouston , 1990.
S igurdsson G . Prob ab ilistic collap se analysis of jacketsA . Proc . o f IC OSS AR ’93 C . I nnsbru ck , Austria ,1993.
Mazaheri , S aid Dow nie , Martine J . Response - based method for d etermining the extreme b ehaviour of floating of f shore platforms J . Ocean Eng ineering , 2005 , 32 (3) :363 - 393.
Jin Wei 2liang , S ong Jian , Lu Y ong. Evalu ation of d amag e to of f sh ore platform stru ctures du e to c ollision of larg e b ar g e J . Eng ineering S tru ctures , 2005 , 27 (9) :1317 - 1326.
2 3
4 5 6 7 海洋工程 , 2003 ,21 ( 4) :
8 欧进萍 , 肖仪清 , 段忠东 ,等 . 基于风浪联合概率模型的海洋平台结构体系可靠度分析 J .
1 - 7.
9 10
王光远 . 结构服役期间的动态可靠度及其维修理论初探 J . 哈尔滨建筑工程学院学报 ,1990 ,23 (2) :1 - 10.
冯 端 ,冯步云 . 熵 M . 北京 :科学出版社 ,1992.
94
海 洋 工 程 第 24 卷
11 12 13 14 15 16 17
汤 野 . 熵 ———一个世纪之谜的解析 M . 合肥 :中国科学技术大学出版社 ,2004. 邢修三 . 物理熵 、信息熵及其演化方程 J . 中国科学 A 辑 ,2001 ,31 (1) :69 - 90.
E T J a ynes. In formation theory and statistical mechanicsJ . Physical R eview ,1957 ,106 (4) :620 - 630.
宋华岭 . 管理熵理论 ———企业组织管理系统复杂性评价的新尺度 J .
管理科学学报 ,2003 ,6 (3) :19 - 27.
张殿祜 . 熵 ———度量随机变量不确定性的一种尺度 J . 系统工程理论与实践 ,1997 ,11 :1 - 3.
庞朝阳 , 孙世新 . 以熵序列收敛算法停止判据的码数训练算法 J .
系统工程与电子技 ,2002 ,24 (1) :83 - 85.
杰里米〃里夫金著 ,吕 明 ,袁舟译 . 熵 :一种新的世界观 M . 上海 :上海译文出版社 ,1987.
(上接第 89 页)
3 S ong Zhiyao , Zhang Weisheng , K ong J u n , et al . Optimu m approach to d etermine the coefficien ts in sed iment - carry capacity formu la A . Proceed ings of The Ninth In tern ational S ymposiu m on R iver S ed imentation C . 2004. 1462 - 1466.
N EI 2J a b i , G Wakim , S S arraf . S tag e - d ischarg e relationsh ip in tid al riversJ . Journal of Waterw ay , Por t , C oastal , and Ocean Eng i 2 neering ,1992 ,118 (2) :166 - 174. Normand E Berg eron , Ath ol D Ab rahams. Es timating shear velocity and rou g hness leng th from v elocity pr ofiles J . Water R esources R esearch ,1992 ,28 (8) :2155 - 2158.
舒栋才 ,樊明兰 ,林三益 . 免疫进化算法在水位流量关系拟合中的应用 J . 东北水利水电 . 2004 , (4) :1 - 8. 周江文 ,黄幼才 ,杨元喜 ,等 . 抗差最小二乘法 M . 武汉 :华中理工大学出版社 ,1997.
4
5 6 7 8
南昌航空工业学院学报 ( 自然科学版) ,
曾接贤 ,张桂梅 , 储
2003 ,17 (4) :9 - 13.
,等 . 霍夫变换与最小二乘法相结合的直线拟合 J .
9 10 11 姚 俊 ,郭 雷 ,任建峰 . 一种抗旋转 、尺度和平移处理的图像水印算法 J . 计算机应用 ,2004 , 24 (12) :19 - 21. 李 飞 ,郭 颂 ,魏立峰 . 一种高精度的虹膜识别算法的实现 J . 计算机仿真 , 2004 ,22 (3) :197 - 199 ,216.
Li Xu , Zhang Weig ong , Bian X iaod ong. Research on d etection o f lane b ased on machine vision J . Journal of S ou theast University ( Eng lish Ed ition ) , 2004 ,20 (2) :176 - 180.
H oug h P V C. Method and means of recog nizing complex patternsS. U. S. Paten t 3069654 , 1962.
王四龙 ,宁书年 ,凌饴棕 ,等 . 利用霍夫变换机助提取重磁数据构造信息 J . 煤炭学报 ,1998 , 23 (4) :342 - 346. 林 辉 ,闾国年 ,宋志尧 ,等 . 东中国海潮波系统与海岸演变模拟研究 M .
北京 :科学出版社 ,2000.
12 13 14。

相关文档
最新文档