2019版高考物理金榜一轮模块综合检测 一 含解析 精品
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
温馨提示:
此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
模块综合检测(一)
(选修3-3)
(45分钟100分)
1.(16分)(1)(多选)下列各种说法中正确的是( )
A.0 ℃的铁和0 ℃的冰,它们的分子平均动能相同
B.液体与大气相接触,表面层内分子所受其他分子的作用表现为相互排斥
C.橡胶无固定熔点,是非晶体
D.凡与热现象有关的宏观过程都具有方向性,在热传递中,热量只能从高温物体传递给低温物体,而不能从低温物体传递给高温物体
E.压缩气体不一定能使气体的温度升高
(2)在一端封闭、内径均匀的光滑直玻璃管内,有一段长为l=16 cm的水银柱封闭着一定质量的理想气体。
当玻璃管水平放置达到平衡时如图甲所示,被封闭气柱的长度l1=23 cm;当管口向上竖直放置时,如图乙所示,被封闭气柱的长度l2=
19 cm。
已知重力加速度g=10 m/s2,不计温度的变化。
求:
①大气压强p0(用cmHg表示)。
②当玻璃管开口向上以a=5 m/s2的加速度匀加速上升时,水银柱和玻璃管相对静止时被封闭气柱的长度。
【解析】(1)选A、C、E。
温度是分子平均动能的标志,与其他无关,选项A对。
液体的表面张力是分子间距离大于液体内部分子间距离引起的,分子力表现为引力,选项B错。
橡胶是非晶体,没有固定的熔点,选项C对。
凡与热现象有关的宏观过程都具有方向性,在不引起其他变化的情况下热量只能从高温物体传递给低温物体,但是如果有做功等其他变化,热量也可以从低温物体传递给高温物体,选项D错误。
压缩气体等于对气体做功,而改变气体内能除了做功还有热传递,所以压缩的同时若伴随有热传递,压缩气体的温度也不一定升高,选项E 对。
(2)①由玻意耳定律可得:
p0l1S=(p0+ρg l)l2S
解得:p0=76 cmHg
②当玻璃管加速上升时,设封闭气体的压强为p,气柱的长度为l3,液柱质量为m,对液柱,由牛顿第二定律可得:
pS-p0S-mg=ma
解得:p=p0+=100 cmHg
由玻意耳定律可得:p0l1S=p l3S
解得:l3=17.48 cm
答案:(1)A、C、E
(2)①76 cmHg ②17.48 cm
2.(16分)(2018·福州模拟)(1)(多选)如图是某喷水壶示意图。
未喷水时阀门K闭合,压下压杆A可向瓶内储气室充气;多次充气后按下按柄B打开阀门K,水会自动经导管从喷嘴处喷出。
储气室内气体可视为理想气体,充气和喷水过程温度保持不变,则( )
A.充气过程中,储气室内气体内能增大
B.充气过程中,储气室内气体分子平均动能不变
C.喷水过程中,储气室内气体放热
D.喷水过程中,储气室内气体吸热
E.喷水过程中,储气室内气体压强增大
(2)如图所示,一定质量的理想气体在状态A时的温度为-3 ℃,从状态A变化到状态B,再变化到状态C,其状态变化过程的p-V图象如图,求:
①该气体在状态B时的温度。
②该气体从状态A到状态C的过程中与外界交换的热量。
【解析】(1)选A、B、D。
充气过程中,储气室内气体的质量增加,气体的温度不变,故气体的平均动能不变,气体内能增大,选项A、B正确;喷水过程中,气体对外做功,体积增大,所以气体压强减小,而气体温度不变,则气体吸热,选项C、E错误,D正确。
(2)①对于理想气体:A→B的过程,由查理定律有
=
T A=270 K,得T B=90 K,
所以t B=T B-273 ℃=-183 ℃
②B→C的过程,由盖-吕萨克定律有
=
得T C=270 K,
即t C=T C-273 ℃=-3 ℃
由于状态A与状态C温度相同,气体内能相等,而A→B的过程是等容变化,气体对外不做功,B→C的过程中气体体积膨胀对外做功,即从状态A到状态C气体对外做功,故气体应从外界吸收热量Q=pΔV=2×105×(6×10-3-2×10-3) J=800 J
答案:(1)A、B、D
(2)①-183 ℃②800 J
【总结提升】(1)一定质量的理想气体做等压变化时,气体做功的大小可以由
W=pΔV表示。
(2)在p-V图象中,图象与坐标轴所包围的面积表示气体做功的大小。
3.(16分)(2018·烟台模拟)(1)(多选)下列说法中正确的是
( )
A.绝对湿度大,相对湿度一定大
B.对于一定质量的理想气体,当分子间的平均距离变大时,压强不一定变小
C.密封在体积不变的容器中的气体,温度升高,气体分子对器壁单位面积上的平均作用力增大
D.两个铁块用力挤压不能粘合在一起说明分子之间存在有斥力
E.液体表面张力的作用是使液体表面有收缩趋势
(2)粗细均匀的U形管中装有水银,左管上端开口与大气相连,右管上端封闭,如图所示。
开始时两管内水银柱等高,两管内空气(可视为理想气体)柱长均为l=
90 cm,此时两管内空气柱温度均为27 ℃,外界大气压为p0=76 cmHg。
现在左管上端开口处缓慢注入水银压缩空气柱,直至右管内水银面上升10 cm,在注入水银过程中,左管内温度缓慢下降到-23 ℃,右管内温度保持在27 ℃。
求:
①注入水银柱的长度。
②左管注入的水银柱上表面离左管开口的距离。
【解析】(1)选B、C、E。
相对湿度表示空气中的绝对湿度与同温度下的饱和气压的比值,绝对湿度大时,同温度下的饱和气压也可能大,所以相对湿度不一定大,选项A错误。
对于一定质量的理想气体,当分子间的平均距离变大时,气体体积变大,但气体的温度可能也升高,压强不一定变小,选项B正确。
密封在体积不变的容器中的气体,温度升高时,气体的压强增大,说明气体分子对器壁单位面积上的平均作用力增大,选项C正确。
两个铁块挤压时他们之间的距离超过了分子力作用的范围,所以不能证明分子斥力的存在,选项D错误。
液体的表面张力使液面具有收缩的趋势,选项E正确。
(2)①设U形管横截面积为S,水银密度为ρ,重力加速度为g,注入水银柱的长度为h,注入水银后左管内空气柱的长度为L
左管内空气柱:
初状态,p1=76 cmHg,
V1=90 cm×S,
T1=(273+27)K=300 K
末状态,p2=76 cmHg+ρgh,
V2=LS,
T2=(273-23)K=250 K
右管内空气柱:
初状态,p3=76 cmHg,
V3=90 cm×S,
T3=T1=300 K
末状态,p4=p2-20 cmHg=56 cmHg+ρgh,
V4=80 cm×S,T4=T3=300 K
对右管内空气柱,由玻意耳定律得:
p3V3=p4V4
代入数据得:h=29.5 cm
②对左管内空气柱,由理想气体状态方程得:=
解得:L≈54 cm
左管注入的水银柱上表面离左管开口的距离
x=(90+10-29.5-54) cm=16.5 cm
答案:(1)B、C、E
(2)①29.5 cm ②16.5 cm
【加固训练】
(1)(多选)下列说法中正确的是( )
A.第二类永动机和第一类永动机都违背了能量守恒定律
B.液晶既像液体一样具有流动性,又跟某些晶体一样具有光学性质的各向异性
C.理想气体的压强是由气体分子间的斥力产生的
D.悬浮在液体中的小颗粒越小,布朗运动越明显
E.由于液体表面层分子间距离大于液体内部分子间距离,所以液体表面存在张力
(2)内壁光滑的汽缸通过活塞封闭有压强1.0×105 Pa、温度为27 ℃的气体,初始活塞到汽缸底部距离50 cm,现对汽缸加热,气体膨胀而活塞右移。
已知汽缸横截面积200 cm2,总长100 cm,大气压强为1.0×105 Pa。
①计算当温度升高到927 ℃时,缸内封闭气体的压强。
②若在此过程中封闭气体共吸收了800 J的热量,试计算气体内能的变化量。
【解析】(1)选B、D、E。
热力学第一定律说明第一类永动机不可能制成,能量守恒的热力学过程具有方向性,即第二类永动机不可能实现,第二类永动机不违背能量守恒定律,A错误;液晶即像液体一样具有流动性,又具有光学性质的各向异性,B正确;理想气体的压强是由于大量分子频繁撞击器壁产生的,理想气体分子作用力为零,C错误;悬浮在液体中的小颗粒越小,布朗运动越明显,D正确;由于液体表面层分子间距离大于液体内部分子间距离,所以液体表面存在张力,E正确。
(2)①由题意可知,在活塞移动到汽缸口的过程中,气体发生的是等压
变化,设活塞的横截面积为S,活塞未移动时封闭气体的温度为T1,当活塞恰好移动到汽缸门时,封闭气体的温度为T2,则由盖-吕萨克定律
=可知:=,又T1=300 K
解得:T2=600 K,即327 ℃,因为327 ℃<927 ℃,所以气体接着发生等容变化,设当气体温度达到927 ℃时,封闭气体的压强为p,由查理定
律=可以得到:
=,代入数据整理可以得到:p=2×105Pa ②由题意可知,气体膨胀过程中活塞移动的距离Δx=1 m-0.5 m=0.5 m,故大气压力对封闭气体所做的功为W=-p0SΔx,
代入数据解得:W=-1 000 J,
由热力学第一定律ΔU=W+Q
得到:ΔU=-1 000 J+800 J=-200 J,
内能减少200 J
答案:(1)B、D、E
(2)①2×105 Pa ②内能减少200 J
4.(16分)(2018·衡水模拟)(1)(多选)下列说法正确的是( )
A.空调机既能制热又能制冷,说明热传递不存在方向性
B.当分子间距离减小时,分子势能不一定减小
C.把一枚针放在水面上,它会浮在水面,这是水表面存在表面张力的
缘故
D.气体对容器壁的压强,是由气体分子对容器壁的频繁碰撞造成的
E.只要知道气体的摩尔体积和阿伏加德罗常数,就可以算出气体分子的体积
(2)在水平面有一个导热汽缸,如图甲所示,活塞与汽缸之间密封了一定质量的理想气体。
最初密封气体的温度为23 ℃,气柱长10 cm;给气体加热后,气柱长变为12 cm。
已知汽缸内截面积为0.001 m2,大气压p0=1.0×105 Pa,g取10 m/s2。
①求加热后气体的温度。
②若保持加热后气体的温度不变,将汽缸直立后(如图乙所示)气柱长度又恢复为10 cm,求活塞质量。
【解析】(1)选B、C、D。
根据热力学第二定律可知,热传递的方向性指的是自发的,热量不能自发的从低温传给高温,故A错误;分子间距离减小时,若分子力为引力,则做正功,分子势能减小,分子力若为斥力,则分子力做负功,分子势能增大,故B正确;水的表面层分子间距较大,分子力表现为引力,这种分子之间的引力使液面具有收缩的趋势,针轻放在水面上,它会浮在水面,正是由于水表面存在表面张力的缘故,故C正确;气体对容器壁的压强,是由气体分子对容器壁的频繁碰撞造成的,故D正确;知道气体的摩尔体积和阿伏加德罗常数可以计算出每个气体分子占据的平均空间,但不是气体分子的体积,故E
错误。
(2)①汽缸内的密封气体温度升高后,压强不变,是等压变化,
根据盖-吕萨克定律有
=
设汽缸内截面积用S表示,则V1=0.1S,
V2=0.12S,T1=(273+23)K=296 K
代入数据解得T2=355.2 K或(82.2 ℃)
②将汽缸直立后,气体发生等温变化,根据玻意耳定律有
p2V2=p3V3
已知V2=0.12S,V3=0.1S,
p2=p0=1.0×105 Pa
代入数据解得p3=1.2×105 Pa
因为Δp=p3-p2=
代入数据解得m=2 kg
答案:(1)B、C、D
(2)①355.2 K ②2 kg
5.(18分)(1)(多选)关于热现象,下列说法中正确的是( )
A.气体的温度升高时,分子的平均动能增大,撞击器壁时对器壁的作用力增大,从而气体的压强一定增大
B.自然发生的热传递过程是向着分子热运动无序性增大的方向进行的
C.在完全失重的情况下,密闭容器内的气体对器壁压强不变
D.液晶显示器是利用了液晶对光具有各向同性的特点
E.一定量100 ℃的水变成100 ℃的水蒸气,其分子之间的势能增大
(2)如图所示,一圆柱形汽缸竖直放置,汽缸正中间有挡板,位于汽缸口的活塞封闭着一定质量的理想气体。
活塞的质量为m,横截面积为S。
开始时,活塞与汽缸底部相距L,测得气体的温度为T0。
现缓慢降温,让活塞缓慢下降,直到恰好与挡板接触但不挤压。
然后在活塞上放一重物P,对气体缓慢升温,让气体的温度缓慢回升到T0,升温过程中,活塞不动。
已知大气压强为p0,重力加速度为g,不计活塞与汽缸间摩擦。
①求活塞刚与挡板接触时气体的温度和重物P的质量的最小值。
②整个过程中,气体是吸热还是放热,吸收或放出热量为多少?
【解析】(1)选B、C、E。
气体的温度升高时,分子的平均动能增大,每次撞击器壁时对器壁的作用力增大,但气体的压强不一定增大,还与气体的密集程度有关,A错误;根据热力学第二定律可知,自然发生的热传递过程是向着分子热运动无序性增大的方向进行的,B正确;气体压强是由于气体分子频繁撞击器壁产生的,所以在完全失重的情况下压强不会减小,C正确;液晶显示器是利用了液晶对光具有各向异性的特点,故D错误;一定量100 ℃的水变成100 ℃的水蒸气,分子动能之和不变,由于吸热,内能增大,则其分子之间的势能增大,故E正确。
(2)①缓慢降温过程是一个等压过程
初态:温度T0,体积V0=LS,
末态:温度T1,体积V1=
由盖-吕萨克定律有=,
解得T1=
升温过程中,活塞不动,是一个等容过程,设重物P质量为M 初态:温度T1=,
压强p1=p0+,
末态:温度T2=T0,
压强p2=p0+
由查理定律有=,
解得M=m+
②整个过程,理想气体的温度不变,内能不变
降温过程体积变小,外界对气体做的功为
W=(p0+)=
升温过程,体积不变,气体不对外界做功,外界也不对气体做功
由热力学第一定律,整个过程中,气体放出热量Q=W=
答案:(1)B、C、E (2)①m+
②放热
6.(18分)(1)(多选)一定质量的理想气体经历一系列变化过程,如图所示,下列说法正确的是( )
A.b→c过程中,气体压强不变,体积增大
B.a→b过程中,气体体积增大,压强减小
C.c→a过程中,气体压强增大,体积不变
D.c→a过程中,气体内能增大,体积变小
E.c→a过程中,气体从外界吸热,内能增大
(2)如图甲所示水平放置的汽缸内被活塞封闭一定质量的理想气体,气体的温度为17 ℃,活塞与汽缸底的距离L1=12 cm,离汽缸口的距离L2=3 cm,将汽缸缓慢地转到开口向上的竖直位置,待稳定后对缸内气体逐渐加热,使活塞上表面刚好与汽缸口相平为止如图乙所示。
已知g=10 m/s2,大气压强为1.0×105 Pa,活塞的横截面积S=100 cm2,质量m=20 kg,活塞可沿汽缸壁无摩擦滑动但不漏气,求:
①活塞上表面刚好与汽缸口相平时气体的温度为多少?
②在对汽缸内气体逐渐加热的过程中,气体吸收340 J的热量,则气体增加的内能多大?
【解析】(1)选B、C、E。
b→c过程中,气体压强不变,温度降低,根据
盖-吕萨克定律=C得知,体积应减小,故A错误;a→b过程中,气体的温度保持不变,即气体发生等温变化,压强减小,根据玻意耳定律pV=C 得知,体积增大,故B正确;c→a过程中,由图可知,p与T成正比,则气体发生等容变化,体积不变,故C正确,D错误;一定质量的理想气体内能与气体温度有关,并且温度越高气体的内能越大,则知c→a过程中,温度升高,气体内能增大,而体积不变,气体没有对外做功,外界也没有对气体做功,所以气体一定吸收热量,故E正确。
(2)①当汽缸水平放置时,
p0=1.0×105 Pa
V0=L1S,T0=(273+17) K=290 K
当汽缸口朝上,活塞到达汽缸口时,活塞的受力分析图如图所示,
有p1S=p0S+mg
则p1=p0+=1.0×105 Pa+ Pa=1.2×105 Pa
V1=(L1+L2)S
由理想气体状态方程得
=
则T1=T0=×290 K=435 K
②当汽缸口向上,未加热稳定时:由玻意耳定律得p0L1S=p1LS
则L== cm=10 cm
加热后,气体做等压变化,外界对气体做功为
W=-p0(L1+L2-L)S-mg(L1+L2-L)=-60 J
根据热力学第一定律ΔU=W+Q
得ΔU=280 J
答案:(1)B、C、E
(2)①435 K ②280 J
关闭Word文档返回原板块。